BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jansen EJ, Timal S, Ryan M, Ashikov A, van Scherpenzeel M, Graham LA, Mandel H, Hoischen A, Iancu TC, Raymond K, Steenbergen G, Gilissen C, Huijben K, van Bakel NH, Maeda Y, Rodenburg RJ, Adamowicz M, Crushell E, Koenen H, Adams D, Vodopiutz J, Greber-Platzer S, Müller T, Dueckers G, Morava E, Sykut-Cegielska J, Martens GJ, Wevers RA, Niehues T, Huynen MA, Veltman JA, Stevens TH, Lefeber DJ. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat Commun 2016;7:11600. [PMID: 27231034 DOI: 10.1038/ncomms11600] [Cited by in Crossref: 74] [Cited by in F6Publishing: 63] [Article Influence: 14.8] [Reference Citation Analysis]
Number Citing Articles
1 Cannata Serio M, Graham LA, Ashikov A, Larsen LE, Raymond K, Timal S, Le Meur G, Ryan M, Czarnowska E, Jansen JC, He M, Ficicioglu C, Pichurin P, Hasadsri L, Minassian B, Rugierri A, Kalimo H, Ríos-Ocampo WA, Gilissen C, Rodenburg R, Jonker JW, Holleboom AG, Morava E, Veltman JA, Socha P, Stevens TH, Simons M, Lefeber DJ. Mutations in the V-ATPase Assembly Factor VMA21 Cause a Congenital Disorder of Glycosylation With Autophagic Liver Disease. Hepatology 2020;72:1968-86. [PMID: 32145091 DOI: 10.1002/hep.31218] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 15.0] [Reference Citation Analysis]
2 Wang L, Wu D, Robinson CV, Wu H, Fu TM. Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly. Mol Cell 2020;80:501-511.e3. [PMID: 33065002 DOI: 10.1016/j.molcel.2020.09.029] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
3 Bruneel A, Cholet S, Tran NT, Mai TD, Fenaille F. CDG biochemical screening: Where do we stand? Biochimica et Biophysica Acta (BBA) - General Subjects 2020;1864:129652. [DOI: 10.1016/j.bbagen.2020.129652] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
4 Fischer-zirnsak B, Koenig R, Alisch F, Güneş N, Hausser I, Saha N, Beck-woedl S, Haack TB, Thiel C, Kamrath C, Tüysüz B, Henning S, Mundlos S, Hoffmann K, Horn D, Kornak U. SOPH syndrome in three affected individuals showing similarities with progeroid cutis laxa conditions in early infancy. J Hum Genet 2019;64:609-16. [DOI: 10.1038/s10038-019-0602-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
5 Lipiński P, Bogdańska A, Socha P, Tylki-Szymańska A. Liver Involvement in Congenital Disorders of Glycosylation and Deglycosylation. Front Pediatr 2021;9:696918. [PMID: 34291020 DOI: 10.3389/fped.2021.696918] [Reference Citation Analysis]
6 Yu JE, Orange JS, Demirdag YY. New primary immunodeficiency diseases: context and future. Curr Opin Pediatr 2018;30:806-20. [PMID: 30300326 DOI: 10.1097/MOP.0000000000000699] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
7 Péanne R, de Lonlay P, Foulquier F, Kornak U, Lefeber DJ, Morava E, Pérez B, Seta N, Thiel C, Van Schaftingen E, Matthijs G, Jaeken J. Congenital disorders of glycosylation (CDG): Quo vadis? Eur J Med Genet 2018;61:643-63. [PMID: 29079546 DOI: 10.1016/j.ejmg.2017.10.012] [Cited by in Crossref: 106] [Cited by in F6Publishing: 86] [Article Influence: 26.5] [Reference Citation Analysis]
8 Haouari W, Dubail J, Lounis-Ouaras S, Prada P, Bennani R, Roseau C, Huber C, Afenjar A, Colin E, Vuillaumier-Barrot S, Seta N, Foulquier F, Poüs C, Cormier-Daire V, Bruneel A. Serum bikunin isoforms in congenital disorders of glycosylation and linkeropathies. J Inherit Metab Dis 2020;43:1349-59. [PMID: 32700771 DOI: 10.1002/jimd.12291] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
9 Aggarwal V, Banday AZ, Jindal AK, Das J, Rawat A. Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis 2020;7:26-37. [PMID: 32181273 DOI: 10.1016/j.gendis.2019.10.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
10 Min Q, Meng X, Wang JY. Primary Antibody Deficiencies. Adv Exp Med Biol 2020;1254:117-44. [PMID: 32323274 DOI: 10.1007/978-981-15-3532-1_10] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
11 Vajro P, Zielinska K, Ng BG, Maccarana M, Bengtson P, Poeta M, Mandato C, D'Acunto E, Freeze HH, Eklund EA. Three unreported cases of TMEM199-CDG, a rare genetic liver disease with abnormal glycosylation. Orphanet J Rare Dis 2018;13:4. [PMID: 29321044 DOI: 10.1186/s13023-017-0757-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
12 Yang W, Zhu Z, Li L, McVicar A, Gao N, Wang L, Li YP, Chen W. Silencing of Ac45 Simultaneously Inhibits Osteoclast-Mediated Bone Resorption and Attenuates Dendritic Cell-Mediated Inflammation through Impairing Acidification and Cathepsin K Secretion. Infect Immun 2020;89:e00436-20. [PMID: 33077625 DOI: 10.1128/IAI.00436-20] [Reference Citation Analysis]
13 Ji Y, Wei S, Hou J, Zhang C, Xue P, Wang J, Chen X, Guo X, Yang F. Integrated proteomic and N-glycoproteomic analyses of doxorubicin sensitive and resistant ovarian cancer cells reveal glycoprotein alteration in protein abundance and glycosylation. Oncotarget 2017;8:13413-27. [PMID: 28077793 DOI: 10.18632/oncotarget.14542] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
14 Marques-da-Silva D, Dos Reis Ferreira V, Monticelli M, Janeiro P, Videira PA, Witters P, Jaeken J, Cassiman D. Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis. 2017;40:195-207. [PMID: 28108845 DOI: 10.1007/s10545-016-0012-4] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 10.3] [Reference Citation Analysis]
15 Wendling O, Champy MF, Jaubert S, Pavlovic G, Dubos A, Lindner L, Jacobs H, Mark M, Combe R, Da Cruz IG, Luche H, Mudgett JS, Rosahl T, Sorg T, Malissen M, Reilly PT, Hérault Y. Atp6ap2 ablation in adult mice impairs viability through multiple organ deficiencies. Sci Rep 2017;7:9618. [PMID: 28851918 DOI: 10.1038/s41598-017-08845-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
16 Collins MP, Forgac M. Regulation and function of V-ATPases in physiology and disease. Biochim Biophys Acta Biomembr 2020;1862:183341. [PMID: 32422136 DOI: 10.1016/j.bbamem.2020.183341] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 18.0] [Reference Citation Analysis]
17 Rujano MA, Cannata Serio M, Panasyuk G, Péanne R, Reunert J, Rymen D, Hauser V, Park JH, Freisinger P, Souche E, Guida MC, Maier EM, Wada Y, Jäger S, Krogan NJ, Kretz O, Nobre S, Garcia P, Quelhas D, Bird TD, Raskind WH, Schwake M, Duvet S, Foulquier F, Matthijs G, Marquardt T, Simons M. Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects. J Exp Med 2017;214:3707-29. [PMID: 29127204 DOI: 10.1084/jem.20170453] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
18 Linders PTA, Peters E, Ter Beest M, Lefeber DJ, van den Bogaart G. Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. Int J Mol Sci 2020;21:E4654. [PMID: 32629928 DOI: 10.3390/ijms21134654] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
19 Grefhorst A, van de Peppel IP, Larsen LE, Jonker JW, Holleboom AG. The Role of Lipophagy in the Development and Treatment of Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2020;11:601627. [PMID: 33597924 DOI: 10.3389/fendo.2020.601627] [Reference Citation Analysis]
20 Lipiński P, Rokicki D, Bogdańska A, Lesiak J, Lefeber DJ, Tylki-Szymańska A. ATP6AP1-CDG: Follow-up and female phenotype. JIMD Rep 2020;53:80-2. [PMID: 32395412 DOI: 10.1002/jmd2.12104] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Edwards ESJ, Bosco JJ, Ojaimi S, O'Hehir RE, van Zelm MC. Beyond monogenetic rare variants: tackling the low rate of genetic diagnoses in predominantly antibody deficiency. Cell Mol Immunol 2021;18:588-603. [PMID: 32801365 DOI: 10.1038/s41423-020-00520-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Zhu X, Zhang H, Mendell JT. Ribosome Recycling by ABCE1 Links Lysosomal Function and Iron Homeostasis to 3' UTR-Directed Regulation and Nonsense-Mediated Decay. Cell Rep 2020;32:107895. [PMID: 32668236 DOI: 10.1016/j.celrep.2020.107895] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
23 Barbosa EA, Fontes NDC, Santos SCL, Lefeber DJ, Bloch C, Brum JM, Brand GD. Relative quantification of plasma N-glycans in type II congenital disorder of glycosylation patients by mass spectrometry. Clin Chim Acta 2019;492:102-13. [PMID: 30776362 DOI: 10.1016/j.cca.2019.02.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
24 Wang J, Liu Y, Zhang S. Prognostic and immunological value of ATP6AP1 in breast cancer: implications for SARS-CoV-2. Aging (Albany NY) 2021;13:16904-21. [PMID: 34228637 DOI: 10.18632/aging.203229] [Reference Citation Analysis]
25 Pareja F, Brandes AH, Basili T, Selenica P, Geyer FC, Fan D, Da Cruz Paula A, Kumar R, Brown DN, Gularte-Mérida R, Alemar B, Bi R, Lim RS, de Bruijn I, Fujisawa S, Gardner R, Feng E, Li A, da Silva EM, Lozada JR, Blecua P, Cohen-Gould L, Jungbluth AA, Rakha EA, Ellis IO, Edelweiss MIA, Palazzo J, Norton L, Hollmann T, Edelweiss M, Rubin BP, Weigelt B, Reis-Filho JS. Loss-of-function mutations in ATP6AP1 and ATP6AP2 in granular cell tumors. Nat Commun 2018;9:3533. [PMID: 30166553 DOI: 10.1038/s41467-018-05886-y] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 13.7] [Reference Citation Analysis]
26 Jansen JC, van Hoek B, Metselaar HJ, van den Berg AP, Zijlstra F, Huijben K, van Scherpenzeel M, Drenth JPH, Lefeber DJ. Screening for abnormal glycosylation in a cohort of adult liver disease patients. J Inherit Metab Dis 2020;43:1310-20. [PMID: 32557671 DOI: 10.1002/jimd.12273] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Van Damme T, Gardeitchik T, Mohamed M, Guerrero-Castillo S, Freisinger P, Guillemyn B, Kariminejad A, Dalloyaux D, van Kraaij S, Lefeber DJ, Syx D, Steyaert W, De Rycke R, Hoischen A, Kamsteeg EJ, Wong SY, van Scherpenzeel M, Jamali P, Brandt U, Nijtmans L, Korenke GC, Chung BHY, Mak CCY, Hausser I, Kornak U, Fischer-Zirnsak B, Strom TM, Meitinger T, Alanay Y, Utine GE, Leung PKC, Ghaderi-Sohi S, Coucke P, Symoens S, De Paepe A, Thiel C, Haack TB, Malfait F, Morava E, Callewaert B, Wevers RA. Mutations in ATP6V1E1 or ATP6V1A Cause Autosomal-Recessive Cutis Laxa. Am J Hum Genet 2017;100:216-27. [PMID: 28065471 DOI: 10.1016/j.ajhg.2016.12.010] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 13.3] [Reference Citation Analysis]
28 Smolders S, Van Broeckhoven C. Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson's disease pathogenesis. Acta Neuropathol Commun 2020;8:63. [PMID: 32375870 DOI: 10.1186/s40478-020-00935-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 15.0] [Reference Citation Analysis]
29 Jansen EJR, van Bakel NHM, Benedict B, Olde Loohuis NFM, Hafmans TGM, Chim SM, Xu J, Kolk SM, Martens GJM. Novel vertebrate- and brain-specific driver of neuronal outgrowth. Prog Neurobiol 2021;202:102069. [PMID: 33933532 DOI: 10.1016/j.pneurobio.2021.102069] [Reference Citation Analysis]
30 Graham LA, Finnigan GC, Kane PM. Some assembly required: Contributions of Tom Stevens' lab to the V-ATPase field. Traffic 2018;19:385-90. [PMID: 29473670 DOI: 10.1111/tra.12559] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
31 Jaeken J, Péanne R. What is new in CDG? J Inherit Metab Dis 2017;40:569-86. [PMID: 28484880 DOI: 10.1007/s10545-017-0050-6] [Cited by in Crossref: 79] [Cited by in F6Publishing: 66] [Article Influence: 19.8] [Reference Citation Analysis]
32 Yang X, Lv Z, Tang Q, Chen X, Huang L, Yang M, Lan L, Shan Q. Congenital disorder of glycosylation caused by mutation of ATP6AP1 gene (c.1036G>A) in a Chinese infant: A case report. WJCC 2021;9:7876-85. [DOI: 10.12998/wjcc.v9.i26.7876] [Reference Citation Analysis]
33 Kanaki N, Matsuda A, Dejima K, Murata D, Nomura KH, Ohkura T, Gengyo-Ando K, Yoshina S, Mitani S, Nomura K. UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase is indispensable for oogenesis, oocyte-to-embryo transition, and larval development of the nematode Caenorhabditis elegans. Glycobiology 2019;29:163-78. [PMID: 30445613 DOI: 10.1093/glycob/cwy104] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
34 Gumm AJ, Basel DG, Thakrar P, Suchi M, Telega G. Liver failure and x-linked immunodeficiency type 47. Pediatr Transplant 2020;24:e13808. [PMID: 32790950 DOI: 10.1111/petr.13808] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Guida MC, Hermle T, Graham LA, Hauser V, Ryan M, Stevens TH, Simons M. ATP6AP2 functions as a V-ATPase assembly factor in the endoplasmic reticulum. Mol Biol Cell 2018;29:2156-64. [PMID: 29995586 DOI: 10.1091/mbc.E18-04-0234] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
36 Miles AL, Burr SP, Grice GL, Nathan JA. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular iron levels. Elife 2017;6:e22693. [PMID: 28296633 DOI: 10.7554/eLife.22693] [Cited by in Crossref: 54] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
37 Tvina A, Thomsen A, Palatnik A. Prenatal and postnatal phenotype of a pathologic variant in the ATP6AP1 gene. Eur J Med Genet 2020;63:103881. [PMID: 32058063 DOI: 10.1016/j.ejmg.2020.103881] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
38 Brasil S, Pascoal C, Francisco R, Marques-da-Silva D, Andreotti G, Videira PA, Morava E, Jaeken J, Dos Reis Ferreira V. CDG Therapies: From Bench to Bedside. Int J Mol Sci 2018;19:E1304. [PMID: 29702557 DOI: 10.3390/ijms19051304] [Cited by in Crossref: 47] [Cited by in F6Publishing: 30] [Article Influence: 15.7] [Reference Citation Analysis]
39 Gardeitchik T, Wyckmans J, Morava E. Complex Phenotypes in Inborn Errors of Metabolism. Pediatric Clinics of North America 2018;65:375-88. [DOI: 10.1016/j.pcl.2017.11.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
40 Ondruskova N, Honzik T, Vondrackova A, Stranecky V, Tesarova M, Zeman J, Hansikova H. Severe phenotype of ATP6AP1-CDG in two siblings with a novel mutation leading to a differential tissue-specific ATP6AP1 protein pattern, cellular oxidative stress and hepatic copper accumulation. J Inherit Metab Dis 2020;43:694-700. [PMID: 32216104 DOI: 10.1002/jimd.12237] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
41 Klouwer FC, Koster J, Ferdinandusse S, Waterham HR. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line. Histochem Cell Biol 2017;147:537-41. [PMID: 28013369 DOI: 10.1007/s00418-016-1532-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
42 Abbas YM, Wu D, Bueler SA, Robinson CV, Rubinstein JL. Structure of V-ATPase from the mammalian brain. Science 2020;367:1240-6. [PMID: 32165585 DOI: 10.1126/science.aaz2924] [Cited by in Crossref: 46] [Cited by in F6Publishing: 31] [Article Influence: 46.0] [Reference Citation Analysis]
43 Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. Mass Spectrom Rev 2021;40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Roh SH, Stam NJ, Hryc CF, Couoh-Cardel S, Pintilie G, Chiu W, Wilkens S. The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase Vo Proton Channel. Mol Cell 2018;69:993-1004.e3. [PMID: 29526695 DOI: 10.1016/j.molcel.2018.02.006] [Cited by in Crossref: 60] [Cited by in F6Publishing: 42] [Article Influence: 20.0] [Reference Citation Analysis]
45 Cousin MA, Conboy E, Wang JS, Lenz D, Schwab TL, Williams M, Abraham RS, Barnett S, El-Youssef M, Graham RP, Gutierrez Sanchez LH, Hasadsri L, Hoffmann GF, Hull NC, Kopajtich R, Kovacs-Nagy R, Li JQ, Marx-Berger D, McLin V, McNiven MA, Mounajjed T, Prokisch H, Rymen D, Schulze RJ, Staufner C, Yang Y, Clark KJ, Lanpher BC, Klee EW. RINT1 Bi-allelic Variations Cause Infantile-Onset Recurrent Acute Liver Failure and Skeletal Abnormalities. Am J Hum Genet 2019;105:108-21. [PMID: 31204009 DOI: 10.1016/j.ajhg.2019.05.011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
46 Dimitrov B, Himmelreich N, Hipgrave Ederveen AL, Lüchtenborg C, Okun JG, Breuer M, Hutter AM, Carl M, Guglielmi L, Hellwig A, Thiemann KC, Jost M, Peters V, Staufner C, Hoffmann GF, Hackenberg A, Paramasivam N, Wiemann S, Eils R, Schlesner M, Strahl S, Brügger B, Wuhrer M, Christoph Korenke G, Thiel C. Cutis laxa, exocrine pancreatic insufficiency and altered cellular metabolomics as additional symptoms in a new patient with ATP6AP1-CDG. Mol Genet Metab 2018;123:364-74. [PMID: 29396028 DOI: 10.1016/j.ymgme.2018.01.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
47 Gowrisankaran S, Milosevic I. Regulation of synaptic vesicle acidification at the neuronal synapse. IUBMB Life 2019;72:568-76. [DOI: 10.1002/iub.2235] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
48 Ng BG, Sosicka P, Fenaille F, Harroche A, Vuillaumier-Barrot S, Porterfield M, Xia ZJ, Wagner S, Bamshad MJ, Vergnes-Boiteux MC, Cholet S, Dalton S, Dell A, Dupré T, Fiore M, Haslam SM, Huguenin Y, Kumagai T, Kulik M, McGoogan K, Michot C, Nickerson DA, Pascreau T, Borgel D, Raymond K, Warad D, Flanagan-Steet H, Steet R, Tiemeyer M, Seta N, Bruneel A, Freeze HH; University of Washington Center for Mendelian Genomics (UW-CMG). A mutation in SLC37A4 causes a dominantly inherited congenital disorder of glycosylation characterized by liver dysfunction. Am J Hum Genet 2021;108:1040-52. [PMID: 33964207 DOI: 10.1016/j.ajhg.2021.04.013] [Reference Citation Analysis]
49 Witters P, Breckpot J, Foulquier F, Preston G, Jaeken J, Morava E. Expanding the phenotype of metabolic cutis laxa with an additional disorder of N-linked protein glycosylation. Eur J Hum Genet 2018;26:618-21. [PMID: 29192153 DOI: 10.1038/s41431-017-0044-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
50 Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020;43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
51 Pottie L, Van Gool W, Vanhooydonck M, Hanisch FG, Goeminne G, Rajkovic A, Coucke P, Sips P, Callewaert B. Loss of zebrafish atp6v1e1b, encoding a subunit of vacuolar ATPase, recapitulates human ARCL type 2C syndrome and identifies multiple pathobiological signatures. PLoS Genet 2021;17:e1009603. [PMID: 34143769 DOI: 10.1371/journal.pgen.1009603] [Reference Citation Analysis]
52 Verheijen J, Tahata S, Kozicz T, Witters P, Morava E. Therapeutic approaches in Congenital Disorders of Glycosylation (CDG) involving N-linked glycosylation: an update. Genet Med. 2020;22:268-279. [PMID: 31534212 DOI: 10.1038/s41436-019-0647-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
53 Santra P, Amack JD. Loss of vacuolar-type H+-ATPase induces caspase-independent necrosis-like death of hair cells in zebrafish neuromasts. Dis Model Mech 2021;14:dmm048997. [PMID: 34296747 DOI: 10.1242/dmm.048997] [Reference Citation Analysis]
54 Ondruskova N, Cechova A, Hansikova H, Honzik T, Jaeken J. Congenital disorders of glycosylation: Still "hot" in 2020. Biochim Biophys Acta Gen Subj 2021;1865:129751. [PMID: 32991969 DOI: 10.1016/j.bbagen.2020.129751] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
55 Witters P, Cassiman D, Morava E. Nutritional Therapies in Congenital Disorders of Glycosylation (CDG). Nutrients 2017;9:E1222. [PMID: 29112118 DOI: 10.3390/nu9111222] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
56 Zhang F, Shen H, Fu Y, Yu G, Cao F, Chang W, Xie Z. Vacuolar Membrane ATPase Activity 21 Predicts a Favorable Outcome and Acts as a Suppressor in Colorectal Cancer. Front Oncol 2020;10:605801. [PMID: 33680927 DOI: 10.3389/fonc.2020.605801] [Reference Citation Analysis]
57 Cunningham-Rundles C. Common variable immune deficiency: Dissection of the variable. Immunol Rev 2019;287:145-61. [PMID: 30565247 DOI: 10.1111/imr.12728] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
58 Lipiński P, Bogdańska A, Tylki-Szymańska A. Congenital disorders of glycosylation: Prevalence, incidence and mutational spectrum in the Polish population. Mol Genet Metab Rep 2021;27:100726. [PMID: 33643843 DOI: 10.1016/j.ymgmr.2021.100726] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Demirdag YY, Gupta S. Update on Infections in Primary Antibody Deficiencies. Front Immunol 2021;12:634181. [PMID: 33643318 DOI: 10.3389/fimmu.2021.634181] [Reference Citation Analysis]
60 Song Q, Meng B, Xu H, Mao Z. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases. Transl Neurodegener 2020;9:17. [PMID: 32393395 DOI: 10.1186/s40035-020-00196-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
61 Abu Bakar N, Lefeber DJ, van Scherpenzeel M. Clinical glycomics for the diagnosis of congenital disorders of glycosylation. J Inherit Metab Dis 2018;41:499-513. [PMID: 29497882 DOI: 10.1007/s10545-018-0144-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 9.3] [Reference Citation Analysis]
62 Bogdańska A, Lipiński P, Szymańska-Rożek P, Jezela-Stanek A, Rokicki D, Socha P, Tylki-Szymańska A. Clinical, biochemical and molecular phenotype of congenital disorders of glycosylation: long-term follow-up. Orphanet J Rare Dis 2021;16:17. [PMID: 33407696 DOI: 10.1186/s13023-020-01657-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
63 Castiglioni C, Feillet F, Barnerias C, Wiedemann A, Muchart J, Cortes F, Hernando-Davalillo C, Montero R, Dupré T, Bruneel A, Seta N, Vuillaumier-Barrot S, Serrano M. Expanding the phenotype of X-linked SSR4-CDG: Connective tissue implications. Hum Mutat 2021;42:142-9. [PMID: 33300232 DOI: 10.1002/humu.24151] [Reference Citation Analysis]