1
|
Lins PJB, Andrade NS, Caliento R, Sarmento DJS, Zambrana JRM, Costa C, Gallotini M. Alveolar bone healing patterns in chronic kidney failure and kidney transplant recipients: A pixel intensity and fractal analyses. SPECIAL CARE IN DENTISTRY 2025; 45:e13065. [PMID: 39323049 DOI: 10.1111/scd.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
AIMS To assess and compare radiographically the alveolar bone after tooth extractions in individuals with chronic kidney failure undergoing hemodialysis (CKFh), those submitted to kidney transplantation (KT), and those without kidney disease (CG) by using fractal analysis (FA) and pixel intensity (PI). METHODS AND RESULTS Periapical radiographs of 48 CKFh individuals (87 extracted teeth), 12 KT individuals (26 extracted teeth and 29 control individuals [76 extracted teeth] were analyzed at 7 and 60 days after tooth extraction. Fractal dimension (FD) and PI were assessed to evaluate the alveolar trabecular bone structural complexity and mineral content. The difference in FD values between the 7th and 60th postoperative days in KT individuals (0.03 ± 0.08) was significantly lower compared to those of CKFh individuals (0.09 ± 0.10) and controls (0.15 ± 0.06). As for the difference in PI values, KT (4.55 ± 10.24) and CKFh groups (9.88 ± 15.90) showed significantly lower values compared to those of the control group (17.93 ± 11.86) in the same period. These results indicate a lower gain in the trabecular bone complexity and bone density in the alveolus of KT individuals compared to the other groups. CONCLUSIONS Overall mineral content and thickness of the bone in the plane of the x-ray beam were lower in KT and CKFh individuals compared to controls, reflecting the need for careful consideration in recommending rehabilitation with dental implants for these patients. Particular attention should be given to the potential challenges in oral rehabilitation of KT patients.
Collapse
Affiliation(s)
- Paula J B Lins
- Special Care Dentistry Center, Department of Stomatology, Dental School, University of Sao Paulo, Sao Paulo, Brazil
| | - Natalia S Andrade
- Department of Dentistry, Federal University of Sergipe, Sergipe, Brazil
| | - Rubens Caliento
- Special Care Dentistry Center, Department of Stomatology, Dental School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Jéssica R M Zambrana
- Department of Stomatology, Dental School, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudio Costa
- Department of Stomatology, Dental School, University of Sao Paulo, Sao Paulo, Brazil
| | - Marina Gallotini
- Special Care Dentistry Center, Department of Stomatology, Dental School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Cores Ziskoven P, Nogueira AVB, Eick S, Deschner J. Apelin Counteracts the Effects of Fusobacterium nucleatum on the Migration of Periodontal Ligament Cells In Vitro. Int J Mol Sci 2024; 25:10729. [PMID: 39409058 PMCID: PMC11476847 DOI: 10.3390/ijms251910729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
To better understand the link between periodontitis and metabolic diseases, our in vitro study aimed to assess the influence of the adipokine apelin and/or the periodontal pathogen Fusobacterium nucleatum on periodontal cells. Periodontal ligament (PDL) cells were exposed to F. nucleatum in the presence and absence of apelin. Scratch assays were used to analyze the in vitro wound healing and velocity of cell migration. To investigate if F. nucleatum and/or apelin have a regulatory effect on cell proliferation and apoptosis, proliferation and viability assays were performed as well as an analysis of caspase 9 expression. Both the in vitro wound closure and the cell migration rate were significantly reduced by F. nucleatum. Simultaneous incubation with apelin counteracted the adverse effects of F. nucleatum. The proliferation assay demonstrated that neither apelin nor F. nucleatum significantly affected PDL cell proliferation. Furthermore, neither apelin nor F. nucleatum was cytotoxic or affected apoptosis after 48 h. Apelin could play a modulatory role in the pathogenesis of periodontitis, as it was able to compensate for the inhibitory effects of the periodontal pathogen F. nucleatum on PDL cell migration in vitro.
Collapse
Affiliation(s)
- Pablo Cores Ziskoven
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (P.C.Z.); (A.V.B.N.)
| | - Andressa V. B. Nogueira
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (P.C.Z.); (A.V.B.N.)
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland;
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (P.C.Z.); (A.V.B.N.)
| |
Collapse
|
3
|
Kusuvan P, Leepong N, Suttapreyasri S. Influence of freeze-dried bone allograft on free gingival graft survival and alveolar ridge maintenance in socket seal procedures: a randomized controlled clinical trial. Oral Maxillofac Surg 2024; 28:1327-1338. [PMID: 38789863 DOI: 10.1007/s10006-024-01262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE This study aimed to investigate the viability of free gingival grafts (FGG) and assess clinical and radiographic changes in the alveolar ridge following socket seal surgery with or without freeze-dried bone allograft (FDBA). MATERIALS AND METHODS Twenty-eight anterior and premolar tooth extractions were randomly allocated to 2 groups: socket graft of FDBA sealed with FGG (n = 15) and control with empty sockets sealed solely with FGG (n = 13). Photographs taken at 3, 7, 14, and 30 days post-surgery assessed FGG viability. Alveolar ridge volume was clinically evaluated via intraoral scanners before surgery and at 1 and 3 months post-surgery. CBCT scans taken immediately post-surgery and 3 months later assessed alveolar ridge dimensions. RESULTS FGG viability in both groups increased from day 3 and reached the maximum score on day 14. Alveolar ridge volume reduction at 3 months in the FDBA group was comparable to the control group. Buccal alveolar bone height reduction was significantly higher in the FDBA group than the control group, while palatal alveolar bone height was comparable. Alveolar bone width reduction was evident but not statistically significant between the groups. The FDBA group exhibited a significant alteration in bone volume compared to the control group. CONCLUSION Viability of FGG was not affected by graft filling materials. Sealing the socket with FGG effectively preserved socket integrity and ridge volume in minor socket defects using either graft filling material or not. This study was registered on 4 January 2021 on Thai Clinical Trials Registry (TCTR20210104001).
Collapse
Affiliation(s)
- Pitcha Kusuvan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Narit Leepong
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Srisurang Suttapreyasri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
4
|
Hu Q, Liu X, Zhao Z, Guo Z, Liu Q, Liu N. Clinical efficacy and pain control of diode laser-assisted flap surgery in the treatment of chronic periodontitis:A systematic review and meta-analysis. Heliyon 2024; 10:e33510. [PMID: 39040384 PMCID: PMC11260959 DOI: 10.1016/j.heliyon.2024.e33510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Objective To assess the diode laser-assisted periodontal flap surgery's clinical effectiveness and postoperative pain management in treating chronic periodontitis, and to offer evidence-based medical justification for the procedure's clinical use. Data sources and study selection In this study, a computer combined with manual search was used to search for articles on diode laser-assisted periodontal flap surgery for the treatment of chronic periodontitis published from the establishment of the database to September 2023. The databases searched included China Academic Journal Full Text Database (CNKI), China Biomedical Literature Database (CBM), Chinese Science and Technology Journal Database (VIP), Wanfang Database, PubMed, Web of science, Cochrane Library, Embase, and Scopus. Two researchers independently performed the screening and study selection, following the inclusion and exclusion standards to extract basic information and required data. Meta-analysis of the included literature was performed using Revman V5.4 software. Result Thirteen articles were analyzed. Meta-analysis showed that the use of the diode laser was effective in reducing patients' probing pocket depth (PPD) at 3 and 6 months postoperatively (3 months: MD = -0.46, 95 % CI = [-0.89, -0.03], P = 0.04; 6 months: MD = -0.35, 95 % CI = [-0.63, -0.06], P = 0.02), was able to effectively improve 3 month clinical attachment level (CAL) (MD = -0.36, 95 % CI = [-0.66, -0.06], P = 0.02), and was able to promote wound healing and reduce patients' early postoperative pain (MD = 0.67, 95 % CI = [0.01, 1.32], P = 0.05; MD = -1.67, 95 % CI = [-2.23, -1.00], and P < 0. 001), while for gingival index (GI), the use of diode laser did not have a significant effect. Conclusions The available evidence suggests that the use of a diode laser adjunct is effective in reducing PPD, improving CAL, promoting wound healing, and reducing early postoperative pain in patients compared with flap application alone; however, for GI, diode lasers did not show any improvements. Clinical significance Periodontal flap surgery fails to eliminate microorganisms from the soft tissue wall, potentially leading to recolonization, reinfection, and accompanying side effects such as pain and swelling. The use of a diode laser reduces PPD, improves CAL, and relieves early postoperative pain.
Collapse
Affiliation(s)
- Qiaoyu Hu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xuanning Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zirui Zhao
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zhijiao Guo
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Qing Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Na Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| |
Collapse
|
5
|
Wiart C, Tan PL, Rajagopal M, Chew YL, Leong MY, Tan LF, Yap VL. Review of Malaysian medicinal plants with potential wound healing activity. BMC Complement Med Ther 2024; 24:268. [PMID: 38997637 PMCID: PMC11245834 DOI: 10.1186/s12906-024-04548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
Wound is defined as the damage to biological tissues including skin, mucous membranes and organ tissues. The acute wound heals in less than 4 weeks without complications, while a chronic wound takes longer than 6 weeks to heal. Wound healing occurs in 4 phases, namely, coagulation, inflammatory, proliferative and remodeling phases. Triclosan and benzalkonium chloride are commonly used as skin disinfectants in wound healing. However, they cause allergic contact dermatitis and antibiotic resistance. Medicinal plants are widely studied due to the limited availability of wound healing agents. The present review included six commonly available medicinal plants in Malaysia such as Aloe barbadensis Miller, Carica papaya Linn., Centella asiatica Linn., Cymbopogon nardus Linn., Ficus benghalensis Linn. and Hibiscus rosa sinensis Linn. Various search engines and databases were used to obtain the scientific findings, including Google Scholar, ScienceDirect, PubMed Central and Research Gate. The review discussed the possible mechanism of action of medicinal plants and their active constituents in the wound healing process. In addition, their application in nanotechnology and wound dressings was also discussed in detail.
Collapse
Affiliation(s)
- Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| | - Puay Luan Tan
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala, Lumpur, Malaysia.
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala, Lumpur, Malaysia.
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala, Lumpur, Malaysia
| | - Mun Yee Leong
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala, Lumpur, Malaysia
| | - Lee Fang Tan
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala, Lumpur, Malaysia
| | - Vi Lien Yap
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala, Lumpur, Malaysia
| |
Collapse
|
6
|
Galarraga-Vinueza ME, Barootchi S, Nevins ML, Nevins M, Miron RJ, Tavelli L. Twenty-five years of recombinant human growth factors rhPDGF-BB and rhBMP-2 in oral hard and soft tissue regeneration. Periodontol 2000 2024; 94:483-509. [PMID: 37681552 DOI: 10.1111/prd.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Contemporary oral tissue engineering strategies involve recombinant human growth factor approaches to stimulate diverse cellular processes including cell differentiation, migration, recruitment, and proliferation at grafted areas. Recombinant human growth factor applications in oral hard and soft tissue regeneration have been progressively researched over the last 25 years. Growth factor-mediated surgical approaches aim to accelerate healing, tissue reconstruction, and patient recovery. Thus, regenerative approaches involving growth factors such as recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and recombinant human bone morphogenetic proteins (rhBMPs) have shown certain advantages over invasive traditional surgical approaches in severe hard and soft tissue defects. Several clinical studies assessed the outcomes of rhBMP-2 in diverse clinical applications for implant site development and bone augmentation. Current evidence regarding the clinical benefits of rhBMP-2 compared to conventional therapies is inconclusive. Nevertheless, it seems that rhBMP-2 can promote faster wound healing processes and enhance de novo bone formation, which may be particularly favorable in patients with compromised bone healing capacity or limited donor sites. rhPDGF-BB has been extensively applied for periodontal regenerative procedures and for the treatment of gingival recessions, showing consistent and positive outcomes. Nevertheless, current evidence regarding its benefits at implant and edentulous sites is limited. The present review explores and depicts the current applications, outcomes, and evidence-based clinical recommendations of rhPDGF-BB and rhBMPs for oral tissue regeneration.
Collapse
Affiliation(s)
- Maria Elisa Galarraga-Vinueza
- Tufts University School of Dental Medicine, Boston, Massachusetts, USA
- School of Dentistry, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Shayan Barootchi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
| | - Marc L Nevins
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Myron Nevins
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Lorenzo Tavelli
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Minagawa E, Yamauchi N, Taguchi Y, Umeda M. Photodynamic reactions using high-intensity red LED promotes gingival wound healing by ROS induction. Sci Rep 2023; 13:17081. [PMID: 37816801 PMCID: PMC10564724 DOI: 10.1038/s41598-023-43966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023] Open
Abstract
Photodynamic therapy is a treatment that combines a light source with a photosensitizer. LEDs have attracted considerable attention in clinical dentistry because they are inexpensive and safe to use. Although the interaction between photosensitizers and LEDs in dental practice is effective for treating periodontal disease by killing periodontopathic bacteria, little is known about the effects of LEDs on human gingival fibroblasts (HGnFs), which play an important role in gingival wound healing. In this study, we investigated the effects of high-intensity red LED irradiation on HGnFs after the addition of methylene blue (MB), one of the least harmful photosensitizers, on wound healing and reactive oxygen species (ROS) production induced by photodynamic reactions. We found that irradiation of MB with high-intensity red LED at controlled energy levels promoted cell proliferation, migration, and production of wound healing factors. Furthermore, ROS production by a photodynamic reaction enabled the translocation of phosphorylated Grb2-associated binder-1, activating Extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase signals. Our findings suggest that proper control of ROS production has a beneficial effect on gingival fibroblasts, which constitute periodontal tissue, from the perspective of gingival wound healing.
Collapse
Affiliation(s)
- Emika Minagawa
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| | - Nobuhiro Yamauchi
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan.
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| |
Collapse
|
8
|
AlZoubi IA. An Overview of the Systematic Evidence on the Adjunctive Use of Laser Therapy in Non-surgical Periodontal Treatment. Cureus 2023; 15:e44268. [PMID: 37772214 PMCID: PMC10529468 DOI: 10.7759/cureus.44268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
This overview aimed to recapitulate the evidence related to laser application in non-surgical periodontal treatment along with conventional periodontal treatment for optimum clinical practice based on the available systematic reviews (SRs). An advanced literature search in the English language was conducted in the PubMed, Medical Literature Analysis and Retrieval System Online (MEDLINE), ScienceDirect, and Scopus databases from January 2000 to October 2022. Two independent reviewers screened all the databases and extracted the data in duplicate. The risk of bias in the selected studies was assessed with the Methodological Quality of Systematic Reviews 2 (AMSTAR 2) guideline for SRs. Cohen's kappa statistics were performed to assess the level of agreement for the assessment of the risk of bias. A total of 556 studies (PubMed = 115, Scopus = 66, ScienceDirect = 298, and MEDLINE = 77) were identified after the initial search using the keywords from different databases. After removing the duplicates and assessing the full manuscripts, a total of 24 studies were selected based on the inclusion criteria for the current overview. A total of three, four, 12, and five systematic reviews were classified as high, moderate, low, and critically low-quality SRs as per the AMSTAR 2 quality assessment tool. Cohen's Kappa statistics showed perfect (𝛋 =1.000) agreement between the two reviewers. Adjunctive laser therapy along with conventional non-surgical periodontal treatment might be effective in short-term treatment outcomes; however, evidence of long-term effects is still lacking.
Collapse
Affiliation(s)
- Ibrahim A AlZoubi
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Al Jouf, SAU
| |
Collapse
|
9
|
Chou MH, Chen YH, Cheng MT, Chiang HC, Chen HW, Wang CW. Potential of methacrylated acemannan for exerting antioxidant-, cell proliferation-, and cell migration-inducing activities in vitro. BMC Complement Med Ther 2023; 23:204. [PMID: 37340378 DOI: 10.1186/s12906-023-04022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Acemannan is an acetylated polysaccharide of Aloe vera extract with antimicrobial, antitumor, antiviral, and antioxidant activities. This study aims to optimize the synthesis of acemannan from methacrylate powder using a simple method and characterize it for potential use as a wound-healing agent. METHODS Acemannan was purified from methacrylated acemannan and characterized using high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), and 1H-nuclear magnetic resonance (NMR). 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays were performed to investigate the antioxidant activity of acemannan and its effects on cell proliferation and oxidative stress damage, respectively. Further, a migration assay was conducted to determine the wound healing properties of acemannan. RESULTS We successfully optimized the synthesis of acemannan from methacrylate powder using a simple method. Our results demonstrated that methacrylated acemannan was identified as a polysaccharide with an acetylation degree similar to that in A. vera, with the FTIR revealing peaks at 1739.94 cm-1 (C = O stretching vibration), 1370 cm-1 (deformation of the H-C-OH bonds), and 1370 cm-1 (C-O-C asymmetric stretching vibration); 1H NMR showed an acetylation degree of 1.202. The DPPH results showed the highest antioxidant activity of acemannan with a 45% radical clearance rate, compared to malvidin, CoQ10, and water. Moreover, 2000 µg/mL acemannan showed the most optimal concentration for inducing cell proliferation, while 5 µg/mL acemannan induced the highest cell migration after 3 h. In addition, MTT assay findings showed that after 24 h, acemannan treatment successfully recovered cell damage due to H2O2 pre-treatment. CONCLUSION Our study provides a suitable technique for effective acemannan production and presents acemannan as a potential agent for use in accelerating wound healing through its antioxidant properties, as well as cell proliferation- and migration-inducing activities.
Collapse
Affiliation(s)
- Meng-Han Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan (ROC)
| | - Yu-Hsu Chen
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC)
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan (ROC)
| | - Ming-Te Cheng
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC)
- School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC)
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan (ROC)
- Xinwu Branch, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC)
| | - Hung-Chi Chiang
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC)
| | - Hou-Wen Chen
- Department of Emergency Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC).
| | - Ching-Wei Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan (ROC).
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (ROC).
| |
Collapse
|
10
|
Tavelli L, Barootchi S, Stefanini M, Zucchelli G, Giannobile WV, Wang HL. Wound healing dynamics, morbidity, and complications of palatal soft-tissue harvesting. Periodontol 2000 2023; 92:90-119. [PMID: 36583690 DOI: 10.1111/prd.12466] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 12/31/2022]
Abstract
Palatal-tissue harvesting is a routinely performed procedure in periodontal and peri-implant plastic surgery. Over the years, several surgical approaches have been attempted with the aim of obtaining autogenous soft-tissue grafts while minimizing patient morbidity, which is considered the most common drawback of palatal harvesting. At the same time, treatment errors during the procedure may increase not only postoperative discomfort or pain but also the risk of developing other complications, such as injury to the greater palatine artery, prolonged bleeding, wound/flap sloughing, necrosis, infection, and inadequate graft size or quality. This chapter described treatment errors and complications of palatal harvesting techniques, together with approaches for reducing patient morbidity and accelerating donor site wound healing. The role of biologic agents, photobiomodulation therapy, local and systemic factors, and genes implicated in palatal wound healing are also discussed.
Collapse
Affiliation(s)
- Lorenzo Tavelli
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shayan Barootchi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Martina Stefanini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Zucchelli
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Jacob RGM, Ervolino da Silva AC, Chaushu L, Lang NP, Borges Duailibe de Deus C, Botticelli D, Rangel Garcia Júnior I. Evaluation of Two Configurations of Hydroxyapatite and Beta-Tricalcium Phosphate in Sinus Grafts with Simultaneous Implant Installation: An Experimental Study in Rabbits. Dent J (Basel) 2023; 11:121. [PMID: 37232771 PMCID: PMC10217008 DOI: 10.3390/dj11050121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND This study aimed to evaluate peri-implant bone formation in rabbits after sinus grafting mediated by hydroxyapatite and beta-tricalcium phosphate (HA + β-TCP) in granule or paste configurations, concomitant with immediate implant installation. MATERIAL & METHODS Thirty-four rabbit maxillary sinuses were grafted with HA + β-TCP, half of which were applied in a granule and half in a paste composition. Implant placement was performed simultaneously. At 7 and 40 days postoperatively, the animals were euthanized, and samples were prepared for tomographic, microtomographic, histological, histometric (hematoxylin and eosin staining, HE), and immunohistochemical (labeling of transcription factor Runx-2 [RUNX2], vascular endothelial growth factor [VEGF], osteocalcin [OCN], and tartrate-resistant acid phosphatase [TRAP]) analysis. Implant removal torque was also measured. RESULTS On tomography, maintenance of sinus membrane integrity was observed in both the groups. Higher values of morphometric parameters evaluated by micro-CT were found in the "paste group" after seven days. At 40 days, there were no significant differences between the groups in most of the microtomographic parameters evaluated. In histological sections stained with HE, a higher percentage of newly formed bone was observed in the "granule group" after 40 days. Similar positive immunolabeling was observed for both RUNX2 and OCN in both the experimental groups. TRAP immunolabeling was similar in both groups as well. VEGF labeling increased in the "granule group", indicating a higher osteoconductive potential in this biomaterial. Similar removal torque values were observed in both groups. Thus, the two HA + β-TCP configurations showed similar healing patterns of simultaneously installed implants adjacent to sinus floor elevation. However, significantly higher bone values were observed for the "granule configuration". CONCLUSIONS The HA + β-TCP granules and paste presentations showed favorable long-term healing results, with bone formation in similar quantities and quality adjacent to the implants.
Collapse
Affiliation(s)
- Ricardo Garcia Mureb Jacob
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio 1193, Araçatuba 16015-050, SP, Brazil; (R.G.M.J.); (A.C.E.d.S.); (C.B.D.d.D.); (I.R.G.J.)
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio 1193, Araçatuba 16015-050, SP, Brazil
| | - Ana Cláudia Ervolino da Silva
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio 1193, Araçatuba 16015-050, SP, Brazil; (R.G.M.J.); (A.C.E.d.S.); (C.B.D.d.D.); (I.R.G.J.)
| | - Liat Chaushu
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dentistry, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Niklaus Peter Lang
- School of Dental Medicine, University of Berne, CH-3010 Berne, Switzerland
| | - Ciro Borges Duailibe de Deus
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio 1193, Araçatuba 16015-050, SP, Brazil; (R.G.M.J.); (A.C.E.d.S.); (C.B.D.d.D.); (I.R.G.J.)
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio 1193, Araçatuba 16015-050, SP, Brazil
| | | | - Idelmo Rangel Garcia Júnior
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio 1193, Araçatuba 16015-050, SP, Brazil; (R.G.M.J.); (A.C.E.d.S.); (C.B.D.d.D.); (I.R.G.J.)
| |
Collapse
|
12
|
A Novel Approach of Periodontal Osseous Wall Piezosplitting and Sequential Bone Expansion in Management of Localized Intra-Bony Defects with Wide Angulation—A Randomized Controlled Trial. Healthcare (Basel) 2023; 11:healthcare11060791. [PMID: 36981448 PMCID: PMC10047935 DOI: 10.3390/healthcare11060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Piezoelectric surgical instruments with various mini-sized tips and cutting technology offer a precise and thin cutting line that could allow the wider use of periodontal osseous wall swaging. This randomized controlled trial was designed to investigate the use of a minimally invasive piezo knife to harvest vascularized interseptal bone pedicles in treating intra-bony defects. Sixteen non-smoking patients (mean age 39.6 ± 3.9) with severe chronic periodontitis were randomly assigned into one of two groups (N = 8). The Group 1 (control) patients were treated by bone substitute grafting of the intra-bony defect, whereas the Group 2 patients were treated by intra-bony defect osseous wall swaging (OWS) combined with xenograft filling of the space created by bone tilting. In both groups, the root surfaces were treated with a neutral 24% EDTA gel followed by saline irrigation. Clinical and radiographic measurements were obtained at baseline and 6 months after surgery. The sites treated with osseous wall swaging showed a statistically significant probing-depth reduction and increase in clinical attachment compared with those of the Group 1 patients. The defect base level was significantly reduced for the OWS group compared to that of the Group 1 control. By contrast, the crestal bone level was significantly higher in the OWS group compared to Group 1. The crestal interseptal bone width was significantly higher in Group 2 at 6 months compared to the baseline value and to that of Group 1 (<0.001). The osseous wall swaging effectively improved the clinical hard- and soft-tissue parameters. The use of mini inserts piezo-cutting, sequential bone expanders for osseous wall redirection, and root surface EDTA etching appears to be a reliable approach that could allow the use of OWS at any interproximal dimension.
Collapse
|
13
|
Ribeiro FV, Mehta JJ, Monteiro MF, Moore J, Casati MZ, Nibali L. Minimal invasiveness in nonsurgical periodontal therapy. Periodontol 2000 2023; 91:7-19. [PMID: 36661203 DOI: 10.1111/prd.12476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Periodontal treatment is quickly moving towards a philosophy consisting of a less invasive approach. In this context, minimally invasive nonsurgical therapy (MINST) is a promising option. This paper reviews the concepts behind minimal invasiveness in nonsurgical periodontology and reports the state-of the art evidence for this topic. Instruments used and protocols suggested for these applications are introduced and discussed. The original papers reviewed show probing pocket depth (PPD) reductions and clinical attachment level (CAL) gains ranging from 2 to 4 mm between baseline and 6 months to 5 years posttreatment for intrabony defects and from 1.5 to 3 mm between baseline and 2-6 months of follow-up for full-mouth results. These clinical outcomes are accompanied by statistically significant reductions in radiographic bone defect depth and increases in intrabony defect angles posttreatment. Wound healing mechanisms following MINST are presented, and clinical applications and directions for future research are suggested.
Collapse
Affiliation(s)
- Fernanda V Ribeiro
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, Brazil
| | - Jaimini J Mehta
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Mabelle F Monteiro
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, Brazil.,Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Jatinder Moore
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Marcio Z Casati
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, Brazil.,Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Luigi Nibali
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
14
|
Xiao W, Yang Y, Chu C, Rung SA, Wang Z, Man Y, Lin J, Qu Y. Macrophage response mediated by extracellular matrix: recent progress. Biomed Mater 2023; 18. [PMID: 36595269 DOI: 10.1088/1748-605x/aca946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Biomaterials are one of efficient treatment options for tissue defects in regenerative medicine. Compared to synthetic materials which tend to induce chronic inflammatory response and fibrous capsule, extracellular matrix (ECM) scaffold materials composed of biopolymers are thought to be capable of inducing a pro-regenerative immune microenvironment and facilitate wound healing. Immune cells are the first line of response to implanted biomaterials. In particular, macrophages greatly affect cell behavior and the ultimate treatment outcome based on multiple cell phenotypes with various functions. The macrophage polarization status is considered as a general reflection of the characteristics of the immune microenvironment. Since numerous reports has emphasized the limitation of classical M1/M2 nomenclature, high-resolution techniques such as single-cell sequencing has been applied to recognize distinct macrophage phenotypes involved in host responses to biomaterials. After reviewing latest literatures that explored the immune microenvironment mediated by ECM scaffolds, this paper describe the behaviors of highly heterogeneous and plastic macrophages subpopulations which affect the tissue regeneration. The mechanisms by which ECM scaffolds interact with macrophages are also discussed from the perspectives of the ECM ultrastructure along with the nucleic acid, protein, and proteoglycan compositions, in order to provide targets for potential therapeutic modulation in regenerative medicine.
Collapse
Affiliation(s)
- Wenlan Xiao
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yang Yang
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Chenyu Chu
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Sheng-An Rung
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhanqi Wang
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yi Man
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jie Lin
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yili Qu
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
15
|
Satish RL, Peter MR, Bhaskar A, Vylopillil R, Balakrishnan B, Suresh R. Comparative Evaluation of Fibrin Network Formation after Root Conditioning using Erbium, Chromium-Doped Yttrium Scandium Gallium and Garnet Laser, Ethylene-Diamine-Tetra-Acetic Acid, and Tetracycline on Dentin: A Scanning Electron Microscopic Study. Contemp Clin Dent 2023; 14:72-78. [PMID: 37249998 PMCID: PMC10209766 DOI: 10.4103/ccd.ccd_626_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/09/2022] [Accepted: 08/22/2022] [Indexed: 02/10/2023] Open
Abstract
Context Regeneration of periodontal tissues depend on the adhesion and development of fibrin clots to the root surface. Demineralization of the root surface ensures removal of smear layer uncovering dentin tubules and collagen matrix. Root conditioning agents were introduced to remove the smear layer and enhance the adhesion of blood components. Aims The aim of the study was to determine the effect of erbium, chromium-doped yttrium, scandium, gallium and garnet (Er, Cr: YSGG) laser on smear layer removal (SLR) and fibrin network formation when compared to tetracycline, and ethylene-diamine-tetra-acetic acid (EDTA) for periodontal regeneration. Settings and Design The study was conducted at Amrita school of dentistry and the study design involves in vitro comparative study. Subjects and Methods Forty dentinal sections were prepared from freshly extracted teeth that were periodontally affected. The samples were divided into four groups: Scaling and root planing (SRP), tetracycline, EDTA, and Er, Cr: YSGG laser. The samples were assessed using a scanning electron microscope and photomicrographs were taken and analyzed for removal of smear layer, blood component adhesion (BCA), and fibrin network formation. Statistical Analysis Used Analysis of variance test and Kruskal-Wallis test with P < 0.05 considered to be statistically significant. Results There was a significant difference between Er, Cr: YSGG laser, tetracycline hydrochloride, and EDTA categories when compared with SRP categories. There was no significant difference between Er, Cr: YSGG laser, tetracycline, and EDTA according to SLR scoring and BCA scoring. Conclusions It can be concluded that Er, Cr: YSGG laser-treated samples presented complete elimination of smear layer, formation of fibrin network, and BCA along with desensitizing effect for a better reduction in dentin hypersensitivity.
Collapse
Affiliation(s)
- Riya Liza Satish
- Department of Periodontics, Amrita School of Dentistry, Kochi, Kerala, India
| | - Maya Rajan Peter
- Department of Periodontics, Amrita School of Dentistry, Kochi, Kerala, India
| | - Anuradha Bhaskar
- Department of Periodontics, Amrita School of Dentistry, Kochi, Kerala, India
| | - Rajesh Vylopillil
- Department of Periodontics, Amrita School of Dentistry, Kochi, Kerala, India
| | - Biju Balakrishnan
- Department of Periodontics, Amrita School of Dentistry, Kochi, Kerala, India
| | - Reshma Suresh
- Department of Periodontics, Amrita School of Dentistry, Kochi, Kerala, India
| |
Collapse
|
16
|
Wang S, Chen Y, Ling Z, Li J, Hu J, He F, Chen Q. The role of dendritic cells in the immunomodulation to implanted biomaterials. Int J Oral Sci 2022; 14:52. [PMCID: PMC9636170 DOI: 10.1038/s41368-022-00203-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Considering the substantial role played by dendritic cells (DCs) in the immune system to bridge innate and adaptive immunity, studies on DC-mediated immunity toward biomaterials principally center on their adjuvant effects in facilitating the adaptive immunity of codelivered antigens. However, the effect of the intrinsic properties of biomaterials on dendritic cells has not been clarified. Recently, researchers have begun to investigate and found that biomaterials that are nonadjuvant could also regulate the immune function of DCs and thus affect subsequent tissue regeneration. In the case of proteins adsorbed onto biomaterial surfaces, their intrinsic properties can direct their orientation and conformation, forming “biomaterial-associated molecular patterns (BAMPs)”. Thus, in this review, we focused on the intrinsic physiochemical properties of biomaterials in the absence of antigens that affect DC immune function and summarized the underlying signaling pathways. Moreover, we preliminarily clarified the specific composition of BAMPs and the interplay between some key molecules and DCs, such as heat shock proteins (HSPs) and high mobility group box 1 (HMGB1). This review provides a new direction for future biomaterial design, through which modulation of host immune responses is applicable to tissue engineering and immunotherapy.
Collapse
Affiliation(s)
- Siyuan Wang
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Yanqi Chen
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Zhaoting Ling
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Jia Li
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Jun Hu
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Fuming He
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Qianming Chen
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| |
Collapse
|
17
|
The benefit of antimicrobial photodynamic therapy to mechanical debridement in the treatment of smokers with peri-implant diseases: a systematic review and meta-analysis. Lasers Med Sci 2022; 37:3051-3066. [PMID: 35896900 DOI: 10.1007/s10103-022-03592-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/09/2022] [Indexed: 10/16/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has been proposed as an adjunctive treatment strategy for peri-implant diseases. This systematic review aimed to determine whether aPDT as an adjunct to mechanical debridement has an additional benefit for smokers with peri-implant diseases. Randomized controlled trials (RCTs), which evaluated the clinical outcomes of mechanical debridement alone versus mechanical debridement + aPDT among smokers, were considered eligible to be included. The primary outcome was bleeding on probing (BOP) and secondary outcomes included probing depth (PD), plaque index (PI), and crestal bone loss (CBL). Meta-analyses using a random-effects model were conducted to calculate the mean difference (MD) with a 95% confidence interval (CI). The quality of evidence was assessed according to Grading of Recommendations Assessment, Development and Evaluation (GRADE). A total of four RCTs (188 participants) were included. The aPDT group showed significantly improved PD (MD = - 1.26, 95% CI = - 2.19 to - 0.32, p = 0.008) and PI (MD = - 10.6%, 95% CI = - 14.46 to - 6.74%, p = 0.0001) compared with mechanical debridement group at 3-month follow-up. No significant difference in bleeding on probing (BOP) was observed at 3-month follow-up (MD = - 0.60%, 95% CI = - 2.36 to 1.16%, p = 0.50). The subgroup analyses on photosensitizers demonstrated significant differences between the two groups on PD (MD = - 1.23, 95% CI = - 2.41 to - 0.05, p = 0.04) and PI (MD = - 12.33, 95% CI = - 14.74 to - 9.92, p < 0.00001) by the use of methylene blue (MB). Within the limitation of this study, compared with mechanical debridement alone, combined use of aPDT was more effective in reducing PD and PI in smokers at 3-month follow-up. MB was a predictable photosensitizer for aPDT. However, the findings should be interpreted with caution due to the limited number of included studies, methodological deficiencies, and heterogeneity between studies.
Collapse
|
18
|
Silviya S, C.M. A, Prakash P, Bahammam SA, Bahammam MA, Almarghlani A, Assaggaf M, Kamil MA, Subramanian S, Balaji TM, Patil S. The Efficacy of Low-Level Laser Therapy Combined with Single Flap Periodontal Surgery in the Management of Intrabony Periodontal Defects: A Randomized Controlled Trial. Healthcare (Basel) 2022; 10:healthcare10071301. [PMID: 35885827 PMCID: PMC9320605 DOI: 10.3390/healthcare10071301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed at assessing the clinical outcomes of the Single Flap Approach (SFA) with the additional use of Low-level laser therapy (LLLT). The defects were treated as per the principles of SFA, whereby 20 defects received only SFA (control group) and 20 defects received additional LLLT for bio stimulation/bio modulation (test group). Stable primary closure of the flaps was obtained with vertical internal mattress sutures. Plaque indices (FMPS), clinical attachment levels (CAL), probing pocket depth (PPD), and gingival bleeding scores (FMBS) were calculated at baseline, and at the 3rd and 6th months in both groups. An EHI score of 1 was observed at all sites except for two, where a score of 2 in the control group at week 2 was observed. In the test group, the PPD reduction at 6 months was 3.60 ± 0.95 and in the control group it was 3.75 ± 0.91 mm. CAL gain at 6 months was 2.70 ± 1.36 mm and 3.45 ± 1.2 mm in the test group and showed no statistical significance. These data suggested the positive effect of LLLT over CAL gain; thus, LLLT may be combined with SFA to potentially enhance the early wound healing and higher clinical outcomes in terms of increase in CAL and decrease in PPD.
Collapse
Affiliation(s)
- S. Silviya
- Department of Periodontics, SRM Dental College and Hospital, Ramapuram, Chennai 600089, India; (S.S.); (A.C.M.); (S.S.)
| | - Anitha C.M.
- Department of Periodontics, SRM Dental College and Hospital, Ramapuram, Chennai 600089, India; (S.S.); (A.C.M.); (S.S.)
| | - P.S.G. Prakash
- Department of Periodontics, SRM Dental College and Hospital, Ramapuram, Chennai 600089, India; (S.S.); (A.C.M.); (S.S.)
- Correspondence: (P.S.G.P.); (S.P.)
| | - Sarah Ahmed Bahammam
- Department of Pediatric Dentistry and Orthodontics, College of Dentistry, Taibah University, Medina 42353, Saudi Arabia;
| | - Maha A. Bahammam
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah 80209, Saudi Arabia; (M.A.B.); (A.A.); (M.A.)
- Executive Presidency of Academic Affairs, Saudi Commission for Health Specialties, Riyadh 11614, Saudi Arabia
| | - Ammar Almarghlani
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah 80209, Saudi Arabia; (M.A.B.); (A.A.); (M.A.)
| | - Mohammad Assaggaf
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah 80209, Saudi Arabia; (M.A.B.); (A.A.); (M.A.)
| | - Mona Awad Kamil
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia;
| | - Sangeetha Subramanian
- Department of Periodontics, SRM Dental College and Hospital, Ramapuram, Chennai 600089, India; (S.S.); (A.C.M.); (S.S.)
| | | | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia
- Correspondence: (P.S.G.P.); (S.P.)
| |
Collapse
|
19
|
Iliopoulos JM, Layrolle P, Apatzidou DA. Microbial-stem cell interactions in periodontal disease. J Med Microbiol 2022; 71. [PMID: 35451943 DOI: 10.1099/jmm.0.001503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Periodontitis is initiated by hyper-inflammatory responses in the periodontal tissues that generate dysbiotic ecological changes within the microbial communities. As a result, supportive tissues of the tooth are damaged and periodontal attachment is lost. Gingival recession, formation of periodontal pockets with the presence of bleeding, and often suppuration and/or tooth mobility are evident upon clinical examination. These changes may ultimately lead to tooth loss. Mesenchymal stem cells (MSCs) are implicated in controlling periodontal disease progression and have been shown to play a key role in periodontal tissue homeostasis and regeneration. Evidence shows that MSCs interact with subgingival microorganisms and their by-products and modulate the activity of immune cells by either paracrine mechanisms or direct cell-to-cell contact. The aim of this review is to reveal the interactions that take place between microbes and in particular periodontal pathogens and MSCs in order to understand the factors and mechanisms that modulate the regenerative capacity of periodontal tissues and the ability of the host to defend against putative pathogens. The clinical implications of these interactions in terms of anti-inflammatory and paracrine responses of MSCs, anti-microbial properties and alterations in function including their regenerative potential are critically discussed based on literature findings. In addition, future directions to design periodontal research models and study ex vivo the microbial-stem cell interactions are introduced.
Collapse
Affiliation(s)
- Jordan M Iliopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Pierre Layrolle
- INSERM, ToNIC, Pavillon Baudot, CHU Purpan, University of Toulouse, Toulouse, UMR 1214, France
| | - Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Rong Y, Yang H, Xu H, Li S, Wang P, Wang Z, Zhang Y, Zhu W, Tang B, Zhu J, Hu Z. Bioinformatic Analysis Reveals Hub Immune-Related Genes of Diabetic Foot Ulcers. Front Surg 2022; 9:878965. [PMID: 35449555 PMCID: PMC9016148 DOI: 10.3389/fsurg.2022.878965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a complex and devastating complication of diabetes mellitus that are usually stagnant in the inflammatory phase. However, oral wound healing, which is characterized by a rapid and scarless healing process, is regarded an ideal model of wound healing. Thus, we performed a comprehensive bioinformatics analysis of the previously published data regarding oral ulcers and DFUs and found that compared to oral wound healing, the activated pathways of DFUs were enriched in cellular metabolism-related pathways but lacked the activation of inflammatory and immune-related pathways. We also found that CXCL11, DDX60, IFI44, and IFI44L were remarkable nodes since they had the most connections with other members of the module. Meanwhile, CXCL10, IRF7, and DDX58 together formed a closed-loop relationship and occupied central positions in the entire network. The real-time polymerase chain reaction and western blot was applied to validate the gene expression of the hub immune-related genes in the DFU tissues, it was found that CXCL11, IFI44, IFI44L, CXCL10 and IRF7 have a significant difference compared with normal wound tissues. Our research reveals some novel potential immune-related biomarkers and provides new insights into the molecular basis of this debilitating disease.
Collapse
Affiliation(s)
- Yanchao Rong
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hailin Xu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuting Li
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenkai Zhu
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Bing Tang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Bing Tang
| | - Jiayuan Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Jiayuan Zhu
| | - Zhicheng Hu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zhicheng Hu
| |
Collapse
|
21
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
22
|
Gur AT, Guncu GN, Akman AC, Pinar A, Karabulut E, Nohutcu RM. Evaluation of GCF IL-17, IL-10, TWEAK and sclerostin levels after SRP and adjunctive use of diode laser application in periodontitis patients. J Periodontol 2021; 93:1161-1172. [PMID: 34962665 DOI: 10.1002/jper.21-0494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 12/19/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND The aim of the present study was to evaluate the clinical efficacy of the diode laser as an adjunct to scaling and root planing (SRP) and also determine the biochemical profile by evaluating the gingival crevicular fluid (GCF) levels of interleukin (IL)-17, IL-10, TNF-related weak inducer of apoptosis (TWEAK) and sclerostin. METHODS A total of 40 systemically healthy, stage III periodontitis patients were included in this randomized controlled study. Participants were randomly divided into two groups as scaling root planning (SRP) + diode laser(L) (0.80W power, 940nm wavelength and 0.80J/s energy level) and only SRP group. Recording of periodontal parameters and collecting GCF samples were performed at baseline, 1st and 3rd months. Biomarker levels in GCF were measured with ELISA . RESULTS At baseline, no significant difference was detected between groups in terms of both clinical and biochemical parameters. All biochemical parameters (except for IL-10 in control group), presented a statistically significant difference for 3 months study period in both groups. When laser and control groups were compared, significant differences were not observed, except the lower GCF IL-17 levels (p = 0.025), bleeding on probing (p = 0.028) and clinical attachment level (CAL) (p = 0.0002) values in laser group at 3rd , 1st and 3rd months, respectively. Statistically significant correlations were also noted between biochemical parameters and clinical parameters. CONCLUSION The GCF IL-17, TWEAK and sclerostin levels may be useful for monitoring response to SRP+L therapy. However, long-term studies on higher populations are needed to evaluate the effectiveness of adjunctive use of diode laser application to SRP. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ali Tugrul Gur
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Guliz N Guncu
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Abdullah C Akman
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Asli Pinar
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Rahime M Nohutcu
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
23
|
Rujirachotiwat A, Suttamanatwong S. Curcumin upregulates transforming growth factor-β1, its receptors, and vascular endothelial growth factor expressions in an in vitro human gingival fibroblast wound healing model. BMC Oral Health 2021; 21:535. [PMID: 34657625 PMCID: PMC8522235 DOI: 10.1186/s12903-021-01890-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Curcumin accelerates healing of oral wounds; however, the responsible mechanisms remain underexplored. Our hypothesis is curcumin regulates the expression of wound healing-related genes in human gingival fibroblasts (hGFs). This study investigated whether curcumin regulates transforming growth factor (TGF)-β1, type I TGF-β receptor (TGF-βRI), type II TGF-β receptor (TGF-βRII), and vascular endothelial growth factor (VEGF) expression in unwounded hGFs and an in vitro hGF wound healing model. METHODS The cytotoxicity of curcumin was evaluated using the MTT assay. Unwounded hGFs were treated with non-cytotoxic concentrations of curcumin for 24 h. Gene expression was determined by quantitative polymerase chain reaction. Then, hGFs were treated with 1 µM curcumin in an in vitro wound healing model. PD98059 pretreatment was performed to determine whether extracellular signal-regulated kinase (ERK) signaling was required for regulation of gene expression by curcumin. RESULTS Curcumin at 0.1-20 µM caused no significant change in cell viability. In unwounded hGFs, curcumin had no significant effect on TGF-β1, TGF-βRI, TGF-βRII, or VEGF expression. Conversely, curcumin significantly upregulated the expression of these genes in the in vitro wound healing model. PD98059 significantly attenuated the curcumin-stimulated TGF-βRI, TGF-βRII, and VEGF expression, whereas it had no effect on TGF-β1 expression. CONCLUSIONS Curcumin upregulated TGF-β1, TGF-βRI, TGF-βRII, and VEGF expression in an in vitro hGF wound healing model. The ERK pathway is required for TGF-βRI, TGF-βRII, and VEGF induction by curcumin. Our findings support the development of curcumin as a therapeutic agent for gingival ulcers.
Collapse
Affiliation(s)
- Auspreeya Rujirachotiwat
- Graduate Program in Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.,Banphue Hospital, 134 Moo 2, Plubphue Road, Banphue District, Udonthani, 41160, Thailand
| | - Supaporn Suttamanatwong
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
24
|
Zeng QL, Liu DW. Mesenchymal stem cell-derived exosomes: An emerging therapeutic strategy for normal and chronic wound healing. World J Clin Cases 2021; 9:6218-6233. [PMID: 34434989 PMCID: PMC8362559 DOI: 10.12998/wjcc.v9.i22.6218] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Skin wound healing is a complex biological process. Mesenchymal stem cells (MSCs) play an important role in skin wound repair due to their multidirectional differentiation potential, hematopoietic support, promotion of stem cell implantation, self-replication, and immune regulation. Exosomes are vesicles with diameters of 40-100 nm that contain nucleic acids, proteins, and lipids and often act as mediators of cell-to-cell communication. Currently, many clinical scientists have carried out cell-free therapy for skin wounds, especially chronic wounds, using exosomes derived from MSCs. This review focuses on the latest research progress on the mechanisms of action associated with the treatment of wound healing with exosomes derived from different MSCs, the latest research progress on the combination of exosomes and other biological or nonbiological factors for the treatment of chronic skin wounds, and the new prospects and development goals of cell-free therapy.
Collapse
Affiliation(s)
- Qin-Lu Zeng
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - De-Wu Liu
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
25
|
A Parametric Study on a Dental Implant Geometry Influence on Bone Remodelling through a Numerical Algorithm. PROSTHESIS 2021. [DOI: 10.3390/prosthesis3020016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To ensure the long-term success of a dental implant, it is imperative to understand how chewing loads are transferred through the implant prosthetic components to the surrounding bone tissue. The stress distribution depends on several factors, such as load type, bone–implant interface, shape and materials of the fixture and quality and quantity of the bone. These aspects are of fundamental importance to ensure implant stability and to evaluate the remodelling capacity of the bone tissue to adapt to its biomechanical environment. A bone remodelling algorithm was formulated by the authors and implemented by means of finite element simulations on four different implants with several design characteristics. Internal bone microstructure and density, apposition/resorption of tissue and implant stability were evaluated over a period of 12 months, showing the influence of the geometry on bone tissue evolution over time. Bone remodelling algorithms may be a useful aid for clinicians to prevent possible implant failures and define an adequate implant prosthetic rehabilitation for each patient. In this work, for the first time, external bone remodelling was numerically predicted over time.
Collapse
|
26
|
Ketabi M, Deporter D, Khoshkhounejad A, Khoshkhounejad N. A new classification of peri implant gaps based on gap location (A case series of 210 immediate implants). Dent Res J (Isfahan) 2021. [DOI: 10.4103/1735-3327.313124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Las Heras K, Igartua M, Santos-Vizcaino E, Hernandez RM. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J Control Release 2020; 328:532-550. [DOI: 10.1016/j.jconrel.2020.09.039] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
|
28
|
Dalvi S, Benedicenti S, Hanna R. Effectiveness of Photobiomodulation as an Adjunct to Nonsurgical Periodontal Therapy in the Management of Periodontitis- A Systematic Review of in vivo Human Studies. Photochem Photobiol 2020; 97:223-242. [PMID: 33098680 DOI: 10.1111/php.13348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/04/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Photobiomodulation therapy (PBMT) has anti-inflammatory, analgesic and regenerative properties. This systematic review aimed to critically appraise the published data of in vivo human randomized clinical trials (RCTs), and present a comprehensive overview of the efficacy of PBMT, as an adjunct to the nonsurgical periodontal therapy (NSPT) in the management of periodontitis. The systematic review protocol is registered in the Prospective Register Of Systematic Reviews (PROSPERO) (www.crd.york.ac.uk/PROSPERO/; ref CRD 42020169108). With the help of the appropriate key words, structured electronic and manual search strategies were applied to gather the relevant published data on in vivo human RCTs based on this topic. Seventeen papers that met the eligibility criteria were included in this review and subjected to a qualitative assessment. Current evidence lacks adequate information regarding the photobiomodulation (PBM) dosimetry, which is fundamental in establishing a standardized and replicable protocol for future researches. Furthermore, substantial discrepancies in the study methodology and a high risk of bias, arising from the majority of the included papers, abet to the inferior quality of these studies. Ultimately, there is an urgent necessity to conduct further well-designed RCTs in order to determine the effectiveness of PBMT, if any, by taking into consideration the abovementioned confounding factors.
Collapse
Affiliation(s)
- Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy.,Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur, Maharashtra, India
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
| | - Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy.,Department of Oral Surgery, University of Genoa and King's College, London, UK
| |
Collapse
|
29
|
Gürsoy UK, Fteita D, Bikker FJ, Grande MA, Nazmi K, Gürsoy M, Könönen E, Belstrøm D. Elevated Baseline Salivary Protease Activity May Predict the Steadiness of Gingival Inflammation During Periodontal Healing: A 12-Week Follow-Up Study on Adults. Pathogens 2020; 9:pathogens9090751. [PMID: 32942694 PMCID: PMC7558121 DOI: 10.3390/pathogens9090751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022] Open
Abstract
Aim was to profile salivary total protease, Porphyromonas gingivalis gingipain, and neutrophil elastase activities in relation to the resolution of periodontal inflammation, salivary macrophage-derived chemokine (MDC), and macrophage inflammatory protein-1α concentrations. Nonsurgical periodontal treatment was performed in 24 periodontitis patients in a prospective interventional study design. Periodontal clinical parameters were recorded, and stimulated saliva samples were collected at baseline and 2, 6, and 12 weeks after treatment. Salivary total protease and gingipain activities were determined using fluorogenic substrates, elastase activity by chromogenic substrates, and cytokine concentrations by Luminex immunoassay. For statistical analyses, generalized linear mixed models for repeated measures were used. Salivary total protease activity elevated, while gingival inflammation and plaque accumulation decreased 2 and 6 weeks after periodontal therapy. Salivary MDC concentration was elevated 12 weeks after periodontal treatment. Patients with elevated protease activities at baseline in comparison to patients with low baseline total protease activities, had higher levels of gingival inflammation before and after periodontal treatment. In conclusion, elevations in salivary total protease activity seem to be part of periodontal healing at its early phases. Higher levels of salivary total protease activities before periodontal treatment may predict the severity and steadiness of unresolved gingival inflammation.
Collapse
Affiliation(s)
- Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
- Correspondence:
| | - Dareen Fteita
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, 1081LA Amsterdam, The Netherlands; (F.J.B.); (K.N.)
| | - Maria Anastasia Grande
- Section for Clinical Oral Microbiology, Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.A.G.); (D.B.)
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, 1081LA Amsterdam, The Netherlands; (F.J.B.); (K.N.)
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.A.G.); (D.B.)
| |
Collapse
|
30
|
The Effect of Atmospheric Pressure Cold Plasma Application on Titanium Barriers: A Vertical Bone Augmentation. J Craniofac Surg 2020; 31:2054-2058. [PMID: 32604299 DOI: 10.1097/scs.0000000000006643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The aim of the present, microcomputed tomographic (μCT) and histological study, was to evaluate the effect of surface modification by atmospheric pressure cold plasma (APCP) on vertical guided bone regeneration in a rabbit calvaria model. MATERIAL-METHODS The experimental study was conducted on 12 male New Zealand rabbits with healing periods of 45 and 90 days. Following surgical exposure of the calvarium, 4 customized titanium cylindricalders were fixed. Surface modification was achieved by application of APCP on 2 of cylinders (P+) in each calvarium and other cylinders were set as control (P-). In both experimental and control groups, one of the cylinders was filled with bone graft (G+) while the other one was left empty (G-). To evaluate short term effects, randomly selected 6 animals were sacrificed at the end of 45 days and remaining 6 animals were left for observing long term effects. Histological and μCT evaluations were used to examine new bone formation. RESULTS In μCT imaging; the bone volume was greater (P < 0.05) in grafted groups than nongrafted groups in both short and long term. The bone height values were significantly different in (P-G-) group than other groups (P < 0.05) in both evaluation periods. The histological evaluations revealed significant differences between P+G+ group and other groups but in long term both plasma treated groups revealed more bone formation than non plasma treated groups. CONCLUSION Modification of the surfaces of titanium cylinders by APCP treatment, accelerated the bone regeneration either bone graft used or not in a rabbit calvaria model.
Collapse
|
31
|
Multivalent and synergistic chitosan oligosaccharide-Ag nanocomposites for therapy of bacterial infection. Sci Rep 2020; 10:10011. [PMID: 32561796 PMCID: PMC7305188 DOI: 10.1038/s41598-020-67139-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/03/2020] [Indexed: 11/08/2022] Open
Abstract
Chitosan oligosaccharide functionalized silver nanoparticles with synergistic bacterial activity were constructed as a multivalent inhibitor of bacteria. Placing the chitosan oligosaccharide on silver nanoparticles can dramatically enhance the adsorption to the bacterial membrane via multivalent binding. The multicomponent nanostructures can cooperate synergistically against gram-positive and gram-negative bacteria. The antibacterial activity was increased via orthogonal array design to optimize the synthesis condition. The synergistic bacterial activity was confirmed by fractional inhibitory concentration and zone of inhibition test. Through studies of antimicrobial action mechanism, it was found that the nanocomposites interacted with the bacteria by binding to Mg2+ ions of the bacterial surface. Then, the nanocomposites disrupted bacterial membrane by increasing the permeability of the outer membrane, resulting in leakage of cytoplasm. This strategy of chitosan oligosaccharide modification can increase the antibacterial activity of silver nanoparticles and accelerate wound healing at the same time. The nanomaterial without cytotoxicity has promising applications in bacteria-infected wound healing therapy.
Collapse
|
32
|
Roy H, Rahaman SA, Kumar TV, Nandi S. Current Development on Chitosan-based Antimicrobial Drug Formulations for the Wound Healing. Curr Drug Discov Technol 2020; 17:534-541. [PMID: 31971111 DOI: 10.2174/1570163817666200123122532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/26/2019] [Accepted: 11/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Derived from polyose, chitosan is an outstanding natural linear polysaccharide comprised of random arrangement of β-(1-4)-linked D-Glucosamine and N-acetyl-DGlucosamine units. OBJECTIVE Researchers have been using chitosan as a network forming or gelling agent with economically available, present polyose, low immunogenicity, biocompatibility, non-toxicity, biodegradability, protects against secretion from irritation and don't suffer the danger of transmission animal infective agent. METHODS Furthermore, recent studies gear up the chitosan used in the development of various biopharmaceutical formulations, including nanoparticles, hydrogels, implants, films, fibers, etc. Results: These formulations produce potential activities as antimicrobials, cancer treatment, medical aid, and wound healing, controlled unleash device or drug trigger retarding device and 3DBiomedical sponge, etc. Conclusion: The present article discusses the development of various drug formulations utilizing chitosan as biopolymers for the repairing of broken tissues and healing in case of wound infection.
Collapse
Affiliation(s)
- Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Shaik A Rahaman
- Department of Pharmaceutics, Nirmala College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Theendra V Kumar
- Department of Pharmaceutics, Nirmala College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur-244713, India
| |
Collapse
|
33
|
Gamal AY, Abdel-Ghaffar KA, Zouair MG, Salama MH, El Destawy MT. Dimensional evaluation of blood clot gap distances within intrabony defects following grafting and EDTA root surface treatment-experimental study in dogs. J Periodontol 2019. [PMID: 29536543 DOI: 10.1002/jper.17-0361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Because it is important to establish and maintain a firm blood clot to the surrounding tissues within the intrabony lesion; we have to investigate the potentials of different materials in resisting clot retraction that disrupt clot adhesion to the root surface. This study was designed to measure the gap distance created by clot retraction within the defect following intrabony defects grafting with and without root surface EDTA etching. METHODS Eight mongrel dogs with surgically created acute-chronic bilateral mandibular interproximal intrabony defects in the premolar-molar areas were enrolled in this study (total 8 defects per dog). Intrabony defects were divided into four groups, the first group (OFD): control open flap debridement, the second group, (EDTA treated defects) in which debridement of the defects was followed by two minute root surface etching with a neutral 24% EDTA gel followed by two minute copious saline irrigation, the third group (only grafted defects): defects received closely packed β-TCP of a particle size ranged from 150 to 500 mm, and the fourth group, (Graft + EDTA treated defects): defects were etched for 2 minutes with a neutral 24% EDTA gel and saline irrigation followed by intrabony defect fill of β-TCP. Twenty four hours post treatment, animal euthanasia was carried out for histomorphometric analysis of the tooth and root side gap distances. RESULTS EDTA treated group and EDTA + graft group showed statistically significant lower degree of clot shrinkage compared to both the control and only grafted group. Clot shrinkage in EDTA treated group showed no significant difference from that of the EDTA + graft group (p = 0.197). OFD and only grafted groups were found to show statistically higher clot retraction percnetage compared to both EDTA and EDTA+graft groups. CONCLUSION following intrabony defect debridement, blood clot undergoes clot retraction creating a micro gap with the root surface. EDTA root surface etching before graft application into the defect area significantly reduced the amount of gap distance.
Collapse
Affiliation(s)
- Ahmed Y Gamal
- Department of Periodontology, Faculty of Dental Medicine, Ain Shams University, Cairo, Egypt
| | - Khaled A Abdel-Ghaffar
- Department of Periodontology, Faculty of Dental Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed G Zouair
- Department of Oral Pathology Faculty of Dental Medicine, Al Azhar University, Cairo, Egypt
| | - Mohamed H Salama
- Department of Periodontology, Faculty of Dental Medicine, Al Azhar University, Cairo, Egypt
| | - Mahmoud T El Destawy
- Department of Periodontology, Faculty of Dental Medicine, Al Azhar University, Cairo, Egypt
| |
Collapse
|
34
|
Biological Effects of Shikonin in Human Gingival Fibroblasts via ERK 1/2 Signaling Pathway. Molecules 2019; 24:molecules24193542. [PMID: 31574951 PMCID: PMC6804247 DOI: 10.3390/molecules24193542] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/22/2022] Open
Abstract
Shikonin, an active ingredient of Lithospermum erythrorhizon, exerts anti-inflammatory and antibacterial effects, and promotes wound healing. We investigated whether shikonin stimulated gingival tissue wound healing in human gingival fibroblasts (hGF). In addition, we evaluated the effects of shikonin on the mitogen-activated protein kinase (MAPK) signaling pathway, which has an important role in wound healing. hGF were subjected to primary culture using gingiva collected from patients. The cells were exposed to/treated with Shikonin at concentrations ranging from 0.01 to 100 μM. The optimal concentration was determined by cell proliferation and migration assays. Type I collagen and fibronectin synthesis, the gene expression of vascular endothelial growth factor (VEGF) and FN, and the phosphorylation of Extracellular signal-regulated kinase (ERK) 1/2 were investigated. Identical experiments were performed in the presence of PD98059 our data suggest, a specific ERK 1/2 inhibitor. Shikonin significantly promoted hGF proliferation and migration. Shikonin (1 µM) was chosen as the optimal concentration. Shikonin promoted type I collagen and FN synthesis, increased VEGF and FN expression, and induced ERK 1/2 phosphorylation. These changes were partially suppressed by PD98059. In conclusion, Shikonin promoted the proliferation, migration, type I collagen and FN synthesis, and expression of VEGF and FN via ERK 1/2 signaling pathway in hGFs. Therefore, shikonin may promote periodontal tissue wound healing.
Collapse
|
35
|
Early Wound Healing Score (EHS): An Intra- and Inter-Examiner Reliability Study. Dent J (Basel) 2019; 7:dj7030086. [PMID: 31480586 PMCID: PMC6784738 DOI: 10.3390/dj7030086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/15/2019] [Accepted: 08/29/2019] [Indexed: 01/26/2023] Open
Abstract
The early wound healing score (EHS) was introduced to assess early wound healing of periodontal soft tissues after surgical incision. The purpose of this study is to evaluate the intra- and inter-examiner reliability of the EHS. Six examiners with different levels of training and clinical focus were enrolled. Each examiner was trained on the use of the EHS before starting the study. Thereafter, 63 photographs of three different types of surgical incisions taken at day 1, 3 or 7 post-operatively were independently evaluated according to the proposed assessment method. A two-way random intra-class correlation coefficient (ICC) and 95% confidence interval (CI) were used to analyze the intra- and inter-examiner reliability for the EHS. The inter-examiner reliability for the EHS was 0.828 (95% CI: 0.767–0.881). The intra-examiner reliability ranged between 0.826 (95% CI: 0.728–0.891) and 0.915 (95% CI: 0.856–0.950). The results therefore show an “almost perfect agreement” for intra- and inter-examiner reliability. The EHS provides a system for reproducible repeated ratings for the early healing assessment of incisions of periodontal soft tissues. Even when used by examiners with different clinical experience and specialty, it shows a high correlation coefficient.
Collapse
|
36
|
Abe T, Sumi K, Kunimatsu R, Oki N, Tsuka Y, Awada T, Nakajima K, Sugiyama M, Tanimoto K. Bone Regeneration in a Canine Model of Artificial Jaw Cleft Using Bone Marrow-Derived Mesenchymal Stem Cells and Carbonate Hydroxyapatite Carrier. Cleft Palate Craniofac J 2019; 57:208-217. [PMID: 31422673 DOI: 10.1177/1055665619868868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Cleft lip and palate (CLP) is a common anomaly of the orofacial region. Mesenchymal stem cell (MSC) transplantation has been a focus of regenerative medicine, and its application to the repair of bone defects in patients with CLP is highly anticipated. This study investigated the potential for using MSCs to regenerate bone in a jaw cleft as well as the survival of transplanted MSCs using a canine model of CLP. DESIGN Mesenchymal stem cells collected from the bone marrow of beagle dogs were transplanted along with carbonate hydroxyapatite into jaw clefts in beagle dogs. Mesenchymal stem cells labeled with fluorescent silica nanoparticles were also transplanted, and a histological analysis was performed 3 months later to evaluate MSC survival. RESULTS Carbonate hydroxyapatite regeneration into bone was enhanced by cotransplantation of MSCs. The survival rate of MSCs transplanted after 3 months was 5.7%. CONCLUSIONS Transplanted MSCs promote bone regeneration, although their survival rate is low.
Collapse
Affiliation(s)
- Takaharu Abe
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Keisuke Sumi
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Nanae Oki
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuji Tsuka
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Tetsuya Awada
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Kengo Nakajima
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Masaru Sugiyama
- Department of Public Oral Health, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima Japan
| |
Collapse
|
37
|
Abd Ellah NH, Abd El‐Aziz FEA, Abouelmagd SA, Abd El‐Hamid BN, Hetta HF. Spidroin in carbopol‐based gel promotes wound healing in earthworm's skin model. Drug Dev Res 2019; 80:1051-1061. [DOI: 10.1002/ddr.21583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Noura H. Abd Ellah
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Medical Sciences BuildingUniversity of Cincinnati Cincinnati Ohio USA
- Department of Pharmaceutics, Faculty of PharmacyAssiut University Assiut Egypt
| | | | - Sara A. Abouelmagd
- Department of Pharmaceutics, Faculty of PharmacyAssiut University Assiut Egypt
| | | | - Helal F. Hetta
- Department of Internal MedicineUniversity of Cincinnati College of Medicine Cincinnati Ohio USA
- Department of Medical Microbiology and Immunology, Faculty of MedicineAssiut University Assiut Egypt
| |
Collapse
|
38
|
Arasteh S, Khanjani S, Golshahi H, Mobini S, Jahed MT, Heidari-Vala H, Edalatkhah H, Kazemnejad S. Efficient Wound Healing Using a Synthetic Nanofibrous Bilayer Skin Substitute in Murine Model. J Surg Res 2019; 245:31-44. [PMID: 31400575 DOI: 10.1016/j.jss.2019.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/29/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
Treatment of full-thickness skin wounds with minimal scarring and complete restoration of native tissue properties still exists as a clinical challenge. A bilayer skin substitute was fabricated by coating human amniotic membrane (AM) with electrospun silk fibroin nanofibers, and its in vivo biological behavior was studied using murine full-thickness skin wound model. Donut-shaped silicon splints were utilized to prevent wound contraction in mouse skin and simulate re-epithelialization, which is the normal path of human wound healing. Skin regeneration using the bilayer scaffold was compared with AM and untreated defect after 30 d. Tissue samples were taken from healed wound areas and investigated through histopathological and immunohistochemical staining to visualize involucrin (IVL), P63, collagen I, CD31, and vascular endothelial growth factor. In addition, mRNA expression of IVL, P63, interleukin-6, and cyclooxygenase-2 was studied. The application of bilayer scaffold resulted in the best epidermal and dermal regeneration, demonstrated by histopathological examination and molecular analysis. In regenerated wounds of the bilayer scaffold group, the mRNA expression levels of inflammatory markers (interleukin-6 and cyclooxygenase-2) were downregulated, and the expression pattern of keratinocyte markers (IVL and P63) at both mRNA and protein levels was more similar to native tissue in comparison with AM and no-treatment groups. There was no significant difference in the expression level of collagen I, CD31, and vascular endothelial growth factor among different groups. Conclusively, these promising results serve as a supporting evidence for proceeding to clinical phase to examine the capacity of this bilayer scaffold for human skin regeneration.
Collapse
Affiliation(s)
- Shaghayegh Arasteh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sayeh Khanjani
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Hannaneh Golshahi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sahba Mobini
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | | | - Haleh Edalatkhah
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
39
|
de Sousa Gomes P, Daugela P, Poskevicius L, Mariano L, Fernandes MH. Molecular and Cellular Aspects of Socket Healing in the Absence and Presence of Graft Materials and Autologous Platelet Concentrates: a Focused Review. J Oral Maxillofac Res 2019; 10:e2. [PMID: 31620264 PMCID: PMC6788423 DOI: 10.5037/jomr.2019.10302] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The present manuscript aims to critically detail the physiologic process of socket healing, in the absence or presence of grafting materials or platelet concentrates, addressing the associated molecular and cellular events that culminate in the restoration of the lost tissue architecture and functionality. MATERIAL AND METHODS An electronic search in the National Library of Medicine database MEDLINE through its online site PubMed and Web of Science from inception until May 2019 was conducted to identify articles concerning physiologic process of socket healing, in the absence or presence of grafting materials or platelet concentrates. The search was restricted to English language articles without time restriction. Additionally, a hand search was carried out in oral surgery, periodontology and dental implants related journals. RESULTS In total, 122 literature sources were obtained and reviewed. The detailed biological events, at the molecular and cellular level, that occur in the alveolus after tooth extraction and socket healing process modulated by grafting materials or autologous platelet concentrates were presented as two entities. CONCLUSIONS Tooth extraction initiates a convoluted set of orderly biological events in the alveolus, aiming wound closure and socket healing. The healing process comprises a wide range of events, regulated by the interplay of cytokines, chemokines and growth factors that determine cellular recruitment, proliferation and differentiation in the healing milieu, in a space- and time-dependent choreographic interplay. Additionally, the healing process may further be modulated by the implantation of grafting materials or autologous platelet concentrates within the tooth socket, aiming to enhance the regenerative outcome.
Collapse
Affiliation(s)
- Pedro de Sousa Gomes
- BoneLab, Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, PortoPortugal.
- LAQV/REQUIMTE, Faculty of Dental Medicine, U. Porto, PortoPortugal.
| | - Povilas Daugela
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania.
| | - Lukas Poskevicius
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania.
| | - Lorena Mariano
- BoneLab, Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, PortoPortugal.
| | - Maria Helena Fernandes
- BoneLab, Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, PortoPortugal.
- LAQV/REQUIMTE, Faculty of Dental Medicine, U. Porto, PortoPortugal.
| |
Collapse
|
40
|
Acevedo CA, Sánchez E, Orellana N, Morales P, Olguín Y, Brown DI, Enrione J. Re-Epithelialization Appraisal of Skin Wound in a Porcine Model Using a Salmon-Gelatin Based Biomaterial as Wound Dressing. Pharmaceutics 2019; 11:pharmaceutics11050196. [PMID: 31027353 PMCID: PMC6571591 DOI: 10.3390/pharmaceutics11050196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 01/04/2023] Open
Abstract
The design of new functional materials for skin tissue engineering is an area of constant research. In this work, a novel wound-dressing biomaterial with a porous structure, previously formulated using salmon-gelatin as main component (called salmon-gelatin biomaterial (SGB)), was tested in vivo using pigs as skin wound models. Four weeks after cutaneous excision and implantation in the animals, the healing process did not show apparent symptoms of inflammation or infection. Interestingly, the temporal evolution of wound size from 100% to around 10% would indicate a faster recovery when SGB was compared against a commercial control. Histological analysis established that wounds treated with SGB presented similar healing and epithelialization profiles with respect to the commercial control. Moreover, vascularized granulation tissue and epithelialization stages were clearly identified, indicating a proliferation phase. These results showed that SGB formulation allows cell viability to be maintained. The latter foresees the development of therapeutic alternatives for skin repair based on SGB fabricated using low cost production protocols.
Collapse
Affiliation(s)
- Cristian A Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Elizabeth Sánchez
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Patricio Morales
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Yusser Olguín
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Donald I Brown
- Instituto de Biología, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso 2340000, Chile.
| | - Javier Enrione
- Biopolymer Research and Engineering Lab, Facultad de Medicina, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile.
| |
Collapse
|
41
|
Rowley AT, Nagalla RR, Wang S, Liu WF. Extracellular Matrix-Based Strategies for Immunomodulatory Biomaterials Engineering. Adv Healthc Mater 2019; 8:e1801578. [PMID: 30714328 DOI: 10.1002/adhm.201801578] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/08/2019] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a complex and dynamic structural scaffold for cells within tissues and plays an important role in regulating cell function. Recently it has become appreciated that the ECM contains bioactive motifs that can directly modulate immune responses. This review describes strategies for engineering immunomodulatory biomaterials that utilize natural ECM-derived molecules and have the potential to harness the immune system for applications ranging from tissue regeneration to drug delivery. A top-down approach utilizes full-length ECM proteins, including collagen, fibrin, or hyaluronic acid-based materials, as well as matrices derived from decellularized tissue. These materials have the benefit of maintaining natural conformation and structure but are often heterogeneous and encumber precise control. By contrast, a bottom-up approach leverages immunomodulatory domains, such as Arg-Gly-Asp (RGD), matrix metalloproteinase (MMP)-sensitive peptides, or leukocyte-associated immunoglobulin-like receptor-1(LAIR-1) ligands, by incorporating them into synthetic materials. These materials have tunable control over immune cell functions and allow for combinatorial approaches. However, the synthetic approach lacks the full natural context of the original ECM protein. These two approaches provide a broad range of engineering techniques for immunomodulation through material interactions and hold the potential for the development of future therapeutic applications.
Collapse
Affiliation(s)
- Andrew T. Rowley
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
| | - Raji R. Nagalla
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
| | - Szu‐Wen Wang
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
- Department of Materials Science and EngineeringUniversity of California Irvine CA 92697 USA
| | - Wendy F. Liu
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular TechnologyUniversity of California Irvine CA 92697 USA
| |
Collapse
|
42
|
Marini L, Rojas MA, Sahrmann P, Aghazada R, Pilloni A. Early Wound Healing Score: a system to evaluate the early healing of periodontal soft tissue wounds. J Periodontal Implant Sci 2018; 48:274-283. [PMID: 30405935 PMCID: PMC6207797 DOI: 10.5051/jpis.2018.48.5.274] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/21/2018] [Indexed: 11/08/2022] Open
Abstract
Purpose Numerous indices have been proposed to analyse wound healing in oral soft tissues, but each has specific shortcomings. A new method of analysis, the Early Wound Healing Score (EHS), was evaluated in the present study. The aim was to assess more accurately early healing by primary intention of surgical incisions in periodontal soft tissues. Methods Twenty-one patients were treated with different surgical procedures comprising 1 or 2 vertical releasing incisions as part of a surgical access flap. Twenty-four hours after surgery, early wound healing at the vertical releasing incisions was assessed using the EHS. This score assessed clinical signs of re-epithelialization (CSR), clinical signs of haemostasis (CSH), and clinical signs of inflammation (CSI). Since complete wound epithelialization was the main outcome, the CSR score was weighted to be 60% of the total final score. Accordingly, a score of 0, 3, or 6 points was possible for the assessment of CSR, whereas scores of 0, 1, or 2 points were possible for CSH and CSI. Higher values indicated better healing. Accordingly, the score for ideal early wound healing was 10. Results Thirty vertical releasing incisions were assessed in 21 patients. At 24 hours after incision, 16 vertical releasing incisions (53.33%) received the maximum score of CSR, while 6 cases (20%) received an EHS of 10. None of the cases received 0 points. Conclusion The EHS system may be a useful tool for assessing early wound healing in periodontal soft tissue by primary intention after surgery.
Collapse
Affiliation(s)
- Lorenzo Marini
- Section of Periodontics, Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Mariana Andrea Rojas
- Section of Periodontics, Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Philipp Sahrmann
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Rustam Aghazada
- Section of Periodontics, Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Pilloni
- Section of Periodontics, Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Antimicrobial peptide delivery: an emerging therapeutic for the treatment of burn and wounds. Ther Deliv 2018; 9:375-386. [DOI: 10.4155/tde-2017-0061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The management of wounds and burns is becoming difficult using conventional therapeutics available due to resistance development by microbes. Therefore, there is an utmost need to develop therapeutic alternatives to these agents. Antimicrobial peptides have emerged as a novel class of agents for the effective management of wounds and burns due to their potent nature along with minimal chances of resistance development against them. This article focuses on highlighting the importance of these antimicrobial peptides among the various therapeutic alternatives for burns and wounds. Further, effective delivery strategies for these agents that are being employed and investigated are reported along with an overview of the importance of these agents in the coming years.
Collapse
|
44
|
Memmert S, Nokhbehsaim M, Damanaki A, Nogueira AVB, Papadopoulou AK, Piperi C, Basdra EK, Rath-Deschner B, Götz W, Cirelli JA, Jäger A, Deschner J. Role of cathepsin S In periodontal wound healing-an in vitro study on human PDL cells. BMC Oral Health 2018; 18:60. [PMID: 29622023 PMCID: PMC5887187 DOI: 10.1186/s12903-018-0518-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
Background Cathepsin S is a cysteine protease, which is expressed in human periodontal ligament (PDL) cells under inflammatory and infectious conditions. This in vitro study was established to investigate the effect of cathepsin S on PDL cell wound closure. Methods An in vitro wound healing assay was used to monitor wound closure in wounded PDL cell monolayers for 72 h in the presence and absence of cathepsin S. In addition, the effects of cathepsin S on specific markers for apoptosis and proliferation were studied at transcriptional level. Changes in the proliferation rate due to cathepsin S stimulation were analyzed by an XTT assay, and the actions of cathepsin S on cell migration were investigated via live cell tracking. Additionally, PDL cell monolayers were treated with a toll-like receptor 2 agonist in the presence and absence of a cathepsin inhibitor to examine if periodontal bacteria can alter wound closure via cathepsins. Results Cathepsin S enhanced significantly the in vitro wound healing rate by inducing proliferation and by increasing the speed of cell migration, but had no effect on apoptosis. Moreover, the toll-like receptor 2 agonist enhanced significantly the wound closure and this stimulatory effect was dependent on cathepsins. Conclusions Our findings provide original evidence that cathepsin S stimulates PDL cell proliferation and migration and, thereby, wound closure, suggesting that this cysteine protease might play a critical role in periodontal remodeling and healing. In addition, cathepsins might be exploited by periodontal bacteria to regulate critical PDL cell functions.
Collapse
Affiliation(s)
- Svenja Memmert
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany. .,Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Anna Damanaki
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Andressa V B Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Birgit Rath-Deschner
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Werner Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | - Andreas Jäger
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.,Noel Martin Visiting Chair, Faculty of Dentistry, University of Sydney, Sydney, Australia
| |
Collapse
|
45
|
Xue M, Zhao R, Lin H, Jackson C. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev 2018; 129:219-241. [PMID: 29567398 DOI: 10.1016/j.addr.2018.03.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
While wound therapy remains a clinical challenge in current medical practice, much effort has focused on developing biological therapeutic approaches. This paper presents a comprehensive review of delivery systems for current biologicals for the treatment of chronic wounds and severe burns. The biologicals discussed here include proteins such as growth factors and gene modifying molecules, which may be delivered to wounds free, encapsulated, or released from living systems (cells, skin grafts or skin equivalents) or biomaterials. Advances in biomaterial science and technologies have enabled the synthesis of delivery systems such as scaffolds, hydrogels and nanoparticles, designed to not only allow spatially and temporally controlled release of biologicals, but to also emulate the natural extracellular matrix microenvironment. These technologies represent an attractive field for regenerative wound therapy, by offering more personalised and effective treatments.
Collapse
|
46
|
Yamamoto T, Ugawa Y, Kawamura M, Yamashiro K, Kochi S, Ideguchi H, Takashiba S. Modulation of microenvironment for controlling the fate of periodontal ligament cells: the role of Rho/ROCK signaling and cytoskeletal dynamics. J Cell Commun Signal 2018; 12:369-378. [PMID: 29086204 PMCID: PMC5842188 DOI: 10.1007/s12079-017-0425-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022] Open
Abstract
Cells behave in a variety of ways when they perceive changes in their microenvironment; the behavior of cells is guided by their coordinated interactions with growth factors, niche cells, and extracellular matrix (ECM). Modulation of the microenvironment affects the cell morphology and multiple gene expressions. Rho/Rho-associated coiled-coil-containing protein kinase (ROCK) signaling is one of the key regulators of cytoskeletal dynamics and actively and/or passively determines the cell fate, such as proliferation, migration, differentiation, and apoptosis, by reciprocal communication with the microenvironment. During periodontal wound healing, it is important to recruit the residential stem cells into the defect site for regeneration and homeostasis of the periodontal tissue. Periodontal ligament (PDL) cells contain a heterogeneous fibroblast population, including mesenchymal stem cells, and contribute to the reconstruction of tooth-supporting tissues. Therefore, bio-regeneration of PDL cells has been the ultimate goal of periodontal therapy for decades. Recent stem cell researches have shed light on intrinsic ECM properties, providing paradigm shifts in cell fate determination. This review focuses on the role of ROCK activity and the effects of Y-27632, a specific inhibitor of ROCK, in the modulation of ECM-microenvironment. Further, it presents the current understanding of how Rho/ROCK signaling affects the fate determination of stem cells, especially PDL cells. In addition, we have also discussed in detail the underlying mechanisms behind the reciprocal response to the microenvironment.
Collapse
Affiliation(s)
- Tadashi Yamamoto
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yuki Ugawa
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Mari Kawamura
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Shinsuke Kochi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Shogo Takashiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
47
|
Plasma treatments of dressings for wound healing: a review. Biophys Rev 2017; 9:895-917. [PMID: 28971326 DOI: 10.1007/s12551-017-0327-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022] Open
Abstract
This review covers the use of plasma technology relevant to the preparation of dressings for wound healing. The current state of knowledge of plasma treatments that have potential to provide enhanced functional surfaces for rapid and effective healing is summarized. Dressings that are specialized to the needs of individual cases of chronic wounds such as diabetic ulcers are a special focus. A summary of the biology of wound healing and a discussion of the various types of plasmas that are suitable for the customizing of wound dressings are given. Plasma treatment allows the surface energy and air permeability of the dressing to be controlled, to ensure optimum interaction with the wound. Plasmas also provide control over the surface chemistry and in cases where the plasma creates energetic ion bombardment, activation with long-lived radicals that can bind therapeutic molecules covalently to the surface of the dressing. Therapeutic innovations enabled by plasma treatment include the attachment of microRNA or antimicrobial peptides. Bioactive molecules that promote subsequent cell adhesion and proliferation can also be bound, leading to the recruitment of cells to the dressing that may be stem cells or patient-derived cells. The presence of a communicating cell population expressing factors promotes healing.
Collapse
|
48
|
Ottolino-Perry K, Chamma E, Blackmore KM, Lindvere-Teene L, Starr D, Tapang K, Rosen CF, Pitcher B, Panzarella T, Linden R, DaCosta RS. Improved detection of clinically relevant wound bacteria using autofluorescence image-guided sampling in diabetic foot ulcers. Int Wound J 2017; 14:833-841. [PMID: 28244218 DOI: 10.1111/iwj.12717] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/22/2016] [Accepted: 12/20/2016] [Indexed: 01/13/2023] Open
Abstract
Clinical wound assessment involves microbiological swabbing of wounds to identify and quantify bacterial species, and to determine microbial susceptibility to antibiotics. The Levine swabbing technique may be suboptimal because it samples only the wound bed, missing other diagnostically relevant areas of the wound, which may contain clinically significant bacteria. Thus, there is a clinical need to improve the reliability of microbiological wound sampling. To address this, a handheld portable autofluorescence (AF) imaging device that detects bacteria in real time, without contrast agents, was developed. Here, we report the results of a clinical study evaluating the use of real-time AF imaging to visualise bacteria in and around the wound bed and to guide swabbing during the clinical assessment of diabetic foot ulcers, compared with the Levine technique. We investigated 33 diabetic foot ulcers (n = 31 patients) and found that AF imaging more accurately identified the presence of moderate and/or heavy bacterial load compared with the Levine technique (accuracy 78% versus 52%, P = 0·048; adjusted diagnostic odds ratio 7·67, P < 0·00022 versus 3·07, P = 0·066) and maximised the effectiveness of bacterial load sampling, with no significant impact on clinical workflow. AF imaging may help clinicians better identify the wound areas with clinically significant bacteria, and maximise sampling of treatment-relevant pathogens.
Collapse
Affiliation(s)
| | - Emilie Chamma
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario Canada
| | - Kristina M Blackmore
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario Canada
| | - Liis Lindvere-Teene
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario Canada
| | | | - Kim Tapang
- Hyperbaric Medicine, Judy Dan Research & Treatment Centre, Toronto, Ontario Canada
| | - Cheryl F Rosen
- Department of Dermatology, Toronto Western Hospital, University Health Network, Toronto, Ontario Canada
| | - Bethany Pitcher
- Department of Biostatistics, University Health Network, Toronto, Ontario Canada
| | - Tony Panzarella
- Department of Biostatistics, University Health Network, Toronto, Ontario Canada
| | - Ron Linden
- Hyperbaric Medicine, Judy Dan Research & Treatment Centre, Toronto, Ontario Canada
| | - Ralph S DaCosta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada.,Techna Institute, Toronto, Ontario Canada
| |
Collapse
|
49
|
Hamlet SM, Vaquette C, Shah A, Hutmacher DW, Ivanovski S. 3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering. J Clin Periodontol 2017; 44:428-437. [PMID: 28032906 DOI: 10.1111/jcpe.12686] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2016] [Indexed: 11/27/2022]
Abstract
AIM Alveolar bone regeneration remains a significant clinical challenge in periodontology and dental implantology. This study assessed the mineralized tissue forming potential of 3-D printed medical grade polycaprolactone (mPCL) constructs containing osteoblasts (OB) encapsulated in a hyaluronic acid (HA)-hydrogel incorporating bone morphogenetic protein-7 (BMP-7). MATERIALS AND METHODS HA-hydrogels containing human OB ± BMP-7 were prepared. Cell viability, osteogenic gene expression, mineralized tissue formation and BMP-7 release in vitro, were assessed by fluorescence staining, RT-PCR, histological/μ-CT examination and ELISA respectively. In an athymic rat model, subcutaneous ectopic mineralized tissue formation in mPCL-hydrogel constructs was assessed by μ-CT and histology. RESULTS Osteoblast encapsulation in HA-hydrogels did not detrimentally effect cell viability, and 3-D culture in osteogenic media showed mineralized collagenous matrix formation after 6 weeks. BMP-7 release from the hydrogel was biphasic, sustained and increased osteogenic gene expression in vitro. After 4 weeks in vivo, mPCL-hydrogel constructs containing BMP-7 formed significantly more volume (mm3 ) of vascularized bone-like tissue. CONCLUSIONS Functionalized mPCL-HA hydrogel constructs provide a favourable environment for bone tissue engineering. Although encapsulated cells contributed to mineralized tissue formation within the hydrogel in vitro and in vivo, their addition did not result in an improved outcome compared to BMP-7 alone.
Collapse
Affiliation(s)
- Stephen M Hamlet
- Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia.,School of Dentistry and Oral Health, Griffith University, Southport, Qld, Australia
| | - Cedryck Vaquette
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| | - Amit Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| | - Saso Ivanovski
- Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia.,School of Dentistry and Oral Health, Griffith University, Southport, Qld, Australia
| |
Collapse
|
50
|
Momose T, Miyaji H, Kato A, Ogawa K, Yoshida T, Nishida E, Murakami S, Kosen Y, Sugaya T, Kawanami M. Collagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class II Furcation Defects in Dog. Open Dent J 2016; 10:347-59. [PMID: 27583044 PMCID: PMC4974830 DOI: 10.2174/1874210601610010347] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Collagen hydrogel scaffold exhibits bio-safe properties and facilitates periodontal wound healing. However, regenerated tissue volume is insufficient. Fibroblast growth factor-2 (FGF2) up-regulates cell behaviors and subsequent wound healing. We evaluated whether periodontal wound healing is promoted by application of collagen hydrogel scaffold in combination with FGF2 in furcation defects in beagle dogs. METHODS Collagen hydrogel was fabricated from bovine type I collagen with an ascorbate-copper ion cross-linking system. Collagen hydrogel was mingled with FGF2 and injected into sponge-form collagen. Subsequently, FGF2 (50 µg)/collagen hydrogel scaffold and collagen hydrogel scaffold alone were implanted into class II furcation defects in dogs. In addition, no implantation was performed as a control. Histometric parameters were assessed at 10 days and 4 weeks after surgery. RESULT FGF2 application to scaffold promoted considerable cell and tissue ingrowth containing numerous cells and blood vessel-like structure at day 10. At 4 weeks, reconstruction of alveolar bone was stimulated by implantation of scaffold loaded with FGF2. Furthermore, periodontal attachment, consisting of cementum-like tissue, periodontal ligament-like tissue and Sharpey's fibers, was also repaired, indicating that FGF2-loaded scaffold guided self-assembly and then re-established the function of periodontal organs. Aberrant healing, such as ankylosis and root resorption, was not observed. CONCLUSION FGF2-loaded collagen hydrogel scaffold possessed excellent biocompatibility and strongly promoted periodontal tissue engineering, including periodontal attachment re-organization.
Collapse
Affiliation(s)
- Takehito Momose
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Akihito Kato
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Kosuke Ogawa
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Takashi Yoshida
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Erika Nishida
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Syusuke Murakami
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Yuta Kosen
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Masamitsu Kawanami
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| |
Collapse
|