1
|
Yao J, Guo Y, Wan T, Yu S, Shen Q, Huang M, Li Y, Xu F, Zeng H, Liu Z, Lu L. CYP3A4 and MRP2 are predominant metabolic regulators attribute to the toxicity/efficacy of aconitine derived from Fuzi. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119463. [PMID: 39954827 DOI: 10.1016/j.jep.2025.119463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum carmichaelii Debx. exhibits overwhelming efficacy against heart failure, inflammation and pain, but its clinical application is limited by concomitant cardiotoxicity and neurotoxicity. Aconitine (AC), the most abundant bioactive alkaloid, has narrow therapeutic window, with well-defined toxic and therapeutic thresholds. However, the overlapping molecular targets mediating dual toxicity and efficacy of AC remain poorly characterized. AIMS OF THE STUDY This study aimed to evaluate dual pharmacological and toxicological roles of AC through integrative pharmacology and transgenic mouse models. MATERIALS AND METHODS The overlapping targets of AC-related toxicity/efficacy were identified based on integrative pharmacology. By generating Cyp3a-/- transgenic mice expressing human CYP3A4 (hCYP3A4), Ugt1, P-gp, Mrp2, BCRP, and Nrf2 knockout mice, the effects of AC on toxicity, pain, inflammation, and heart failure were assessed. RESULTS We identified 143 overlapping targets predominantly enriched in metabolic pathways. Symptom-based toxicity scores were strikingly elevated in AC-exposed hCYP3A4, Mrp2-/-, P-gp-/-, BCRP-/-, and Nrf2-/- mice compared to WT mice. Additionally, AC prolonged the latency of response by approximately 18s, 15s, 14s, and 5s, respectively, in hCYP3A4, Mrp2-/-, P-gp-/-, and Nrf2-/- mice by hot plate assay. Interestingly, both toxicity score and analgesic latency initially increased and subsequently decreased, peaking at 60 min. AC obviously decreased the acetic acid-induced writhing and permeability by 45.7% and 22.2% in hCYP3A4 mice, whereas these changes were amplified in Mrp2-/- mice compared to WT mice. Furthermore, AC attenuated DOX induced heart failure in hCYP3A4 mice, with an effective rate of 20.9%, with Septin4 implicated in AC-related metabolism. CONCLUSIONS Metabolic targets may elucidate the mechanistic overlap between the toxicity and efficacy of AC. Notably, hCYP3A4 exhibited heightened toxicity, alongside enhanced analgesic, anti-inflammatory, and cardioprotective effects. Our findings position metabolic pathways as critical nodes for AC-related dual effect, and establish Septin4 as a candidate mediator of its metabolic regulation.
Collapse
Affiliation(s)
- Jingjing Yao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, 519000, China; Institute of Taihang Materia Medica, Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yajuan Guo
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, 519000, China
| | - Ting Wan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, 519000, China
| | - Shaofang Yu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, 519000, China
| | - Qinghong Shen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, 519000, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, 519000, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, 519000, China
| | - Fuping Xu
- Guandong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Huiyan Zeng
- Guandong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, 519000, China
| | - Linlin Lu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, 519000, China.
| |
Collapse
|
2
|
Luo YY, Xu JB, Huang S, Zhou XL. Seven New Aconitine-Type Diterpenoid Alkaloids from the Roots of Aconitum apetalum. Chem Biodivers 2025; 22:e202402055. [PMID: 39410822 DOI: 10.1002/cbdv.202402055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Seven new aconitine-type C19-diterpenoid alkaloids, apetaldines K-Q (1-7), were isolated from the roots of Aconitum apetalum (Huth) B. Fedtsch. Their structures were established on the basis of extensive spectroscopic analyses (HRESIMS, 1D and 2D NMR). Among them, compounds 1 and 2 possess a unique 2-(E)-(2-methylbut-2-enamido)benzoate moiety at the C-18 position. Furthermore, cytotoxic activities of these diterpenoid alkaloids were also evaluated.
Collapse
Affiliation(s)
- Yan-Yan Luo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, P.R. China
- Key laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Jin-Bu Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, P.R. China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, P.R. China
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, P.R. China
- Key laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| |
Collapse
|
3
|
Li Q, Gu MM, Wu HW, Xu CS, Yu HL, Zhang Y, Su YY, Han HP, Liao ZX. Brunonianines D-F, three new C19-diterpenoid alkaloids from the Delphinium brunonianum, with therapeutic effect on ovarian cancer in vitro and in vivo. Bioorg Chem 2024; 148:107478. [PMID: 38788366 DOI: 10.1016/j.bioorg.2024.107478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The current standard treatment for ovarian cancer consists of surgery to reduce the size of the tumor, followed by treatment with chemotherapeutic drugs, which have major side effects. Therefore, finding a new natural product drug with fewer side effects is a strategy. Delphinium brunonianum (D. brunonianum) is a traditional Tibetan medicine, mainly from southern Tibet, China, whereas the chemical constituents in this plant remain elusive. The major metabolites in the dichloromethane fraction of D. brunonianum were analyzed and purified by HPLC and various column chromatography techniques. Nine diterpenoid alkaloids (1-9) and one amide alkaloid (10) were isolated from D. brunonianum, including three novel C19-type diterpenoid alkaloids (Brunonianines D-F) (1-3). Their structures were elucidated by 1D/2D NMR, HR-ESI-MS and single-crystal X-ray diffraction analyses. All compounds were evaluated for toxicity in four tumor cell lines. Most of the compounds exhibited potent inhibitory effects on Skov-3 cell lines, with IC50 values ranging from 2.57 to 8.05 μM. The western blotting experiment was used to further analyze the expression levels of molecules in the Bax/Bcl-2/Caspase-3 signaling pathway for compound 1. Molecular docking was performed to predict the binding modes of Brunonianine D with target proteins. In vivo experiments were also performed and evaluated in real time by monitoring the size of the Skov-3 tumor. Additionally, tumor H&E staining and the TUNEL assay used to evaluate anti-tumor effects.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Min-Min Gu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Hong-Wei Wu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Chen-Sen Xu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Hao-Lin Yu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Yu Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Yun-Yun Su
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Hong-Ping Han
- The Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in Qinghai Province, School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, PR China
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
4
|
Wang X, Xin J, Sun L, Sun Y, Xu Y, Zhao F, Niu C, Liu S. Exploring the Biomedical Potential of Terpenoid Alkaloids: Sources, Structures, and Activities. Molecules 2024; 29:1968. [PMID: 38731459 PMCID: PMC11085545 DOI: 10.3390/molecules29091968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Terpenoid alkaloids are recognized as a class of compounds with limited numbers but potent biological activities, primarily derived from plants, with a minor proportion originating from animals and microorganisms. These alkaloids are synthesized from the same prenyl unit that forms the terpene skeleton, with the nitrogen atom introduced through β-aminoethanol, ethylamine, or methylamine, leading to a range of complex and diverse structures. Based on their skeleton type, they can be categorized into monoterpenes, sesquiterpenes, diterpenes, and triterpene alkaloids. To date, 289 natural terpenoid alkaloids, excluding triterpene alkaloids, have been identified in studies published between 2019 and 2024. These compounds demonstrate a spectrum of biological activities, including anti-inflammatory, antitumor, antibacterial, analgesic, and cardioprotective effects, making them promising candidates for further development. This review provides an overview of the sources, chemical structures, and biological activities of natural terpenoid alkaloids, serving as a reference for future research and applications in this area.
Collapse
Affiliation(s)
- Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (X.W.); (Y.S.); (Y.X.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Lili Sun
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (X.W.); (Y.S.); (Y.X.)
| | - Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (X.W.); (Y.S.); (Y.X.)
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (X.W.); (Y.S.); (Y.X.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (X.W.); (Y.S.); (Y.X.)
| |
Collapse
|
5
|
Xu JJ, Luo J, Xi H, Xu JB, Wan LX. Palladium-catalyzed synthesis and anti-AD biological activity evaluation of N-aryl-debenzeyldonepezil analogues. Front Chem 2023; 11:1282978. [PMID: 38144888 PMCID: PMC10748399 DOI: 10.3389/fchem.2023.1282978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
A series of novel N-aryl-debenzeyldonepezil derivatives (1-26) were designed and synthesized as cholinesterase inhibitors by the modification of anti-Alzheimer's disease drug donepezil, using Palladium catalyzed Buchwald-Hartwig cross-coupling reaction as a key chemical synthesis strategy. In vitro cholinesterase inhibition studies demonstrated that the majority of synthesized compounds exhibited high selective inhibition of AChE. Among them, analogue 13 possessing a quinoline functional group showed the most potent AChE inhibition effect and significant neuroprotective effect against H2O2-induced injury in SH-SY5Y cells. Furthermore, Compound 13 did not show significant cytotoxicity on SH-SY5Y. These results suggest that 13 is a potential multifunctional active molecule for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Department of Pharmacy, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Jiao Luo
- Department of Pharmacy, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Heng Xi
- Department of Pharmacy, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Jin-Bu Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Lin-Xi Wan
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Xu JB, Miao SX, Gao F, Wan LX. Palladium-catalyzed synthesis and acetylcholinesterase inhibitory activity evaluation of 1-arylhuperzine A derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:1097-1109. [PMID: 37098899 DOI: 10.1080/10286020.2023.2196619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
A series of arylated huperzine A (HPA) derivatives (1-24) were efficiently synthesized in good yields (45-88% yields) through the late-stage modification of structurally complex natural anti-Alzheimer's disease (AD) drug huperzine A (HPA), using the palladium-catalyzed Suzuki-Miyaura cross-coupling reaction. The acetylcholinesterase (AChE) inhibitory activity of all synthesized compounds was evaluated to screen the potential anti-AD bioactive molecules. The results showed that introducing the aryl groups to C-1 position of HPA resulted in the unsatisfactory AChE inhibitory activity. The present study demonstrably verifies pyridone carbonyl group could be the necessary and unchangeable pharmacophore for maintaining HPA's anti-AChE potency, and provides the helpful information on the further research for developing anti-AD HPA analogues.
Collapse
Affiliation(s)
- Jin-Bu Xu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shi-Xing Miao
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Feng Gao
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin-Xi Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
7
|
Xiao Y, Zhang Y, Ji WS, Jia XN, Shan LH, Li X, Liu YJ, Jiang T, Gao F. Discovery of myrsinane-type Euphorbia diterpene derivatives through a skeleton conversion strategy from lathyrane diterpene for the treatment of Alzheimer's disease. Bioorg Chem 2023; 138:106595. [PMID: 37178652 DOI: 10.1016/j.bioorg.2023.106595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
A series of novel myrsinane-type Euphorbia diterpene derivatives (1-37) were synthesized from the abundant natural lathyrane-type Euphorbia factor L3, using a multi-step chemical process guided by a bioinspired skeleton conversion strategy, with the aim of discovering potential anti-Alzheimer's disease (AD) bioactive lead compounds. The synthesis process involved a concise reductive olefin coupling reaction through an intramolecular Michael addition with a free radical, followed by a visible-light-triggered regioselective cyclopropane ring-opening. The cholinesterase inhibitory and neuroprotective activities of the synthesized myrsinane derivatives were evaluated. Most of the compounds showed moderate to strong potency, highlighting the importance of ester groups in Euphorbia diterpene. In particular, derivative 37 displayed the most potent acetylcholinesterase (AChE) inhibition, with an IC50 value of 8.3 μM, surpassing that of the positive control, tacrine. Additionally, 37 also showed excellent neuroprotective effect against H2O2-induced injury in SH-SY5Y cells, with a cell viability rate of 124.2% at 50 μM, which was significantly higher than that of the model group (viability rate 52.1%). Molecular docking, reactive oxygen species (ROS) analysis, immunofluorescence, and immunoblotting were performed to investigate the mechanism of action of myrsinane derivative 37. The results indicated that derivative 37 may be a promising myrsinane-type multi-functional lead compound for the treatment of Alzheimer's disease. Furthermore, a preliminary SAR analysis was performed to study the acetylcholinesterase inhibitory and neuroprotective activities of these diterpenes.
Collapse
Affiliation(s)
- Yao Xiao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yang Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wan-Sheng Ji
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiao-Nan Jia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Lian-Hai Shan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohuan Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yan-Jun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Ting Jiang
- Department of Pharmacy, The First Afflicted Hospital of Chengdu Medical College, Chengdu 610500, PR China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
8
|
Yin B, Li X, Li ZX, Zhu XX, Zhang L, Zhou XL, Xu JB, Chen FZ, Tang P, Gao F. Adenophorone, An Unprecedented Sesquiterpene from Eupatorium adenophorum: Structural Elucidation, Bioinspired Total Synthesis and Neuroprotective Activity Evaluation. Angew Chem Int Ed Engl 2023; 62:e202306326. [PMID: 37278098 DOI: 10.1002/anie.202306326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
(-)-Adenophorone (1), a caged polycyclic sesquiterpene featuring an unprecedented tricyclo[4.3.1.05,9 ]decane skeleton, was isolated from Eupatorium adenopharum Spreng. The structure of 1 was unambiguously established by a combination of spectroscopic analysis, X-ray crystallography, and bioinspired total synthesis. Key synthetic features include a sequential Reformatsky/oxidation/regio- and stereoselective hydrogenation, and subsequent merged MBH-Tsuji-Trost cyclization. The concise synthetic sequence efficiently constructs the bicyclic skeleton of cadinene sesquiterpene (+)-euptox A (2) in 8 steps from commercially available monoterpene (-)-carvone (6), with outstanding performance on diastereocontrol. The bioinspired synthesis of 1 was achieved from 2, a plausible biogenetic precursor, via transannular Michael addition. This work provides experimental evidence of our proposed biosynthetic hypothesis of 1. Additionally, compound 1 showed potent neuroprotective activity in H2 O2 -treated SH-SY5Y and PC12 cells.
Collapse
Affiliation(s)
- Bo Yin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiaohuan Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Zi-Xiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiao-Xin Zhu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xian-Li Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jin-Bu Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Feng-Zheng Chen
- College of Chemistry, Leshan Normal University, Leshan, 614004, P. R. China
| | - Pei Tang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
9
|
Salehi A, Ghanadian M, Zolfaghari B, Jassbi AR, Fattahian M, Reisi P, Csupor D, Khan IA, Ali Z. Neuropharmacological Potential of Diterpenoid Alkaloids. Pharmaceuticals (Basel) 2023; 16:ph16050747. [PMID: 37242531 DOI: 10.3390/ph16050747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
This study provides a narrative review of diterpenoid alkaloids (DAs), a family of extremely important natural products found predominantly in some species of Aconitum and Delphinium (Ranunculaceae). DAs have long been a focus of research attention due to their numerous intricate structures and diverse biological activities, especially in the central nervous system (CNS). These alkaloids originate through the amination reaction of tetra or pentacyclic diterpenoids, which are classified into three categories and 46 types based on the number of carbon atoms in the backbone structure and structural differences. The main chemical characteristics of DAs are their heterocyclic systems containing β-aminoethanol, methylamine, or ethylamine functionality. Although the role of tertiary nitrogen in ring A and the polycyclic complex structure are of great importance in drug-receptor affinity, in silico studies have emphasized the role of certain sidechains in C13, C14, and C8. DAs showed antiepileptic effects in preclinical studies mostly through Na+ channels. Aconitine (1) and 3-acetyl aconitine (2) can desensitize Na+ channels after persistent activation. Lappaconitine (3), N-deacetyllapaconitine (4), 6-benzoylheteratisine (5), and 1-benzoylnapelline (6) deactivate these channels. Methyllycaconitine (16), mainly found in Delphinium species, possesses an extreme affinity for the binding sites of α7 nicotinic acetylcholine receptors (nAChR) and contributes to a wide range of neurologic functions and the release of neurotransmitters. Several DAs such as bulleyaconitine A (17), (3), and mesaconitine (8) from Aconitum species have a drastic analgesic effect. Among them, compound 17 has been used in China for decades. Their effect is explained by increasing the release of dynorphin A, activating the inhibitory noradrenergic neurons in the β-adrenergic system, and preventing the transmission of pain messages by inactivating the Na+ channels that have been stressed. Acetylcholinesterase inhibitory, neuroprotective, antidepressant, and anxiolytic activities are other CNS effects that have been investigated for certain DAs. However, despite various CNS effects, recent advances in developing new drugs from DAs were insignificant due to their neurotoxicity.
Collapse
Affiliation(s)
- Arash Salehi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Behzad Zolfaghari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Maryam Fattahian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81745-33871, Iran
| | - Dezső Csupor
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
10
|
Zhang Y, Xu JB, Xiao Y, Ji WS, Shan LH, Wan LX, Zhou XL, Lei Y, Gao F. Palladium-Catalyzed Synthesis, Acetylcholinesterase Inhibition, and Neuroprotective Activities of N-Aryl Galantamine Analogues. JOURNAL OF NATURAL PRODUCTS 2023; 86:939-946. [PMID: 36808969 DOI: 10.1021/acs.jnatprod.2c01150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A series of new N-aryl galantamine analogues (5a-5x) were designed and synthesized by modification of galantamine, using Pd-catalyzed Buchwald-Hartwig cross-coupling reaction in good to excellent yields. The cholinesterase inhibitory and neuroprotective activities of N-aryl derivatives of galantamine were evaluated. Among the synthesized compounds, the 4-methoxylpyridine-galantamine derivative (5q) (IC50 = 0.19 μM) exhibited excellent acetylcholinesterase inhibition activity, as well as significant neuroprotective effect against H2O2-induced injury in SH-SY5Y cells. Molecular docking, staining, and Western blotting analyses were performed to demonstrate the mechanism of action of 5q. Derivative 5q would be a promising multifunctional lead compound for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yang Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jin-Bu Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yao Xiao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Wan-Sheng Ji
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Lian-Hai Shan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Lin-Xi Wan
- West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xian-Li Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yu Lei
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, People's Republic of China
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
11
|
Fujikawa A, Ishihara Y, Ohta E, Nehira T, Ômura H, Uy MM, Ohta S. Isolation of Fluorescent Benzoxazines with Neuroprotective Activity from the Olive Weevil Pimelocerus perforatus. JOURNAL OF NATURAL PRODUCTS 2022; 85:2740-2745. [PMID: 36269877 DOI: 10.1021/acs.jnatprod.2c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The weevil Pimelocerus perforatus poses a serious pest problem for olive cultivation in Japan. Two new racemic fluorescent benzoxazines, designated as pimeforazine A ((±)-1) and pimeforazine B ((±)-2), were successfully isolated from P. perforatus. Their structures, including the absolute configurations of their resolved enantiomers, were determined using spectroscopic methods, single-crystal X-ray diffraction, and electronic circular dichroism calculations. The neuroprotective activity of the isolated compounds was evaluated against hydrogen peroxide-induced cellular damage in SH-SY5Y human neuroblastoma cells. Compounds (±)-1 and (±)-2 exhibited neuroprotective effects.
Collapse
Affiliation(s)
- Aya Fujikawa
- School of Applied Biological Science, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Yasuhiro Ishihara
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Emi Ohta
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Tatsuo Nehira
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Hisashi Ômura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Mylene M Uy
- Department of Chemistry, Mindanao State University-Iligan Institute of Technology, Iligan City9200, Philippines
| | - Shinji Ohta
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| |
Collapse
|
12
|
Li Y, Shang Y, Li X, Zhang Y, Xie J, Chen L, Gao F, Zhou XL. Design, synthesis, and biological evaluation of low-toxic lappaconitine derivatives as potential analgesics. Eur J Med Chem 2022; 243:114776. [PMID: 36162215 DOI: 10.1016/j.ejmech.2022.114776] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
Abstract
The C18-diterpenoid alkaloid lappaconitine (LA) is a non-addictive analgesic used in China. The toxicity (LD50 = 11.7 mg/kg) limits its application. Two series of LA derivatives, including amides and sulfonamides (1-93), were designed and synthesized by modification on their C4 acetamidobenzoate side chains in this work. In vivo analgesic activity and toxicity of all derivatives were evaluated, and the structure-activity relationship was summarized. Six lead compounds (35, 36, 39, 49, 70, and 89) exhibited approximate analgesic activity to LA but with significantly reduced toxicity. The therapeutic index of these compounds is 14-30 times that of LA. In vivo metabolism study of the lead compounds 39, 49, 70, and 89 were conducted by UPLC-MSE, indicating the reason for the low toxicity of the potential derivatives might be they are difficult to metabolize to toxic metabolite N-deacetyllappaconitine compared to LA. The effects of lead compounds on sodium channels and hERG channels were also studied by ion channel reader (ICR) which further revealed their analgesic and toxicity-attenuating mechanisms. Sodium channel assay revealed that the analgesic mechanism of these lead compounds was inhibiting the Nav 1.7 channels. Taken together, compound 39 was provided as a new analgesic lead compound with significantly low toxicity and comparable activity to LA.
Collapse
Affiliation(s)
- Yuzhu Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yushan Shang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Xiaohuan Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yinyong Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jiang Xie
- Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu, 610000, PR China
| | - Lin Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China.
| | - Xian-Li Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China; Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu, 610000, PR China.
| |
Collapse
|
13
|
Zhou X, Yang HB, Luo YY, Xu JB, Liu Y, Gao F, Huang S, Chen L. Two new C18-diterpenoid alkaloids from Aconitum leucostomum Worosch. Chem Biodivers 2022; 19:e202200483. [PMID: 36094326 DOI: 10.1002/cbdv.202200483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022]
Abstract
Two new lappaconitine-type C18-diterpenoid alkaloids, named as leucostosines C (1) and D (2), together with six known compounds (3-8), were isolated from the roots of Aconitum leucostomum Worosch. Their structures were elucidated by various spectroscopic analyses, including IR, HR-ESI-MS, NMR spectra and X-ray experiments. Leucostosine C is the first diterpenoid alkaloid bearing the 7-amino group. The isolated compounds were tested for the acetylcholinesterase (AChE) inhibitory effect and neuroprotective activity, none of them showed significant activities.
Collapse
Affiliation(s)
- Xianli Zhou
- Southwest Jiaotong University, school of life science and engineering, No.111,North Section 1,Erhuan Road, 610031, chengdu, CHINA
| | - Hong-Bo Yang
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| | - Yan-Yan Luo
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| | - Jin-Bu Xu
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| | - Yue Liu
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| | - Feng Gao
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| | - Shuai Huang
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| | - Lin Chen
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| |
Collapse
|
14
|
Song Z, Li X, Xu K, Sun G, Yang L, Huang L, Liu J, Yin P, Huang S, Gao F, Zhou X, Chen L. Design, synthesis and insecticidal activity and mechanism research of Chasmanthinine derivatives. Sci Rep 2022; 12:15290. [PMID: 36088472 PMCID: PMC9464227 DOI: 10.1038/s41598-022-19523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Unrestricted reproduction and spread of pest had caused great damage to the quality and yield of crops in recent years. Besides the use of traditional chemical pesticides, natural products also make a huge contribution against pests. Chasmanthinine, a diterpenoid alkaloid isolated from Aconitum franchetii var. villosulum, shown extremely antifeedant activity against Spodoptera exigua. Therefore, a series of novel Chasmanthinine derivatives were synthesized and their biological activity was studied in this work. Compound 33 showed the strongest antifeedant activity (EC50 = 0.10 mg/cm2) among all the test compounds. The mechanism research of 33 revealed that its antifeedant effect was related to the inhibition of carboxylesterase (CES), and proved the thiophene acyl group could form a strong binding effect with CES by molecular docking. Moreover, compound 10 exhibited the strongest cytotoxicity (IC50 = 12.87 μM) against Sf9 cell line and moderate contact toxicity. The mechanism research indicated that compound 10 could induce Sf9 cells apoptosis. In summary, the results lay a foundation for the application of diterpene alkaloids in plant protection.
Collapse
|
15
|
Liu ZQ. Why natural antioxidants are readily recognized by biological systems? 3D architecture plays a role! Food Chem 2022; 380:132143. [DOI: 10.1016/j.foodchem.2022.132143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 01/10/2023]
|
16
|
Huang YF, He F, Cui H, Zhang YY, Yang HY, Liang ZS, Dai W, Cheng CS, Xie Y, Liu L, Liu ZQ, Zhou H. Systematic investigation on the distribution of four hidden toxic Aconitum alkaloids in commonly used Aconitum herbs and their acute toxicity. J Pharm Biomed Anal 2022; 208:114471. [PMID: 34814080 DOI: 10.1016/j.jpba.2021.114471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
Yunaconitine (YAC), crassicauline A (CCA), 8-deacetylyunaconitine (DYA), and 8-deacetylcrassicauline A (DCA), as hidden toxic Aconitum alkaloids, are detected in some products of processed Aconitum carmichaelii lateral root and poisoning cases. The distribution and toxicity of these four components in Aconitum herbs should be further systematically studied for medication safety. This study developed a new UHPLC-QQQ-MS/MS method to determine ten Aconitum alkaloids, including aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, benzoylhypaconine, YAC, CCA, DYA, and DCA, for Aconitum herbs simultaneously. YAC and CCA were founded in some samples of unprocessed A. carmichaelii lateral root (7.04%), A. carmichaelii root (9.43%), A. brachypodum root (6.00%), and A. ouvrardianum root (100%). Four hidden toxic Aconitum alkaloids were detected in processed A. carmichaelii lateral root (2.56%) and A. vilmorinianum root (100%). Four hidden toxic Aconitum alkaloids played significant roles in the classification of Aconitum herbs by OPLS-DA analysis. The acute toxicity test was performed by up-and-down procedure (UDP). The oral administration of the half lethal dose (LD50) of YAC, CCA, DYA, and DCA to female ICR mice was 2.37 mg/kg, 5.60 mg/kg, 60.0 mg/kg, and 753 mg/kg, respectively. The LD50 by intravenous injection was 0.200 mg/kg, 0.980 mg/kg, 7.60 mg/kg, and 34.0 mg/kg, respectively. The LD50 of unprocessed A. carmichaelii lateral root, A. vilmorinianum root, and A. brachypodum root to mice orally was 1.89 g/kg, 0.950 g/kg, and 0.380 g/kg, respectively. Symptoms of Aconitum alkaloid poisoning in mice were decreased activity, fur erect, palpebral edema, vomiting, polypnea, and convulsions. The main change of organs was flatulence. No poisoning or death occurred in mice at the maximum dosage (27.0 g/kg) of A. ouvrardianum root orally. To better control the quality and safety of Aconitum herbs, this study provides favorable support for improving the existing standards to strengthen the supervision of the four hidden toxic Aconitum alkaloids.
Collapse
Affiliation(s)
- Yu-Feng Huang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China; Institute of International Standardization of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fan He
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China
| | - Hao Cui
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China
| | - Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China
| | - Hua-Yi Yang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China
| | - Zong-Suo Liang
- College of Life Sciences, Zhejiang Sci-Tech University, Zhejiang 310018, PR China
| | - Wei Dai
- Institute of Traditional Chinese Medicine, Mianyang Academy of Agricultural Sciences, Sichuan 621023, PR China
| | - Chun-Song Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China
| | - Ying Xie
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Macao 999078, PR China
| | - Liang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Macao 999078, PR China.
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangdong 510006, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Macao 999078, PR China.
| |
Collapse
|
17
|
Yan Y, Li X, Wang Z, Yang X, Yin T. C 18-diterpenoid alkaloids in tribe Delphineae (Ranunculaceae): phytochemistry, chemotaxonomy, and bioactivities. RSC Adv 2021; 12:395-405. [PMID: 35424499 PMCID: PMC8978619 DOI: 10.1039/d1ra08132b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
This review systematically summarizes the C18-diterpenoid alkaloid (DA) compositions isolated from the genera Aconitum and Delphinium in the Delphineae tribe (Ranunculaceae). A total of 117 distinct C18-DA components have been reported, including 58 lappaconitine-type DAs, 54 ranaconitine-type DAs, and five rearranged-type DAs. These components mainly originated from plants from the subgenus Lycoctonum in the genus Aconitum or less frequently from plants within the genus Delphinium. Natural C18-DAs have exhibited a wide range of bioactivities, including analgesic, antiarrhythmic, anti-inflammatory, anti-tumor, and insecticidal activities, which are closely related to their chemical structures. The high chemical and biological diversities among the reported C18-DA constituents in Delphineae plants indicated their potential as a vast resource for drug discovery. Additionally, the Delphineae plant C18-DAs exhibited chemotaxonomic values and showed a high regularity of distribution at different taxonomic levels; therefore, the Delphineae plant C18-DAs can serve as good chemical molecular markers in the taxonomic treatment of plants within this tribe, especially in the infrageneric division.
Collapse
Affiliation(s)
- Yuanfeng Yan
- Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zhuhai Campus of Zunyi Medical University Zhuhai 519041 China
| | - Xing Li
- Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zhuhai Campus of Zunyi Medical University Zhuhai 519041 China
| | - Ze Wang
- Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zhuhai Campus of Zunyi Medical University Zhuhai 519041 China
| | - Xiaoyan Yang
- Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zhuhai Campus of Zunyi Medical University Zhuhai 519041 China
| | - Tianpeng Yin
- Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zhuhai Campus of Zunyi Medical University Zhuhai 519041 China
| |
Collapse
|
18
|
Zhu H, Cai Y, Ma S, Futamura Y, Li J, Zhong W, Zhang X, Osada H, Zou H. Privileged Biorenewable Secologanin-Based Diversity-Oriented Synthesis for Pseudo-Natural Alkaloids: Uncovering Novel Neuroprotective and Antimalarial Frameworks. CHEMSUSCHEM 2021; 14:5320-5327. [PMID: 34636473 DOI: 10.1002/cssc.202101868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Bioprivileged molecules hold great promise for supplementing petrochemicals in sustainable organic synthesis of a diverse bioactive products library. Secologanin, a biorenewable monoterpenoid glucoside with unique structural elements, is the key precursor for thousands of natural monoterpenoid alkaloids. Inspired by its inherent highly congested functional groups, a secologanin-based diversity-oriented synthesis (DOS) strategy for novel pseudo-natural alkaloids was developed. All the reactive units of secologanin were involved in these operation simplicity protocols under mild reaction conditions, including the one-step enantioselective transformation of exocyclic C8, C8/C11, and C8/C9/C10 as well as the chemoenzymatic manipulation of endocyclic C2/C6 via the attack by various nucleophiles. A combinatory scenario of the aforementioned reactions further provided diverse polycyclic products with multiple chiral centers. Preliminary activity screening of these newly constructed molecules led to the discovery of antimalarial and highly potent neuroprotective skeletons. The application of green biorenewable secologanin in diversity-oriented pseudo-natural monoterpenoid alkaloid synthesis might encourage the pursuit of valuable bioactive frameworks.
Collapse
Affiliation(s)
- Huajian Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yunrui Cai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shijia Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Jinbiao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wen Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiangnan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
19
|
de Souza-Ferrari J, Silva-Júnior EA, Vale JA, de Albuquerque Simões LA, de Moraes-Júnior MO, Dantas BB, de Araújo DAM. A late-stage diversification via Heck-Matsuda arylation: Straightforward synthesis and cytotoxic/antiproliferative profiling of novel aryl-labdane-type derivatives. Bioorg Med Chem Lett 2021; 52:128393. [PMID: 34606997 DOI: 10.1016/j.bmcl.2021.128393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022]
Abstract
In the current study a late-stage diversification of unactivated olefins labd-8(17)-en-15-oic acid (1a) and methyl labd-8(17)-en-15-oate (1b) via Heck-Matsuda arylation is described. The reaction provided straightforward and practical access to a series of novel aryl-labdane-type derivatives (HM adducts 3a-h) in moderate to good yields in a highly regio- and stereoselective manner at room temperature under air atmosphere. The cytotoxic activity of these compounds was investigated in vitro against three different human cell lines (THP-1, K562, MCF-7). Of these, HM adduct 3h showed a selective effect in all cancer cell lines tested and was selected for extended biological investigations in a leukemia cell line (K562), which demonstrated that the cytotoxic/antiproliferative activity observed in this compound might be mediated by induction of cell cycle arrest at the sub-G1 phase and by autophagy-induced cell death. Taken together, these findings indicate that further investigation into the anticancer activity against chronic myeloid leukemia from aryl-labdane-type derivatives may be fruitful.
Collapse
Affiliation(s)
- Jailton de Souza-Ferrari
- Department of Chemistry, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil.
| | - Edvaldo Alves Silva-Júnior
- Department of Chemistry, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Juliana Alves Vale
- Department of Chemistry, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil
| | | | - Manoel Oliveira de Moraes-Júnior
- Department of Biotechnology, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Bruna Braga Dantas
- Department of Biotechnology, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil
| | | |
Collapse
|
20
|
Qasem AMA, Zeng Z, Rowan MG, Blagbrough IS. Norditerpenoid alkaloids from Aconitum and Delphinium: structural relevance in medicine, toxicology, and metabolism. Nat Prod Rep 2021; 39:460-473. [PMID: 34636385 DOI: 10.1039/d1np00029b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 77 A.D. up to 2020Norditerpenoid alkaloids (NDA), typically N-ethylpiperidine containing C19 or C18 natural product diterpenes, are hexacycles with several contiguous often oxygenated stereocentres. As a function of their structural complexity, they display important pharmacological activities. The processed plants are used as important folk drugs and four NDAs have now been clinically approved. Many metabolism studies on Aconitum alkaloids have been reported as the understanding of their biotransformation in living systems and in cell-free systems is important for the development of these alkaloids as drugs. This Highlight sets out the missing links in NDA biosynthesis, their biological applications, SAR, toxicity, metabolism, and analytical studies.
Collapse
Affiliation(s)
- Ashraf M A Qasem
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| | - Ziyu Zeng
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| | - Michael G Rowan
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| | - Ian S Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
21
|
Song HP, Zhang H, Hu R, Xiao HH, Guo H, Yuan WH, Han XT, Xu XY, Zhang X, Ding ZX, Zhao MY, Kang TG, Sun HY, Chang A, Chen YH, Xie M. A strategy to discover lead chemome from traditional Chinese medicines based on natural chromatogram-effect correlation (NCEC) and natural structure-effect correlation (NSEC): Mahonia bealei and Mahonia fortunei as a case study. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1181:122922. [PMID: 34500403 DOI: 10.1016/j.jchromb.2021.122922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022]
Abstract
Lead compound is an important concept for modern drug discovery. In this study, a new concept of lead chemome and an efficient strategy to discover lead chemome were proposed. Compared with the concept of lead compound, lead chemome can provide not only the starting point for drug development, but also the direction for structure optimization. Two traditional Chinese medicines of Mahonia bealei and Mahonia fortunei were used as examples to illustrate the strategy. Based on natural chromatogram-effect correlation (NCEC), berberine, palmatine and jatrorrhizine were discovered as acetylcholinesterase (AchE) inhibitors. Taking the three compounds as template molecules, a lead chemome consisting of 10 structurally related natural compounds were generated through natural structure-effect correlation (NSEC). In the lead chemome, the IC50 values of jatrorrhizine, berberine, coptisine, palmatine and epiberberine are at nanomolar level, which are comparable to a widely used drug of galantamine. Pharmacophore modeling shows that the positive ionizable group and aromatic rings are important substructures for AchE inhibition. Molecular docking further shows that pi-cation interaction and pi-pi stacking are critical for compounds to maintain nanomolar IC50 values. The structure-activity information is helpful for drug design and structure optimization. This work also expanded the traditional understanding of "stem is the medicinal part of Mahonia bealei and Mahonia fortunei". Actually, all parts except the leaf of Mahonia bealei exhibited potent AchE-inhibitory activity. This study provides not only a strategy to discover lead chemome for modern drug development, but also a reference for the application of different parts of medicinal plants.
Collapse
Affiliation(s)
- Hui-Peng Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Key Laboratory of Ministry of Education for Traditional Chinese Medicine Visera-State Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Hui Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Rui Hu
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hong-He Xiao
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hua Guo
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wei-Hong Yuan
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xin-Tong Han
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xin-Yi Xu
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xin Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zi-Xuan Ding
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ming-Yue Zhao
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ting-Guo Kang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui-Yang Sun
- China Pharmaceutical University, Nanjing 210009, China
| | - An Chang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yue-Hua Chen
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Ming Xie
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
22
|
Miao SX, Wan LX, He ZX, Zhou XL, Li X, Gao F. Pd-Catalyzed Direct Diversification of Natural Anti-Alzheimer's Disease Drug: Synthesis and Biological Evaluation of N-Aryl Huperzine A Analogues. JOURNAL OF NATURAL PRODUCTS 2021; 84:2374-2379. [PMID: 34445873 DOI: 10.1021/acs.jnatprod.1c00600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The first systematic direct diversification of a complex natural product by metal-catalyzed N-H functionalization was carried out. A new series of N-(hetero)aryl analogues (1-32) of the natural anti-Alzheimer's disease drug huperzine A (HPA) was prepared via palladium-catalyzed Buchwald-Hartwig cross-coupling reactions of HPA with various aryl bromides in good yields. Most of the N-aryl-huperzine A (N-aryl-HPA) analogues showed good acetylcholinesterase (AChE) inhibitory activity in in vitro experiments. Three arylated huperzine A analogues (14, 19, and 30) exhibited stronger anti-AChE activity than HPA. The 5-methoxy-2-pyridyl analogue (30) displayed the most potent AChE inhibition activity, with an IC50 value of 1.5 μM, which was 7.6-fold more active than HPA. Compound 30 also exhibited better neuroprotective activity for H2O2-induced damage in SH-SY5Y cells than HPA. Structure-activity relationship analysis suggested that the electron density of the installed aromatic ring or heteroaromatic ring played a significant role in inducing the AChE inhibition activity. Overall, compound 30 showed the advantages of easy synthesis, high potency and selectivity, and improved neuroprotection, making it a potential huperzine-type lead compound for Alzheimer's disease drug development.
Collapse
Affiliation(s)
- Shi-Xing Miao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Lin-Xi Wan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Zhen-Xiang He
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xiaohuan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Feng Gao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
23
|
Lu J, Xu JB, Li X, Zhou XL, Zhang C, Gao F. Three New C 19-Diterpenoid Alkaloids from Aconitum novoluridum. Chem Pharm Bull (Tokyo) 2021; 69:811-816. [PMID: 34334527 DOI: 10.1248/cpb.c21-00262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three new aconitine-type C19-diterpenoid alkaloid namely novolunines A (1), B (2), and C (3), along with fifteen known diterpenoid alkaloids were isolated from the roots of Aconitum novoluridum, whose phytochemical investigations have never been reported before. The structures of three new alkaloids were established on the basis of spectra data (high-resolution electrospray ionization (HR-ESI)-MS, IR, one dimensional (1D)- and 2D-NMR). Noteworthily, novolunines A (1) and B (2) are two diterpenoid alkaloids bearing conformational isomerism. In addition, the diterpenoid alkaloids 1-3 did not show any anti-acetylcholinesterase (AChE) or anti-inflammatory activities.
Collapse
Affiliation(s)
- Jing Lu
- School of Life Science and Engineering, Southwest Jiaotong University
| | - Jin-Bu Xu
- School of Life Science and Engineering, Southwest Jiaotong University
| | - Xiaohuan Li
- School of Life Science and Engineering, Southwest Jiaotong University
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University
| | - Chungu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University
| | - Feng Gao
- School of Life Science and Engineering, Southwest Jiaotong University
| |
Collapse
|