1
|
Houvast RD, van Duijvenvoorde M, Thijse K, de Steur WO, de Geus-Oei LF, Crobach ASLP, Burggraaf J, Vahrmeijer AL, Kuppen PJK. Selecting Targets for Molecular Imaging of Gastric Cancer: An Immunohistochemical Evaluation. Mol Diagn Ther 2025; 29:213-227. [PMID: 39541080 PMCID: PMC11860997 DOI: 10.1007/s40291-024-00755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Tumor-targeted positron emission tomography (PET) and fluorescence-guided surgery (FGS) could address current challenges in pre- and intraoperative imaging of gastric cancer. Adequate selection of molecular imaging targets remains crucial for successful tumor visualization. This study evaluated the potential of integrin αvβ6, carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM) and human epidermal growth factor receptor-2 (HER2) for molecular imaging of primary gastric cancer, as well as lymph node and distant metastases. METHODS Expression of αvβ6, CEACAM5, EGFR, EpCAM and HER2 was determined using immunohistochemistry in human tissue specimens of primary gastric adenocarcinoma, healthy surrounding stomach, esophageal and duodenal tissue, tumor-positive and tumor-negative lymph nodes, and distant metastases, followed by quantification using the total immunostaining score (TIS). RESULTS Positive biomarker expression in primary gastric tumors was observed in 86% for αvβ6, 72% for CEACAM5, 77% for EGFR, 93% for EpCAM and 71% for HER2. Tumor expression of CEACAM5, EGFR and EpCAM was higher compared to healthy stomach tissue expression, while this was not the case for αvβ6 and HER2. Tumor-positive lymph nodes could be distinguished from tumor-negative lymph nodes, with accuracy ranging from 82 to 93% between biomarkers. CEACAM5, EGFR and EpCAM were abundantly expressed on distant metastases, with expression in 88-95% of tissue specimens. CONCLUSION Our findings show that CEACAM5, EGFR and EpCAM are promising targets for molecular imaging of primary gastric cancer, as well as visualization of both lymph node and distant metastases. Further clinical evaluation of PET and FGS tracers targeting these antigens is warranted.
Collapse
Affiliation(s)
- Ruben D Houvast
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Kira Thijse
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Wobbe O de Steur
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiation Science & Technology, Delft University of Technology, Delft, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - A Stijn L P Crobach
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Yan XT, Chang KL, Huang ZB, Xu YT, Li ZP, Liu WB, Wang Q. A protein structure-dependent fluorescent probe for hemoglobin monitoring and controllable imaging in living cells. Int J Biol Macromol 2024; 283:137868. [PMID: 39566764 DOI: 10.1016/j.ijbiomac.2024.137868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
A novel protein structure-dependent non-covalent fluorescent probe, DDBM, was developed. It exhibited selective fluorescence "turn-off" responsiveness to bovine hemoglobin (BHb). This responsiveness depended on the interaction between the probe and BHb, with the methoxynaphthalene group significantly contributing to the sensitivity. Non-covalent interactions played a crucial role in stabilizing the binding of DDBM with BHb. DDBM demonstrated a robust anti-interference capability in its BHb responsiveness. Interestingly, the BHb responsiveness of DDBM could be modulated by ibuprofen. Additionally, DDBM exhibited favorable fluorescence enhancement sensitivity to bovine serum albumin (BSA), coupled with a robust anti-interference capability. These distinctive properties of DDBM enabled it to dynamically trace the metabolism of hemoglobin (Hb) and further achieve Hb-mediated precise controllable live cell imaging.
Collapse
Affiliation(s)
- Xian-Ting Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Kai-Li Chang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zi-Bei Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yun-Tiao Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zi-Pan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wen-Bo Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
3
|
Zhang C, Cheng H, Dou S, Wang Y, Ye X, Cui H, Chang X, Li Y. Near-infrared fluorescent molecular probes with cetuximab in the in vivo fluorescence imaging for epithelial ovarian cancer. J Ovarian Res 2024; 17:225. [PMID: 39543737 PMCID: PMC11566390 DOI: 10.1186/s13048-024-01547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Near-infrared fluorescence (NIRF) imaging is an excellent choice for image-guided surgery due to its simple operation and non-invasiveness. Developing tumor-specific fluorescent molecular probes is key to fluorescence imaging-guided surgery. EGFR (epidermal growth factor receptor) is closely related to the proliferation and growth of tumor cells and is highly expressed in epithelial ovarian cancer (EOC). The study aims to construct a NIR fluorescent molecular probe using cetuximab (an EGFR monoclonal antibody) and investigate its feasibility for targeting EOC in vivo through fluorescence imaging. METHODS We determined the expression of EGFR in EOC. NIR fluorescent molecular probe with cetuximab (cetuximab-Cy7) was chemically engineered and identified. The subcutaneous xenografted tumor model of EOC was induced using SKOV3-Luc cell line with positive expression of EGFR. Cetuximab-Cy7 was used for in vivo fluorescence imaging, and phosphate-buffered saline, free Cy7 dye and mouse isotype immunoglobulin G-Cy7 were used as controls. NIRF imaging system was performed to study the distribution and targeting of the probes. Tumors were imaged in situ and ex vivo, and fluorescent intensity was quantified. Resected specimens were analyzed to confirm diagnosis, and immunohistochemical (IHC) staining was used to identify EGFR expression. RESULTS EGFR expression was increased in EOC tissues than fallopian tube tissues. The high expression of EGFR was significantly correlated with well-differentiation, residual lesions ≤ 1 cm, no recurrence and increased survival. NIRF imaging showed that the cetuximab-Cy7 enabled detection of tumor lesions in EOC-bearing mice with the optimal dose of 30 µg. The suitable imaging time window may be 24-96 h post-injection. Ex vivo fluorescence imaging indicated that fluorescent signal was mainly detected in the tumor and the lung. IHC results confirmed that xenografts were EGFR positive. CONCLUSION Cetuximab-Cy7 can specifically target the tumors of EOC xenografted nude mice. This research lays the foundation for future studies on EOC surgery navigation.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Str., Xicheng District, Beijing, 100044, China
| | - Hongyan Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Str., Xicheng District, Beijing, 100044, China
| | - Sha Dou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Str., Xicheng District, Beijing, 100044, China
| | - Yuanfen Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Str., Xicheng District, Beijing, 100044, China
| | - Xue Ye
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Str., Xicheng District, Beijing, 100044, China
| | - Heng Cui
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Str., Xicheng District, Beijing, 100044, China.
| | - Xiaohong Chang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Str., Xicheng District, Beijing, 100044, China.
| | - Yi Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Str., Xicheng District, Beijing, 100044, China.
| |
Collapse
|
4
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Xiao J, Qiu S, Ma Q, Bai S, Guo X, Wang L. Near-infrared dye IRDye800CW-NHS coupled to Trastuzumab for near-infrared II fluorescence imaging in tumor xenograft models of HER-2-positive breast cancer. J Mater Chem B 2023; 11:10738-10746. [PMID: 37929679 DOI: 10.1039/d3tb01486j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Near-infrared II fluorescent probes targeting tumors for diagnostic purposes have received much attention in recent years. In this study, a fluorescent probe for the NIR-II was constructed by using IRDye800CW-NHS fluorescent dye with Trastuzumab, which was investigated for its ability to target HER-2-positive breast cancer in xenograft mice models. This probe was compared with Trastuzumab-ICG which was synthesized using a similar structure, ICG-NHS. The results demonstrated that the IRDye800CW-NHS had significantly stronger fluorescence in the NIR-I and NIR-II than ICG-NHS in the aqueous phase. And the different metabolic modes of IRDye800CW-NHS and ICG-NHS were revealed in bioimaging experiments. IRDye800CW-NHS was mainly metabolised by the kidneys, while ICG-NHS was mainly metabolised by the liver. After coupling with Trastuzumab, Trastuzumab-800CW (TMR = 5.35 ± 0.39) not only had a stronger tumor targeting ability than Trastuzumab-ICG (TMR = 4.42 ± 0.10) based on the calculated maximum tumor muscle ratio (TMR), but also had a comparatively lower hepatic uptake and faster metabolism. Histopathology analysis proved that both fluorescent probes were non-toxic to various organ tissues. These results reveal the excellent optical properties of IRDye800CW-NHS, and the great potential of coupling with antibodies to develop fluorescent probes that will hopefully be applied to intraoperative breast cancer navigation in humans.
Collapse
Affiliation(s)
- Junhui Xiao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Siqi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou 515041, China
- Clinical Research Center, Shantou Central Hospital, Shantou 515041, China
| | - Qiufeng Ma
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Silan Bai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Lishi Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
6
|
Xiao Y, Mei C, Xu D, Yang F, Yang M, Bi L, Mao J, Pang P, Li D. Identification of a CEACAM5 targeted nanobody for positron emission tomography imaging and near-infrared fluorescence imaging of colorectal cancer. Eur J Nucl Med Mol Imaging 2023; 50:2305-2318. [PMID: 36914753 DOI: 10.1007/s00259-023-06183-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE Here, we aim to identify a CEACAM5-targeted nanobody and demonstrate its application in positron emission tomography (PET) imaging and near-infrared (NIR) fluorescence imaging in colorectal cancer (CRC). METHODS Immunohistochemistry was applied to verify CEACAM5 expression in CRC and metastatic lymph nodes (mLNs). CEACAM5-targeted nanobodies were obtained by immunization of human CEACAM5 protein in a dromedary, followed by several rounds of phage screenings. Immunofluorescence staining and flow cytometry was carried out to determine the binding affinity of the nanobodies. The nanobodies were radiolabeled by coupling 18F-SFB for PET imaging of CRC subcutaneous xenografts and lymph node metastasis (LNM). IRDye800CW (IR800) were conjugated to form NIR probes for NIR imaging in CRC subcutaneous models. RESULTS CEACAM5 was overexpressed in either human CRC tissues or mLNs. A CEACAM5 targeted nanobody, Nb41 was successfully generated, with excellent in vitro binding properties. Incorporation of albumin binding domain (ABD) did not affect the affinity of Nb41. In vivo imaging showed that both 18F-FB-Nb41 and 18F-FB-Nb41-ABD showed obvious accumulation in the tumor. Due to the longer retention in the blood, 18F-FB-Nb41-ABD enrichment in tumors was significantly delayed but higher compared to 18F-FB-Nb41. Both 18F-FB-Nb41 and 18F-FB-Nb41-ABD showed prominent LNM enrichment. Similarly, the IR800-conjugated nanobodies Nb41-IR800 and Nb41-ABD-IR800 exhibited superior imaging effects in subcutaneous models, while Nb41-ABD-IR800 exhibited higher fluorescence intensity in the tumor accompanied with a remarkedly delay compared to Nb41-IR800. CONCLUSION Collectively, we presented the identification and in vivo validation of a CEACAM5-targeted nanobody and a fused nanobody with an ABD, which enabled to the non-invasive visualization of malignancy of CRC using PET imaging and NIR imaging in subcutaneous models as well as LNM models.
Collapse
Affiliation(s)
- Yitai Xiao
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
| | - Chaoming Mei
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
| | - Duo Xu
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
| | - Fan Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
| | - Meilin Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
| | - Junjie Mao
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China.
| | - Pengfei Pang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China.
| | - Dan Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China.
| |
Collapse
|
7
|
Song W, Wei W, Lan X, Cai W. Albumin binding improves nanobody pharmacokinetics for dual-modality PET/NIRF imaging of CEACAM5 in colorectal cancer models. Eur J Nucl Med Mol Imaging 2023; 50:2591-2594. [PMID: 37191678 PMCID: PMC10330897 DOI: 10.1007/s00259-023-06266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Liang M, Wang L, Xiao Y, Yang M, Mei C, Zhang Y, Shan H, Li D. Preclinical evaluation of a novel EGFR&c-Met bispecific near infrared probe for visualization of esophageal cancer and metastatic lymph nodes. Eur J Nucl Med Mol Imaging 2023; 50:2787-2801. [PMID: 37145165 DOI: 10.1007/s00259-023-06250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE This study aimed to establish a near infrared fluorescent (NIRF) probe based on an EGFR&c-Met bispecific antibody for visualization of esophageal cancer (EC) and metastatic lymph nodes (mLNs). METHODS EGFR and c-Met expression were assessed by immunohistochemistry. EGFR&c-Met bispecific antibody EMB01 was labeled with IRDye800cw. The binding of EMB01-IR800 was assessed by enzyme linked immunosorbent assay, flow cytometry, and immunofluorescence. Subcutaneous tumors, orthotopic tumors, and patient-derived xenograft (PDX) were established for in vivo fluorescent imaging. PDX models using lymph nodes with or without metastasis were constructed to assess the performance of EMB01-IR800 in differential diagnosis of lymph nodes. RESULTS The prevalence of overexpressing EGFR or c-Met was significantly higher than single marker either in EC or corresponding mLNs. The bispecific probe EMB01-IR800 was successfully synthesized, with strong binding affinity. EMB01-IR800 showed strong cellular binding to both Kyse30 (EGFR overexpressing) and OE33 (c-Met overexpressing) cells. In vivo fluorescent imaging showed prominent EMB01-IR800 uptake in either Kyse30 or OE33 subcutaneous tumors. Likewise, EMB01-IR800 exhibited superior tumor enrichment in both thoracic orthotopic esophageal squamous cell carcinoma and abdominal orthotopic esophageal adenocarcinoma models. Moreover, EMB01-IR800 produced significantly higher fluorescence in patient-derived mLNs than in benign lymph nodes. CONCLUSION This study demonstrated the complementary overexpression of EGFR and c-Met in EC. Compared to single-target probes, the EGFR&c-Met bispecific NIRF probe can efficiently depict heterogeneous esophageal tumors and mLNs, which greatly increased the sensitivity of tumor and mLN identification.
Collapse
Affiliation(s)
- Mingzhu Liang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Lizhu Wang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Yitai Xiao
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Meilin Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Chaoming Mei
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Yaqin Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| | - Hong Shan
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| | - Dan Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
9
|
Roy S, Bag N, Bardhan S, Hasan I, Guo B. Recent Progress in NIR-II Fluorescence Imaging-guided Drug Delivery for Cancer Theranostics. Adv Drug Deliv Rev 2023; 197:114821. [PMID: 37037263 DOI: 10.1016/j.addr.2023.114821] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) has become a prevalent choice owing to its appealing advantages like deep penetration depth, low autofluorescence, decent spatiotemporal resolution, and a high signal-to-background ratio. This would expedite the innovation of NIR-II imaging-guided drug delivery (IGDD) paradigms for the improvement of the prognosis of patients with tumors. This work systematically reviews the recent progress of such NIR-II IGDD-mediated cancer therapeutics and collectively brings its essence to the readers. Special care has been taken to assess their performances based on their design approach, such as enhancing their drug loading and triggering release, designing intrinsic and extrinsic fluorophores, and/ or overcoming biological barriers. Besides, the state-of-the-art NIR-II IGDD platforms for different therapies like chemo-, photodynamic, photothermal, chemodynamic, immuno-, ion channel, gas-therapies, and multiple functions such as stimulus-responsive imaging and therapy, and monitoring of drug release and therapeutic response, have been updated. In addition, for boosting theranostic outcomes and clinical translation, the innovation directions of NIR-II IGDD platforms are summarized, including renal-clearable, biodegradable, sub-cellular targeting, and/or afterglow, chemiluminescence, X-ray excitable NIR-IGDD, and even cell therapy. This review will propel new directions for safe and efficient NIR-II fluorescence-mediated anticancer drug delivery.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China
| | - Neelanjana Bag
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
10
|
Identification of an IGF2BP2-Targeted Peptide for Near-Infrared Imaging of Esophageal Squamous Cell Carcinoma. Molecules 2022; 27:molecules27217609. [DOI: 10.3390/molecules27217609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies globally. Peptide-based tumor-targeted imaging is critical for ESCC imaging. In this study, we aim to identify a peptide-targeting IGF2BP2 that specifically binds to human ESCC for near-infrared imaging of esophageal cancer. Applying phage display techniques, we identified a peptide target for IGF2BP2 which was confirmed to be highly expressed in ESCC cell lines or tumor tissue and may serve as an imaging target for ESCC. We conjugated the peptide to the NIRF group, Cy5, and further evaluated the targeting efficacy of the probe at a cellular level and in animal tumor models. The Cy5 conjugated peptide (P12-Cy5) showed a high binding affinity to human ESCC cells in vitro. In vivo, optical imaging also validated the tumor-targeting ability of P12-Cy5 in KYSE-30-bearing subcutaneous ESCC tumor models. Furthermore, the results of biodistribution showed a significantly higher fluorescence intensity in tumors compared to scrambled peptide, which is consistent with in vivo observations. In summary, an IGF2BP2-targeted peptide was successfully identified. In vitro and in vivo experiments confirmed that P12-Cy5 has high affinity, specificity and tumor-targeting properties. Thus, P12-Cy5 is a prospective NIR probe for the imaging of ESCC.
Collapse
|