1
|
Lyu X, Sze KMF, Lee JMF, Husain A, Tian L, Imbeaud S, Zucman-Rossi J, Ng IOL, Ho DWH. Disparity landscapes of viral-induced structural variations in HCC: Mechanistic characterization and functional implications. Hepatology 2025; 81:1805-1821. [PMID: 39270063 PMCID: PMC12077337 DOI: 10.1097/hep.0000000000001087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND AND AIMS HCC is the most common type of primary liver cancer and is a common malignancy worldwide. About half of all new liver cancers worldwide each year occur in China, including Hong Kong, due to a high prevalence of HBV infection. HBV DNA integrates into the human genome, disrupting the endogenous tumor suppressors/regulatory genes or enhancing the activity of proto-oncogenes. It would be useful to examine the different NGS-based databases to provide a more unbiased and comprehensive survey of HBV integration. APPROACH AND RESULTS We aimed to take advantage of publicly available data sets of different regional cohorts to determine the disparity landscapes of integration events among sample cohorts, tissue types, chromosomal positions, individual host, and viral genes, as well as genic locations. By comparing HCC tumors with non tumorous livers, the landscape of HBV integration was delineated in gene-independent and gene-dependent manners. Moreover, we performed mechanistic investigations on how HBV-TERT integration led to TERT activation and derived a score to predict patients' prognostication according to their clonal disparity landscape of HBV integration. CONCLUSIONS Our study uncovered the different levels of clonal enrichment of HBV integration and identified mechanistic insights and prognostic biomarkers. This strengthens our understanding of HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xueying Lyu
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Karen Man-Fong Sze
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Joyce Man-Fong Lee
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Abdullah Husain
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Lu Tian
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- FunGeST lab, Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- FunGeST lab, Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, Paris, France
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
2
|
Chen L, Li W, Zai W, Zheng X, Meng X, Yao Q, Li W, Liang Y, Ye M, Zhou K, Liu M, Yang Z, Mao Z, Wei H, Yang S, Shi G, Yuan Z, Yu W. HBV sequence integrated to enhancer acting as oncogenic driver epigenetically promotes hepatocellular carcinoma development. J Exp Clin Cancer Res 2025; 44:155. [PMID: 40405227 PMCID: PMC12096768 DOI: 10.1186/s13046-025-03413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND HBV integration is considered as the main contributor to hepatocellular carcinoma (HCC). However, whether HBV integrated sequences determine genotype pathogenicity and how to block their function during HCC progression remains unclear. METHODS An in vitro HBV-infected PHH model and liver cancer cell lines were established to confirm the pathogenic potential of HBV-SITEs. The roles of HBV-SITE-1 in HCC development were analyzed using cellular phenotypic assays and molecular biology techniques, including the combined analysis of RNA-seq and ChIP-seq. Animal models were also used to evaluate the therapeutic effect of HBV-miR-2 inhibitors. RESULTS We identified nine fragments of HBV Sequences Integrated To Enhancer, termed as "HBV-SITEs". Particularly, a single nucleotide variation (T > G) was embedded at seed sequence of HBV-miR-2 in the highest integrated HBV-SITE-1 between genotypes B and H. Unexpectedly, B-HBV-SITE-1, not H-HBV-SITE-1, could abnormally activate oncogenic genes including TERT and accelerate HCC cell proliferation and migration. Meanwhile, HBV-miR-2 was gradually increased in HBV-infected cells and patient plasma with different HCC stages. Importantly, 227 genes upregulated by HBV, were also activated by HBV-miR-2 through triggering HBV-SITE-1 enhancer. Conversely, enhancer activities were particularly decreased by HBV-miR-2 inhibitors, and further downregulated activated oncogenic genes. Finally, HCC growth was dramatically restrained and HBV-induced transcripts were systematically reduced via injection of HBV-miR-2 inhibitors in animal models. CONCLUSION HBV-SITEs were identified as novel oncogenic elements for HCC, which provides an insightful perspective for the other cancers caused by oncogenic DNA viruses. We demonstrated that the integrated HBV sequence itself acted as oncogenic enhancers and nucleotide variations of HBV genotypes account for particular pathogenic progression, supporting that the viral nucleotide sequences are vital pathogenic substances beyond viral proteins. And modulation of their enhancer activities could be clinically achievable strategy for blocking DNA viruses-related cancer progression in the future.
Collapse
Affiliation(s)
- Lu Chen
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenxuan Li
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangyi Zheng
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianlong Meng
- Department of Liver Surgery and Transplantation, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qunyan Yao
- Department of Liver Surgery and Transplantation, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Li
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Liang
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Mu Ye
- Department of Liver Surgery and Transplantation, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kaicheng Zhou
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengxing Liu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhicong Yang
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhanrui Mao
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyan Wei
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuai Yang
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, China.
- Research and Development Department, Shanghai Epicurer Biotechnology Co., Ltd., Shanghai, China.
| | - Guoming Shi
- Department of Liver Surgery and Transplantation, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wenqiang Yu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Zeng T, Liao H, Xia L, You S, Huang Y, Zhang J, Liu Y, Liu X, Xie D. Multisite long-read sequencing reveals the early contributions of somatic structural variations to HBV-related hepatocellular carcinoma tumorigenesis. Genome Res 2025; 35:671-685. [PMID: 40037842 PMCID: PMC12047258 DOI: 10.1101/gr.279617.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
Somatic structural variations (SVs) represent a critical category of genomic mutations in hepatocellular carcinoma (HCC). However, the accurate identification of somatic SVs using short-read high-throughput sequencing is challenging. Here, we applied long-read nanopore sequencing and multisite sampling in a cohort of 42 samples from five patients. We found that adjacent nontumor tissue is not entirely normal, as significant somatic SV alterations were detected in these nontumor genomes. The adjacent nontumor tissue is highly similar to tumor tissue in terms of somatic SVs but differs in somatic single-nucleotide variants and copy number variations. The types of SVs in adjacent nontumor and tumor tissue are markedly different, with somatic insertions and deletions identified as early genomic events associated with HCC. Notably, hepatitis B virus (HBV) DNA integration frequently results in the generation of somatic SVs, particularly inducing interchromosomal translocations (TRAs). Although HBV DNA integration into the liver genome occurs randomly, multisite shared HBV-induced SVs are early driving events in the pathogenesis of HCC. Long-read RNA sequencing reveals that some HBV-induced SVs impact cancer-associated genes, with TRAs being capable of inducing the formation of fusion genes. These findings enhance our understanding of somatic SVs in HCC and their role in early tumorigenesis.
Collapse
Affiliation(s)
- Tianfu Zeng
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haotian Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Xia
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siyao You
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanqun Huang
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaxun Zhang
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yahui Liu
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuyan Liu
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dan Xie
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China;
| |
Collapse
|
4
|
Chen Y, Dong Y, Wei S, Gao X, Li W, Zhao P. Genomic Integration of Hepatitis B Virus Into Human Hepatocytes in Early Childhood Cirrhosis. Liver Int 2025; 45:e70080. [PMID: 40130949 DOI: 10.1111/liv.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) remains a major global health problem. HBV DNA can be integrated into the human chromosomes. The integration in young cirrhotic chronic hepatitis B children has not been explored. This study aims to investigate HBV DNA integration in early childhood cirrhosis. METHODS Biopsy liver specimens from cirrhotic and matched non-cirrhotic chronic hepatitis B children were collected. HBV DNA integration was detected through targeted HBV DNA fragment capture sequencing. RESULTS Twenty cirrhotic and 20 non-cirrhotic children with chronic hepatitis B were included in the study. The cirrhotic group included 14 males and 6 females, and the non-cirrhotic group included 13 males and 7 females. Compared to non-cirrhotic children, cirrhotic children had lower serum HBsAg quantification (p = 0.001). The median number of HBV integrants in the cirrhotic group was 59 and that in the non-cirrhotic group was 98. No significant difference existed between the two groups (p = 0.529). In the multivariate linear regression analysis, serum HBV DNA level was correlated with the number of HBV integrants (p < 0.001, R2 = 0.322). Six differential intragenic high-frequency viral integration sites in cirrhotic children were revealed, all of which have protein-coding functions. CONCLUSION Several frequently integrated genes were observed in early childhood cirrhosis. Detailed associations between genetic alterations induced by HBV integration and early childhood cirrhosis need further exploration.
Collapse
Affiliation(s)
- Ying Chen
- Department of Clinical Laboratory, 962nd Hospital of PLA Joint Logistic Support Force, Harbin, Heilongjiang Province, China
| | - Yi Dong
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Gao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Weijie Li
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Pan Zhao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
- Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
5
|
Lau DTY, Kim ES, Wang Z, King WC, Kleiner DE, Ghany MG, Hinerman AS, Liu Y, Chung RT, Sterling RK, Cloherty G, Lin SY, Liu HN, Su YH, Guo H. Differential Intrahepatic Integrated HBV DNA Patterns Between HBeAg-Positive and HBeAg-Negative Chronic Hepatitis B. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.28.25322668. [PMID: 40093236 PMCID: PMC11908316 DOI: 10.1101/2025.02.28.25322668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background HBsAg can be derived from intrahepatic cccDNA and integrated HBV DNA (iDNA). We examined the iDNA from liver tissues of 24 HBeAg(+) and 32 HBeAg(-) treatment-naive CHB participants. Methods Liver tissues were obtained from the North American Hepatitis B Research Network (HBRN). For cccDNA analysis, DNA was heat-denatured and digested by plasmid-safe ATP-dependent DNase to remove rcDNA and iDNA prior to qPCR. For iDNA detection, total DNA was subjected to HBV hybridization-targeted next generation sequencing (HBV-NGS) assay. The HBV-host junction sequences were identified by ChimericSeq. Comparison of HBV cccDNA and iDNA with serum and intrahepatic virological parameters were assessed. Results Intrahepatic cccDNA, serum HBV DNA, HBV RNA, HBcrAg and qHBsAg were higher among the HBeAg(+) participants. Among the HBeAg(+) samples, 87% had positive intrahepatic HBcAg staining compared to 13% of HBeAg(-) samples (p<0.0001). HBsAg staining, in contrast, was present in over 85% of both HBeAg(+) and (-) livers. 23 (95.8%) HBeAg(+) participants had ≤50% iDNA of total HBV DNA whereas 25 (78.1%) HBeAg(-) participants had >50% iDNA in their livers. The iDNA junction-breakpoint distributions for the HBeAg(+) group were random with 15.9% localized to the DR2-DR1 region. In contrast, 52.4% of the iDNA were clustered at DR2-DR1 region among the HBeAg(-) participants. Microhomology-mediated end joining (MMEJ) patterns of dslDNA HBV integration was more frequent in HBeAg (+) livers. Conclusion Serum RNA and HBcrAg reflect the intrahepatic cccDNA concentrations. HBeAg(-) CHB participants had high levels of intrahepatic iDNA and HBsAg despite lower cccDNA levels suggesting that iDNA is the primary source of HBsAg in HBeAg(-) CHB.
Collapse
|
6
|
Zhang C, Chen X, Yan C, Lv R, An S, Gao Y, Huang T, Deng W. HBX Multi-Mutations Combined With Traditional Screening Indicators to Establish a Nomogram Contributes to Precisely Stratify the High-Risk Population of Hepatocellular Carcinoma. Cancer Med 2025; 14:e70748. [PMID: 40042093 PMCID: PMC11880911 DOI: 10.1002/cam4.70748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 05/12/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors, often diagnosed at an advanced stage with limited treatment options and a poor prognosis. The present study aimed to identify the risk factors (RFs) for HCC and develop a nomogram incorporating dominant HBX mutations to predict the risk of HCC occurrence in high-risk (HR) populations. METHODS We collected early HCC screening and monitoring factors from cohorts of HCC patients and HR populations, including gender, age, AFP, ALT, as well as hepatitis B virus (HBV) infection and mutation indicators such as hepatitis B surface antigen (HBsAg), HBV DNA replication level, HBV genotype, and high-frequency mutations in HBX. Independent predictive factors for HCC onset were determined through both univariate and multivariate logistic regression analyses. Two nomograms with and without HBX mutation data were established to predict the risk of HCC incidence in HR populations, and their performance was evaluated using calibration curves, receiver operating characteristic (ROC) curves, as well as decision curve analysis (DCA). RESULTS A total of 312 participants were included. Independent RFs for HCC onset were identified as A1762T+G1764A multi-mutations, T1753C/G/A+A1762T+G1764A multi-mutations, and ALT > 40 U/L. The area under the curve (AUC) of the diagnostic nomogram with HBX mutation data was 0.835 in the training set and 0.869 in the testing set for the nomogram. Besides, the AUC of the diagnostic nomogram without HBX mutation data in the training set was 0.798 and 0.818 in the testing set. The calibration curve together with DCA indicated that the nomogram containing HBX mutation data had better predictive performance. CONCLUSIONS The established nomograms predicted the risk of HCC occurrence in HR populations with good accuracy, providing a valuable reference for precise stratification of HR populations and HCC screening.
Collapse
Affiliation(s)
- Chao‐Jun Zhang
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningGuangxiChina
- Department of Radiation OncologyGuangxi Medical University Cancer HospitalNanningGuangxiPeople's Republic of China
| | - Xiao‐Mei Chen
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Chang Yan
- Department of Radiation OncologyGuangxi Medical University Cancer HospitalNanningGuangxiPeople's Republic of China
| | - Rui‐Bo Lv
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Sanchun An
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Yun‐Xin Gao
- Guangdong Forevergen Medical Technology Co LtdFoshanGuangdongChina
| | - Tian‐Ren Huang
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningGuangxiChina
- Guangxi Cancer Molecular Medicine Engineering Research CenterNanningGuangxiChina
| | - Wei Deng
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningGuangxiChina
- Guangxi Cancer Molecular Medicine Engineering Research CenterNanningGuangxiChina
| |
Collapse
|
7
|
Hu E, An J, Gersten AJ, Wu N, Kawachi N, Zhu J, Rosenblatt G, Augustine S, Smith RV, Segall JE, Ostrer H, Amelio AL, Chung CH, Prystowsky MB, Ow TJ, Deng W, Yin S. Virusplot: a web server for viral integration analysis and visualization. Front Oncol 2025; 15:1539782. [PMID: 40046621 PMCID: PMC11880266 DOI: 10.3389/fonc.2025.1539782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
The integration of viral DNA into the human genome is a critical event in the pathogenesis of various cancers. This process leads to genomic instability, disrupts cellular regulatory mechanisms, and activates oncogenes or inactivates tumor suppressor genes. Despite significant advancements in genome sequencing technologies, there remains a notable lack of computational tools, particularly web-based applications, specifically designed for viral integration analysis and visualization. To address this gap, we present virusPlot, a web server with the following functional modules: (i) automatic retrieval of virus genome sequences and their annotation; (ii) visualization of virus integration locations and read counts through a graphical representation that links viral and host genome integration sites, facilitating the interpretation of integration patterns; (iii) analysis of virus integration hotspots using Fisher's exact test; and (iv) integration of various functions into an interactive web platform via shinyapp. VirusPlot efficiently processes and visualizes integration data from viruses and host genomes, providing researchers with an intuitive and user-friendly analytical tool that simplifies the complexity of virus integration analysis.
Collapse
Affiliation(s)
- Erqiang Hu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Pathology Single-cell & Bioinformatics Laboratory, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jianhong An
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Pathology Single-cell & Bioinformatics Laboratory, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Adam J Gersten
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nicole Wu
- The University of Texas at Austin, Austin, TX, United States
| | - Nicole Kawachi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jing Zhu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Gregory Rosenblatt
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Stelby Augustine
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Richard V. Smith
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Harry Ostrer
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Antonio L Amelio
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Michael B. Prystowsky
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas J. Ow
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wenjun Deng
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shanye Yin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Pathology Single-cell & Bioinformatics Laboratory, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
8
|
Zhang S, Mak LY, Yuen MF, Seto WK. Mechanisms of hepatocellular carcinoma and cirrhosis development in concurrent steatotic liver disease and chronic hepatitis B. Clin Mol Hepatol 2025; 31:S182-S195. [PMID: 39568126 PMCID: PMC11925439 DOI: 10.3350/cmh.2024.0837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024] Open
Abstract
Chronic hepatitis B (CHB) poses a major global public health challenge and is a leading cause of cirrhosis and liver cancer. Hepatic steatosis is common in individuals with CHB compared to the non-CHB population and is particularly prevalent in hepatitis B virus (HBV)-endemic regions, affecting about one-third of CHB patients. The interaction between hepatic steatosis and CHB-related disease progression is complex and still under debate. Evidence demonstrates that co-existing steatosis may worsen liver fibrosis while paradoxically increasing the likelihood of achieving better HBV control. In particular, despite the association of steatotic liver disease (SLD) with lower HBV viral loads and higher rates of HBsAg seroclearance, the coexistence of CHB and SLD can potentially accelerate liver disease progression. Factors such as fat deposition, lipotoxicity, oxidative stress, and chronic inflammation in SLD may foster a pro-fibrotic and pro-carcinogenic environment, accelerating the disease progression. Additionally, loss of global DNA methylation, changes in the immune microenvironment, and genetic susceptibility further contribute to the development of CHB-related cirrhosis and hepatocellular carcinoma (HCC). This review examines the mechanisms driving liver disease progression and the heightened risk of cirrhosis and HCC in patients with concurrent CHB and steatotic liver disease, underscoring the importance of prioritizing antiviral therapy for CHB in addition to addressing SLD.
Collapse
Affiliation(s)
- Saisai Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
9
|
Tu T, McQuaid TJ, Jacobson IM. HBV-Induced Carcinogenesis: Mechanisms, Correlation With Viral Suppression, and Implications for Treatment. Liver Int 2025; 45:e16202. [PMID: 39720865 DOI: 10.1111/liv.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a common but underdiagnosed and undertreated health condition and is the leading cause of hepatocellular carcinoma (HCC) worldwide. HBV (rated a Grade 1 carcinogen by the International Agency for Research on Cancer) drives the transformation of hepatocytes in multiple ways by inducing viral DNA integrations, genetic dysregulation, chromosomal translocations, chronic inflammation, and oncogenic pathways facilitated by some HBV proteins. Importantly, these mechanisms are active throughout all phases of HBV infection. Nevertheless, most clinical guidelines for antiviral therapy recommend treatment based on a complex combination of HBV DNA levels, transaminasemia, liver histology, and demographic factors, rather than prompt treatment for all people with infection. AIMS To determine if current frameworks for antiviral treatment address the impacts of chronic HBV infection particularly preventing cancer development. MATERIALS AND METHODS We reviewed the recent data demonstrating pro-oncogenic factors acting throughout a chronic HBV infection can be inhibited by antiviral therapy. RESULTS We extensively reviewed Hepatitis B virology data and correlating clinical outcome data. From thi, we suggest that new findings support simplifying and expanding treatment initiation to reduce the incidence ofnew infections, progressive liver disease, and risk of hepatocellular carcinoma. We also consider lessons learned from other blood-borne pathogens, including the benefits of antiviral treatment in preventing transmission, reducing stigma, and reframing treatment as cancer prevention. CONCLUSION Incorporating these practice changes into treatment is likely to reduce the overall burden of chronic HBV infections and HCC. Through this, we may better achieve the World Health Organization's goal of eliminating viral hepatitis as a public health threat and minimise its impact on people's lives.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, Westmead Clinical School, Centre for Infectious Diseases and Microbiology and Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
10
|
Hung JH, Teng CF, Hung HC, Chen YL, Chen PJ, Ho CL, Chuang CH, Huang W. Genomic instabilities in hepatocellular carcinoma: biomarkers and application in immunotherapies. Ann Hepatol 2024; 29:101546. [PMID: 39147130 DOI: 10.1016/j.aohep.2024.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 06/18/2024] [Indexed: 08/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. For patients with advanced HCC, liver function decompensation often occurs, which leads to poor tolerance to chemotherapies and other aggressive treatments. Therefore, it remains critical to develop effective therapeutic strategies for HCC. Etiological factors for HCC are complex and multifaceted, including hepatitis virus infection, alcohol, drug abuse, chronic metabolic abnormalities, and others. Thus, HCC has been categorized as a "genomically unstable" cancer due to the typical manifestation of chromosome breakage and aneuploidy, and oxidative DNA damage. In recent years, immunotherapy has provided a new option for cancer treatments, and the degree of genomic instability positively correlates with immunotherapy efficacies. This article reviews the endogenous and exogenous causes that affect the genomic stability of liver cells; it also updates the current biomarkers and their detection methods for genomic instabilities and relevant applications in cancer immunotherapies. Including genomic instability biomarkers in consideration of cancer treatment options shall increase the patients' well-being.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chiao-Feng Teng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan; Program for Cancer Biology and Drug Development, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsu-Chin Hung
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pin-Jun Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsiang Chuang
- Department of Life Science, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wenya Huang
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Diseases and Signal Transduction, National Cheng Kung University, Tainan, Taiwan..
| |
Collapse
|
11
|
Kim GA, Lim YS, Han S, Choi GH, Choi WM, Choi J, Sinn DH, Paik YH, Lee JH, Lee YB, Cho JY, Heo NY, Yuen MF, Wong VWS, Chan SL, Yang HI, Chen CJ. Viral Load-Based Prediction of Hepatocellular Carcinoma Risk in Noncirrhotic Patients With Chronic Hepatitis B : A Multinational Study for the Development and External Validation of a New Prognostic Model. Ann Intern Med 2024; 177:1308-1318. [PMID: 39284185 DOI: 10.7326/m24-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2024] Open
Abstract
BACKGROUND A nonlinear association between serum hepatitis B virus (HBV) DNA levels and hepatocellular carcinoma (HCC) risk has been suggested in patients with chronic hepatitis B (CHB). OBJECTIVE To develop and externally validate a prognostic model for HCC risk in noncirrhotic adult patients with CHB and no notable alanine aminotransferase (ALT) elevation. DESIGN Multinational cohort study. SETTING A community-based cohort in Taiwan (REVEAL-HBV [Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer-Hepatitis B Virus]; REACH-B [Risk Estimation for HCC in CHB] model cohort) and 8 hospital-based cohorts from Korea and Hong Kong (GAG-HCC [Guide with Age, Gender, HBV DNA-HCC] and CU-HCC [Chinese University-HCC] cohorts). PARTICIPANTS Model development: 6949 patients with CHB from a Korean hospital-based cohort. External validation: 7429 patients with CHB combined from the Taiwanese cohort and 7 cohorts from Korea and Hong Kong. MEASUREMENTS Incidence of HCC. RESULTS Over median follow-up periods of 10.0 and 12.2 years, the derivation and validation cohorts identified 435 and 467 incident HCC cases, respectively. Baseline HBV DNA level was one of the strongest predictors of HCC development, demonstrating a nonlinear parabolic association in both cohorts, with moderate viral loads (around 6 log10 IU/mL) showing the highest HCC risk. Additional predictors included in the new model (Revised REACH-B) were age, sex, platelet count, ALT levels, and positive hepatitis B e antigen result. The model exhibited satisfactory discrimination and calibration, with c-statistics of 0.844 and 0.813 in the derivation and validation cohorts with multiple imputation, respectively. The model yielded a greater positive net benefit compared with other strategies in the 0% to 18% threshold. LIMITATION Validation in cohorts of other races and receiving antiviral treatment was lacking. CONCLUSION Our new prognostic model, based on the nonlinear association between HBV viral loads and HCC risk, provides a valuable tool for predicting and stratifying HCC risk in noncirrhotic patients with CHB who are not currently indicated for antiviral treatment. PRIMARY FUNDING SOURCE Korean government.
Collapse
Affiliation(s)
- Gi-Ae Kim
- Department of Internal Medicine, College of Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea (G.-A.K.)
| | - Young-Suk Lim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (Y.-S.L., W.-M.C., J.C.)
| | - Seungbong Han
- Department of Biostatistics, Korea University, Seoul, Republic of Korea (S.H.)
| | - Gwang Hyeon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-do, Republic of Korea (G.H.C.)
| | - Won-Mook Choi
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (Y.-S.L., W.-M.C., J.C.)
| | - Jonggi Choi
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (Y.-S.L., W.-M.C., J.C.)
| | - Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (D.H.S., Y.-H.P.)
| | - Yong-Han Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (D.H.S., Y.-H.P.)
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea (J.-H.L., Y.B.L.)
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea (J.-H.L., Y.B.L.)
| | - Ju-Yeon Cho
- Department of Internal Medicine, School of Medicine, Chosun University, Gwangju-si, Republic of Korea (J.-Y.C.)
| | - Nae-Yun Heo
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea (N.-Y.H.)
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China (M.-F.Y.)
| | - Vincent Wai-Sun Wong
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China (V.W.-S.W.)
| | - Stephen L Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China (S.L.C.)
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan (H.-I.Y.)
| | | |
Collapse
|
12
|
Cheng CL, Lin YY, Hsu CL, Li CL, Yuan CT, Lai YY, Fang WQ, Chen PJ, Yeh SH, Tien HF. Unraveling the role of hepatitis B virus DNA integration in B-cell lymphomagenesis. Br J Cancer 2024; 131:996-1004. [PMID: 39026081 PMCID: PMC11405389 DOI: 10.1038/s41416-024-02763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Studies have shown that hepatitis B virus (HBV)-associated B-cell non-Hodgkin lymphoma (NHL) constitutes a unique subgroup with distinct clinical features. It still leaves open the question of whether the integration of HBV DNA into the B-cell genome is a causal mechanism in the development of lymphoma. METHODS Using the hybridisation capture-based next generation sequencing and RNA sequencing, we characterised the HBV integration pattern in 45 HBV-associated B-cell NHL tumour tissues. RESULTS A total of 354 HBV integration sites were identified in 13 (28.9%) samples, indicating the relatively low integration frequency in B-cell NHLs. High plasma HBV DNA loads were not associated with the existence of HBV integration. The insertion sites distributed randomly across all the lymphoma genome without any preferential hotspot neither at the chromosomal level nor at the genetic level. Intriguingly, most HBV integrations were nonclonal in B-cell NHLs, implying that they did not confer a survival advantage. Analysis of the paired diagnosis-relapse samples showed the unstable status of HBV integrations during disease progression. Furthermore, transcriptomic analysis revealed the limited biological impact of HBV integration. CONCLUSION Our study provides an unbiased HBV integration map in B-cell NHLs, revealing the insignificant role of HBV DNA integration in B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Chieh-Lung Cheng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - You-Yu Lin
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan, ROC
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chiao-Ling Li
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Chang-Tsu Yuan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan, ROC
| | - Ya-Yun Lai
- Microbial Genomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Quan Fang
- Division of New Drug, Center for Drug Evaluation, Taipei, Taiwan, ROC
| | - Pei-Jer Chen
- Microbial Genomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC.
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC.
- Department of Laboratory Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC.
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
- Department of Internal Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan, ROC.
| |
Collapse
|
13
|
Li W, Wang S, Jin Y, Mu X, Guo Z, Qiao S, Jiang S, Liu Q, Cui X. The role of the hepatitis B virus genome and its integration in the hepatocellular carcinoma. Front Microbiol 2024; 15:1469016. [PMID: 39309526 PMCID: PMC11412822 DOI: 10.3389/fmicb.2024.1469016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The integration of Hepatitis B Virus (HBV) is now known to be closely associated with the occurrence of liver cancer and can impact the functionality of liver cells through multiple dimensions. However, despite the detailed understanding of the characteristics of HBV integration and the mechanisms involved, the subsequent effects on cellular function are still poorly understood in current research. This study first systematically discusses the relationship between HBV integration and the occurrence of liver cancer, and then analyzes the status of the viral genome produced by HBV replication, highlighting the close relationship and structure between double-stranded linear (DSL)-HBV DNA and the occurrence of viral integration. The integration of DSL-HBV DNA leads to a certain preference for HBV integration itself. Additionally, exploration of HBV integration hotspots reveals obvious hotspot areas of HBV integration on the human genome. Virus integration in these hotspot areas is often associated with the occurrence and development of liver cancer, and it has been determined that HBV integration can promote the occurrence of cancer by inducing genome instability and other aspects. Furthermore, a comprehensive study of viral integration explored the mechanisms of viral integration and the internal integration mode, discovering that HBV integration may form extrachromosomal DNA (ecDNA), which exists outside the chromosome and can integrate into the chromosome under certain conditions. The prospect of HBV integration as a biomarker was also probed, with the expectation that combining HBV integration research with CRISPR technology will vigorously promote the progress of HBV integration research in the future. In summary, exploring the characteristics and mechanisms in HBV integration holds significant importance for an in-depth comprehension of viral integration.
Collapse
Affiliation(s)
- Weiyang Li
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Suhao Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yani Jin
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Xiao Mu
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Zhenzhen Guo
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Sen Qiao
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Shulong Jiang
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Qingbin Liu
- Jining First People's Hospital, Shandong First Medical University, Jining, China
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Xiaofang Cui
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| |
Collapse
|
14
|
Zhang M, Chen H, Liu H, Tang H. The impact of integrated hepatitis B virus DNA on oncogenesis and antiviral therapy. Biomark Res 2024; 12:84. [PMID: 39148134 PMCID: PMC11328401 DOI: 10.1186/s40364-024-00611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/29/2024] [Indexed: 08/17/2024] Open
Abstract
The global burden of hepatitis B virus (HBV) infection remains high, with chronic hepatitis B (CHB) patients facing a significantly increased risk of developing cirrhosis and hepatocellular carcinoma (HCC). The ultimate objective of antiviral therapy is to achieve a sterilizing cure for HBV. This necessitates the elimination of intrahepatic covalently closed circular DNA (cccDNA) and the complete eradication of integrated HBV DNA. This review aims to summarize the oncogenetic role of HBV integration and the significance of clearing HBV integration in sterilizing cure. It specifically focuses on the molecular mechanisms through which HBV integration leads to HCC, including modulation of the expression of proto-oncogenes and tumor suppressor genes, induction of chromosomal instability, and expression of truncated mutant HBV proteins. The review also highlights the impact of antiviral therapy in reducing HBV integration and preventing HBV-related HCC. Additionally, the review offers insights into future objectives for the treatment of CHB. Current strategies for HBV DNA integration inhibition and elimination include mainly antiviral therapies, RNA interference and gene editing technologies. Overall, HBV integration deserves further investigation and can potentially serve as a biomarker for CHB and HBV-related HCC.
Collapse
Affiliation(s)
- Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huan Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Wang M, Li Y, Pan T, Jia N. Plant natural compounds in the cancer treatment: A systematic bibliometric analysis. Heliyon 2024; 10:e34462. [PMID: 39104486 PMCID: PMC11298917 DOI: 10.1016/j.heliyon.2024.e34462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Plant-derived natural compounds are significant resources for the discovery of potential anticancer drugs. While research in the plant-based anticancer field has surged in recent years, systematic bibliometric analyses covering a longer period and containing up-to-date publications remain scarce. Here, we conducted a bibliometric analysis of literature on the anticancer properties of plant natural compounds over the past three decades, leveraging the bibliometric framework and open-access platform, KNIME. Our findings showed that the number of plant anticancer-related publications underwent an accelerating growth from 1992 to 2023. The country and institution analyses revealed that countries with traditional medical systems contributed a large portion of publications in the plant anticancer field, such as India, China, and South Korea. This study also highlighted the top ten eminent researchers and publications, assisting researchers in identifying pivotal literature. The primary publications were domains of chemistry and biology-related fields, such as Pharmacology & Pharmacy, Plant Sciences, and Biochemistry & Molecular Biology. Additionally, we noted that flavonoids have been focal plant compounds in anticancer, with strong anticancer potential. Our study provides new insights into the progress and trends in the plant anticancer field and will assist researchers in grasping the future research direction.
Collapse
Affiliation(s)
- Mengting Wang
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, China
| | - Yinshuai Li
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Tiejun Pan
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, China
| | - Nan Jia
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Environmental Science and Policy Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Zhang W, Zeng M, Li Y, Yu L. Leveraging oncovirus-derived antigen against the viral malignancies in adoptive cell therapies. Biomark Res 2024; 12:71. [PMID: 39075601 PMCID: PMC11287861 DOI: 10.1186/s40364-024-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins, which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and discuss their implications for therapeutic advancement.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, No. 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China.
| |
Collapse
|
17
|
Galasso L, Cerrito L, Maccauro V, Termite F, Mignini I, Esposto G, Borriello R, Ainora ME, Gasbarrini A, Zocco MA. Inflammatory Response in the Pathogenesis and Treatment of Hepatocellular Carcinoma: A Double-Edged Weapon. Int J Mol Sci 2024; 25:7191. [PMID: 39000296 PMCID: PMC11241080 DOI: 10.3390/ijms25137191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent among primary liver tumors (90%) and one of the main causes of cancer-related death. It develops usually in a chronically inflamed environment, ranging from compensatory parenchymal regeneration to fibrosis and cirrhosis: carcinogenesis can potentially happen in each of these stages. Inflammation determined by chronic viral infection (hepatitis B, hepatitis C, and hepatitis delta viruses) represents an important risk factor for HCC etiology through both viral direct damage and immune-related mechanisms. The deregulation of the physiological liver immunological network determined by viral infection can lead to carcinogenesis. The recent introduction of immunotherapy as the gold-standard first-line treatment for HCC highlights the role of the immune system and inflammation as a double-edged weapon in both HCC carcinogenesis and treatment. In this review we highlight how the inflammation is the key for the hepatocarcinogenesis in viral, alcohol and metabolic liver diseases.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Valeria Maccauro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
| | - Irene Mignini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Giorgio Esposto
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
18
|
Wang H, Hu B, Liang H, Wang R, Wei L, Su T, Li Q, Yin Q, Feng Y, Su M, Jiang J. Impact of HBV Integration on Hepatocellular Carcinoma After Long-Term Antiviral Therapy. Int J Gen Med 2024; 17:2643-2653. [PMID: 38859910 PMCID: PMC11164208 DOI: 10.2147/ijgm.s462844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/18/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose Few studies have reported the integrated characteristics of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) after long-term antiviral therapy. This study aimed to investigate the HBV integration features in HBV-HCC patients who had undergone long-term antiviral therapy, evaluate their impact on clinical indicators, and analyze the potential mechanisms involved. Patients and Methods We utilized genome-wide association study (GWAS) to analyze liver cancer tissues and detect the presence of HBV integration. Seventeen patients with HBV integration were included in the integration (Int) group, while the remaining five patients were included in the non-integration (N-int) group. Clinical indicators were regularly monitored and compared between the two groups. The characteristics of HBV integration patterns were analyzed, and differences between the groups were explored at the chromosome and genomic levels. Results After long-term antiviral therapy, although the frequency of HBV integration in HBV-HCC was reduced, residual HBV integration still accelerated the development of HCC. It affected the diagnosis, treatment, and prognosis of patients. HBV integration events led to changes in chromosome structure, which were closely related to HCC. Novel fusion genes were detected at a high frequency and had the potential to be specific detection sites for HBV-HCC. Conclusion HBV integration events are synergistically involved in the human genome and HBV, which can lead to chromosome structural instability, gene rearrangement events closely related to HCC production, and the formation of new specific fusion genes.
Collapse
Affiliation(s)
- Hang Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Bobin Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Hengkai Liang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Rongming Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Lu Wei
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Tumei Su
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qingmei Li
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qianbing Yin
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yanfei Feng
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Minghua Su
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jianning Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
19
|
Qian Z, Liang J, Huang R, Song W, Ying J, Bi X, Zhao J, Shi Z, Liu W, Liu J, Li Z, Zhou J, Huang Z, Zhang Y, Zhao D, Wu J, Wang L, Chen X, Mao R, Zhou Y, Guo L, Hu H, Ge D, Li X, Luo Z, Yao J, Li T, Chen Q, Wang B, Wei Z, Chen K, Qu C, Cai J, Jiao Y, Bao L, Zhao H. HBV integrations reshaping genomic structures promote hepatocellular carcinoma. Gut 2024; 73:1169-1182. [PMID: 38395437 PMCID: PMC11187386 DOI: 10.1136/gutjnl-2023-330414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), mostly characterised by HBV integrations, is prevalent worldwide. Previous HBV studies mainly focused on a few hotspot integrations. However, the oncogenic role of the other HBV integrations remains unclear. This study aimed to elucidate HBV integration-induced tumourigenesis further. DESIGN Here, we illuminated the genomic structures encompassing HBV integrations in 124 HCCs across ages using whole genome sequencing and Nanopore long reads. We classified a repertoire of integration patterns featured by complex genomic rearrangement. We also conducted a clustered regularly interspaced short palindromic repeat (CRISPR)-based gain-of-function genetic screen in mouse hepatocytes. We individually activated each candidate gene in the mouse model to uncover HBV integration-mediated oncogenic aberration that elicits tumourigenesis in mice. RESULTS These HBV-mediated rearrangements are significantly enriched in a bridge-fusion-bridge pattern and interchromosomal translocations, and frequently led to a wide range of aberrations including driver copy number variations in chr 4q, 5p (TERT), 6q, 8p, 16q, 9p (CDKN2A/B), 17p (TP53) and 13q (RB1), and particularly, ultra-early amplifications in chr8q. Integrated HBV frequently contains complex structures correlated with the translocation distance. Paired breakpoints within each integration event usually exhibit different microhomology, likely mediated by different DNA repair mechanisms. HBV-mediated rearrangements significantly correlated with young age, higher HBV DNA level and TP53 mutations but were less prevalent in the patients subjected to prior antiviral therapies. Finally, we recapitulated the TONSL and TMEM65 amplification in chr8q led by HBV integration using CRISPR/Cas9 editing and demonstrated their tumourigenic potentials. CONCLUSION HBV integrations extensively reshape genomic structures and promote hepatocarcinogenesis (graphical abstract), which may occur early in a patient's life.
Collapse
Affiliation(s)
- Zhaoyang Qian
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Junbo Liang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianjun Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyu Shi
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenjie Liu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyu Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianguo Zhou
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yefan Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongbing Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Mao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanchi Zhou
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanjie Hu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dazhuang Ge
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingchen Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Luo
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinjie Yao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tengyan Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingzhi Wang
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhewen Wei
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Chen
- Department of Immunology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunfeng Qu
- Department of Immunology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Bao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Qiao L, Li C, Lin W, He X, Mi J, Tong Y, Gao J. ViroISDC: a method for calling integration sites of hepatitis B virus based on feature encoding. BMC Bioinformatics 2024; 25:177. [PMID: 38704528 PMCID: PMC11070082 DOI: 10.1186/s12859-024-05763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) integrates into human chromosomes and can lead to genomic instability and hepatocarcinogenesis. Current tools for HBV integration site detection lack accuracy and stability. RESULTS This study proposes a deep learning-based method, named ViroISDC, for detecting integration sites. ViroISDC generates corresponding grammar rules and encodes the characteristics of the language data to predict integration sites accurately. Compared with Lumpy, Pindel, Seeksv, and SurVirus, ViroISDC exhibits better overall performance and is less sensitive to sequencing depth and integration sequence length, displaying good reliability, stability, and generality. Further downstream analysis of integrated sites detected by ViroISDC reveals the integration patterns and features of HBV. It is observed that HBV integration exhibits specific chromosomal preferences and tends to integrate into cancerous tissue. Moreover, HBV integration frequency was higher in males than females, and high-frequency integration sites were more likely to be present on hepatocarcinogenesis- and anti-cancer-related genes, validating the reliability of the ViroISDC. CONCLUSIONS ViroISDC pipeline exhibits superior precision, stability, and reliability across various datasets when compared to similar software. It is invaluable in exploring HBV infection in the human body, holding significant implications for the diagnosis, treatment, and prognosis assessment of HCC.
Collapse
Affiliation(s)
- Lei Qiao
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chang Li
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Lin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoqi He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jia Mi
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jingyang Gao
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
21
|
Chatterjee S, Starrett GJ. Microhomology-mediated repair machinery and its relationship with HPV-mediated oncogenesis. J Med Virol 2024; 96:e29674. [PMID: 38757834 DOI: 10.1002/jmv.29674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Human Papillomaviruses (HPV) are a diverse family of non-enveloped dsDNA viruses that infect the skin and mucosal epithelia. Persistent HPV infections can lead to cancer frequently involving integration of the virus into the host genome, leading to sustained oncogene expression and loss of capsid and genome maintenance proteins. Microhomology-mediated double-strand break repair, a DNA double-stranded breaks repair pathway present in many organisms, was initially thought to be a backup but it's now seen as vital, especially in homologous recombination-deficient contexts. Increasing evidence has identified microhomology (MH) near HPV integration junctions, suggesting MH-mediated repair pathways drive integration. In this comprehensive review, we present a detailed summary of both the mechanisms underlying MH-mediated repair and the evidence for its involvement in HPV integration in cancer. Lastly, we highlight the involvement of these processes in the integration of other DNA viruses and the broader implications on virus lifecycles and host innate immune response.
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriel J Starrett
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Wu Z, Dong Z, Luo J, Hu W, Tong Y, Gao X, Yao W, Tian H, Wang X. A comprehensive comparison of molecular and phenotypic profiles between hepatitis B virus (HBV)-infected and non-HBV-infected hepatocellular carcinoma by multi-omics analysis. Genomics 2024; 116:110831. [PMID: 38513875 DOI: 10.1016/j.ygeno.2024.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Hepatitis B virus (HBV) infection is a major etiology of hepatocellular carcinoma (HCC). An interesting question is how different are the molecular and phenotypic profiles between HBV-infected (HBV+) and non-HBV-infected (HBV-) HCCs? Based on the publicly available multi-omics data for HCC, including bulk and single-cell data, and the data we collected and sequenced, we performed a comprehensive comparison of molecular and phenotypic features between HBV+ and HBV- HCCs. Our analysis showed that compared to HBV- HCCs, HBV+ HCCs had significantly better clinical outcomes, higher degree of genomic instability, higher enrichment of DNA repair and immune-related pathways, lower enrichment of stromal and oncogenic signaling pathways, and better response to immunotherapy. Furthermore, in vitro experiments confirmed that HBV+ HCCs had higher immunity, PD-L1 expression and activation of DNA damage response pathways. This study may provide insights into the profiles of HBV+ and HBV- HCCs, and guide rational therapeutic interventions for HCC patients.
Collapse
Affiliation(s)
- Zijie Wu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Zehua Dong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Jiangti Luo
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Weiwei Hu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
23
|
Zhang H, Li M, Liu H, Dong Y, Li W, Zhao P. Juveniles, young adults, and infants with hepatitis B virus infection: A genomic study. J Med Virol 2024; 96:e29530. [PMID: 38529528 DOI: 10.1002/jmv.29530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Integration of hepatitis B virus (HBV) DNA into the human genome is recognized as an oncogenic factor and a barrier to hepatitis B cure. In the study, biopsy liver tissues were collected from adolescents and young adults with acute HBV infection younger than or equal to 35 years of age and from HBV-infected infant patients younger than or equal to 6 months of age. A high-throughput sequencing method was used to detect HBV DNA integration. Totally, 12 adolescents, young adults, and 6 infants were included. Among the 12 patients with acute HBV infection, immunohistochemical staining of intrahepatic hepatitis B surface antigen for all displayed negative results, and no HBV DNA integrants in the hepatocyte DNA were confirmed. All infant patients had elevated levels of alanine aminotransferase and high levels of serum HBV DNA. Numerous gene sites of hepatocyte DNA were integrated by HBV DNA for each infant patient, ranging from 120 to 430 integration sites. The fragile histidine triad gene was the high-frequency integrated site in the intragenic region for infant patients. In conclusion, hepatocyte DNA is integrated by HBV DNA in babies with active hepatitis B but seems seldom affected among adolescents and young adults with acute HBV infection. Infantile hepatitis B should be taken seriously considering abundant HBV DNA integration events.
Collapse
Affiliation(s)
- Hanwen Zhang
- Chinese PLA Medical School & Chinese PLA General Hospital, Beijing, China
| | - Meina Li
- Faculty of Military Health Service, Second Military Medical University, Shanghai, China
| | - Huijuan Liu
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Yi Dong
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Weijie Li
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Pan Zhao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Zhang Y, Guo W, Zhan Z, Bai O. Carcinogenic mechanisms of virus-associated lymphoma. Front Immunol 2024; 15:1361009. [PMID: 38482011 PMCID: PMC10932979 DOI: 10.3389/fimmu.2024.1361009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/12/2024] [Indexed: 04/17/2024] Open
Abstract
The development of lymphoma is a complex multistep process that integrates numerous experimental findings and clinical data that have not yet yielded a definitive explanation. Studies of oncogenic viruses can help to deepen insight into the pathogenesis of lymphoma, and identifying associations between lymphoma and viruses that are established and unidentified should lead to cellular and pharmacologically targeted antiviral strategies for treating malignant lymphoma. This review focuses on the pathogenesis of lymphomas associated with hepatitis B and C, Epstein-Barr, and human immunodeficiency viruses as well as Kaposi sarcoma-associated herpesvirus to clarify the current status of basic information and recent advances in the development of virus-associated lymphomas.
Collapse
Affiliation(s)
| | | | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
25
|
Xu S, Shi C, Zhou R, Han Y, Li N, Qu C, Xia R, Zhang C, Hu Y, Tian Z, Liu S, Wang L, Li J, Zhang Z. Mapping the landscape of HPV integration and characterising virus and host genome interactions in HPV-positive oropharyngeal squamous cell carcinoma. Clin Transl Med 2024; 14:e1556. [PMID: 38279874 PMCID: PMC10819103 DOI: 10.1002/ctm2.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Human papillomavirus (HPV) integration into the host genome is an important factor in HPV(+)OPSCC carcinogenesis, in conjunction with HPV oncoproteins E6/E7. However, a well-studied investigation about virus-host interaction still needs to be completed. Our objective is to characterise HPV integration to investigate potential mechanisms of tumourigenesis independent of E6/E7 oncoproteins. MATERIALS AND METHODS High-throughput viral integration detection was performed on 109 HPV(+)OPSCC tumours with relevant clinicopathological information. Of these tumours, 38 tumours underwent targeted gene sequencing, 29 underwent whole exome sequencing and 26 underwent RNA sequencing. RESULTS HPV integration was detected in 94% of tumours (with a mean integration count of 337). Tumours occurring at the tonsil/oropharyngeal wall that exhibit higher PD-L1 expression demonstrated increased integration sites (p = .024). HPV exhibited a propensity for integration at genomic sites located within specific fragile sites (FRA19A) or genes associated with functional roles such as cell proliferation and differentiation (PTEN, AR), immune evasion (CD274) and glycoprotein biosynthesis process (FUT8). The viral oncogenes E2, E4, E6 and E7 tended to remain intact. HPV fragments displayed enrichment within host copy number variation (CNV) regions. However, insertions into genes related to altered homologous recombination repair were infrequent. Genes with integration had distinct expression levels. Fifty-nine genes whose expression level was affected by viral integration were identified, for example, EPHB1, which was reported to be involved in cellular protein metabolic process. CONCLUSIONS HPV can promote oncogenesis through recurrent integration into functional host genome regions, leading to subsequent genomic aberrations and gene expression disruption. This study characterises viral integrations and virus-host interactions, enhancing our understanding of HPV-related carcinogenesis mechanisms.
Collapse
Affiliation(s)
- Shengming Xu
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Chaoji Shi
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Rong Zhou
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Yong Han
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - NianNian Li
- Department of BioinfomaticsSequantaShanghaiChina
| | - Chuxiang Qu
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Ronghui Xia
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Chunye Zhang
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Yuhua Hu
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Zhen Tian
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Shuli Liu
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Lizhen Wang
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Jiang Li
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| |
Collapse
|
26
|
Fukano K, Wakae K, Nao N, Saito M, Tsubota A, Toyoshima T, Aizaki H, Iijima H, Matsudaira T, Kimura M, Watashi K, Sugiura W, Muramatsu M. A versatile method to profile hepatitis B virus DNA integration. Hepatol Commun 2023; 7:e0328. [PMID: 38051537 PMCID: PMC10697629 DOI: 10.1097/hc9.0000000000000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND HBV DNA integration into the host genome is frequently found in HBV-associated HCC tissues and is associated with hepatocarcinogenesis. Multiple detection methods, including hybrid capture-sequencing, have identified integration sites and provided clinical implications; however, each has advantages and disadvantages concerning sensitivity, cost, and throughput. Therefore, methods that can comprehensively and cost-effectively detect integration sites with high sensitivity are required. Here, we investigated the efficiency of RAISING (Rapid Amplification of Integration Site without Interference by Genomic DNA contamination) as a simple and inexpensive method to detect viral integration by amplifying HBV-integrated fragments using virus-specific primers covering the entire HBV genome. METHODS AND RESULTS Illumina sequencing of RAISING products from HCC-derived cell lines (PLC/PRF/5 and Hep3B cells) identified HBV-human junction sequences as well as their frequencies. The HBV-human junction profiles identified using RAISING were consistent with those determined using hybrid capture-sequencing, and the representative junctions could be validated by junction-specific nested PCR. The comparison of these detection methods revealed that RAISING-sequencing outperforms hybrid capture-sequencing in concentrating junction sequences. RAISING-sequencing was also demonstrated to determine the sites of de novo integration in HBV-infected HepG2-NTCP cells, primary human hepatocytes, liver-humanized mice, and clinical specimens. Furthermore, we made use of xenograft mice subcutaneously engrafted with PLC/PRF/5 or Hep3B cells, and HBV-human junctions determined by RAISING-sequencing were detectable in the plasma cell-free DNA using droplet digital PCR. CONCLUSIONS RAISING successfully profiles HBV-human junction sequences with smaller amounts of sequencing data and at a lower cost than hybrid capture-sequencing. This method is expected to aid basic HBV integration and clinical diagnosis research.
Collapse
Affiliation(s)
- Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | - Masumichi Saito
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihito Tsubota
- Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Takae Toyoshima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroko Iijima
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Hyogo, Japan
| | - Takahiro Matsudaira
- Biotechnological Research Support Division, FASMAC Co., Ltd., Kanagawa, Japan
| | - Moto Kimura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
27
|
Pan J, Wei S, Qiu Q, Tong X, Shen Z, Zhu M, Hu X, Gong C. A novel chimeric RNA originating from BmCPV S4 and Bombyx mori HDAC11 transcripts regulates virus proliferation. PLoS Pathog 2023; 19:e1011184. [PMID: 38048361 PMCID: PMC10721177 DOI: 10.1371/journal.ppat.1011184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 12/14/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
Polymerases encoded by segmented negative-strand RNA viruses cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching") to generate chimeric RNA, and trans-splicing occurs between viral and cellular transcripts. Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), an RNA virus belonging to Reoviridae, is a major pathogen of silkworm (B. mori). The genome of BmCPV consists of 10 segmented double-stranded RNAs (S1-S10) from which viral RNAs encoding a protein are transcribed. In this study, chimeric silkworm-BmCPV RNAs, in which the sequence derived from the silkworm transcript could fuse with both the 5' end and the 3' end of viral RNA, were identified in the midgut of BmCPV-infected silkworms by RNA_seq and further confirmed by RT-PCR and Sanger sequencing. A novel chimeric RNA, HDAC11-S4 RNA 4, derived from silkworm histone deacetylase 11 (HDAC11) and the BmCPV S4 transcript encoding viral structural protein 4 (VP4), was selected for validation by in situ hybridization and Northern blotting. Interestingly, our results indicated that HDAC11-S4 RNA 4 was generated in a BmCPV RNA-dependent RNA polymerase (RdRp)-independent manner and could be translated into a truncated BmCPV VP4 with a silkworm HDAC11-derived N-terminal extension. Moreover, it was confirmed that HDAC11-S4 RNA 4 inhibited BmCPV proliferation, decreased the level of H3K9me3 and increased the level of H3K9ac. These results indicated that during infection with BmCPV, a novel mechanism, different from that described in previous reports, allows the genesis of chimeric silkworm-BmCPV RNAs with biological functions.
Collapse
Affiliation(s)
- Jun Pan
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Shulin Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Qunnan Qiu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Xinyu Tong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Zeen Shen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, People’s Republic of China
| | - Min Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, People’s Republic of China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
28
|
Adugna A. Histomolecular characterisation of hepatitis B virus induced liver cancer. Rev Med Virol 2023; 33:e2485. [PMID: 37902197 DOI: 10.1002/rmv.2485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/06/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Hepatitis B virus (HBV)-associated liver cancer is the third most prevalent cancer-related cause of death worldwide. Different studies have been done on the histomolecular analysis of HBV induced-liver cancer including epigenetics which are dynamic molecular mechanisms to control gene expression without altering the host deoxyribonucleic acid, genomics characterise the integration of the viral genome with host genome, proteomics characterise how gene modifies and results overexpression of proteins, glycoproteomics discover different glyco-biomarker candidates and show glycosylation in malignant hepatocytes, metabolomics characterise how HBV impairs a variety of metabolic functions during hepatocyte immortalisation, exosomes characterise immortalised liver cells in terms of their differentiation and proliferation, and autophagy plays a role in the development of hepatocarcinogenesis linked to HBV infection.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Microbiology, Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
29
|
Gao N, Guan G, Xu G, Wu H, Xie C, Mo Z, Deng H, Xiao S, Deng Z, Peng L, Lu F, Zhao Q, Gao Z. Integrated HBV DNA and cccDNA maintain transcriptional activity in intrahepatic HBsAg-positive patients with functional cure following PEG-IFN-based therapy. Aliment Pharmacol Ther 2023; 58:1086-1098. [PMID: 37644711 DOI: 10.1111/apt.17670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Hepatitis B surface antigen (HBsAg) seroclearance marks regression of hepatitis B virus (HBV) infection. However, more than one-fifth of patients with functional cure following pegylated interferon-based therapy may experience HBsAg seroreversion. The mechanisms causing the HBV relapse remain unclear. AIM To investigate the level and origin of HBV transcripts in patients with functional cure and their role in predicting relapse. METHODS Liver tissue obtained from patients with functional cure, as well as uncured and treatment-naïve HBeAg-negative patients with chronic hepatitis B (CHB) were analysed for intrahepatic HBV markers. HBV capture and RNA sequencing were used to detect HBV integration and chimeric transcripts. RESULTS Covalently closed circular DNA (cccDNA) levels and the proportion of HBsAg-positive hepatocytes in functionally cured patients were significantly lower than those in uncured and treatment-naïve HBeAg-negative patients. Integrated HBV DNA and chimeric transcripts declined in functionally cured patients compared to uncured patients. HBsAg-positive hepatocytes present in 25.5% of functionally cured patients, while intrahepatic HBV RNA remained in 72.2%. The levels of intrahepatic HBV RNA, integrated HBV DNA, and chimeric transcripts were higher in functionally cured patients with intrahepatic HBsAg than in those without. The residual intrahepatic HBsAg in functionally cured patients was mainly derived from transcriptionally active integrated HBV DNA; meanwhile, trace transcriptional activity of cccDNA could also remain. Two out of four functionally cured patients with intrahepatic HBsAg and trace active cccDNA experienced HBV relapse. CONCLUSION Integrated HBV DNA and cccDNA maintain transcriptional activity and maybe involved in HBsAg seroreversion in intrahepatic HBsAg-positive patients with functional cure and linked to virological relapse.
Collapse
Affiliation(s)
- Na Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ganlin Xu
- South China Institute of Biomedicine, Guangzhou, Guangdong, China
| | - Haishi Wu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chan Xie
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhishuo Mo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hong Deng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuying Xiao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Michalak TI. The Initial Hepatitis B Virus-Hepatocyte Genomic Integrations and Their Role in Hepatocellular Oncogenesis. Int J Mol Sci 2023; 24:14849. [PMID: 37834296 PMCID: PMC10573506 DOI: 10.3390/ijms241914849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Hepatitis B virus (HBV) remains a dominant cause of hepatocellular carcinoma (HCC). Recently, it was shown that HBV and woodchuck hepatitis virus (WHV) integrate into the hepatocyte genome minutes after invasion. Retrotransposons and transposable sequences were frequent sites of the initial insertions, suggesting a mechanism for spontaneous HBV DNA dispersal throughout the hepatocyte genome. Several somatic genes were also identified as early insertional targets in infected hepatocytes and woodchuck livers. Head-to-tail joints (HTJs) dominated amongst fusions, indicating their creation by non-homologous end-joining (NHEJ). Their formation coincided with the robust oxidative damage of hepatocyte DNA. This was associated with the activation of poly(ADP-ribose) polymerase 1 (PARP1)-mediated dsDNA repair, as reflected by the augmented transcription of PARP1 and XRCC1; the PARP1 binding partner OGG1, a responder to oxidative DNA damage; and increased activity of NAD+, a marker of PARP1 activation, and HO1, an indicator of cell oxidative stress. The engagement of the PARP1-mediated NHEJ repair pathway explains the HTJ format of the initial merges. The findings show that HBV and WHV are immediate inducers of oxidative DNA damage and hijack dsDNA repair to integrate into the hepatocyte genome, and through this mechanism, they may initiate pro-oncogenic processes. Tracking initial integrations may uncover early markers of HCC and help to explain HBV-associated oncogenesis.
Collapse
Affiliation(s)
- Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Science, Faculty of Medicine, Health Science Center, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
31
|
Li F, Ling X, Chakraborty S, Fountzilas C, Wang J, Jamroze A, Liu X, Kalinski P, Tang DG. Role of the DEAD-box RNA helicase DDX5 (p68) in cancer DNA repair, immune suppression, cancer metabolic control, virus infection promotion, and human microbiome (microbiota) negative influence. J Exp Clin Cancer Res 2023; 42:213. [PMID: 37596619 PMCID: PMC10439624 DOI: 10.1186/s13046-023-02787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
There is increasing evidence indicating the significant role of DDX5 (also called p68), acting as a master regulator and a potential biomarker and target, in tumorigenesis, proliferation, metastasis and treatment resistance for cancer therapy. However, DDX5 has also been reported to act as an oncosuppressor. These seemingly contradictory observations can be reconciled by DDX5's role in DNA repair. This is because cancer cell apoptosis and malignant transformation can represent the two possible outcomes of a single process regulated by DDX5, reflecting different intensity of DNA damage. Thus, targeting DDX5 could potentially shift cancer cells from a growth-arrested state (necessary for DNA repair) to apoptosis and cell killing. In addition to the increasingly recognized role of DDX5 in global genome stability surveillance and DNA damage repair, DDX5 has been implicated in multiple oncogenic signaling pathways. DDX5 appears to utilize distinct signaling cascades via interactions with unique proteins in different types of tissues/cells to elicit opposing roles (e.g., smooth muscle cells versus cancer cells). Such unique features make DDX5 an intriguing therapeutic target for the treatment of human cancers, with limited low toxicity to normal tissues. In this review, we discuss the multifaceted functions of DDX5 in DNA repair in cancer, immune suppression, oncogenic metabolic rewiring, virus infection promotion, and negative impact on the human microbiome (microbiota). We also provide new data showing that FL118, a molecular glue DDX5 degrader, selectively works against current treatment-resistant prostate cancer organoids/cells. Altogether, current studies demonstrate that DDX5 may represent a unique oncotarget for effectively conquering cancer with minimal toxicity to normal tissues.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Canget BioTekpharma LLC, Buffalo, NY, 14203, USA
| | - Sayan Chakraborty
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Christos Fountzilas
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jianmin Wang
- Department of Bioinformatics & Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Anmbreen Jamroze
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Xiaozhuo Liu
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Program of Tumor Immunology & Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
32
|
Guo M, Zhao L, Jiang C, Jia CC, Liu H, Zhou W, Songyang Z, Xiong Y. Multiomics analyses reveal pathological mechanisms of HBV infection and integration in liver cancer. J Med Virol 2023; 95:e28980. [PMID: 37522289 DOI: 10.1002/jmv.28980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Hepatitis B virus (HBV) infection and integration are important for hepatocellular carcinoma (HCC) initiation and progression, while disease mechanisms are still largely elusive. Here, we combined bulk and single-cell sequencing technologies to tackle the disease mechanisms of HBV-related HCC. We observed high HBV mutation rate and diversity only in tumors without HBV integration. We identified human somatic risk loci for HBV integration (VIMs). Transcription factors (TFs) enriched in VIMs were involved in DNA repair and androgen receptor (AR) signaling. Aberration of AR signaling was further observed by single-cell regulon analysis in HBV-infected hepatocytes, which showed remarkable interactions between AR and the complement system that, together with the X-linked ZXDB regulon that contains albumin (ALB), probably contribute to HCC male predominance. Complement system dysregulation caused by HBV infection was further confirmed by analyses of single-cell copy numbers and cell-cell communications. Finally, HBV infection-associated immune cells presented critical defects, including TXNIP in T cells, TYROBP in NK cells, and the X-linked TIMP1 in monocytes. We further experimentally validated our findings in multiple independent patient cohorts. Collectively, our work shed light on the pathogenesis of HBV-related HCC and other liver diseases that affect billions of people worldwide.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, China
| | - Linghao Zhao
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chen Jiang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, China
| | - Chang-Chang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Weiping Zhou
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Papatheodoridi A, Papatheodoridis G. Hepatocellular carcinoma: The virus or the liver? Liver Int 2023; 43 Suppl 1:22-30. [PMID: 35319167 DOI: 10.1111/liv.15253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) represents a major public health problem being one of the most common causes of cancer-related deaths worldwide. Hepatitis B (HBV) and C viruses have been classified as oncoviruses and are responsible for the majority of HCC cases, while the role of hepatitis D virus (HDV) in liver carcinogenesis has not been elucidated. HDV/HBV coinfection is related to more severe liver damage than HBV mono-infection and recent studies suggest that HDV/HBV patients are at increased risk of developing HCC compared to HBV mono-infected patients. HBV is known to promote hepatocarcinogenesis via DNA integration into host DNA, disruption of molecular pathways by regulatory HBV x (HBx) protein and excessive oxidative stress. Recently, several molecular mechanisms have been proposed to clarify the pathogenesis of HDV-related HCC including activation of signalling pathways by specific HDV antigens, epigenetic dysregulation and altered gene expression. Alongside, ongoing chronic inflammation and impaired immune responses have also been suggested to facilitate carcinogenesis. Finally, cellular senescence seems to play an important role in chronic viral infection and inflammation leading to hepatocarcinogenesis. In this review, we summarize the current literature on the impact of HDV in HCC development and discuss the potential interplay between HBV, HDV and neighbouring liver tissue in liver carcinogenesis.
Collapse
Affiliation(s)
- Alkistis Papatheodoridi
- Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, "Alexandra" General Hospital of Athens, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens School of Health Sciences, General Hospital of Athens "Laiko", Athens, Greece
| |
Collapse
|
34
|
Giosa D, Lombardo D, Musolino C, Chines V, Raffa G, Casuscelli di Tocco F, D'Aliberti D, Caminiti G, Saitta C, Alibrandi A, Aiese Cigliano R, Romeo O, Navarra G, Raimondo G, Pollicino T. Mitochondrial DNA is a target of HBV integration. Commun Biol 2023; 6:684. [PMID: 37400627 DOI: 10.1038/s42003-023-05017-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023] Open
Abstract
Hepatitis B virus (HBV) may integrate into the genome of infected cells and contribute to hepatocarcinogenesis. However, the role of HBV integration in hepatocellular carcinoma (HCC) development remains unclear. In this study, we apply a high-throughput HBV integration sequencing approach that allows sensitive identification of HBV integration sites and enumeration of integration clones. We identify 3339 HBV integration sites in paired tumour and non-tumour tissue samples from 7 patients with HCC. We detect 2107 clonally expanded integrations (1817 in tumour and 290 in non-tumour tissues), and a significant enrichment of clonal HBV integrations in mitochondrial DNA (mtDNA) preferentially occurring in the oxidative phosphorylation genes (OXPHOS) and D-loop region. We also find that HBV RNA sequences are imported into the mitochondria of hepatoma cells with the involvement of polynucleotide phosphorylase (PNPASE), and that HBV RNA might have a role in the process of HBV integration into mtDNA. Our results suggest a potential mechanism by which HBV integration may contribute to HCC development.
Collapse
Affiliation(s)
- Domenico Giosa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Daniele Lombardo
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Cristina Musolino
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Valeria Chines
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Giuseppina Raffa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Francesca Casuscelli di Tocco
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Deborah D'Aliberti
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Giuseppe Caminiti
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Carlo Saitta
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | | | | | - Orazio Romeo
- Department of ChiBioFarAm, University of Messina, Messina, Italy
| | - Giuseppe Navarra
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Giovanni Raimondo
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Teresa Pollicino
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy.
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy.
| |
Collapse
|
35
|
Kojima R, Nakamoto S, Kogure T, Ma Y, Ogawa K, Iwanaga T, Qiang N, Ao J, Nakagawa R, Muroyama R, Nakamura M, Chiba T, Kato J, Kato N. Re-analysis of hepatitis B virus integration sites reveals potential new loci associated with oncogenesis in hepatocellular carcinoma. World J Virol 2023; 12:209-220. [PMID: 37396703 PMCID: PMC10311580 DOI: 10.5501/wjv.v12.i3.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 04/12/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). HBV DNA can get integrated into the hepatocyte genome to promote carcinogenesis. However, the precise mechanism by which the integrated HBV genome promotes HCC has not been elucidated. AIM To analyze the features of HBV integration in HCC using a new reference database and integration detection method. METHODS Published data, consisting of 426 Liver tumor samples and 426 paired adjacent non-tumor samples, were re-analyzed to identify the integration sites. Genome Reference Consortium Human Build 38 (GRCh38) and Telomere-to-Telomere Consortium CHM13 (T2T-CHM13 (v2.0)) were used as the human reference genomes. In contrast, human genome 19 (hg19) was used in the original study. In addition, GRIDSS VIRUSBreakend was used to detect HBV integration sites, whereas high-throughput viral integration detection (HIVID) was applied in the original study (HIVID-hg19). RESULTS A total of 5361 integration sites were detected using T2T-CHM13. In the tumor samples, integration hotspots in the cancer driver genes, such as TERT and KMT2B, were consistent with those in the original study. GRIDSS VIRUSBreakend detected integrations in more samples than by HIVID-hg19. Enrichment of integration was observed at chromosome 11q13.3, including the CCND1 pro-moter, in tumor samples. Recurrent integration sites were observed in mitochondrial genes. CONCLUSION GRIDSS VIRUSBreakend using T2T-CHM13 is accurate and sensitive in detecting HBV integration. Re-analysis provides new insights into the regions of HBV integration and their potential roles in HCC development.
Collapse
Affiliation(s)
- Ryuta Kojima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tadayoshi Kogure
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yaojia Ma
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Keita Ogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Terunao Iwanaga
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Na Qiang
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Junjie Ao
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryosuke Muroyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
36
|
Cui X, Li Y, Xu H, Sun Y, Jiang S, Li W. Characteristics of Hepatitis B virus integration and mechanism of inducing chromosome translocation. NPJ Genom Med 2023; 8:11. [PMID: 37268616 DOI: 10.1038/s41525-023-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Hepatitis B virus (HBV) integration is closely associated with the onset and progression of tumors. This study utilized the DNA of 27 liver cancer samples for high-throughput Viral Integration Detection (HIVID), with the overarching goal of detecting HBV integration. KEGG pathway analysis of breakpoints was performed using the ClusterProfiler software. The breakpoints were annotated using the latest ANNOVAR software. We identified 775 integration sites and detected two new hotspot genes for virus integration, N4BP1 and WASHP, along with 331 new genes. Furthermore, we conducted a comprehensive analysis to determine the critical impact pathways of virus integration by combining our findings with the results of three major global studies on HBV integration. Meanwhile, we found common characteristics of virus integration hotspots among different ethnic groups. To specify the direct impact of virus integration on genomic instability, we explained the causes of inversion and the frequent occurrence of translocation due to HBV integration. This study detected a series of hotspot integration genes and specified common characteristics of critical hotspot integration genes. These hotspot genes are universal across different ethnic groups, providing an effective target for better research on the pathogenic mechanism. We also demonstrated more comprehensive key pathways affected by HBV integration and elucidated the mechanism for inversion and frequent translocation events due to virus integration. Apart from the great significance of the rule of HBV integration, the current study also provides valuable insights into the mechanism of virus integration.
Collapse
Affiliation(s)
- Xiaofang Cui
- Jining Medical University, Jining, Shandong, China
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Yiyan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hanshi Xu
- Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yuhui Sun
- BGI-Shenzhen, 518083, Shenzhen, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, China.
| | - Weiyang Li
- Jining Medical University, Jining, Shandong, China.
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
37
|
MacLennan SA, Marra MA. Oncogenic Viruses and the Epigenome: How Viruses Hijack Epigenetic Mechanisms to Drive Cancer. Int J Mol Sci 2023; 24:ijms24119543. [PMID: 37298494 DOI: 10.3390/ijms24119543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Globally, viral infections substantially contribute to cancer development. Oncogenic viruses are taxonomically heterogeneous and drive cancers using diverse strategies, including epigenomic dysregulation. Here, we discuss how oncogenic viruses disrupt epigenetic homeostasis to drive cancer and focus on how virally mediated dysregulation of host and viral epigenomes impacts the hallmarks of cancer. To illustrate the relationship between epigenetics and viral life cycles, we describe how epigenetic changes facilitate the human papillomavirus (HPV) life cycle and how changes to this process can spur malignancy. We also highlight the clinical impact of virally mediated epigenetic changes on cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Signe A MacLennan
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Marco A Marra
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| |
Collapse
|
38
|
Gan W, Gao N, Gu L, Mo Z, Pang X, Lei Z, Gao Z. Reduction in Intrahepatic cccDNA and Integration of HBV in Chronic Hepatitis B Patients with a Functional Cure. J Clin Transl Hepatol 2023; 11:314-322. [PMID: 36643049 PMCID: PMC9817062 DOI: 10.14218/jcth.2022.00177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 01/18/2023] Open
Abstract
Background and Aims Functional cure (FC) is characterized by the clearance of the hepatitis B surface antigen from the serum of patients with chronic hepatitis B (CHB). However, the level of intrahepatic covalently closed circular DNA (cccDNA) and hepatitis B virus (HBV) integration remains unclear. We conducted this study to determine them and reveal their value in the treatment of CHB. Methods There were two sessions to elucidate the changes in intrahepatic cccDNA and HBV integration after antiviral therapy. In the first session, 116 patients were enrolled and divided into FC, non-functional cure (NFC), and CHB groups, including 48 patients with functionally cured CHB, 27 with CHB without functional cure after antiviral treatment, and 41 with treatment-naïve CHB. Patients were tested for both intrahepatic cccDNA and other viral markers. All patients in the FC group were followed up for at least 24 weeks to observe relapse. In the second session, another ten patients were included for in-depth whole-genome sequencing to analyze HBV integration. Results Thirteen patients in the FC group were negative for intrahepatic cccDNA. Intrahepatic cccDNA was much higher in the CHB group compared with the FC group. Seven patients had HBsAg seroreversion, including two with virological relapse. Integration of HBV was detected in one (33.3%) functionally cured patients and in seven (100%) with CHB. 28.0% of the HBV breakpoints were assigned in the 1,500 nt to 1,900 nt range of the HBV genome. Conclusions After achieving an FC, the rate of intrahepatic cccDNA and HBV integration was significantly reduced in patients with CHB. For those patients who cleared intrahepatic cccDNA, the chances of developing virological relapse were even lower.
Collapse
Affiliation(s)
- Weiqiang Gan
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Na Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lin Gu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhishuo Mo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuqing Pang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziying Lei
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Shi XJ, Yao CG, Li HL, Wei YH, Hu KH. Chromosome hyperploidy induced by chronic hepatitis B virus infection and its targeted therapeutic strategy. Shijie Huaren Xiaohua Zazhi 2023; 31:299-306. [DOI: 10.11569/wcjd.v31.i8.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection induces chromosomal hyperploidy (including aneuploidy and polyploidy) and chromosomal instability in hepatocytes, which is one of the main causes of primary hepatocellular carcinoma (HCC). Although hepatocytes can regulate polyploidization of chromosomes under normal conditions, it is difficult to regulate hyperploidization caused by HBV infection and thus carcinogenesis. Studies have shown that HBV can cause dysregulation of many signal pathways such as PLK1/PRC1, and induce chromosome hyperploidy and malignant transformation of hepatocytes. Herein we review the mechanism of HBV infection-induced chromosomal hyperploidy of hepatocytes to cuase hepatocarcinogenesis and the advances in research of drugs targeting chromosomal hyperploidy.
Collapse
|
40
|
Tavolari S, Brandi G. Mutational Landscape of Cholangiocarcinoma According to Different Etiologies: A Review. Cells 2023; 12:cells12091216. [PMID: 37174616 PMCID: PMC10177226 DOI: 10.3390/cells12091216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Recent next-generation sequencing (NGS) studies on large cohorts of cholangiocarcinoma (CCA) patients have clearly revealed the extreme intra- and inter-tumoral molecular heterogeneity that characterizes this malignancy. The lack of a stereotyped molecular signature in CCA makes the identification of actionable therapeutic targets challenging, making it mandatory to have a better understanding of the origin of such heterogeneity in order to improve the clinical outcome of these patients. Compelling evidence has shown that the CCA genomic landscape significantly differs according to anatomical subtypes and the underlying etiology, highlighting the importance of conducting molecular studies in different populations of CCA patients. Currently, some risk factors have been recognized in CCA development, while others are emerging from recent epidemiological studies. Nevertheless, the role of each etiologic factor in driving CCA genetic heterogeneity still remains unclear, and available studies are limited. In an attempt to shed more light on this issue, here we review the current literature data on the mutational spectrum of this disease according to different etiologies.
Collapse
Affiliation(s)
- Simona Tavolari
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
41
|
Nevola R, Beccia D, Rosato V, Ruocco R, Mastrocinque D, Villani A, Perillo P, Imbriani S, Delle Femine A, Criscuolo L, Alfano M, La Montagna M, Russo A, Marfella R, Cozzolino D, Sasso FC, Rinaldi L, Marrone A, Adinolfi LE, Claar E. HBV Infection and Host Interactions: The Role in Viral Persistence and Oncogenesis. Int J Mol Sci 2023; 24:7651. [PMID: 37108816 PMCID: PMC10145402 DOI: 10.3390/ijms24087651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatitis B virus (HBV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Despite the advent of vaccines and potent antiviral agents able to suppress viral replication, recovery from chronic HBV infection is still an extremely difficult goal to achieve. Complex interactions between virus and host are responsible for HBV persistence and the risk of oncogenesis. Through multiple pathways, HBV is able to silence both innate and adaptive immunological responses and become out of control. Furthermore, the integration of the viral genome into that of the host and the production of covalently closed circular DNA (cccDNA) represent reservoirs of viral persistence and account for the difficult eradication of the infection. An adequate knowledge of the virus-host interaction mechanisms responsible for viral persistence and the risk of hepatocarcinogenesis is necessary for the development of functional cures for chronic HBV infection. The purpose of this review is, therefore, to analyze how interactions between HBV and host concur in the mechanisms of infection, persistence, and oncogenesis and what are the implications and the therapeutic perspectives that follow.
Collapse
Affiliation(s)
- Riccardo Nevola
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Rachele Ruocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Davide Mastrocinque
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Angela Villani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Pasquale Perillo
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Augusto Delle Femine
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Livio Criscuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| |
Collapse
|
42
|
Chen Y, Wang Y, Zhou P, Huang H, Li R, Zeng Z, Cui Z, Tian R, Jin Z, Liu J, Huang Z, Li L, Huang Z, Tian X, Yu M, Hu Z. VIS Atlas: A Database of Virus Integration Sites in Human Genome from NGS Data to Explore Integration Patterns. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:300-310. [PMID: 36804047 PMCID: PMC10626058 DOI: 10.1016/j.gpb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Integration of oncogenic DNA viruses into the human genome is a key step in most virus-induced carcinogenesis. Here, we constructed a virus integration site (VIS) Atlas database, an extensive collection of integration breakpoints for three most prevalent oncoviruses, human papillomavirus, hepatitis B virus, and Epstein-Barr virus based on the next-generation sequencing (NGS) data, literature, and experimental data. There are 63,179 breakpoints and 47,411 junctional sequences with full annotations deposited in the VIS Atlas database, comprising 47 virus genotypes and 17 disease types. The VIS Atlas database provides (1) a genome browser for NGS breakpoint quality check, visualization of VISs, and the local genomic context; (2) a novel platform to discover integration patterns; and (3) a statistics interface for a comprehensive investigation of genotype-specific integration features. Data collected in the VIS Atlas aid to provide insights into virus pathogenic mechanisms and the development of novel antitumor drugs. The VIS Atlas database is available at https://www.vis-atlas.tech/.
Collapse
Affiliation(s)
- Ye Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Yuyan Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Hao Huang
- Office of Scientific Research & Development, Sun Yat-sen University, Guangzhou 510000, China
| | - Rui Li
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhen Zeng
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zifeng Cui
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Rui Tian
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhuang Jin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Jiashuo Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhaoyue Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Lifang Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zheying Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Meiying Yu
- Department of Pathology, the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China.
| | - Zheng Hu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
43
|
Guo M, Yao Z, Jiang C, Songyang Z, Gan L, Xiong Y. Three-dimensional and single-cell sequencing of liver cancer reveals comprehensive host-virus interactions in HBV infection. Front Immunol 2023; 14:1161522. [PMID: 37063858 PMCID: PMC10102373 DOI: 10.3389/fimmu.2023.1161522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundsHepatitis B virus (HBV) infection is a major risk factor for chronic liver diseases and liver cancer (mainly hepatocellular carcinoma, HCC), while the underlying mechanisms and host-virus interactions are still largely elusive.MethodsWe applied HiC sequencing to HepG2 (HBV-) and HepG2-2.2.15 (HBV+) cell lines and combined them with public HCC single-cell RNA-seq data, HCC bulk RNA-seq data, and both genomic and epigenomic ChIP-seq data to reveal potential disease mechanisms of HBV infection and host-virus interactions reflected by 3D genome organization.ResultsWe found that HBV enhanced overall proximal chromatin interactions (CIs) of liver cells and primarily affected regional CIs on chromosomes 13, 14, 17, and 22. Interestingly, HBV altered the boundaries of many topologically associating domains (TADs), and genes nearby these boundaries showed functional enrichment in cell adhesion which may promote cancer metastasis. Moreover, A/B compartment analysis revealed dramatic changes on chromosomes 9, 13 and 21, with more B compartments (inactive or closed) shifting to A compartments (active or open). The A-to-B regions (closing) harbored enhancers enriched in the regulation of inflammatory responses, whereas B-to-A regions (opening) were enriched for transposable elements (TE). Furthermore, we identified large HBV-induced structural variations (SVs) that disrupted tumor suppressors, NLGN4Y and PROS1. Finally, we examined differentially expressed genes and TEs in single hepatocytes with or without HBV infection, by using single-cell RNA-seq data. Consistent with our HiC sequencing findings, two upregulated genes that promote HBV replication, HNF4A and NR5A2, were located in regions with HBV-enhanced CIs, and five TEs were located in HBV-activated regions. Therefore, HBV may promote liver diseases by affecting the human 3D genome structure.ConclusionOur work promotes mechanistic understanding of HBV infection and host-virus interactions related to liver diseases that affect billions of people worldwide. Our findings may also have implications for novel immunotherapeutic strategies targeting HBV infection.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Jiang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lian Gan
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- *Correspondence: Lian Gan, ; Yuanyan Xiong,
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Lian Gan, ; Yuanyan Xiong,
| |
Collapse
|
44
|
Du Q, Peng F, Xiong Q, Xu K, Yang KY, Wang M, Wu Z, Li S, Cheng X, Rao X, Wang Y, Tsui SKW, Zeng X. Genomic Analysis of Amphioxus Reveals a Wide Range of Fragments Homologous to Viral Sequences. Viruses 2023; 15:v15040909. [PMID: 37112889 PMCID: PMC10145014 DOI: 10.3390/v15040909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/11/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Amphioxus species are considered living fossils and are important in the evolutionary study of chordates and vertebrates. To explore viral homologous sequences, a high-quality annotated genome of the Beihai amphioxus (Branchiostoma belcheri beihai) was examined using virus sequence queries. In this study, 347 homologous fragments (HFs) of viruses were identified in the genome of B. belcheri beihai, of which most were observed on 21 genome assembly scaffolds. HFs were preferentially located within protein-coding genes, particularly in their CDS regions and promoters. A range of amphioxus genes with a high frequency of HFs is proposed, including histone-related genes that are homologous to the Histone H4 or Histone H2B domains of viruses. Together, this comprehensive analysis of viral HFs provides insights into the neglected role of viral integration in the evolution of amphioxus.
Collapse
Affiliation(s)
- Qiao Du
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Peng
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Kejin Xu
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingqiang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhitian Wu
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanying Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaorui Cheng
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinjie Rao
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyouye Wang
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Zeng
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
45
|
Svicher V, Salpini R, D’Anna S, Piermatteo L, Iannetta M, Malagnino V, Sarmati L. New insights into hepatitis B virus lymphotropism: Implications for HBV-related lymphomagenesis. Front Oncol 2023; 13:1143258. [PMID: 37007163 PMCID: PMC10050604 DOI: 10.3389/fonc.2023.1143258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
HBV is one of the most widespread hepatitis viruses worldwide, and a correlation between chronic infection and liver cancer has been clearly reported. The carcinogenic capacity of HBV has been reported for other solid tumors, but the largest number of studies focus on its possible lymphomagenic role. To update the correlation between HBV infection and the occurrence of lymphatic or hematologic malignancies, the most recent evidence from epidemiological and in vitro studies has been reported. In the context of hematological malignancies, the strongest epidemiological correlations are with the emergence of lymphomas, in particular non-Hodgkin's lymphoma (NHL) (HR 2.10 [95% CI 1.34-3.31], p=0.001) and, more specifically, all NHL B subtypes (HR 2.14 [95% CI 1.61-2.07], p<0.001). Questionable and unconfirmed associations are reported between HBV and NHL T subtypes (HR 1.11 [95% CI 0.88-1.40], p=0.40) and leukemia. The presence of HBV DNA in peripheral blood mononuclear cells has been reported by numerous studies, and its integration in the exonic regions of some genes is considered a possible source of carcinogenesis. Some in vitro studies have shown the ability of HBV to infect, albeit not productively, both lymphomonocytes and bone marrow stem cells, whose differentiation is halted by the virus. As demonstrated in animal models, HBV infection of blood cells and the persistence of HBV DNA in peripheral lymphomonocytes and bone marrow stem cells suggests that these cellular compartments may act as HBV reservoirs, allowing replication to resume later in the immunocompromised patients (such as liver transplant recipients) or in subjects discontinuing effective antiviral therapy. The pathogenetic mechanisms at the basis of HBV carcinogenic potential are not known, and more in-depth studies are needed, considering that a clear correlation between chronic HBV infection and hematological malignancies could benefit both antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano D’Anna
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marco Iannetta
- Clinical Infectious Diseases, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Vincenzo Malagnino
- Clinical Infectious Diseases, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Sarmati
- Clinical Infectious Diseases, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
46
|
Zhang J, Hu C, Xie X, Qi L, Li C, Li S. Immune Checkpoint Inhibitors in HBV-Caused Hepatocellular Carcinoma Therapy. Vaccines (Basel) 2023; 11:vaccines11030614. [PMID: 36992198 DOI: 10.3390/vaccines11030614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Hepatitis B virus (HBV) infection is the main risk factor for the development of hepatocellular carcinoma (HCC), the most common type of liver cancer, with high incidence and mortality worldwide. Surgery, liver transplantation, and ablation therapies have been used to treat early HBV-caused HCC (HBV-HCC); meanwhile, in the advanced stage, chemoradiotherapy and drug-targeted therapy are regularly considered, but with limited efficacy. Recently, immunotherapies, such as tumor vaccine therapy, adoptive cell transfer therapy, and immune checkpoint inhibitor therapy, have demonstrated promising efficacy in cancer treatment. In particular, immune checkpoint inhibitors can successfully prevent tumors from achieving immune escape and promote an anti-tumor response, thereby boosting the therapeutic effect in HBV-HCC. However, the advantages of immune checkpoint inhibitors in the treatment of HBV-HCC remain to be exploited. Here, we describe the basic characteristics and development of HBV-HCC and introduce current treatment strategies for HBV-HCC. Of note, we review the principles of immune checkpoint molecules, such as programmed cell death protein 1(PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) in HBV-HCC, as well as related inhibitors being considered in the clinic. We also discuss the benefits of immune checkpoint inhibitors in the treatment of HBV-HCC and the efficacy of those inhibitors in HCC with various etiologies, aiming to provide insights into the use of immune checkpoint inhibitors for the treatment of HBV-HCC.
Collapse
Affiliation(s)
- Jin Zhang
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Changwei Hu
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xiaoxiao Xie
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Linzhi Qi
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shangze Li
- School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
47
|
Diakite M, Shaw-Saliba K, Lau CY. Malignancy and viral infections in Sub-Saharan Africa: A review. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1103737. [PMID: 37476029 PMCID: PMC10358275 DOI: 10.3389/fviro.2023.1103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The burden of malignancy related to viral infection is increasing in Sub-Saharan Africa (SSA). In 2018, approximately 2 million new cancer cases worldwide were attributable to infection. Prevention or treatment of these infections could reduce cancer cases by 23% in less developed regions and about 7% in developed regions. Contemporaneous increases in longevity and changes in lifestyle have contributed to the cancer burden in SSA. African hospitals are reporting more cases of cancer related to infection (e.g., cervical cancer in women and stomach and liver cancer in men). SSA populations also have elevated underlying prevalence of viral infections compared to other regions. Of 10 infectious agents identified as carcinogenic by the International Agency for Research on Cancer, six are viruses: hepatitis B and C viruses (HBV and HCV, respectively), Epstein-Barr virus (EBV), high-risk types of human papillomavirus (HPV), Human T-cell lymphotropic virus type 1 (HTLV-1), and Kaposi's sarcoma herpesvirus (KSHV, also known as human herpesvirus type 8, HHV-8). Human immunodeficiency virus type 1 (HIV) also facilitates oncogenesis. EBV is associated with lymphomas and nasopharyngeal carcinoma; HBV and HCV are associated with hepatocellular carcinoma; KSHV causes Kaposi's sarcoma; HTLV-1 causes T-cell leukemia and lymphoma; HPV causes carcinoma of the oropharynx and anogenital squamous cell cancer. HIV-1, for which SSA has the greatest global burden, has been linked to increasing risk of malignancy through immunologic dysregulation and clonal hematopoiesis. Public health approaches to prevent infection, such as vaccination, safer injection techniques, screening of blood products, antimicrobial treatments and safer sexual practices could reduce the burden of cancer in Africa. In SSA, inequalities in access to cancer screening and treatment are exacerbated by the perception of cancer as taboo. National level cancer registries, new screening strategies for detection of viral infection and public health messaging should be prioritized in SSA's battle against malignancy. In this review, we discuss the impact of carcinogenic viruses in SSA with a focus on regional epidemiology.
Collapse
Affiliation(s)
- Mahamadou Diakite
- University Clinical Research Center, University of Sciences, Techniques, and Technologies, Bamako, Mali
| | - Kathryn Shaw-Saliba
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
48
|
Relevance of HBx for Hepatitis B Virus-Associated Pathogenesis. Int J Mol Sci 2023; 24:ijms24054964. [PMID: 36902395 PMCID: PMC10003785 DOI: 10.3390/ijms24054964] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The hepatitis B virus (HBV) counts as a major global health problem, as it presents a significant causative factor for liver-related morbidity and mortality. The development of hepatocellular carcinomas (HCC) as a characteristic of a persistent, chronic infection could be caused, among others, by the pleiotropic function of the viral regulatory protein HBx. The latter is known to modulate an onset of cellular and viral signaling processes with emerging influence in liver pathogenesis. However, the flexible and multifunctional nature of HBx impedes the fundamental understanding of related mechanisms and the development of associated diseases, and has even led to partial controversial results in the past. Based on the cellular distribution of HBx-nuclear-, cytoplasmic- or mitochondria-associated-this review encompasses the current knowledge and previous investigations of HBx in context of cellular signaling pathways and HBV-associated pathogenesis. In addition, particular focus is set on the clinical relevance and potential novel therapeutic applications in the context of HBx.
Collapse
|
49
|
Chow N, Wong D, Lai CL, Mak LY, Fung J, Ma HT, Lei MW, Seto WK, Yuen MF. Effect of Antiviral Treatment on Hepatitis B Virus Integration and Hepatocyte Clonal Expansion. Clin Infect Dis 2023; 76:e801-e809. [PMID: 35594553 DOI: 10.1093/cid/ciac383] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND This study investigated the effect of nucleos(t)ide analogue (NUC) treatment on hepatitis B virus (HBV) DNA integration and hepatocyte clonal expansion, both of which are implicated in hepatocellular carcinoma (HCC) in chronic hepatitis B. METHODS Twenty-eight patients receiving NUCs (11 lamivudine, 7 telbivudine, 10 entecavir) were included. All had liver biopsies at baseline and year 1, and 7 had a third biopsy at year 10. HBV DNA integration and hepatocyte clone size were assessed by inverse polymerase chain reaction. RESULTS All patients had detectable HBV integration at baseline, with a median integration frequency of 1.01 × 109 per liver and hepatocyte clone size of 2.41 × 105. Neither integration frequency nor hepatocyte clone size correlated with age and HBV virologic parameters. After 1 year of treatment, HBV integration was still detectable in all patients, with a median of 5.74 × 108 integration per liver (0.22 log reduction; P = .008) and hepatocyte clone size of 1.22 × 105 (0.40 log reduction; P = .002). HBV integration remained detectable at year 10 of treatment, with a median integration frequency of 4.84 × 107 integration per liver (0.93 log reduction from baseline) and hepatocyte clone size of 2.55 × 104 (1.02 log reduction from baseline). From baseline through year 1 to year 10, there was a decreasing trend in both integration frequency and hepatocyte clone size (P = .066 and.018, respectively). CONCLUSIONS NUCs reduced both HBV DNA integration and hepatocyte clonal expansion, suggesting another alternative pathway besides direct viral suppression to reduce HCC risk. Our findings supported the notion for a long-term NUC treatment to prevent HCC.
Collapse
Affiliation(s)
- Ning Chow
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Danny Wong
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Ching-Lung Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Lung-Yi Mak
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - James Fung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Hoi-Tang Ma
- State Key Laboratory of Liver Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.,Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Meng-Wai Lei
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Wai-Kay Seto
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Man-Fung Yuen
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| |
Collapse
|
50
|
Campani C, Zucman-Rossi J, Nault JC. Genetics of Hepatocellular Carcinoma: From Tumor to Circulating DNA. Cancers (Basel) 2023; 15:cancers15030817. [PMID: 36765775 PMCID: PMC9913369 DOI: 10.3390/cancers15030817] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary hepatic malignancies and is one of the major causes of cancer-related death. Over the last 15 years, the molecular landscape of HCC has been deciphered, with the identification of the main driver genes of liver carcinogenesis that belong to six major biological pathways, such as telomere maintenance, Wnt/b-catenin, P53/cell cycle regulation, oxidative stress, epigenetic modifiers, AKT/mTOR and MAP kinase. The combination of genetic and transcriptomic data composed various HCC subclasses strongly related to risk factors, pathological features and prognosis. However, translation into clinical practice is not achieved, mainly because the most frequently mutated genes are undruggable. Moreover, the results derived from the analysis of a single tissue sample may not adequately catch the intra- and intertumor heterogeneity. The analysis of circulating tumor DNA (ctDNA) is broadly developed in other types of cancer for early diagnosis, prognosis and monitoring under systemic treatment in order to identify primary and secondary mechanisms of resistance. The aim of this review is to describe recent data about the HCC molecular landscape and to discuss how ctDNA could be used in the future for HCC detection and management.
Collapse
Affiliation(s)
- Claudia Campani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Internal Medicine and Hepatology Unit, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Hôpital Européen Georges Pompidou, APHP, 75015 Paris, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Liver Unit, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, 93000 Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris Nord, 93000 Bobigny, France
- Correspondence: ; Tel.: +33-6-1067-9461
| |
Collapse
|