1
|
Vo DNK, Ho HPT, Wu LS, Chen YY, Trinh HTV, Lin TY, Lim YY, Tsai KC, Tsai MH. Broad-spectrum antiviral activity of Ganoderma microsporum immunomodulatory protein: Targeting glycoprotein gB to inhibit EBV and HSV-1 infections via viral fusion blockage. Int J Biol Macromol 2025; 307:142179. [PMID: 40101816 DOI: 10.1016/j.ijbiomac.2025.142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Epstein-Barr virus (EBV) and herpes simplex virus-1 (HSV-1) are members of the Herpesviridae family and cause various human malignancies and acute infections. Despite their clinical significance, effective treatments remain limited. Here, we report the broad-spectrum antiviral activity of Ganoderma microsporum immunomodulatory protein (GMI), a safe dietary ingredient known for its immunomodulatory, anti-tumor, and antiviral properties. GMI effectively blocks EBV infection in epithelial cells in a dose-dependent manner by targeting both viral and host cells. Notably, GMI displays antiviral activity across multiple EBV strains in epithelial cell infection and represses EBV infection in primary B cells. Mechanistically, GMI interacts with the EBV fusion glycoprotein gB and the host epithelial receptor EphA2 to disrupt viral fusion. Given the structural conservation of gB among herpesviruses, GMI was tested against HSV-1. Remarkably, GMI effectively blocks HSV-1 infection by targeting viral binding and fusion, as well as interacting with HSV-1 gB. In silico modeling suggests that GMI may interact with EBV and HSV-1 gB domain I, contributing to its antiviral activity. Our findings provide the first evidence that GMI suppresses both EBV and HSV-1 infections by targeting the conserved gB-mediated fusion process, suggesting its potential as an antiviral against herpesviruses that rely on fusion-mediated entry.
Collapse
Affiliation(s)
- Di Ngoc Kha Vo
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ha Phan Thanh Ho
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Syuan Wu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yi-Yun Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Hang Thi Viet Trinh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Research Center for Epidemic Prevention, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Han Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Research Center for Epidemic Prevention, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Avila-Bonilla RG, Martínez-Montero JP. Crosstalk between vault RNAs and innate immunity. Mol Biol Rep 2024; 51:387. [PMID: 38443657 PMCID: PMC10914904 DOI: 10.1007/s11033-024-09305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Vault (vt) RNAs are noncoding (nc) RNAs transcribed by RNA polymerase III (RNA Pol III) with 5'-triphosphate (5'-PPP) termini that play significant roles and are recognized by innate immune sensors, including retinoic acid-inducible protein 1 (RIG-I). In addition, vtRNAs adopt secondary structures that can be targets of interferon-inducible protein kinase R (PKR) and the oligoadenylate synthetase (OAS)/RNase L system, both of which are important for activating antiviral defenses. However, changes in the expression of vtRNAs have been associated with pathological processes that activate proinflammatory pathways, which influence cellular events such as differentiation, aging, autophagy, apoptosis, and drug resistance in cancer cells. RESULTS In this review, we summarized the biology of vtRNAs and focused on their interactions with the innate immune system. These findings provide insights into the diverse roles of vtRNAs and their correlation with various cellular processes to improve our understanding of their biological functions.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Genética y Biología Molecular, Av. IPN 2508, 07360, Mexico City, Mexico.
| | | |
Collapse
|
3
|
Tian S, Zhou N. Gaining New Insights into Fundamental Biological Pathways by Bacterial Toxin-Based Genetic Screens. Bioengineering (Basel) 2023; 10:884. [PMID: 37627769 PMCID: PMC10451959 DOI: 10.3390/bioengineering10080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Genetic screen technology has been applied to study the mechanism of action of bacterial toxins-a special class of virulence factors that contribute to the pathogenesis caused by bacterial infections. These screens aim to identify host factors that directly or indirectly facilitate toxin intoxication. Additionally, specific properties of certain toxins, such as membrane interaction, retrograde trafficking, and carbohydrate binding, provide robust probes to comprehensively investigate the lipid biosynthesis, membrane vesicle transport, and glycosylation pathways, respectively. This review specifically focuses on recent representative toxin-based genetic screens that have identified new players involved in and provided new insights into fundamental biological pathways, such as glycosphingolipid biosynthesis, protein glycosylation, and membrane vesicle trafficking pathways. Functionally characterizing these newly identified factors not only expands our current understanding of toxin biology but also enables a deeper comprehension of fundamental biological questions. Consequently, it stimulates the development of new therapeutic approaches targeting both bacterial infectious diseases and genetic disorders with defects in these factors and pathways.
Collapse
Affiliation(s)
- Songhai Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nini Zhou
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Yao JW, Qiu L, Liang P, Liu HM, Chen LN. Pulmonary lymphomatoid granulomatosis in a 4-year-old girl: A case report. World J Clin Cases 2022; 10:5380-5386. [PMID: 35812680 PMCID: PMC9210899 DOI: 10.12998/wjcc.v10.i16.5380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary lymphomatoid granulomatosis (PLG) is a lymphoproliferative disease associated with Epstein-Barr viral infection occurring mainly in adults and rarely in children. It is characterized by multiple pulmonary nodules. Its diagnosis depends on lung biopsy findings. Most patients are immunodeficient, and it commonly presents in children undergoing chemotherapy for leukemia. We report the case of a child with PLG caused by a mutation in the macrophage-expressed gene 1 (MPEG1), suggesting possible PLG occurrence in children undergoing treatment for pulmonary nodular lesions.
CASE SUMMARY This study reports a case of PLG without apparent immunodeficiency, suggesting the possibility of this disease occurrence during the treatment of pulmonary nodular lesions in children. Initially, the cause was assumed to be an atypical pathogen. Following conventional anti-infective treatment, chest computed tomography findings revealed that there were still multiple nodules in the lungs. Additionally, the patient was found to be infected with the Epstein-Barr virus. Histopathological examination of the resected lung revealed lymphoproliferative lesions with necrosis. Small lymphocytes, plasma cells, and histiocytes were observed in the background, although Reed-Sternberg cells were absent. Immunohistochemical staining [CD20(+), CD30(+), and CD3(+)] and EBV-encoded small RNA1/2 in situ hybridization of small lymphocytes revealed approximately 200 cells/high-power field. Whole exon sequencing of the patient revealed a mutation in the MPEG1. The patient was eventually diagnosed with PLG and transferred to the Department of Pediatric Oncology for bone marrow transplantation.
CONCLUSION As PLG is rare and fatal, it should be suspected in clinical settings when treatment of initial diagnosis is ineffective.
Collapse
Affiliation(s)
- Jia-Wei Yao
- Division of Pediatric Pulmonology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610091, Sichuan Province, China
| | - Li Qiu
- Division of Pediatric Pulmonology and Immunology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital of Sichuan University, NHC Key Laboratory of Chronobiology, Chengdu 610041, Sichuan Province, China
| | - Ping Liang
- Division of Pediatric Pulmonology and Immunology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital of Sichuan University, NHC Key Laboratory of Chronobiology, Chengdu 610041, Sichuan Province, China
| | - Han-Min Liu
- Division of Pediatric Pulmonology and Immunology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital of Sichuan University, NHC Key Laboratory of Chronobiology, Chengdu 610041, Sichuan Province, China
| | - Li-Na Chen
- Division of Pediatric Pulmonology and Immunology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital of Sichuan University, NHC Key Laboratory of Chronobiology, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
5
|
Shindiapina P, Ahmed EH, Mozhenkova A, Abebe T, Baiocchi RA. Immunology of EBV-Related Lymphoproliferative Disease in HIV-Positive Individuals. Front Oncol 2020; 10:1723. [PMID: 33102204 PMCID: PMC7556212 DOI: 10.3389/fonc.2020.01723] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein-Bar virus (EBV) can directly cause lymphoproliferative disease (LPD), including AIDS-defining lymphomas such as Burkitt’s lymphoma and other non-Hodgkin lymphomas (NHL), as well as human immunodeficiency virus (HIV)-related Hodgkin lymphoma (HL). The prevalence of EBV in HL and NHL is elevated in HIV-positive individuals compared with the general population. Rates of incidence of AIDS-defining cancers have been declining in HIV-infected individuals since initiation of combination anti-retroviral therapy (cART) use in 1996. However, HIV-infected persons remain at an increased risk of cancers related to infections with oncogenic viruses. Proposed pathogenic mechanisms of HIV-related cancers include decreased immune surveillance, decreased ability to suppress infection-related oncogenic processes and a state of chronic inflammation marked by alteration of the cytokine profile and expanded numbers of cytotoxic T lymphocytes with down-regulated co-stimulatory molecules and increased expression of markers of senescence in the setting of treated HIV infection. Here we discuss the cooperation of EBV-infected B cell- and environment-associated factors that may contribute to EBV-related lymphomagenesis in HIV-infected individuals. Environment-derived lymphomagenic factors include impaired host adaptive and innate immune surveillance, cytokine dysregulation and a pro-inflammatory state observed in the setting of chronic, cART-treated HIV infection. B cell factors include distinctive EBV latency patterns and host protein expression in HIV-associated LPD, as well as B cell-stimulating factors derived from HIV infection. We review the future directions for expanding therapeutic approaches in targeting the viral and immune components of EBV LPD pathogenesis.
Collapse
Affiliation(s)
- Polina Shindiapina
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Elshafa H Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Anna Mozhenkova
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Van Cleemput J, Poelaert KCK, Laval K, Nauwynck HJ. Unravelling the first key steps in equine herpesvirus type 5 (EHV5) pathogenesis using ex vivo and in vitro equine models. Vet Res 2019; 50:13. [PMID: 30777128 PMCID: PMC6380010 DOI: 10.1186/s13567-019-0630-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Equine herpesvirus type 5 (EHV5) is a ubiquitous, yet obscure pathogen in the horse population and is commonly associated with fatal equine multinodular pulmonary fibrosis (EMPF). To date, little is known about the precise pathogenesis of EHV5. Here, we evaluated the dynamics of EHV5 infection in representative ex vivo and in vitro equine models, using immunofluorescence staining and virus titration. EHV5 was unable to infect epithelial cells lining the mucosa of nasal and tracheal explants. Similarly, primary equine respiratory epithelial cells (EREC) were not susceptible to EHV5 following inoculation at the apical or basolateral surfaces. Upon direct delivery of EHV5 particles to lung explants, few EHV5-positive cell clusters were observed at 72 hours post-inoculation (hpi). These EHV5-positive cells were identified as cytokeratin-positive alveolar cells. Next, we examined the potential of EHV5 to infect three distinct equine PBMC populations (CD172a+ monocytes, CD3+ T lymphocytes and Ig light chain+ B lymphocytes). Monocytes did not support EHV5 replication. In contrast, up to 10% of inoculated equine T and B lymphocytes synthetized intracellular viral antigens 24 hpi and 72 hpi, respectively. Still, the production of mature virus particles was hampered, as we did not observe an increase in extracellular virus titer. After reaching a peak, the percentage of infected T and B lymphocytes decayed, which was partly due to the onset of apoptosis, but not necrosis. Based on these findings, we propose a model for EHV5 pathogenesis in the horse. Uncovering EHV5 pathogenesis is the corner step to finally contain or even eradicate the virus.
Collapse
Affiliation(s)
- Jolien Van Cleemput
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Katrien C K Poelaert
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Kathlyn Laval
- Department of Molecular Biology, Princeton University, 119 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
7
|
Pereira EM, Silva ASD, Silva RND, Monte Neto JT, Nascimento FFD, Sousa JLM, Costa Filho HCSDAL, Sales Filho HLA, Labilloy A, Monte SJHD. CD77 levels over enzyme replacement treatment in Fabry Disease Family (V269M). ACTA ACUST UNITED AC 2018; 40:333-338. [PMID: 29927462 PMCID: PMC6534003 DOI: 10.1590/2175-8239-jbn-3910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/12/2018] [Indexed: 11/22/2022]
Abstract
Introduction: Fabry disease (FD) is a disorder caused by mutations in the gene encoding for
lysosomal enzyme α-galactosidase A (α-GAL). Reduced α-GAL activity leads to
progressive accumulation of globotriaosylceramide (Gb3), also known as CD77.
The recent report of increased expression of CD77 in blood cells of patients
with FD indicated that this molecule can be used as a potential marker for
monitoring enzyme replacement therapy (ERT). Objective: The purpose of this study was to evaluate the CD77 levels throughout ERT in
FD patients (V269M mutation). Methods: We evaluated the fluctuations in PBMC (peripheral blood mononuclear cell)
membrane CD77 expression in FD patients undergoing ERT and correlated these
levels with those observed in different cell types. Results: A greater CD77 expression was found in phagocytes of patients compared to
controls at baseline. Interestingly, the variability in CD77 levels is
larger in patients at baseline (340 - 1619 MIF) and after 12 months of ERT
(240 - 530 MIF) compared with the control group (131 - 331 MFI).
Furthermore, by analyzing the levels of CD77 in phagocytes from patients
throughout ERT, we found a constant decrease in CD77 levels. Conclusion: The increased CD77 levels in the phagocytes of Fabry carriers together with
the decrease in CD77 levels throughout ERT suggest that measuring CD77
levels in phagocytes is a promising tool for monitoring the response to ERT
in FD.
Collapse
|
8
|
Fitzsimmons L, Boyce AJ, Wei W, Chang C, Croom-Carter D, Tierney RJ, Herold MJ, Bell AI, Strasser A, Kelly GL, Rowe M. Coordinated repression of BIM and PUMA by Epstein-Barr virus latent genes maintains the survival of Burkitt lymphoma cells. Cell Death Differ 2018; 25:241-254. [PMID: 28960205 PMCID: PMC5762840 DOI: 10.1038/cdd.2017.150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 12/26/2022] Open
Abstract
While the association of Epstein-Barr virus (EBV) with Burkitt lymphoma (BL) has long been recognised, the precise role of the virus in BL pathogenesis is not fully resolved. EBV can be lost spontaneously from some BL cell lines, and these EBV-loss lymphoma cells reportedly have a survival disadvantage. Here we have generated an extensive panel of EBV-loss clones from multiple BL backgrounds and examined their phenotype comparing them to their isogenic EBV-positive counterparts. We report that, while loss of EBV from BL cells is rare, it is consistently associated with an enhanced predisposition to undergo apoptosis and reduced tumorigenicity in vivo. Importantly, reinfection of EBV-loss clones with EBV, but surprisingly not transduction with individual BL-associated latent viral genes, restored protection from apoptosis. Expression profiling and functional analysis of apoptosis-related proteins and transcripts in BL cells revealed that EBV inhibits the upregulation of the proapoptotic BH3-only proteins, BIM and PUMA. We conclude that latent EBV genes cooperatively enhance the survival of BL cells by suppression of the intrinsic apoptosis pathway signalling via inhibition of the potent apoptosis initiators, BIM and PUMA.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Andrew J Boyce
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Wenbin Wei
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Catherine Chang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Rosemary J Tierney
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Marco J Herold
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew I Bell
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Andreas Strasser
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Martin Rowe
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017; 9:E339. [PMID: 29137176 PMCID: PMC5707546 DOI: 10.3390/v9110339] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gemma L Kelly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
10
|
Kikuchi K, Inoue H, Miyazaki Y, Ide F, Kojima M, Kusama K. Epstein-Barr virus (EBV)-associated epithelial and non-epithelial lesions of the oral cavity. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:95-109. [PMID: 28725300 PMCID: PMC5501733 DOI: 10.1016/j.jdsr.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Epstein–Barr virus (EBV) is known to be associated with the development of malignant lymphoma and lymphoproliferative disorders (LPDs) in immunocompromised patients. EBV, a B-lymphotropic gamma-herpesvirus, causes infectious mononucleosis and oral hairy leukoplakia, as well as various pathological types of lymphoid malignancy. Furthermore, EBV is associated with epithelial malignancies such as nasopharyngeal carcinoma (NPC), salivary gland tumor, gastric carcinoma and breast carcinoma. In terms of oral disease, there have been several reports of EBV-related oral squamous cell carcinoma (OSCC) worldwide. However, the role of EBV in tumorigenesis of human oral epithelial or lymphoid tissue is unclear. This review summarizes EBV-related epithelial and non-epithelial tumors or tumor-like lesions of the oral cavity. In addition, we describe EBV latent genes and their expression in normal epithelium, inflamed gingiva, epithelial dysplasia and SCC, as well as considering LPDs (MTX- and age-related) and DLBCLs of the oral cavity.
Collapse
Affiliation(s)
- Kentaro Kikuchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Harumi Inoue
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Yuji Miyazaki
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Fumio Ide
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Masaru Kojima
- Department of Anatomic and Diagnostic Pathology, Dokkyo Medical University School of Medicine, 880 Oaza-kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Kaoru Kusama
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| |
Collapse
|
11
|
Lu JJY, Chen DY, Hsieh CW, Lan JL, Lin FJ, Lin SH. Association of Epstein-Barr virus infection with systemic lupus erythematosus in Taiwan. Lupus 2016; 16:168-75. [PMID: 17432101 DOI: 10.1177/0961203306075800] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An association between Epstein-Barr virus (EBV) infection and systemic lupus erythematosus (SLE) has been suggested from previous serologic evidence. Since most adults in Taiwan are EBV-infected, seroepidemiologic studies based on standard assays for EBV are unlikely to dissociate SLE patients and control groups. We reexamine this question by using novel methodologies in which IgA anti-EBV-coded nuclear antigens-1 (EBNA-1) and IgG anti-EBV DNase antibodies were analysed by ELISA, and EBV viral loads were detected by real-time quantitative PCR for 93 adult SLE patients and 370 age-, sex- and living place-matched healthy controls in Taiwan. The specificities of antibodies for extractible nuclear antigens were determined by Western blot. Our results show that IgA anti-EBV EBNA1 antibodies were detectable in 31.2% SLE patients but only in 4.1% of controls (odds ratio [OR] = 10.72, 95% confidence interval [CI] = 5.19–22.35; P < 10-7), IgG anti-EBV DNase antibodies were detected in 53.8% SLE patients but only in 12.2% controls (OR = 8.40, 95% CI = 4.87–14.51; P < 10-7). EBV DNA was amplifiable from the sera of 41.9% SLE patients but from only 3.24% controls ( P < 0.05). A significant association of IgG anti-EBV DNase antibodies with anti-Sm/RNP antibodies was observed ( P < 0.005). The higher seroreactivity and higher copy numbers of EBV genome indicated association of EBV infection with SLE in Taiwan.
Collapse
MESH Headings
- Adrenal Cortex Hormones/administration & dosage
- Adrenal Cortex Hormones/therapeutic use
- Adult
- Antibodies, Viral/blood
- Asian People
- Autoantigens/immunology
- DNA, Viral/blood
- Deoxyribonucleases/immunology
- Dose-Response Relationship, Drug
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Nuclear Antigens/immunology
- Genome, Viral
- Herpesvirus 4, Human/enzymology
- Herpesvirus 4, Human/genetics
- Humans
- Immunoglobulin A/blood
- Immunoglobulin G/blood
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/virology
- Middle Aged
- Ribonucleoproteins, Small Nuclear/immunology
- Taiwan
- Viral Load
- snRNP Core Proteins
Collapse
Affiliation(s)
- J J Y Lu
- National Taichung Nursing College, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Ali AS, Al-Shraim M, Al-Hakami AM, Jones IM. Epstein- Barr Virus: Clinical and Epidemiological Revisits and Genetic Basis of Oncogenesis. Open Virol J 2015; 9:7-28. [PMID: 26862355 PMCID: PMC4740969 DOI: 10.2174/1874357901509010007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 06/08/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is classified as a member in the order herpesvirales, family herpesviridae, subfamily gammaherpesvirinae and the genus lymphocytovirus. The virus is an exclusively human pathogen and thus also termed as human herpesvirus 4 (HHV4). It was the first oncogenic virus recognized and has been incriminated in the causation of tumors of both lymphatic and epithelial nature. It was reported in some previous studies that 95% of the population worldwide are serologically positive to the virus. Clinically, EBV primary infection is almost silent, persisting as a life-long asymptomatic latent infection in B cells although it may be responsible for a transient clinical syndrome called infectious mononucleosis. Following reactivation of the virus from latency due to immunocompromised status, EBV was found to be associated with several tumors. EBV linked to oncogenesis as detected in lymphoid tumors such as Burkitt's lymphoma (BL), Hodgkin's disease (HD), post-transplant lymphoproliferative disorders (PTLD) and T-cell lymphomas (e.g. Peripheral T-cell lymphomas; PTCL and Anaplastic large cell lymphomas; ALCL). It is also linked to epithelial tumors such as nasopharyngeal carcinoma (NPC), gastric carcinomas and oral hairy leukoplakia (OHL). In vitro, EBV many studies have demonstrated its ability to transform B cells into lymphoblastoid cell lines (LCLs). Despite these malignancies showing different clinical and epidemiological patterns when studied, genetic studies have suggested that these EBV- associated transformations were characterized generally by low level of virus gene expression with only the latent virus proteins (LVPs) upregulated in both tumors and LCLs. In this review, we summarize some clinical and epidemiological features of EBV- associated tumors. We also discuss how EBV latent genes may lead to oncogenesis in the different clinical malignancies
Collapse
Affiliation(s)
- Abdelwahid Saeed Ali
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Musa Al-Hakami
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Ian M Jones
- Department of Biomedical Sciences, School of Biological Sciences, Faculty of Life Sciences, University of Reading, G37 AMS Wing, UK
| |
Collapse
|
13
|
Khan SZ, Hand N, Zeichner SL. Apoptosis-induced activation of HIV-1 in latently infected cell lines. Retrovirology 2015; 12:42. [PMID: 25980942 PMCID: PMC4469242 DOI: 10.1186/s12977-015-0169-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/29/2015] [Indexed: 01/11/2023] Open
Abstract
Background Despite much work, safe and effective approaches to attack and deplete the long-lived reservoir of cells latently infected with HIV-1 remain an elusive goal. Patients infected with HIV-1 treated with cytotoxic agents or bone marrow transplantation can experience decreases in the reservoir of HIV-1 latently infected cells. Other viruses capable of long-term latency, such as herpesviruses, can sense host cell apoptosis and respond by initiating replication. These observations suggest that other viruses capable of long-term latency, like HIV-1, might also sense when its host cell is about to undergo apoptosis and respond by initiating replication. Results Pro-monocytic (U1) and lymphoid (ACH-2) HIV-1 persistently infected cell lines were treated with cytotoxic drugs – doxorubicin, etoposide, fludarabine phosphate, or vincristine – and activation of latent HIV-1 was evaluated using assays for HIV-1 RNA and p24 production. Both cell lines showed dose-dependent increases in apoptosis and associated HIV-1 activation following exposure to the cytotoxic agents. Pretreatment of the cells with the pan-caspase inhibitor Z-VAD-FMK prior to exposure to the cytotoxic agents inhibited apoptosis and viral activation. Direct exposure of the latently infected cell lines to activated caspases also induced viral replication. HIV-1 virions produced in association with host cell apoptosis were infectious. Conclusions The results indicate that latent HIV-1 can sense when its host cell is undergoing apoptosis and responds by completing its replication cycle. The results may help explain why patients treated with cytotoxic regimens for bone marrow transplantation showed reductions in the reservoir of latently infected cells. The results also suggest that the mechanisms that HIV-1 uses to sense and respond to host cell apoptosis signals may represent helpful new targets for approaches to attack and deplete the long-lived reservoir of cells latently infected with HIV-1.
Collapse
Affiliation(s)
- Sohrab Z Khan
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Nicholas Hand
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Washington, DC, USA.
| | - Steven L Zeichner
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA. .,Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Washington, DC, USA. .,Department of Pediatrics, The George Washington University, School of Medicine, Washington, DC, USA.
| |
Collapse
|
14
|
Ford CA, Petrova S, Pound JD, Voss JJLP, Melville L, Paterson M, Farnworth SL, Gallimore AM, Cuff S, Wheadon H, Dobbin E, Ogden CA, Dumitriu IE, Dunbar DR, Murray PG, Ruckerl D, Allen JE, Hume DA, van Rooijen N, Goodlad JR, Freeman TC, Gregory CD. Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma. Curr Biol 2015; 25:577-88. [PMID: 25702581 PMCID: PMC4353688 DOI: 10.1016/j.cub.2014.12.059] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/03/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022]
Abstract
Background Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Results Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased “in situ transcriptomics” analysis—gene expression profiling of laser-captured TAMs to establish their activation signature in situ—we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. Conclusions In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy.
Apoptotic lymphoma cells promote tumor growth, angiogenesis, and TAM accumulation Unbiased “in situ transcriptomics” analysis shows TAMs promote pro-tumor pathways Apoptotic tumor cells express and process matrix remodeling proteins The oncogenic potential of apoptotic tumor cells extends beyond lymphoma
Collapse
Affiliation(s)
- Catriona A Ford
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sofia Petrova
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John D Pound
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jorine J L P Voss
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Lynsey Melville
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Margaret Paterson
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sarah L Farnworth
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Awen M Gallimore
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Simone Cuff
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow G12 0XB, UK
| | - Edwina Dobbin
- University of Edinburgh Departments of Haematology and Pathology, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Carol Anne Ogden
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ingrid E Dumitriu
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Donald R Dunbar
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Paul G Murray
- Cancer Research United Kingdom (CRUK) Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Dominik Ruckerl
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Judith E Allen
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - David A Hume
- The Roslin Institute, R(D)SVS, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - Nico van Rooijen
- Department of Molecular and Cell Biology, Free University Medical Centre, P.O. Box 7057, 1007 MB Amsterdam, the Netherlands
| | - John R Goodlad
- University of Edinburgh Departments of Haematology and Pathology, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Tom C Freeman
- The Roslin Institute, R(D)SVS, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - Christopher D Gregory
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
15
|
Transglutaminase 2 interacts with syndecan-4 and CD44 at the surface of human macrophages to promote removal of apoptotic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:201-12. [DOI: 10.1016/j.bbamcr.2014.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/07/2014] [Accepted: 09/19/2014] [Indexed: 11/20/2022]
|
16
|
Yahia ZA, Adam AAM, Elgizouli M, Hussein A, Masri MA, Kamal M, Mohamed HS, Alzaki K, Elhassan AM, Hamad K, Ibrahim ME. Epstein Barr virus: a prime candidate of breast cancer aetiology in Sudanese patients. Infect Agent Cancer 2014; 9:9. [PMID: 24607238 PMCID: PMC3975647 DOI: 10.1186/1750-9378-9-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 02/24/2014] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the commonest cancer in Sudanese women. Reported genetic alterations in the form of mutations in tumor suppressors are low in frequencies and could not explain the peculiarities of the diseases including its focal nature. Potential contributors disease aetiology include oncogenic viruses such as Epstein-Barr virus (EBV), an established culprit of nasopharyngeal carcinoma, one of the most frequent cancers in Sudan.In this study, DNA was extracted from malignant tissue samples and healthy tumour-free tissue from the same breast. Polymerase chain Reaction (PCR) was used to amplify two genes encoding for EBV viral proteins. The presence of Epstein-Barr virus and its cellular localization was confirmed by in situ hybridization (ISH) for Epstein-Barr encoded small RNAs (EBERs). Given the reported low frequency of mutations in BRCA1 and BRCA2 in Sudanese breast cancer patients, the methylation status of six tumor suppressor genes was investigated using methylation specific PCR. EBV genome was detected in 55.5% (n = 90) of breast cancer tissues as compared to 23% in control tissue samples (p = 0.0001). Using ISH, EBV signal was detected in all 18 breast cancer biopsies examined while all five normal breast tissue biopsies tested were negative for EBV. Of six tumour suppressor genes investigated BRCA1, BRCA2, and p14 appeared to be under strong epigenetic silencing.In conclusion, we present evidence of a strong association between EBV and breast carcinoma in Sudanese patients, and considerable epigenetic silencing of tumor suppressors that may likely be an outcome or an association with viral oncogenesis.
Collapse
Affiliation(s)
- Zeinab A Yahia
- Institute of Endemic Diseases (IEND) Unit of Disease and Diversity, University of Khartoum Medical Campus, P.O. Box 102, Khartoum, Sudan
| | - Ameera AM Adam
- Institute of Endemic Diseases (IEND) Unit of Disease and Diversity, University of Khartoum Medical Campus, P.O. Box 102, Khartoum, Sudan
| | - Magdeldin Elgizouli
- Institute of Endemic Diseases (IEND) Unit of Disease and Diversity, University of Khartoum Medical Campus, P.O. Box 102, Khartoum, Sudan
| | - Ayman Hussein
- Institute of Endemic Diseases (IEND) Unit of Disease and Diversity, University of Khartoum Medical Campus, P.O. Box 102, Khartoum, Sudan
| | - Mai A Masri
- Institute of Endemic Diseases (IEND) Unit of Disease and Diversity, University of Khartoum Medical Campus, P.O. Box 102, Khartoum, Sudan
| | - Mayada Kamal
- Institute of Endemic Diseases (IEND) Unit of Disease and Diversity, University of Khartoum Medical Campus, P.O. Box 102, Khartoum, Sudan
| | - Hiba S Mohamed
- Institute of Endemic Diseases (IEND) Unit of Disease and Diversity, University of Khartoum Medical Campus, P.O. Box 102, Khartoum, Sudan
| | - Kamal Alzaki
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ahmed M Elhassan
- Institute of Endemic Diseases (IEND) Unit of Disease and Diversity, University of Khartoum Medical Campus, P.O. Box 102, Khartoum, Sudan
| | - Kamal Hamad
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Muntaser E Ibrahim
- Institute of Endemic Diseases (IEND) Unit of Disease and Diversity, University of Khartoum Medical Campus, P.O. Box 102, Khartoum, Sudan
| |
Collapse
|
17
|
Interplay among viral antigens, cellular pathways and tumor microenvironment in the pathogenesis of EBV-driven lymphomas. Semin Cancer Biol 2013; 23:441-56. [DOI: 10.1016/j.semcancer.2013.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/22/2022]
|
18
|
Zhang Y, Ning Z, Lu C, Zhao S, Wang J, Liu B, Xu X, Liu Y. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties. Chem Cent J 2013; 7:153. [PMID: 24028654 PMCID: PMC3847453 DOI: 10.1186/1752-153x-7-153] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/09/2013] [Indexed: 01/11/2023] Open
Abstract
The resinous metabolites commonly known as frankincense or olibanum are produced by trees of the genus Boswellia and have attracted increasing popularity in Western countries in the last decade for their various pharmacological activities. This review described the pharmacological specific details mainly on anti-inflammatory, anti-carcinogenic, anti-bacterial and apoptosis-regulating activities of individual triterpenoid together with the relevant mechanism. In addition, species-characterizing triterpenic markers with the methods for their detection, bioavailability, safety and other significant properties were reviewed for further research.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Suzuki Y, Yoshida T, Wang G, Aoki T, Katayama T, Miyamoto S, Miyazaki K, Iwabuchi K, Danbara M, Nakayama M, Horie R, Nakamine H, Sato Y, Nakamura N, Niitsu N. Incidence and clinical significance of aberrant T-cell marker expression on diffuse large B-cell lymphoma cells. Acta Haematol 2013; 130:230-7. [PMID: 23816831 DOI: 10.1159/000348550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/29/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Aberrant expression of T-cell markers is occasionally observed in B-cell lymphomas. We conducted a retrospective study to establish its incidence and to determine its relationship with clinical features of patients with diffuse large B-cell lymphoma (DLBCL). PATIENTS AND METHODS We reviewed DLBCL patients diagnosed between January 2002 and April 2009. Patients fulfilled the following criteria: (1) age >18 years, (2) HIV negative, (3) B-cell lymphoma confirmed by restricted expression of surface immunoglobulin light chains by flow cytometry (FCM). Aberrant T-cell marker expression (ATCME) was defined as positivity for CD2, CD3, CD4, CD7, and/or CD8 on DLBCL cells by FCM. Phenotyping was also performed by immunohistochemistry (IHC). Patients were grouped according to positive or negative ATCME and their clinical features including survival were compared. RESULTS Of 150 patients, 11 (7.3%) showed ATCME; CD2 and CD7 were most often expressed. ATCME was less often detected and the signal was weaker using IHC. There were no statistically significant differences in clinical features between the two groups. CONCLUSIONS FCM may be useful to detect ATCME in a small amount of lymphoma cells. The mechanism responsible for ATCME, and whether it contributes in any way to the pathogenesis of B-cell neoplastic transformation, requires clarification.
Collapse
Affiliation(s)
- Yuhko Suzuki
- Department of Hematology, Kitasato University School of Medicine, Sagamihara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bernasconi M, Ueda S, Krukowski P, Bornhauser BC, Ladell K, Dorner M, Sigrist JA, Campidelli C, Aslandogmus R, Alessi D, Berger C, Pileri SA, Speck RF, Nadal D. Early gene expression changes by Epstein-Barr virus infection of B-cells indicate CDKs and survivin as therapeutic targets for post-transplant lymphoproliferative diseases. Int J Cancer 2013; 133:2341-50. [PMID: 23640782 DOI: 10.1002/ijc.28239] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/15/2013] [Indexed: 01/30/2023]
Abstract
Lymphoproliferative diseases (LPDs) associated with Epstein-Barr virus (EBV) infection cause significant morbidity and mortality in bone marrow and solid organ transplant recipients. To gain insight into LPD pathogenesis and to identify potential effective therapeutic approaches, we investigated early molecular events leading to B-cell transformation by gene expression profiling of EBV-infected B-cells from tonsils by Affymetrix microarray 72 hr postinfection when the B-cells hyperproliferation phase starts. Cell cycle and apoptosis were the most significantly affected pathways and enriched gene sets. In particular, we found significantly increased expression of cyclin-dependent kinase (CDK)1 and CCNB1 (cyclin B1) and of one of their downstream targets BIRC5 (survivin). Importantly, the strong upregulation of the antiapoptotic protein survivin was confirmed in lymphoblastoid cell lines (LCLs) and 71% of EBV-positive post-transplant EBV-LPD lesions scored positive for survivin. The validity of early transforming events for the identification of therapeutic targets for EBV-LPD was confirmed by the marked antiproliferative effect of the CDK inhibitor flavopiridol on LCLs and by the strong induction of apoptosis by survivin inhibition with YM155 or terameprocol. Our results suggest that targeting of CDKs and/or survivin in post-transplant EBV-LPD by specific inhibitors might be an important approach to control and eliminate EBV-transformed B-cells that should be further considered.
Collapse
Affiliation(s)
- Michele Bernasconi
- Experimental Infectious Diseases and Cancer Research, Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital of Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Effects of Epstein-Barr virus on the development of dendritic cells derived from cord blood monocytes: an essential role for apoptosis. Braz J Infect Dis 2012. [DOI: 10.1016/s1413-8670(12)70269-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Husaini R, Ahmad M, Soo-Beng Khoo A. Epstein-Barr virus Latent Membrane Protein LMP1 reduces p53 protein levels independent of the PI3K-Akt pathway. BMC Res Notes 2011; 4:551. [PMID: 22185663 PMCID: PMC3287105 DOI: 10.1186/1756-0500-4-551] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/21/2011] [Indexed: 11/10/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is an epithelial malignancy, which commonly occurs in Southern China, Taiwan, North Africa and Southeast Asia. Nasopharyngeal carcinoma is strongly associated with Epstein-Barr virus infection. The p53 tumour suppressor protein is rarely mutated in NPC suggesting that the inactivation of p53 pathway in NPC could be due to the presence of EBV proteins. The aim of this work was to determine the effects of EBV proteins namely LMP1 and LMP2A on the expression levels of p53 protein. Findings In this work we found that LMP1, but not LMP2A, decreased p53 protein levels. Overexpression of LMP1 resulted in increased ubiquitination of p53 suggesting that the decreased p53 protein levels by LMP1 was due to increased degradation of the protein. The reduction of p53 protein levels was independent of the PI3K-Akt pathway. Conclusions LMP1, but not LMP2A, reduced p53 protein levels through the increase in the polyubiquitination of p53 protein and was independent of the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Roslina Husaini
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
23
|
Yee J, White RE, Anderton E, Allday MJ. Latent Epstein-Barr virus can inhibit apoptosis in B cells by blocking the induction of NOXA expression. PLoS One 2011; 6:e28506. [PMID: 22174825 PMCID: PMC3235132 DOI: 10.1371/journal.pone.0028506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/25/2011] [Indexed: 02/04/2023] Open
Abstract
Latent Epstein-Barr virus (EBV) has been shown to protect Burkitt's lymphoma-derived B cells from apoptosis induced by agents that cause damage to DNA, in the context of mutant p53. This protection requires expression of the latency-associated nuclear proteins EBNA3A and EBNA3C and correlates with their ability to cooperate in the repression of the gene encoding the pro-apoptotic, BH3-only protein BIM. Here we confirm that latent EBV in B cells also inhibits apoptosis induced by two other agents--ionomycin and staurosporine--and show that these act by a distinct pathway that involves a p53-independent increase in expression of another pro-apoptotic, BH3-only protein, NOXA. Analyses employing a variety of B cells infected with naturally occurring EBV or B95.8 EBV-BAC recombinant mutants indicated that the block to NOXA induction does not depend on the well-characterized viral latency-associated genes (EBNAs 1, 2, 3A, 3B, 3C, the LMPs or the EBERs) or expression of BIM. Regulation of NOXA was shown to be at least partly at the level of mRNA and the requirement for NOXA to induce cell death in this context was demonstrated by NOXA-specific shRNA-mediated depletion experiments. Although recombinant EBV with a deletion removing the BHRF1 locus--that encodes the BCL2-homologue BHRF1 and three microRNAs--partially abrogates protection against ionomycin and staurosporine, the deletion has no effect on the EBV-mediated block to NOXA accumulation.
Collapse
Affiliation(s)
- Jade Yee
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Robert E. White
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Emma Anderton
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Martin J. Allday
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells. PLoS One 2011; 6:e28638. [PMID: 22163048 PMCID: PMC3232240 DOI: 10.1371/journal.pone.0028638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/11/2011] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator.
Collapse
|
25
|
Gupta S, Termini JM, Niu L, Kanagavelu SK, Rahmberg AR, Kornbluth RS, Evans DT, Stone GW. Latent Membrane Protein 1 as a molecular adjuvant for single-cycle lentiviral vaccines. Retrovirology 2011; 8:39. [PMID: 21592361 PMCID: PMC3118346 DOI: 10.1186/1742-4690-8-39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/18/2011] [Indexed: 11/24/2022] Open
Abstract
Background Molecular adjuvants are a promising method to enhance virus-specific immune responses and protect against HIV-1 infection. Immune activation by ligands for receptors such as CD40 can induce dendritic cell activation and maturation. Here we explore the incorporation of two CD40 mimics, Epstein Barr Virus gene LMP1 or an LMP1-CD40 chimera, into a strain of SIV that was engineered to be limited to a single cycle of infection. Results Full length LMP1 or the chimeric protein LMP1-CD40 was cloned into the nef-locus of single-cycle SIV. Human and Macaque monocyte derived macrophages and DC were infected with these viruses. Infected cells were analyzed for activation surface markers by flow cytometry. Cells were also analyzed for secretion of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12p70 and TNF by cytometric bead array. Conclusions Overall, single-cycle SIV expressing LMP1 and LMP1-CD40 produced a broad and potent TH1-biased immune response in human as well as rhesus macaque macrophages and DC when compared with control virus. Single-cycle SIV-LMP1 also enhanced antigen presentation by lentiviral vector vaccines, suggesting that LMP1-mediated immune activation may enhance lentiviral vector vaccines against HIV-1.
Collapse
Affiliation(s)
- Sachin Gupta
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yenamandra SP, Hellman U, Kempkes B, Darekar SD, Petermann S, Sculley T, Klein G, Kashuba E. Epstein-Barr virus encoded EBNA-3 binds to vitamin D receptor and blocks activation of its target genes. Cell Mol Life Sci 2010; 67:4249-56. [PMID: 20593215 PMCID: PMC11115686 DOI: 10.1007/s00018-010-0441-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 06/01/2010] [Accepted: 06/17/2010] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV) is a human gamma herpes virus that infects B cells and induces their transformation into immortalized lymphoblasts that can grow as cell lines (LCLs) in vitro. EBNA-3 is a member of the EBNA-3-protein family that can regulate transcription of cellular and viral genes. The identification of EBNA-3 cellular partners and a study of its influence on cellular pathways are important for understanding the transforming action of the virus. In this work, we have identified the vitamin D receptor (VDR) protein as a binding partner of EBNA-3. We found that EBNA3 blocks the activation of VDR-dependent genes and protects LCLs against vitamin-D3-induced growth arrest and/or apoptosis. The presented data shed some light on the anti-apoptotic EBV program and the role of the EBNA-3-VDR interaction in the viral strategy.
Collapse
Affiliation(s)
- Surya Pavan Yenamandra
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, 171 77 Stockholm, Sweden
- Present Address: Bioinformatics Institute, 30 Biopolis Street, No. 07-01, 138671 Matrix, Singapore
| | - Ulf Hellman
- Ludwig Institute for Cancer Research, Uppsala Branch, 751 24 Uppsala, Sweden
| | - Bettina Kempkes
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center for Environmental Health, 81377 Munich, Germany
| | - Suhas Deoram Darekar
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, 171 77 Stockholm, Sweden
| | - Sabine Petermann
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center for Environmental Health, 81377 Munich, Germany
| | - Tom Sculley
- Queensland Institute for Medical Research, Brisbane, QLD 4029 Australia
| | - George Klein
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, 171 77 Stockholm, Sweden
| | - Elena Kashuba
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, 171 77 Stockholm, Sweden
- R. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, 03022 Kyiv, Ukraine
| |
Collapse
|
27
|
Okuda T, Nakakita SI, Nakayama KI. Structural characterization and dynamics of globotetraosylceramide in vascular endothelial cells under TNF-alpha stimulation. Glycoconj J 2010; 27:287-96. [PMID: 20082214 DOI: 10.1007/s10719-009-9277-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 02/03/2023]
Abstract
In several vascular inflammatory reactions (i.e. immunity and thrombosis) inflammatory mediators lead to the activation of vascular endothelial cells (EC). To date, a number of functional molecules induced on the surface of activated-EC have been identified. We report here that Globotetraosylceramide (Gb4), a glycosphingolipid expressed in EC, is a novel inducible molecule on EC activated by TNF-alpha. The cell surface expression of Gb4 is increased in a time-dependent manner under TNF-alpha stimulation, which shows distinct expression kinetics of major proteins induced by TNF-alpha on EC. MALDI-TOFMS analysis revealed that the enhanced Gb4 predominantly contains C24:0 fatty acid in the ceramide moiety. Isolated caveolae/lipid raft-enriched detergent insoluble membrane domains in activated-EC predominantly contain this molecular species of Gb4. Gb4 containing C16:0 fatty acid in the ceramide moiety, which is known to constitute the major species of Gb4 in plasma, is also found as a major molecular species in EC. These observations indicate that Gb4, especially with very long fatty acid, is enhanced in EC during its inflammatory reaction, and suggest the potential utility of Gb4 as a biomarker for monitoring inflammation status of EC involving its related diseases.
Collapse
Affiliation(s)
- Tetsuya Okuda
- Glycolipids Function Analysis Team, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi, Takamatsu, Kagawa 761-0395, Japan.
| | | | | |
Collapse
|
28
|
Kouvidou C, Kanavaros P, Papaioannou D, Stathopoulos E, Sotsiou F, Datseris G, Tzardi M, Kittas C, Delides G. Expression of bcl-2 and p53 proteins in nasopharyngeal carcinoma. Absence of correlation with the presence of EBV encoded EBER1-2 transcripts and latent membrane protein-1. Mol Pathol 2010; 48:M17-22. [PMID: 16695969 PMCID: PMC407914 DOI: 10.1136/mp.48.1.m17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aims-To investigate the immunohistochemical expression of bcl-2 and p53 proteins in nasopharyngeal carcinomas in relation to the expression of the Epstein-Barr virus (EBV) encoded EBER messenger RNAs (mRNAs) and latent membrane protein-1 (LMP-1).Methods-Formalin fixed, paraffin wax embedded tissue from 44 nasopharyngeal carcinomas (NPCs) was stained by immunohistochemistry for p53, bcl-2 and LMP-1 proteins and by RNA in situ hybridisation for EBER mRNAs.Results-The tumours were divided histologically into 13 cases of keratinising squamous cell NPC (KNPC), 15 cases of non-keratinising squamous cell NPC (NKNPC) and 16 cases of undifferentiated NPC (UNPC). Bcl-2 expression was observed in five of 15 NKNPC cases and in six of 16 UNPC cases; p53 expression was observed in one of 13 KNPC, two of 15 NKNPC and four of 16 UNPC cases. EBER 1-2 transcripts were detected in five of 15 NKNPC and nine of 16 UNPC cases, while LMP-1 expression was observed in one of 16 UNPC cases. All 13 KNPCs were EBV and bcl-2 negative. No correlation was found between the presence of EBER 1-2 transcripts and the detection of bcl-2 or p53 proteins, or both, in NPC cells.Conclusions-The expression of bcl-2 and p53 proteins may be associated with the level of the tumour cell differentiation in NPC. In addition, in view of the important role of the bcl-2 protein in the inhibition of apoptosis, the expression of bcl-2 protein may contribute to tumour cell survival in a proportion of NPCs. Furthermore, in the light of previous findings that the p53 gene in most UNPCs is in the wild-type configuration, mechanisms other than mutation may be responsible for stabilisation of the p53 protein in UNPCs.
Collapse
Affiliation(s)
- C Kouvidou
- Department of Pathology, University Hospital, Heraklion
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yang Q, Liu HY, Zhang YW, Wu WJ, Tang WX. Anandamide induces cell death through lipid rafts in hepatic stellate cells. J Gastroenterol Hepatol 2010; 25:991-1001. [PMID: 20059638 DOI: 10.1111/j.1440-1746.2009.06122.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Anandamide (AEA), the most extensively studied endocannabinoid, and its putative cannabinoid receptors, CB1 and CB2, exert a variety of physiological and pharmacological effects in chronic liver diseases, such as hyperdynamic circulation. Anandamide selectively blocks proliferation and induces cell death in hepatic stellate cells (HSC), the key cell type of liver fibrogenesis. However, its precise molecular mechanism in rat HSC has not been fully elucidated. METHODS CB1 and CB2 mRNA transcriptions were evaluated by reverse transcription polymerase chain reaction; CB1, CB2, phosphoinositide 3-kinases (PI3K) and protein kinase B (PKB) protein expressions were investigated by western blot and/or immunofluorescence. Cell death was detected by Annexin V-PE/7AAD flow cytometry, lipid raft content by confocal microscopic analysis, cell viability by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, nuclear morphological changes by Hoechst 33258 fluorochrome, and inflammatory cytokines interleukin (IL)-2 and IL-6, and tumor necrosis factor-alpha (TNF-alpha) by enzyme-linked immunosorbent assay. RESULTS CB1 and CB2 receptors were detectable in HSC. AEA caused HSC growth inhibition in a concentration-dependent manner. Furthermore, a high concentration of AEA (20 micromol/L) triggered potent cell death-induced necrosis but not apoptosis. None of these effects were blocked by CB1 or CB2 receptor antagonist, but by methyl-beta-cyclodextrin (MCD; 10 mmol/L), a cholesterol depletory agent. AEA significantly inhibited PI3K/PKB activity, and increased IL-2, IL-6 and TNF-alpha release. CONCLUSION These results demonstrated that AEA induced HSC necrosis through lipid rafts: a possible role of PI3K/PKB signaling pathway downregulation and inflammatory factors production. Cholesterol depletion abolished the effects of AEA on HSC necrosis.
Collapse
Affiliation(s)
- Qiao Yang
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|
30
|
Davies ML, Xu S, Lyons-Weiler J, Rosendorff A, Webber SA, Wasil LR, Metes D, Rowe DT. Cellular factors associated with latency and spontaneous Epstein-Barr virus reactivation in B-lymphoblastoid cell lines. Virology 2010; 400:53-67. [PMID: 20153012 DOI: 10.1016/j.virol.2010.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/10/2009] [Accepted: 01/04/2010] [Indexed: 01/13/2023]
Abstract
EBV-immortalized B-lymphoblastoid cell lines are used as models for cellular transformation and as antigen-presenting cells in immunological assays. LCLs vary in surface markers and other phenotypic properties, but it is not known how this heterogeneity relates to the EBV life cycle. To explore correlations, we examined 62 LCLs for cellular and viral phenotypes. LCLs generated from pediatric and adult donors could similarly be categorized as either low in EBV copy number or fluctuating within a high range. High-copy status accompanied higher lytic viral gene expression and lower latent gene expression. Inhibiting lytic EBV replication did not affect cellular phenotype or lytic switch protein expression, indicating that an LCL's lytic permissivity was a stable property. Among the cellular genes overexpressed in permissive LCLs were unfolded protein response genes and plasma cell markers. Among genes overexpressed in non-permissive LCLs were transcription factors involved in maintaining B cell lineage, in particular EBF1. This study suggests previously undetected mechanisms by which cellular pathways influence the lytic reactivation of EBV.
Collapse
Affiliation(s)
- Michael L Davies
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 435 Parran Hall, 130 DeSoto Street, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
EBNA1 regulates cellular gene expression by binding cellular promoters. Proc Natl Acad Sci U S A 2009; 106:22421-6. [PMID: 20080792 DOI: 10.1073/pnas.0911676106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with several types of lymphomas and epithelial tumors including Burkitt's lymphoma (BL), HIV-associated lymphoma, posttransplant lymphoproliferative disorder, and nasopharyngeal carcinoma. EBV nuclear antigen 1 (EBNA1) is expressed in all EBV associated tumors and is required for latency and transformation. EBNA1 initiates latent viral replication in B cells, maintains the viral genome copy number, and regulates transcription of other EBV-encoded latent genes. These activities are mediated through the ability of EBNA1 to bind viral-DNA. To further elucidate the role of EBNA1 in the host cell, we have examined the effect of EBNA1 on cellular gene expression by microarray analysis using the B cell BJAB and the epithelial 293 cell lines transfected with EBNA1. Analysis of the data revealed distinct profiles of cellular gene changes in BJAB and 293 cell lines. Subsequently, chromatin immune-precipitation revealed a direct binding of EBNA1 to cellular promoters. We have correlated EBNA1 bound promoters with changes in gene expression. Sequence analysis of the 100 promoters most enriched revealed a DNA motif that differs from the EBNA1 binding site in the EBV genome.
Collapse
|
32
|
Abstract
Most viral infections are self-limiting, resulting in either clearance of the pathogen or death of the host. However, a subset of viruses can establish permanent infection and persist indefinitely within the host. Even though persisting viruses are derived from various viral families with distinct replication strategies, they all utilize common mechanisms for establishment of long-lasting infections. Here, we discuss the commonalities between persistent infections with herpes-, retro-, flavi-, arena-, and polyomaviruses that distinguish them from acutely infecting viral pathogens. These shared strategies include selection of cell subsets ideal for long-term maintenance of the viral genome, modulation of viral gene expression, viral subversion of apoptotic pathways, and avoidance of clearance by the immune system.
Collapse
|
33
|
Rowe M, Kelly GL, Bell AI, Rickinson AB. Burkitt's lymphoma: the Rosetta Stone deciphering Epstein-Barr virus biology. Semin Cancer Biol 2009; 19:377-88. [PMID: 19619657 PMCID: PMC3764430 DOI: 10.1016/j.semcancer.2009.07.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/10/2009] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus was originally identified in the tumour cells of a Burkitt's lymphoma, and was the first virus to be associated with the pathogenesis of a human cancer. Studies on the relationship of EBV with Burkitt's lymphoma have revealed important general principles that are relevant to other virus-associated cancers. In addition, the impact of such studies on the knowledge of EBV biology has been enormous. Here, we review some of the key historical observations arising from studies on Burkitt's lymphoma that have informed our understanding of EBV, and we summarise the current hypotheses regarding the role of EBV in the pathogenesis of Burkitt's lymphoma.
Collapse
Affiliation(s)
- Martin Rowe
- Institute for Cancer Studies, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
34
|
Garcia-Bates TM, Peslak SA, Baglole CJ, Maggirwar SB, Bernstein SH, Phipps RP. Peroxisome proliferator-activated receptor gamma overexpression and knockdown: impact on human B cell lymphoma proliferation and survival. Cancer Immunol Immunother 2009; 58:1071-83. [PMID: 19018532 PMCID: PMC3003604 DOI: 10.1007/s00262-008-0625-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/31/2008] [Indexed: 12/20/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a multifunctional transcription factor that regulates adipogenesis, immunity and inflammation. Our laboratory previously demonstrated that PPARgamma ligands induce apoptosis in malignant B cells. While malignant B lineage cells such as B cell lymphoma express PPARgamma, its physiological function remains unknown. Herein, we demonstrate that silencing PPARgamma expression by RNAi in human Burkitt's type B lymphoma cells increased basal and mitogen-induced proliferation and survival, which was accompanied by enhanced NF-kappaB activity and increased expression of Bcl-2. These cells also had increased survival upon exposure to PPARgamma ligands and exhibited a less differentiated phenotype. In contrast, PPARgamma overexpression in B lymphoma cells inhibited cell growth and decreased their proliferative response to mitogenic stimuli. These cells were also more sensitive to PPARgamma-ligand induced growth arrest and displayed a more differentiated phenotype. Collectively, these findings support a regulatory role for PPARgamma in the proliferation, survival and differentiation of malignant B cells. These findings further suggest the potential of PPARgamma as a therapeutic target for B cell malignancy.
Collapse
Affiliation(s)
- Tatiana M. Garcia-Bates
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Scott A. Peslak
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Carolyn J. Baglole
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, 850, Rochester, NY 14642 USA
- Lung Biology and Disease Program, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Sanjay B. Maggirwar
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Steven H. Bernstein
- The Lymphoma Biology Program of the James P. Wilmot Cancer Center, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Richard P. Phipps
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, 850, Rochester, NY 14642 USA
- Lung Biology and Disease Program, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| |
Collapse
|
35
|
Ffrench M, Souchier C, Magaud JP, Berger F, Devaux Y, Bryon PA. Cell Proliferation in B Malignant Lymphomas: Comparison with Other Biological Characteristics and Prognostic Significance. Leuk Lymphoma 2009. [DOI: 10.3109/10428199209064900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Bornkamm GW. Epstein-Barr virus and the pathogenesis of Burkitt's lymphoma: more questions than answers. Int J Cancer 2009; 124:1745-55. [PMID: 19165855 DOI: 10.1002/ijc.24223] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Burkitt's lymphoma (BL) was first described as a clinical entity in children in Central Africa by Denis Burkitt in 1958. The particular epidemiological features of this tumor initiated the search for a virus as the causative agent and led to the discovery of Epstein-Barr virus (EBV) by Epstein and coworkers in 1964. It became apparent in the seventies and eighties that the tumor is not restricted to Central Africa, but occurs with lesser incidence all over the world (sporadic BL) and is also particularly frequent in HIV infected individuals, and that not all BL cases are associated with EBV: about 95% of the cases in Central Africa, 40 to 50% of the cases in HIV-infected individuals and 10 to 20% of the sporadic cases harbour the viral information and express at least one viral antigen (EBNA1) and a number of non-coding viral RNAs. In contrast, all BL cases regardless of their geographical origin exhibit one of three c-myc/Ig chromosomal translocations leading to the activation of the c-myc gene as a crucial event in the development of this disease. Although epidemiological evidence clearly points to a role of the virus in the African cases, the role of EBV in the pathogenesis of BL has remained largely elusive. This review summarizes current concepts and ideas how EBV might contribute to the development of BL in the light of the progress made in the last decade and discusses the problems of the experimental systems available to test such hypotheses.
Collapse
Affiliation(s)
- Georg W Bornkamm
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Clinical Molecular Biology and Tumor Genetics, München, Germany.
| |
Collapse
|
37
|
|
38
|
Lu JJY, Lay JD. Tumor formation in nude mice inoculated with cultured human epithelial cells co-expressing Epstein-Barr virus latent membrane protein 1 and Bcl-2. Intervirology 2008; 50:454-60. [PMID: 18268409 DOI: 10.1159/000115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 11/29/2007] [Indexed: 11/19/2022] Open
Abstract
AIMS To examine the tumor-forming in nude mice of human epithelial cells co-expressed Bcl-2 and EBV LMP-1 ability, the phenotype of tumor cells and their expression of oncogenes and tumor-suppressor genes. METHODS Following an in vivo tumorigenesis test in nude mice, the phenotype and growth properties of tumor cells were observed. Levels of expression of Bcl-2, and EBV LMP-1, and of onco- and tumor-suppressor proteins were detected by Western blot assay. RESULTS Human epithelial cells co-expressing Bcl-2 and EBV LMP-1 can form tumors in nude mice. Tumors appeared 48-65 days postinoculation in 6 of 10 nude mice tested but not in mice given Bcl-2-positive (0/5), LMP-1-positive (0/5) and RHEK-1 control (0/5) cells. Levels of c-myc protein were upregulated by LMP-1 but were not affected by Bcl-2 in this cell background; screening for other cellular oncogene and tumor suppressor gene products showed no change. CONCLUSION The complementary effects of EBV LMP-1 and Bcl-2 in human epithelial cells resulted in tumor formation in nude mice but did not affect the expression of onco- and tumor suppressor proteins except for elevated c-myc. These findings suggest that LMP-1 and Bcl-2 can contribute together to the formation of EBV-associated epithelial cell tumors.
Collapse
|
39
|
Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an antiapoptotic viral gene. J Virol 2007; 82:2056-64. [PMID: 18094168 DOI: 10.1128/jvi.01803-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genes that inhibit apoptosis have been described for many DNA viruses. Herpesviruses often contain even more than one gene to control cell death. Apoptosis inhibition by viral genes is postulated to contribute to viral fitness, although a formal proof is pending. To address this question, we studied the mouse cytomegalovirus (MCMV) protein M36, which binds to caspase-8 and blocks death receptor-induced apoptosis. The growth of MCMV recombinants lacking M36 (DeltaM36) was attenuated in vitro and in vivo. In vitro, caspase inhibition by zVAD-fmk blocked apoptosis in DeltaM36-infected macrophages and rescued the growth of the mutant. In vivo, DeltaM36 infection foci in liver tissue contained significantly more apoptotic hepatocytes and Kupffer cells than did revertant virus foci, and apoptosis occurred during the early phase of virus replication prior to virion assembly. To further delineate the mode of M36 function, we replaced the M36 gene with a dominant-negative FADD (FADD(DN)) in an MCMV recombinant. FADD(DN) was expressed in cells infected with the recombinant and blocked the death-receptor pathway, replacing the antiapoptotic function of M36. Most importantly, FADD(DN) rescued DeltaM36 virus replication, both in vitro and in vivo. These findings have identified the biological role of M36 and define apoptosis inhibition as a key determinant of viral fitness.
Collapse
|
40
|
Belfiore MC, Natoni A, Barzellotti R, Merendino N, Pessina G, Ghibelli L, Gualandi G. Involvement of 5-lipoxygenase in survival of Epstein–Barr virus (EBV)-converted B lymphoma cells. Cancer Lett 2007; 254:236-43. [PMID: 17467166 DOI: 10.1016/j.canlet.2007.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 02/14/2007] [Accepted: 03/12/2007] [Indexed: 11/23/2022]
Abstract
Epstein-Barr Virus (EBV) is involved in the progression of lymphomas through still unknown mechanism involving increased resistance to induced apoptosis. We show here that in a set of apoptosis-resistant EBV-converted Burkitt's lymphoma clones, 5- and 12-lipoxygenases (LOXs) are over-expressed. Further investigations on 5-LOX showed that resistance to apoptosis increases parallely with the expression of 5-lipoxygenase (5-LOX). Inhibitors of 5-LOX: (a) decrease peroxides level, indicating that this enzyme promotes the generation of oxidative stress in EBV+ cells, and (b) potently induce apoptosis in the EBV resistant cell line E2R. 5- and 15-HETE, the products of the 5 and 15-LOXs, respectively, counteract 5-LOX inhibitor induced apoptosis, indicating that products of arachidonate metabolism, rather than peroxides, trigger a signal transduction that is required for survival of the EBV-converted cells. These findings suggest that 5- and, to a lesser extent, other LOXs, that are involved in tumor progression of several cell types, may also participate in lymphomagenesis, especially that EBV-mediated.
Collapse
|
41
|
Isufi I, Seetharam M, Zhou L, Sohal D, Opalinska J, Pahanish P, Verma A. Transforming growth factor-beta signaling in normal and malignant hematopoiesis. J Interferon Cytokine Res 2007; 27:543-52. [PMID: 17651015 DOI: 10.1089/jir.2007.0009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) is an important physiologic regulator of cell growth and differentiation. TGF-beta has been shown to inhibit the proliferation of quiescent hematopoietic stem cells and stimulate the differentiation of late progenitors to erythroid and myeloid cells. Insensitivity to TGF-beta is implicated in the pathogenesis of many myeloid and lymphoid neoplasms. Loss of extracellular TGF receptors and disruption of intracellular TGF-beta signaling by oncogenes is seen in a variety of malignant and premalignant states. TGF-beta can also affect tumor growth and survival by influencing the secretion of other growth factors and manipulation of the tumor microenvironment. Recent development of small molecule inhibitors of TGF-beta receptors and other signaling intermediaries may allow us to modulate TGF signaling for future therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Iris Isufi
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Epstein-Barr virus (EBV) infection is linked to approximately 90% of B-cell lymphomas associated with posttransplant lymphoproliferative disease (PTLD), a serious complication for immunosuppressed transplant recipients. In this paper, we review the myriad ways by which EBV can inadvertently drive the genesis and persistence of B-cell lymphomas, particularly when the antiviral immune response is compromised. Probing the basic mechanisms by which EBV infection proceeds and contributes to malignancy in such cases will hopefully improve our understanding and treatment of PTLD and other EBV-associated malignancies.
Collapse
Affiliation(s)
- Andrew L Snow
- Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
43
|
Abstract
Epstein-Barr virus (EBV), discovered > 40 years ago from a Burkitt's lymphoma biopsy, was the first virus to be directly associated with human cancer. EBV has two distinct life cycles in the human host; a lytic form of infection that produces new infectious virions, and a latent form of infection that allows the virus to persist in a dormant state for the lifetime of the host. EBV has evolved a life cycle that mimics the natural differentiation pathway of antigen-activated B cells, giving the virus access to its site of latent infection, the resting memory B cell. By steering infected cells through the various stages of lymphocyte differentiation, EBV is able to enter a cell type suitable for long-term latent persistence and periodic reactivation. However, its presence in various stages of B-cell development, and its ability to infect certain epithelial cells, can have pathogenic consequences, and can contribute to the development of a diverse group of lymphomas and carcinomas. The presence of EBV in the tumour cells of EBV-associated cancers might provide a basis for specific therapy. This article focuses on the contributions that the virus may play in different types of human cancer, particularly Burkitt's lymphoma, Hodgkin's lymphoma, lymphomas and lymphoproliferative diseases in the immunocompromised, and nasopharyngeal and gastric carcinoma.
Collapse
Affiliation(s)
- Samuel B Pattle
- Imperial College Faculty of Medicine, Department of Virology, Norfolk Place, London, W2 1PG, UK.
| | | |
Collapse
|
44
|
Kiguchi K, Iwamori Y, Suzuki N, Kobayashi Y, Ishizuka B, Ishiwata I, Kita T, Kikuchi Y, Iwamori M. Characteristic expression of globotriaosyl ceramide in human ovarian carcinoma-derived cells with anticancer drug resistance. Cancer Sci 2006; 97:1321-6. [PMID: 16995873 PMCID: PMC11159370 DOI: 10.1111/j.1349-7006.2006.00326.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transporter protein genes and lipids in human ovarian carcinoma-derived KF28 cells with anticancer-drug-sensitive properties were compared with those in resistant cells, taxol-resistant KF28TX, cisplatin-resistant KFr13, and taxol- and cisplatin-resistant KFr13TX, to identify the molecules required for anticancer-drug resistance. In accordance with previous reports, taxol and cisplatin resistance was closely correlated with expression of the multidrug resistance 1 and bile acid export pump, and multidrug resistance-associated protein 2 genes, respectively. In addition, we found a distinct difference in glycosphingolipids between the sensitive and resistant cells. Although GlcCer was the major glycolipid (83.0%) in sensitive cells, GalCer, LacCer and, particularly, Gb(3)Cer were characteristically increased in all resistant cells, irrespective of whether the resistance was to taxol or cisplatin, and comprised 65-84% of total glycosphingolipids. GM3, which was present at 0.04 microg/mg dry weight in the sensitive cells, showed a twofold increase in the taxol-resistant cells, but was absent in the cisplatin-resistant cells. The altered glycolipid composition was proven to be due to enhanced or suppressed expression of the respective sugar transferase genes. In addition, the ceramide moiety of ceramide monohexoside in the sensitive cells constituted 83% of non-hydroxy fatty acids, but that in the resistant cells comprised 67-74% of alpha-hydroxy fatty acids. Thus, cells containing Gb(3)Cer with alpha-hydroxy fatty acids were found to survive selectively in the presence of taxol and cisplatin, and modification of the glycolipid structure was revealed to occur in association with anticancer-drug resistance.
Collapse
Affiliation(s)
- Kazushige Kiguchi
- Department of Obstetrics and Gynecology, St Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Snow AL, Lambert SL, Natkunam Y, Esquivel CO, Krams SM, Martinez OM. EBV can protect latently infected B cell lymphomas from death receptor-induced apoptosis. THE JOURNAL OF IMMUNOLOGY 2006; 177:3283-93. [PMID: 16920969 DOI: 10.4049/jimmunol.177.5.3283] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The relationship between EBV infection and sensitivity to death receptor (DR)-induced apoptosis is poorly understood. Using EBV- and EBV+ BJAB cells, we provide the first evidence that EBV can protect latently infected B cell lymphomas from apoptosis triggered through Fas or TRAIL receptors. Caspase 8 activation was impaired and cellular FLIP recruitment was enriched in death-inducing signaling complexes formed in EBV-infected BJAB cells relative to parent BJAB cells. Furthermore, latent membrane protein 1 expression alone could reduce caspase activation and confer partial resistance to DR apoptosis in BJAB cells. This protective effect was dependent on C-terminal activating region 2-driven NF-kappaB activation, which in turn up-regulated cellular FLIP expression in latent membrane protein 1+ BJAB cells. Thus, the ability of latent EBV to block DR apoptosis may help to ensure the survival of host cells during B cell differentiation, and contribute to the development of B cell lymphomas, especially in immunocompromised individuals.
Collapse
Affiliation(s)
- Andrew L Snow
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
46
|
Levine AM. Monoclonal gammopathy associated with HIV infection. Clin Infect Dis 2006; 43:1206-8. [PMID: 17029143 DOI: 10.1086/508358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 07/11/2006] [Indexed: 11/03/2022] Open
|
47
|
Yamane D, Kato K, Tohya Y, Akashi H. The double-stranded RNA-induced apoptosis pathway is involved in the cytopathogenicity of cytopathogenic Bovine viral diarrhea virus. J Gen Virol 2006; 87:2961-2970. [PMID: 16963755 DOI: 10.1099/vir.0.81820-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV), which is classified in the genus Pestivirus, family Flaviviridae, can be divided into two biotypes according to its ability to induce a cytopathic effect in tissue culture cells. The mechanisms through which cytopathogenic (cp) BVDV induces cell death and non-cytopathogenic (ncp) BVDV causes persistent infection without producing cell death remain unclear. Here, it was found that the overexpression of four apoptosis-related cellular mRNAs in cells infected with cpBVDV could also be caused by synthetic dsRNA. In fact, it was found that the amount of dsRNA produced by cpBVDV considerably exceeded the amount yielded by ncpBVDV. To evaluate the possible involvement of dsRNA in the induction of apoptosis, this study examined whether RNAi-mediated depletion of two dsRNA-reactive cellular factors, dsRNA-dependent protein kinase and 2′,5′-oligoadenylate synthetase 1, resulted in the prevention of cpBVDV-induced apoptosis. Although the induction of apoptosis was reduced after the suppression of either factor alone, the simultaneous silencing of both factors resulted in an almost complete inhibition of apoptosis without affecting viral titre. These results showed that dsRNA is the main trigger of apoptosis in cpBVDV-infected cells and that the cytopathogenicity of BVDV depends on the yield potential of dsRNA. In contrast, ncpBVDV yielded minimal levels of dsRNA, thereby establishing a persistent infection without inducing apoptosis. This report supports the significance of viral dsRNA as a trigger of innate immune responses.
Collapse
Affiliation(s)
- Daisuke Yamane
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukinobu Tohya
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
48
|
Kelly GL, Milner AE, Baldwin GS, Bell AI, Rickinson AB. Three restricted forms of Epstein-Barr virus latency counteracting apoptosis in c-myc-expressing Burkitt lymphoma cells. Proc Natl Acad Sci U S A 2006; 103:14935-40. [PMID: 17001014 PMCID: PMC1595454 DOI: 10.1073/pnas.0509988103] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epstein-Barr virus (EBV), a human herpesvirus, transforms B cell growth in vitro through expressing six virus-coded Epstein-Barr nuclear antigens (EBNAs) and two latent membrane proteins (LMPs). In many EBV-associated tumors, however, viral antigen expression is more restricted, and the aetiological role of the virus is unclear. For example, endemic Burkitt lymphoma (BL) classically presents as a monoclonal, c-myc-translocation-positive tumor in which every cell carries EBV as an EBNA1-only (Latency I) infection; such homogeneity among EBV-positive cells, and the lack of EBV-negative comparators, hampers attempts to understand EBV's role in BL pathogenesis. Here, we describe an endemic BL that was unusually heterogeneous at the single-cell level and, in early passage culture, yielded a range of cellular clones, all with the same c-myc translocation but differing in EBV status. Rare EBV-negative cells were isolated alongside EBV-positive cells displaying one of three forms of restricted latency: (i) conventional Latency I expressing EBNA1 only from a WT virus genome, (ii) Wp-restricted latency expressing EBNAs 1, 3A, 3B, 3C, and -LP only from an EBNA2-deleted genome, and (iii) a previously undescribed EBNA2(+)/LMP1(-) latency in which all six EBNAs are expressed again in the absence of the LMPs. Interclonal comparisons showed that each form of EBV infection was associated with a specific degree of protection from apoptosis. Our work suggests that EBV acts as an antiapoptotic rather than a growth-promoting agent in BL by selecting among three transcriptional programs, all of which, unlike the full virus growth-transforming program, remain compatible with high c-myc expression.
Collapse
Affiliation(s)
- Gemma L. Kelly
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Anne E. Milner
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gouri S. Baldwin
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Andrew I. Bell
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Alan B. Rickinson
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Pegman PM, Smith SM, D'Souza BN, Loughran ST, Maier S, Kempkes B, Cahill PA, Simmons MJ, Gélinas C, Walls D. Epstein-Barr virus nuclear antigen 2 trans-activates the cellular antiapoptotic bfl-1 gene by a CBF1/RBPJ kappa-dependent pathway. J Virol 2006; 80:8133-8144. [PMID: 16873269 PMCID: PMC1563820 DOI: 10.1128/jvi.00278-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/18/2006] [Indexed: 11/20/2022] Open
Abstract
The human herpesvirus Epstein-Barr virus (EBV) establishes latency and promotes the long-term survival of its host B cell by targeting the molecular machinery controlling cell fate decisions. The cellular antiapoptotic bfl-1 gene confers protection from apoptosis under conditions of growth factor deprivation when expressed ectopically in an EBV-negative Burkitt's lymphoma-derived cell line (B. D'Souza, M. Rowe, and D. Walls, J. Virol. 74:6652-6658, 2000), and the EBV latent membrane protein 1 (LMP1) and its cellular functional homologue CD40 can both drive bfl-1 via an NF-kappaB-dependent enhancer element in the bfl-1 promoter (B. N. D'Souza, L. C. Edelstein, P. M. Pegman, S. M. Smith, S. T. Loughran, A. Clarke, A. Mehl, M. Rowe, C. Gélinas, and D. Walls, J. Virol. 78:1800-1816, 2004). Here we show that the EBV nuclear antigen 2 (EBNA2) also upregulates bfl-1. EBNA2 trans-activation of bfl-1 requires CBF1 (or RBP-J kappa), a nuclear component of the Notch signaling pathway, and there is an essential role for a core consensus CBF1-binding site on the bfl-1 promoter. trans-activation is dependent on the EBNA2-CBF1 interaction, is modulated by other EBV gene products known to interact with the CBF1 corepressor complex, and does not involve activation of NF-kappaB. bfl-1 expression is induced and maintained at high levels by the EBV growth program in a lymphoblastoid cell line, and withdrawal of either EBNA2 or LMP1 does not lead to a reduction in bfl-1 mRNA levels in this context, whereas the simultaneous loss of both EBV proteins results in a major decrease in bfl-1 expression. These findings are relevant to our understanding of EBV persistence, its role in malignant disease, and the B-cell developmental process.
Collapse
Affiliation(s)
- Pamela M Pegman
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Brinkmann MM, Schulz TF. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 2006; 87:1047-1074. [PMID: 16603506 DOI: 10.1099/vir.0.81598-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human gamma(1)-herpesvirus Epstein-Barr virus (EBV) and the gamma(2)-herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS) and herpesvirus ateles (HVA) all contain genes located adjacent to the terminal-repeat region of their genomes, encoding membrane proteins involved in signal transduction. Designated 'terminal membrane proteins' (TMPs) because of their localization in the viral genome, they interact with a variety of cellular signalling molecules, such as non-receptor protein tyrosine kinases, tumour-necrosis factor receptor-associated factors, Ras and Janus kinase (JAK), thereby initiating further downstream signalling cascades, such as the MAPK, PI3K/Akt, NF-kappaB and JAK/STAT pathways. In the case of TMPs expressed during latent persistence of EBV and HVS (LMP1, LMP2A, Stp and Tip), their modulation of intracellular signalling pathways has been linked to the provision of survival signals to latently infected cells and, hence, a contribution to occasional cellular transformation. In contrast, activation of similar pathways by TMPs of KSHV (K1 and K15) and RRV (R1), expressed during lytic replication, may extend the lifespan of virus-producing cells, alter their migration and/or modulate antiviral immune responses. Whether R1 and K1 contribute to the oncogenic properties of KSHV and RRV has not been established satisfactorily, despite their transforming qualities in experimental settings.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| |
Collapse
|