1
|
Maher S, Wynne K, Zhernovkov V, Halasz M. A temporal (phospho-)proteomic dataset of neurotrophic receptor tyrosine kinase signalling in neuroblastoma. Sci Data 2024; 11:1111. [PMID: 39389992 PMCID: PMC11467210 DOI: 10.1038/s41597-024-03965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Neurotrophic receptor tyrosine kinases (TrkA, TrkB, TrkC), despite their homology, contribute to the clinical heterogeneity of the childhood cancer neuroblastoma. TrkA expression is associated with low-stage disease and is often seen with spontaneous tumour regression. Conversely, TrkB is present in unfavourable neuroblastomas that often harbour amplification of the MYCN oncogene. The role of TrkC is less clearly defined, although some studies suggest its association with a favourable outcome. Understanding the differences in activity of Trk receptors that drive divergent clinical phenotypes as well as the influence of MYCN amplification on downstream Trk receptor signalling remains poorly understood. Here, we present a comprehensive label-free mass spectrometry-based total proteomics and phosphoproteomics dataset (432 raw files with FragPipe search outputs; available on PRIDE with accession number PXD054441) where we identified and quantified 4,907 proteins, 16,744 phosphosites and 5,084 phosphoproteins, derived from NGF/BDNF/NT-3 treated TrkA/B/C-overexpressing neuroblastoma cells with differential MYCN status. Analysing our dataset offers valuable insights into TrkA/B/C receptor signalling in neuroblastoma and its modulation by MYCN status; and holds potential for advancing therapeutic strategies in this challenging childhood cancer.
Collapse
Affiliation(s)
- Stephanie Maher
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Melinda Halasz
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Takita J. Molecular Basis and Clinical Features of Neuroblastoma. JMA J 2021; 4:321-331. [PMID: 34796286 PMCID: PMC8580727 DOI: 10.31662/jmaj.2021-0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 12/05/2022] Open
Abstract
Neuroblastoma, a neoplasm of the sympathetic nervous system, originates from neuroblastoma stem cells during embryogenesis. It exhibits unique clinical features including a tendency for spontaneous regression of tumors in infants and a high frequency of metastatic disease at diagnosis in patients aged over 18 months. Genetic risk factors and epigenetic dysregulation also play a significant role in the development of neuroblastoma. Over the past decade, our understanding of this disease has advanced considerably. This has included the identification of chromosomal copy number aberrations specific to neuroblastoma development, risk groups, and disease stage. However, high-risk neuroblastoma remains a therapeutic challenge for pediatric oncologists. New therapeutic approaches have been developed, either as alternatives to conventional chemotherapy or in combination, to overcome the dismal prognosis. Particularly promising strategies are targeted therapies that directly affect cancer cells or cancer stem cells while exhibiting minimal effect on healthy cells. This review summarizes our understanding of neuroblastoma biology and prognostic features and focuses on novel therapeutic strategies for this intractable disease.
Collapse
Affiliation(s)
- Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Lazic D, Kromp F, Rifatbegovic F, Repiscak P, Kirr M, Mivalt F, Halbritter F, Bernkopf M, Bileck A, Ussowicz M, Ambros IM, Ambros PF, Gerner C, Ladenstein R, Ostalecki C, Taschner-Mandl S. Landscape of Bone Marrow Metastasis in Human Neuroblastoma Unraveled by Transcriptomics and Deep Multiplex Imaging. Cancers (Basel) 2021; 13:cancers13174311. [PMID: 34503120 PMCID: PMC8431445 DOI: 10.3390/cancers13174311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
While the bone marrow attracts tumor cells in many solid cancers leading to poor outcome in affected patients, comprehensive analyses of bone marrow metastases have not been performed on a single-cell level. We here set out to capture tumor heterogeneity and unravel microenvironmental changes in neuroblastoma, a solid cancer with bone marrow involvement. To this end, we employed a multi-omics data mining approach to define a multiplex imaging panel and developed DeepFLEX, a pipeline for subsequent multiplex image analysis, whereby we constructed a single-cell atlas of over 35,000 disseminated tumor cells (DTCs) and cells of their microenvironment in the metastatic bone marrow niche. Further, we independently profiled the transcriptome of a cohort of 38 patients with and without bone marrow metastasis. Our results revealed vast diversity among DTCs and suggest that FAIM2 can act as a complementary marker to capture DTC heterogeneity. Importantly, we demonstrate that malignant bone marrow infiltration is associated with an inflammatory response and at the same time the presence of immuno-suppressive cell types, most prominently an immature neutrophil/granulocytic myeloid-derived suppressor-like cell type. The presented findings indicate that metastatic tumor cells shape the bone marrow microenvironment, warranting deeper investigations of spatio-temporal dynamics at the single-cell level and their clinical relevance.
Collapse
Affiliation(s)
- Daria Lazic
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Florian Kromp
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
- Software Competence Center Hagenberg (SCCH), 4232 Hagenberg, Austria
| | - Fikret Rifatbegovic
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Peter Repiscak
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Michael Kirr
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (M.K.); (C.O.)
| | - Filip Mivalt
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Florian Halbritter
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Marie Bernkopf
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (C.G.)
| | - Marek Ussowicz
- Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow, Transplantation, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Inge M. Ambros
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Peter F. Ambros
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (C.G.)
| | - Ruth Ladenstein
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Christian Ostalecki
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (M.K.); (C.O.)
| | - Sabine Taschner-Mandl
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
- Correspondence: ; Tel.: +43-1-40470-4050
| |
Collapse
|
4
|
Chernov AN, Alaverdian DA, Glotov OS, Talabaev MV, Urazov SP, Shcherbak SG, Renieri A, Frullanti E, Shamova O. Related expression of TRKA and P75 receptors and the changing copy number of MYC-oncogenes determine the sensitivity of brain tumor cells to the treatment of the nerve growth factor in combination with cisplatin and temozolomide. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0109/dmdi-2020-0109.xml. [PMID: 32887179 DOI: 10.1515/dmdi-2020-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Objectives Oncological diseases are an urgent medical and social problem. The chemotherapy induces not only the death of the tumor cells but also contributes to the development of their multidrug resistance and death of the healthy cells and tissues. In this regard, the search for the new pharmacological substances with anticancer activity against drug-resistant tumors is of utmost importance. In the present study we primarily investigated the correlation between the expression of TrkA and p75 receptors with the nerve growth factor (NGF) and cisplatin or temozolomide sensitivity of anaplastic astrocytoma (AA), glioblastoma (GB) and medulloblastoma (MB) cell cultures. We then evaluated the changing of copy numbers of MYCC and MYCN and its correlation with cytotoxicity index (CI) in MB cells under NGF exposition. Methods The primary cell cultures were obtained from the tumor biopsy samples of the patients with AA (n=5), GB (n=7) or MB (n=25) prior to radiotherapy and chemotherapy. The cytotoxicity effect of NGF and its combinations with cisplatin or temozolomide, the relative expression of TrkA and p75 receptors, its correlations with CI in AA, GB and MB primary cell cultures were studied by trypan blue cytotoxicity assay and immunofluorescence staining respectively. The effect of NGF on MYCC and MYCN copy numbers in MB cell cultures was studied by fluorescence in situ hybridization. Results We found that the expression of TrkA and p75 receptors (p=0.03) and its ratio (p=0.0004) depends on the sensitivity of AA and GB cells to treatment with NGF and its combinations with cisplatin or temozolomide. NGF reduces (p<0.05) the quantity of MB cells with six or eight copies of MYCN and three or eight copies of MYCC. Besides, NGF increases (p<0.05) the quantity of MB cells containing two copies of both oncogenes. The negative correlation (r=-0.65, p<0.0001) is established between MYCC average copy numbers and CI of NGF in MB cells. Conclusions The relative expression of NGF receptors (TrkA/p75) and its correlation with CI of NGF and its combinations in AA and GB cells point to the mechanism involving a cell death signaling pathway. NGF downregulates (p<0.05) some increased copy numbers of MYCC and MYCN in the human MB cell cultures, and upregulates normal two copies of both oncogenes (p<0.05).
Collapse
Affiliation(s)
- Alexandr N Chernov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| | - Diana A Alaverdian
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Oleg S Glotov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Michael V Talabaev
- Department of Pediatric Neurosurgery, Republican Center for Neurology and Neurosurgery, Minsk, The Republic of Belarus
| | - Stanislav P Urazov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Sergei G Shcherbak
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Elisa Frullanti
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Olga Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| |
Collapse
|
5
|
Chernov AN, Alaverdian DA, Glotov OS, Talabaev MV, Urazov SP, Shcherbak SG, Renieri A, Frullanti E, Shamova O. Related expression of TRKA and P75 receptors and the changing copy number of MYC-oncogenes determine the sensitivity of brain tumor cells to the treatment of the nerve growth factor in combination with cisplatin and temozolomide. Drug Metab Pers Ther 2020; 35:dmpt-2020-0109. [PMID: 34704697 DOI: 10.1515/dmpt-2020-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Oncological diseases are an urgent medical and social problem. The chemotherapy induces not only the death of the tumor cells but also contributes to the development of their multidrug resistance and death of the healthy cells and tissues. In this regard, the search for the new pharmacological substances with anticancer activity against drug-resistant tumors is of utmost importance. In the present study we primarily investigated the correlation between the expression of TrkA and p75 receptors with the nerve growth factor (NGF) and cisplatin or temozolomide sensitivity of anaplastic astrocytoma (AA), glioblastoma (GB) and medulloblastoma (MB) cell cultures. We then evaluated the changing of copy numbers of MYCC and MYCN and its correlation with cytotoxicity index (CI) in MB cells under NGF exposition. METHODS The primary cell cultures were obtained from the tumor biopsy samples of the patients with AA (n=5), GB (n=7) or MB (n=25) prior to radiotherapy and chemotherapy. The cytotoxicity effect of NGF and its combinations with cisplatin or temozolomide, the relative expression of TrkA and p75 receptors, its correlations with CI in AA, GB and MB primary cell cultures were studied by trypan blue cytotoxicity assay and immunofluorescence staining respectively. The effect of NGF on MYCC and MYCN copy numbers in MB cell cultures was studied by fluorescence in situ hybridization. RESULTS We found that the expression of TrkA and p75 receptors (p=0.03) and its ratio (p=0.0004) depends on the sensitivity of AA and GB cells to treatment with NGF and its combinations with cisplatin or temozolomide. NGF reduces (p<0.05) the quantity of MB cells with six or eight copies of MYCN and three or eight copies of MYCC. Besides, NGF increases (p<0.05) the quantity of MB cells containing two copies of both oncogenes. The negative correlation (r=-0.65, p<0.0001) is established between MYCC average copy numbers and CI of NGF in MB cells. CONCLUSIONS The relative expression of NGF receptors (TrkA/p75) and its correlation with CI of NGF and its combinations in AA and GB cells point to the mechanism involving a cell death signaling pathway. NGF downregulates (p<0.05) some increased copy numbers of MYCC and MYCN in the human MB cell cultures, and upregulates normal two copies of both oncogenes (p<0.05).
Collapse
Affiliation(s)
- Alexandr N Chernov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation.,Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| | - Diana A Alaverdian
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Oleg S Glotov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Michael V Talabaev
- Department of Pediatric Neurosurgery, Republican Center for Neurology and Neurosurgery, Minsk, The Republic of Belarus
| | - Stanislav P Urazov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Sergei G Shcherbak
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Elisa Frullanti
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Olga Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| |
Collapse
|
6
|
Liu J, Wu XW, Hao XW, Duan YH, Wu LL, Zhao J, Zhou XJ, Zhu CZ, Wei B, Dong Q. Spontaneous regression of stage III neuroblastoma: A case report. World J Clin Cases 2020; 8:436-443. [PMID: 32047796 PMCID: PMC7000927 DOI: 10.12998/wjcc.v8.i2.436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common type of extracranial solid tumour in children. The overall prognosis of NB is poor, but at the same time, NB shows significant clinical diversity. NB can demonstrate spontaneous regression or can differentiate into benign ganglioneuroma. CASE SUMMARY This study retrospectively analyzed the clinical data of a patient with spontaneous regression of stage III NB who was admitted in May 2015. Studies of the spontaneous regression of NB published from October 1946 to September 2019 were retrieved through PubMed. The clinical manifestations, diagnosis, treatment, and follow-up results were analysed. CONCLUSION Spontaneous regression of stage III NB is rare in the clinic. The report of this case is an important supplement to the study of the spontaneous regression of NB.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
- Department of Pediatric Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui Province, China
| | - Xiong-Wei Wu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Xi-Wei Hao
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Yu-He Duan
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Ling-Ling Wu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Jing Zhao
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Xian-Jun Zhou
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Cheng-Zhan Zhu
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Qingdao 266000, Shandong Province, China
| | - Bin Wei
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Qingdao 266000, Shandong Province, China
| | - Qian Dong
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
7
|
MacArthur IC, Bei Y, Garcia HD, Ortiz MV, Toedling J, Klironomos F, Rolff J, Eggert A, Schulte JH, Kentsis A, Henssen AG. Prohibitin promotes de-differentiation and is a potential therapeutic target in neuroblastoma. JCI Insight 2019; 5:127130. [PMID: 30998507 DOI: 10.1172/jci.insight.127130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gain of the long arm of chromosome 17 (17q) is a cytogenetic hallmark of high-risk neuroblastoma, yet its contribution to neuroblastoma pathogenesis remains incompletely understood. Combining whole-genome and RNA sequencing of neuroblastomas, we identified the prohibitin (PHB) gene as highly expressed in tumors with 17q gain. High PHB expression correlated with poor prognosis and was associated with loss of gene expression programs promoting neuronal development and differentiation. PHB depletion induced differentiation and apoptosis and slowed cell cycle progression of neuroblastoma cells, at least in part through impaired ERK1/2 activation. Conversely, ectopic expression of PHB was sufficient to increase proliferation of neuroblastoma cells and was associated with suppression of markers associated with neuronal differentiation and favorable neuroblastoma outcome. Thus, PHB is a 17q oncogene in neuroblastoma that promotes tumor cell proliferation, and de-differentiation.
Collapse
Affiliation(s)
- Ian C MacArthur
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Medical Scientist Training Program, Albert Einstein College of Medicine, New York, New York, USA
| | - Yi Bei
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heathcliff Dorado Garcia
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael V Ortiz
- Department of Pediatrics and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joern Toedling
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Filippos Klironomos
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jana Rolff
- Experimental Pharmacology and Oncology, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium, Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium, Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Alex Kentsis
- Department of Pediatrics and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Departments of Pharmacology, Pediatrics, and Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, USA
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium, Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center of the Max Delbrück Center and Charité Berlin, Berlin, Germany
| |
Collapse
|
8
|
Pacenta HL, Macy ME. Entrectinib and other ALK/TRK inhibitors for the treatment of neuroblastoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3549-3561. [PMID: 30425456 PMCID: PMC6204873 DOI: 10.2147/dddt.s147384] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RTK plays important roles in many cellular signaling processes involved in cancer growth and development. ALK, TRKA, TRKB, TRKC, and ROS1 are RTKs involved in several canonical pathways related to oncogenesis. These proteins can be genetically altered in malignancies, leading to receptor activation and constitutive signaling through their respective downstream pathways. Neuroblastoma (NB) is the most common extracranial solid tumor in childhood, and despite intensive therapy, there is a high mortality rate in cases with a high-risk disease. Alterations of ALK and differential expression of TRK proteins are reported in a proportion of NB. Several inhibitors of ALK or TRKA/B/C have been evaluated both preclinically and clinically in the treatment of NB. These agents have had variable success and are not routinely used in the treatment of NB. Entrectinib (RXDX-101) is a pan-ALK, TRKA, TRKB, TRKC, and ROS1 inhibitor with activity against tumors with ALK, NTRK1, NTRK2, NTRK3, and ROS1 alterations in Phase I clinical trials in adults. Entrectinib’s activity against both ALK and TRK proteins suggests a possible role in NB treatment, and it is currently under investigation in both pediatric and adult oncology patients.
Collapse
Affiliation(s)
- Holly L Pacenta
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA,
| | - Margaret E Macy
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA,
| |
Collapse
|
9
|
Abstract
Neuroblastomas are characterized by heterogeneous clinical behavior, from spontaneous regression or differentiation into a benign ganglioneuroma, to relentless progression despite aggressive, multimodality therapy. Indeed, neuroblastoma is unique among human cancers in terms of its propensity to undergo spontaneous regression. The strongest evidence for this comes from the mass screening studies conducted in Japan, North America and Europe and it is most evident in infants with stage 4S disease. This propensity is associated with a pattern of genomic change characterized by whole chromosome gains rather than segmental chromosome changes but the mechanism(s) underlying spontaneous regression are currently a matter of speculation. There is evidence to support several possible mechanisms of spontaneous regression in neuroblastomas: (1) neurotrophin deprivation, (2) loss of telomerase activity, (3) humoral or cellular immunity and (4) alterations in epigenetic regulation and possibly other mechanisms. It is likely that a better understanding of the mechanisms of spontaneous regression will help to identify targeted therapeutic approaches for these tumors. The most easily targeted mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A (TrkA) pathway. Pan-Trk inhibitors are currently in clinical trials and so Trk inhibition might be used as the first line of therapy in infants with biologically favorable tumors that require treatment. Alternative approaches consist of breaking immune tolerance to tumor antigens but approaches to telomere shortening or epigenetic regulation are not easily druggable. The different mechanisms of spontaneous neuroblastoma regression are reviewed here, along with possible therapeutic approaches.
Collapse
Affiliation(s)
- Garrett M Brodeur
- Division of Oncology, Department of Pediatrics, the Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Oncology Research, The Children's Hospital of Philadelphia, CTRB Rm. 3018, 3501 Civic Center Blvd., Philadelphia, PA, 19104-4302, USA.
| |
Collapse
|
10
|
Ratner N, Brodeur GM, Dale RC, Schor NF. The "neuro" of neuroblastoma: Neuroblastoma as a neurodevelopmental disorder. Ann Neurol 2016; 80:13-23. [PMID: 27043043 DOI: 10.1002/ana.24659] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a childhood cancer derived from cells of neural crest origin. The hallmarks of its enigmatic character include its propensity for spontaneous regression under some circumstances and its association with paraneoplastic opsoclonus, myoclonus, and ataxia. The neurodevelopmental underpinnings of its origins may provide important clues for development of novel therapeutic and preventive agents for this frequently fatal malignancy and for the associated paraneoplastic syndromes. Ann Neurol 2016;80:13-23.
Collapse
Affiliation(s)
- Nancy Ratner
- Department of Pediatrics, Cincinnati Children's Hospital and University of Cincinnati, Cincinnati, OH
| | - Garrett M Brodeur
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Russell C Dale
- Clinical School, the Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Nina F Schor
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
11
|
Tilan J, Kitlinska J. Neuropeptide Y (NPY) in tumor growth and progression: Lessons learned from pediatric oncology. Neuropeptides 2016; 55:55-66. [PMID: 26549645 PMCID: PMC4755837 DOI: 10.1016/j.npep.2015.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 12/11/2022]
Abstract
Neuropeptide Y (NPY) is a sympathetic neurotransmitter with pleiotropic actions, many of which are highly relevant to tumor biology. Consequently, the peptide has been implicated as a factor regulating the growth of a variety of tumors. Among them, two pediatric malignancies with high endogenous NPY synthesis and release - neuroblastoma and Ewing sarcoma - became excellent models to investigate the role of NPY in tumor growth and progression. The stimulatory effect on tumor cell proliferation, survival, and migration, as well as angiogenesis in these tumors, is mediated by two NPY receptors, Y2R and Y5R, which are expressed in either a constitutive or inducible manner. Of particular importance are interactions of the NPY system with the tumor microenvironment, as hypoxic conditions commonly occurring in solid tumors strongly activate the NPY/Y2R/Y5R axis. This activation is triggered by hypoxia-induced up-regulation of Y2R/Y5R expression and stimulation of dipeptidyl peptidase IV (DPPIV), which converts NPY to a selective Y2R/Y5R agonist, NPY(3-36). While previous studies focused mainly on the effects of NPY on tumor growth and vascularization, they also provided insight into the potential role of the peptide in tumor progression into a metastatic and chemoresistant phenotype. This review summarizes our current knowledge of the role of NPY in neuroblastoma and Ewing sarcoma and its interactions with the tumor microenvironment in the context of findings in other malignancies, as well as discusses future directions and potential clinical implications of these discoveries.
Collapse
Affiliation(s)
- Jason Tilan
- Department of Nursing, School of Nursing and Health Studies, Georgetown University, Washington, DC 20057, USA; Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington, DC 20057, USA
| | - Joanna Kitlinska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
12
|
Iyer R, Wehrmann L, Golden RL, Naraparaju K, Croucher JL, MacFarland SP, Guan P, Kolla V, Wei G, Cam N, Li G, Hornby Z, Brodeur GM. Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model. Cancer Lett 2016; 372:179-86. [PMID: 26797418 DOI: 10.1016/j.canlet.2016.01.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 02/07/2023]
Abstract
Neuroblastoma (NB) is one of the most common and deadly childhood solid tumors. These tumors are characterized by clinical heterogeneity, from spontaneous regression to relentless progression, and the Trk family of neurotrophin receptors plays an important role in this heterogeneous behavior. We wanted to determine if entrectinib (RXDX-101, Ignyta, Inc.), an oral Pan-Trk, Alk and Ros1 inhibitor, was effective in our NB model. In vitro effects of entrectinib, either as a single agent or in combination with the chemotherapeutic agents Irinotecan (Irino) and Temozolomide (TMZ), were studied on an SH-SY5Y cell line stably transfected with TrkB. In vivo growth inhibition activity was studied in NB xenografts, again as a single agent or in combination with Irino-TMZ. Entrectinib significantly inhibited the growth of TrkB-expressing NB cells in vitro, and it significantly enhanced the growth inhibition of Irino-TMZ when used in combination. Single agent therapy resulted in significant tumor growth inhibition in animals treated with entrectinib compared to control animals [p < 0.0001 for event-free survival (EFS)]. Addition of entrectinib to Irino-TMZ also significantly improved the EFS of animals compared to vehicle or Irino-TMZ treated animals [p < 0.0001 for combination vs. control, p = 0.0012 for combination vs. Irino-TMZ]. We show that entrectinib inhibits growth of TrkB expressing NB cells in vitro and in vivo, and that it enhances the efficacy of conventional chemotherapy in in vivo models. Our data suggest that entrectinib is a potent Trk inhibitor and should be tested in clinical trials for NBs and other Trk-expressing tumors.
Collapse
Affiliation(s)
- Radhika Iyer
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lea Wehrmann
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca L Golden
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Koumudi Naraparaju
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jamie L Croucher
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Suzanne P MacFarland
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peng Guan
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Venkatadri Kolla
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ge Wei
- The Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Cam
- The Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gang Li
- The Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zachary Hornby
- The Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Ignyta Inc., San Diego, CA 92121, USA.
| |
Collapse
|
13
|
Higashi M, Kolla V, Iyer R, Naraparaju K, Zhuang T, Kolla S, Brodeur GM. Retinoic acid-induced CHD5 upregulation and neuronal differentiation of neuroblastoma. Mol Cancer 2015; 14:150. [PMID: 26245651 PMCID: PMC4527355 DOI: 10.1186/s12943-015-0425-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023] Open
Abstract
Background Chromodomain-helicase DNA binding protein 5 (CHD5) is an important tumor suppressor gene deleted from 1p36.31 in neuroblastomas (NBs). High CHD5 expression is associated with a favorable prognosis, but deletion or low expression is frequent in high-risk tumors. We explored the role of CHD5 expression in the neuronal differentiation of NB cell lines. Methods NB cell lines SH-SY5Y (SY5Y), NGP, SK-N-DZ, IMR5, LAN5, SK-N-FI, NB69 and SH-EP were treated with 1–10 μM 13-cis-retinoic acid (13cRA) for 3–12 days. qRT-PCR and Western blot analyses were performed to measure mRNA and protein expression levels, respectively. Morphological differences were examined by both phase contrast and immunofluorescence studies. Results Treatment of SY5Y cells with 13cRA caused upregulation of CHD5 expression in a time- and dose-dependent manner (1, 5, or 10 μM for 7 or 12 days) and also induced neuronal differentiation. Furthermore, both NGP and SK-N-DZ cells showed CHD5 upregulation and neuronal differentiation after 13cRA treatment. In contrast, 13cRA treatment of IMR5, LAN5, or SK-N-FI induced neither CHD5 expression nor neuronal differentiation. NB69 cells showed two different morphologies (neuronal and substrate adherent) after 12 days treatment with 10 μM of 13cRA. CHD5 expression was high in the neuronal cells, but low/absent in the flat, substrate adherent cells. Finally, NGF treatment caused upregulation of CHD5 expression and neuronal differentiation in SY5Y cells transfected to express TrkA (SY5Y-TrkA) but not in TrkA-null parental SY5Y cells, and both changes were blocked by a pan-TRK inhibitor. Conclusions Treatment with 13cRA induces neuronal differentiation only in NB cells that upregulate CHD5. In addition, NGF induced CHD5 upregulation and neuronal differentiation only in TrkA expressing cells. Together, these results suggest that CHD5 is downstream of TrkA, and CHD5 expression may be crucial for neuronal differentiation induced by either 13cRA or TrkA/NGF signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0425-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mayumi Higashi
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA. .,Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602 - 8566, Japan.
| | - Venkatadri Kolla
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Radhika Iyer
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Koumudi Naraparaju
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Tiangang Zhuang
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Sriharsha Kolla
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Garrett M Brodeur
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| |
Collapse
|
14
|
BMCC1, which is an interacting partner of BCL2, attenuates AKT activity, accompanied by apoptosis. Cell Death Dis 2015; 6:e1607. [PMID: 25611382 PMCID: PMC4669766 DOI: 10.1038/cddis.2014.568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/19/2014] [Accepted: 10/30/2014] [Indexed: 11/08/2022]
Abstract
BNIP2 and Cdc42GAP homology (BCH) motif-containing molecule at the carboxyl-terminal region 1 (BMCC1) gene is highly expressed in patients with favorable neuroblastoma (NB). It encodes a 340-kDa protein with a conserved BCH scaffold domain that may regulate signaling networks and multiple cellular functions, including apoptosis. In this study, we determined the mechanism by which BMCC1 promotes apoptosis in human NB and non-NB cells, as BMCC1 is normally expressed in various organs, particularly in neuronal and epithelial tissues. We demonstrated in this report that BMCC1 was induced by DNA damage, one of the triggers of intrinsic apoptosis. Accordingly, we investigated whether BMCC1 expression impacts intracellular signals in the regulation of apoptosis via its C-terminal region containing BCH scaffold domain. BMCC1 decreased phosphorylation of survival signals on AKT and its upstream kinase PDK1. BMCC1 upregulation was correlated with the activation of forkhead box-O3a (FOXO3a) (a downstream inducer of apoptosis, which is suppressed by AKT) and induction of BCL2 inhibitor BIM, suggesting that BMCC1 negatively regulates phosphorylation pathway of AKT, resulted in apoptosis. In addition, we found that BNIP2 homology region of BMCC1 interacts with BCL2. Intrinsic apoptosis induced by DNA damage was enhanced by BMCC1 overexpression, and was diminished by knockdown of BMCC1. Taken together, we conclude that BMCC1 promotes apoptosis at multiple steps in AKT-mediated survival signal pathway. These steps include physical interaction with BCL2 and attenuation of AKT-dependent inhibition of FOXO3a functions, such as transcriptional induction of BIM and phosphorylation of ataxia telangiectasia-mutated (ATM) after DNA damage. We propose that downregulation of BMCC1 expression, which is frequently observed in unfavorable NB and epithelial-derived cancers, may facilitate tumor development by abrogating DNA damage repair and apoptosis.
Collapse
|
15
|
Abstract
Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches.
Collapse
Affiliation(s)
- Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Rochelle Bagatell
- Division of Oncology, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| |
Collapse
|
16
|
Croucher JL, Iyer R, Li N, Molteni V, Loren J, Gordon WP, Tuntland T, Liu B, Brodeur GM. TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts. Cancer Chemother Pharmacol 2014; 75:131-41. [PMID: 25394774 DOI: 10.1007/s00280-014-2627-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/06/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Neuroblastoma (NB) is one of the most common and deadly pediatric solid tumors. NB is characterized by clinical heterogeneity, from spontaneous regression to relentless progression despite intensive multimodality therapy. There is compelling evidence that members of the tropomyosin receptor kinase (Trk) family play important roles in these disparate clinical behaviors. Indeed, TrkB and its ligand, brain-derived neurotrophic factor (BDNF), are expressed in 50-60 % of high-risk NBs. The BDNF/TrkB autocrine pathway enhances survival, invasion, metastasis, angiogenesis and drug resistance. METHODS We tested a novel pan-Trk inhibitor, GNF-4256 (Genomics Institute of the Novartis Research Foundation), in vitro and in vivo in a nu/nu athymic xenograft mouse model to determine its efficacy in inhibiting the growth of TrkB-expressing human NB cells (SY5Y-TrkB). Additionally, we assessed the ability of GNF-4256 to enhance NB cell growth inhibition in vitro and in vivo, when combined with conventional chemotherapeutic agents, irinotecan and temozolomide (Irino-TMZ). RESULTS GNF-4256 inhibits TrkB phosphorylation and the in vitro growth of TrkB-expressing NBs in a dose-dependent manner, with an IC₅₀ around 7 and 50 nM, respectively. Furthermore, GNF-4256 inhibits the growth of NB xenografts as a single agent (p < 0.0001 for mice treated at 40 or 100 mg/kg BID, compared to controls), and it significantly enhances the antitumor efficacy of irinotecan plus temozolomide (Irino-TMZ, p < 0.0071 compared to Irino-TMZ alone). CONCLUSIONS Our data suggest that GNF-4256 is a potent and specific Trk inhibitor capable of significantly slowing SY5Y-TrkB growth, both in vitro and in vivo. More importantly, the addition of GNF-4256 significantly enhanced the antitumor efficacy of Irino-TMZ, as measured by in vitro and in vivo growth inhibition and increased event-free survival in a mouse xenograft model, without additional toxicity. These data strongly suggest that inhibition of TrkB with GNF-4256 can enhance the efficacy of current chemotherapeutic treatment for recurrent/refractory high-risk NBs with minimal or no additional toxicity.
Collapse
Affiliation(s)
- Jamie L Croucher
- Oncology Research, The Children's Hospital of Philadelphia, CTRB Rm. 3018, 3501 Civic Center Blvd., Philadelphia, PA, 19104-4302, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Czarnecka M, Trinh E, Lu C, Kuan-Celarier A, Galli S, Hong SH, Tilan JU, Talisman N, Izycka-Swieszewska E, Tsuei J, Yang C, Martin S, Horton M, Christian D, Everhart L, Maheswaran I, Kitlinska J. Neuropeptide Y receptor Y5 as an inducible pro-survival factor in neuroblastoma: implications for tumor chemoresistance. Oncogene 2014; 34:3131-43. [PMID: 25132261 PMCID: PMC4333135 DOI: 10.1038/onc.2014.253] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/19/2014] [Accepted: 06/20/2014] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) is a pediatric tumor of neural crest origin with heterogeneous phenotypes. While low stage tumors carry a favorable prognosis, over 50% of high risk NB relapses after treatment with a fatal outcome. Thus, developing therapies targeting refractory NB remains an unsolved clinical problem. Brain-derived neurotrophic factor (BDNF) and its TrkB receptor are known to protect NB cells from chemotherapy-induced cell death, while neuropeptide Y (NPY), acting via its Y2 receptor (Y2R), is an autocrine proliferative and angiogenic factor crucial for maintaining NB tumor growth. Here, we show that in NB cells, BDNF stimulates the synthesis of NPY and induces expression of another one of its receptors, Y5R. In human NB tissues, the expression of NPY and Y5R positively correlated with the expression of BDNF and TrkB. Functionally, BDNF triggered Y5R internalization in NB cells, while Y5R antagonist inhibited BDNF-induced p44/42-MAPK activation and its pro-survival activity. These observations suggested TrkB-Y5R transactivation that resulted in cross-talk between their signaling pathways. Additionally, NPY and Y5R were up-regulated in a BDNF-independent manner in NB cells under pro-apoptotic conditions, such as serum deprivation and chemotherapy, as well as in cell lines and tissues derived from post-treatment NB tumors. Blocking Y5R in chemoresistant NB cells rich in this receptor sensitized them to chemotherapy-induced apoptosis and inhibited their growth in vivo by augmenting cell death. In summary, the NPY/Y5R axis is an inducible survival pathway activated in NB by BDNF or cellular stress. Upon such activation, Y5R augments the pro-survival effect of BDNF via its interactions with TrkB receptor and exerts an additional BDNF-independent anti-apoptotic effect, both of which contribute to NB chemoresistance. Therefore, the NPY/Y5R pathway may become a novel therapeutic target for patients with refractory NB, thus far an incurable form of this disease.
Collapse
Affiliation(s)
- M Czarnecka
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - E Trinh
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - C Lu
- McGovern Institute, Massachusetts Institute of Technology, Boston, MA, USA
| | - A Kuan-Celarier
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - S Galli
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - S-H Hong
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - J U Tilan
- 1] Department of Nursing, School of Nursing and Health Studies, Georgetown University, Washington, DC, USA [2] Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington, DC, USA
| | - N Talisman
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - E Izycka-Swieszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | - J Tsuei
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - C Yang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - S Martin
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington, DC, USA
| | - M Horton
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington, DC, USA
| | - D Christian
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington, DC, USA
| | - L Everhart
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - I Maheswaran
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - J Kitlinska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
18
|
Cruz CD. Neurotrophins in bladder function: what do we know and where do we go from here? Neurourol Urodyn 2013; 33:39-45. [PMID: 23775873 DOI: 10.1002/nau.22438] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/30/2013] [Indexed: 12/19/2022]
Abstract
AIMS Neurotrophins (NTs) have attracted considerable attention in the urologic community. The reason for this resides in the recognition of their ability to induce plastic changes of the neuronal circuits that govern bladder function. In many pathologic states, urinary symptoms, including urgency and urinary frequency, reflect abnormal activity of bladder sensory afferents that results from neuroplastic changes. Accordingly, in pathologies associated with increased sensory input, such as the overactive bladder syndrome (OAB) or bladder pain syndrome/interstitial cystitis (BPS/IC), significant amounts of NTs have been found in the bladder wall. METHODS Here, current knowledge about the importance of NTs in bladder function will be reviewed, with a focus on the most well-studied NTs, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF). RESULTS Both NTs are present in the bladder and regulate bladder sensory afferents and urothelial cells. Experimental models of bladder dysfunction show that upregulation of these NTs is strongly linked to bladder hyperactivity and, in some cases, pain. NT manipulation has been tested in animal models of bladder dysfunction, and recently, NGF downregulation, achieved by administration of a monoclonal antibody, has also been tested in patients with BPS/IC and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). NTs have also been found in high quantities in the urine of OAB and BPS/IC patients, raising the possibility of NTs serving as biomarkers. CONCLUSIONS Available data show that our knowledge of NTs has greatly increased in recent years and that some results may have future clinical application.
Collapse
Affiliation(s)
- Célia Duarte Cruz
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Light JE, Koyama H, Minturn JE, Ho R, Simpson AM, Iyer R, Mangino JL, Kolla V, London WB, Brodeur GM. Clinical significance of NTRK family gene expression in neuroblastomas. Pediatr Blood Cancer 2012; 59:226-32. [PMID: 21990266 PMCID: PMC3258457 DOI: 10.1002/pbc.23343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/17/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neuroblastomas (NBs) are characterized by clinical heterogeneity, from spontaneous regression to relentless progression. The pattern of NTRK family gene expression contributes to these disparate behaviors. TrkA/NTRK1 is expressed in favorable NBs that regress or differentiate, whereas TrkB/NTRK2 and its ligand brain-derived neurotrophic factor (BDNF) are co-expressed in unfavorable NBs, representing an autocrine survival pathway. We determined the significance of NTRK family gene expression in a large, representative set of primary NBs. PATIENTS AND METHODS We analyzed the expression of the following genes in 814 NBs using quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR): NTRK1, NTRK2, NTRK3, P75/NGFR, nerve growth factor (NGF), BDNF, IGFR1, and EGFR. Expression (high vs. low) was dichotomized by median expression value and compared to clinical and biological variables as well as outcome. RESULTS High NTRK1 expression was strongly correlated with favorable age, stage, MYCN status, histology, ploidy, risk group, and outcome (P < 0.0001 for all). However, it did not add significantly to the panel of prognostic variables currently used for cooperative group trials. NTRK2 expression was associated with risk factors but not with outcome. High NGF expression was also associated with most risk factors and weakly with unfavorable outcome. CONCLUSIONS High expression of NTRK1 is strongly associated with favorable risk factors and outcome in a large, representative population of NB patients. It did not add significantly to the current risk prediction algorithm, but it may contribute to future expression classifiers. Indeed, prospective assessment of NTRK1 and NTRK2 expression will identify tumors that would be candidates for NTRK-targeted therapy, either alone or in combination with conventional agents.
Collapse
Affiliation(s)
- Jennifer E Light
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Iyer R, Varela CR, Minturn JE, Ho R, Simpson AM, Light JE, Evans AE, Zhao H, Thress K, Brown JL, Brodeur GM. AZ64 inhibits TrkB and enhances the efficacy of chemotherapy and local radiation in neuroblastoma xenografts. Cancer Chemother Pharmacol 2012; 70:477-86. [PMID: 22623209 DOI: 10.1007/s00280-012-1879-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
Neuroblastoma is a common pediatric tumor characterized by clinical heterogeneity. Because it is derived from sympathetic neuroblasts, the NTRK family of neurotrophin receptors plays an integral role in neuroblastoma cell survival, growth, and differentiation. Indeed, high expression of NTRK1 is associated with favorable clinical features and outcome, whereas expression of NTRK2 and its ligand, brain-derived neurotrophic factor (BDNF), are associated with unfavorable features and outcome. AZ64 (Astra Zeneca) is a potent and selective inhibitor of the NTRK tyrosine kinases that blocks phosphorylation at nanomolar concentrations. To determine the preclinical activity of AZ64, we performed intervention trials in a xenograft model with NTRK2-overexpressing neuroblastomas. AZ64 alone significantly inhibited tumor growth compared to vehicle-treated animals (p = 0.0006 for tumor size). Furthermore, the combination of AZ64 with conventional chemotherapeutic agents, irinotecan and temozolomide (irino-temo), showed significantly enhanced anti-tumor efficacy compared to irino-temo alone [(p < 0.0001 for tumor size, p < 0.0005 for event-free survival (EFS)]. We also assessed the combination of AZ64 and local radiation therapy (RT) on a neuroblastoma hindlimb xenograft model, and the efficacy of local RT was significantly increased when animals were treated simultaneously with AZ64 (p < 0.0001 for tumor size, p = 0.0006 for EFS). We conclude that AZ64 can inhibit growth of NTRK-expressing neuroblastomas both in vitro and in vivo. More importantly, it can significantly enhance the efficacy of conventional chemotherapy as well as local RT, presumably by inhibition of the NTRK2/BDNF autocrine survival pathway.
Collapse
Affiliation(s)
- Radhika Iyer
- Division of Oncology, Children's Hospital of Philadelphia, PA 19104-4302, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol 2011; 21:256-66. [PMID: 21849159 DOI: 10.1016/j.semcancer.2011.08.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/03/2011] [Indexed: 12/13/2022]
Abstract
Childhood neuroblastoma exhibits a heterogeneous clinical behavior ranging from low-risk tumors with the ability to spontaneously differentiate and regress, to high-risk tumors causing the highest number of cancer related deaths in infants. Amplification of the MYCN oncogene is one of the few prediction markers for adverse outcome. This gene encodes the MYCN transcriptional regulator predominantly expressed in the developing peripheral neural crest. MYCN is vital for proliferation, migration and stem cell homeostasis while decreased levels are associated with terminal neuronal differentiation. Interestingly, high-risk tumors without MYCN amplification frequently display increased c-MYC expression and/or activation of MYC signaling pathways. On the other hand, downregulation of MYCN leads to decreased proliferation and differentiation, emphasizing the importance of MYC signaling in neuroblastoma biology. Furthermore, expression of the neurotrophin receptor TrkA is associated with good prognosis, the ability to differentiate and spontaneous regression while expression of the related TrkB receptor is correlated with bad prognosis and MYCN amplification. Here we discuss the role of MYCN in neuroblastoma with a special focus on the contribution of elevated MYCN signaling for an aggressive and undifferentiated phenotype as well as the potential of using MYCN as a therapeutic target.
Collapse
|
22
|
Ho R, Minturn JE, Simpson AM, Iyer R, Light JE, Evans AE, Brodeur GM. The effect of P75 on Trk receptors in neuroblastomas. Cancer Lett 2011; 305:76-85. [PMID: 21419569 PMCID: PMC3070806 DOI: 10.1016/j.canlet.2011.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 01/04/2023]
Abstract
Neuroblastomas (NBs) with favorable outcome usually express TrkA, whereas unfavorable NBs frequently express TrkB and its cognate ligand BDNF. P75 (p75(LNTR), NGFR, TNFRSF16) binds NGF-related neurotrophins with low affinity and usually is coexpressed with Trk receptors in NBs. Here, we investigated the importance of p75 coexpression with Trk receptors in NBs. We transfected p75 into two Trk-null NB cell lines, SH-SY5Y and NLF that were also engineered to stably express TrkA or TrkB. Cell numbers were compared between single (Trk alone) and double (Trk+p75) transfectants, and proliferation was assessed by flow cytometry. P75 coexpression had little effect on cell growth in Trk NB cells in the absence of ligand, but it increased sensitivity and greatly enhanced the effect of cognate ligand. Exogenous NGF induced greater phosphorylation of TrkA and AKT. This was associated with increased cell number in TrkA/p75 cells compared to TrkA cells (p<0.01), which was due to increased proliferation in TrkA/p75 cells (p<0.05), followed by differentiation. Exogenous BDNF also increased cell number in TrkB/p75 compared to TrkB cells (p<0.01), due to an increase in proliferation, but without differentiation. Coexpression of p75 also increased specificity of Trk-expressing cells to ligand. NT3-induced phosphorylation of TrkA and AKT was reduced in TrkA/p75 cells. NT3-induced phosphorylation of TrkB (as well as AKT and MAPK) was also reduced with p75 coexpression. Our results suggest that p75 plays an important role in enhancing both the sensitivity of Trk receptors to low levels of ligand, as well as increasing the specificity of Trks to their cognate ligands. It also enhances ligand-induced differentiation in TrkA/p75 but not TrkB/p75 cells.
Collapse
Affiliation(s)
- Ruth Ho
- Division of Oncology, The Children's Hospital of Philadelphia, PA 19104, United States
| | | | | | | | | | | | | |
Collapse
|
23
|
Tauszig-Delamasure S, Bouzas-Rodriguez J. Targeting neurotrophin-3 and its dependence receptor tyrosine kinase receptor C: a new antitumoral strategy. Expert Opin Ther Targets 2011; 15:847-58. [DOI: 10.1517/14728222.2011.575361] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Reevaluation of trkA expression as a biological marker of neuroblastoma by high-sensitivity expression analysis--a study of 106 primary neuroblastomas treated in a single institute. J Pediatr Surg 2010; 45:2293-8. [PMID: 21129533 DOI: 10.1016/j.jpedsurg.2010.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/12/2010] [Indexed: 11/21/2022]
Abstract
BACKGROUND/PURPOSE It has previously been shown that neuroblastomas with favorable prognosis often express a high level of nerve growth factor receptor trkA. We performed an expression analysis of trkA in 106 NB samples based on the quantitative real-time polymerase chain reaction (PCR) and reevaluated the prognostic power of trkA. MATERIALS AND METHODS A total of 106 primary tumors from NB patients treated from 1988 to 2009 were analyzed. MYCN was amplified in 13 cases. TaqMan probe method was used for quantitative PCR. Primers and probes were designed to detect trkA I and trkA II, but not the oncogenic splice variant trkA III. RESULTS Expression analysis by real-time PCR revealed a wide range of expression levels of trkA within neuroblastoma tissues. Extremely low levels of trkA that were undetectable by semiquantitative PCR were able to be quantified by this method. trkA was predominantly expressed in tumors with favorable outcome. Further analysis of trkA expression was performed in a cohort excluding mass-screened neuroblastomas. Strikingly, multivariate analysis containing age, MYCN status, and trkA expression identified trkA as the only variable that independently predicts the prognosis of the 44 patients who presented clinically. CONCLUSION High-resolution expression analysis targeting trkA and trkA II may add more statistical power on trkA as a biological marker.
Collapse
|
25
|
Ricci A, Mariotta S, Pompili E, Mancini R, Bronzetti E, De Vitis C, Pisani L, Cherubini E, Bruno P, Gencarelli G, Giovagnoli MR, Terzano C, Ciliberto G, Giarnieri E, Fumagalli L. Neurotrophin system activation in pleural effusions. Growth Factors 2010; 28:221-31. [PMID: 20214505 DOI: 10.3109/08977191003677402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neurotrophins (NTs) expression was assessed in malignant and non-malignant pleural effusions (inflammatory exudates and transudates). Enzyme-linked immunosorbent assay, in malignant exudates from small and non-small cell lung cancer (SCLC and NSCLC), detected nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their levels are higher as compared with inflammatory and transudative effusions. By immunoblots, in cultured cancer cells coming from malignant pleural effusions, NTs and low- and high-affinity NT receptors were detected in a percentage of SCLC and NSCLC. Proliferation assay demonstrated that BDNF significantly increased cancer cell proliferation in vitro, on the contrary, NT-3 reduced cancer cell growth rate and NGF did not modify cell growth. Moreover, NGF protects cells from death during starvation. These effects are reverted by the addition of NT receptor antagonists. Cultured cancer cells injected into the lung of immunodeficient mice generate lung tumors expressing NTs and NT receptors. These findings suggest that NTs may be able to modulate cancer cell behavior and their growth.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Blotting, Western
- Brain-Derived Neurotrophic Factor/blood
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/pharmacology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Gene Expression
- Humans
- Intercellular Signaling Peptides and Proteins/metabolism
- Lung/pathology
- Lung Neoplasms/metabolism
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Middle Aged
- Neoplasm Transplantation
- Nerve Growth Factors/blood
- Nerve Growth Factors/metabolism
- Nerve Growth Factors/pharmacology
- Neurotrophin 3/blood
- Neurotrophin 3/metabolism
- Neurotrophin 3/pharmacology
- Pleural Effusion/genetics
- Pleural Effusion/metabolism
- Pleural Effusion, Malignant/genetics
- Pleural Effusion, Malignant/metabolism
- Receptor, trkB/metabolism
- Receptors, Nerve Growth Factor/metabolism
- Signal Transduction
- Small Cell Lung Carcinoma/metabolism
- Tumor Cells, Cultured
Collapse
|
26
|
|
27
|
Iyer R, Evans AE, Qi X, Ho R, Minturn JE, Zhao H, Balamuth N, Maris JM, Brodeur GM. Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin Cancer Res 2010; 16:1478-85. [PMID: 20179224 PMCID: PMC2831131 DOI: 10.1158/1078-0432.ccr-09-1531] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Neuroblastoma, a common pediatric tumor of the sympathetic nervous system, is characterized by clinical heterogeneity. The Trk family neurotrophin receptors play an important role in this behavior. Expression of TrkA is associated with favorable clinical features and outcome, whereas TrkB expression is associated with an unfavorable prognosis. We wanted to determine if the Trk-selective inhibitor lestaurtinib had therapeutic efficacy in a preclinical neuroblastoma model. EXPERIMENTAL DESIGN We performed intervention trials of lestaurtinib alone or in combination with other agents in TrkB-overexpressing neuroblastoma xenograft models. RESULTS Lestaurtinib alone significantly inhibited tumor growth compared to vehicle-treated animals [P = 0.0004 for tumor size and P = 0.011 for event-free survival (EFS)]. Lestaurtinib also enhanced the antitumor efficacy of the combinations of topotecan plus cyclophosphamide (P < 0.0001 for size and P < 0.0001 for EFS) or irinotecan plus temozolomide (P = 0.011 for size and P = 0.012 for EFS). There was no additive benefit of combining either 13-cis-retinoic acid or fenretinide with lestaurtinib compared to lestaurtinib alone. There was dramatic growth inhibition combining lestaurtinib with bevacizumab (P < 0.0001), but this combination had substantial systemic toxicity. CONCLUSIONS We show that lestaurtinib can inhibit the growth of neuroblastoma both in vitro and in vivo and can substantially enhance the efficacy of conventional chemotherapy, presumably by inhibition of the Trk/brain-derived neurotrophic factor autocrine survival pathway. It may also enhance the efficacy of selected biological agents, but further testing is required to rule out unanticipated toxicities. Our data support the incorporation of Trk inhibitors, such as lestaurtinib, in clinical trials of neuroblastoma or other tumors relying on Trk signaling pathways for survival.
Collapse
Affiliation(s)
- Radhika Iyer
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Audrey E. Evans
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- The Department of Pediatrics, the University of Pennsylvania, Philadelphia, PA 19104
| | - Xiaoxue Qi
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ruth Ho
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Jane E. Minturn
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- The Department of Pediatrics, the University of Pennsylvania, Philadelphia, PA 19104
| | - Huaqing Zhao
- Biostatistics and Data Management Core, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Naomi Balamuth
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - John M. Maris
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- The Department of Pediatrics, the University of Pennsylvania, Philadelphia, PA 19104
| | - Garrett M. Brodeur
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- The Department of Pediatrics, the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
28
|
Bouzas-Rodriguez J, Cabrera JR, Delloye-Bourgeois C, Ichim G, Delcros JG, Raquin MA, Rousseau R, Combaret V, Bénard J, Tauszig-Delamasure S, Mehlen P. Neurotrophin-3 production promotes human neuroblastoma cell survival by inhibiting TrkC-induced apoptosis. J Clin Invest 2010; 120:850-8. [PMID: 20160348 DOI: 10.1172/jci41013] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 01/06/2010] [Indexed: 01/07/2023] Open
Abstract
Tropomyosin-related kinase receptor C (TrkC) is a neurotrophin receptor with tyrosine kinase activity that was expected to be oncogenic. However, it has several characteristics of a tumor suppressor: its expression in tumors has often been associated with good prognosis; and it was recently demonstrated to be a dependence receptor, transducing different positive signals in the presence of ligand but inducing apoptosis in the absence of ligand. Here we show that the TrkC ligand neurotrophin-3 (NT-3) is upregulated in a large fraction of aggressive human neuroblastomas (NBs) and that it blocks TrkC-induced apoptosis of human NB cell lines, consistent with the idea that TrkC is a dependence receptor. Functionally, both siRNA knockdown of NT-3 expression and incubation with a TrkC-specific blocking antibody triggered apoptosis in human NB cell lines. Importantly, disruption of the NT-3 autocrine loop in malignant human neuroblasts triggered in vitro NB cell death and inhibited tumor growth and metastasis in both a chick and a mouse xenograft model. Thus, we believe that our data suggest that NT-3/TrkC disruption is a putative alternative targeted therapeutic strategy for the treatment of NB.
Collapse
Affiliation(s)
- Jimena Bouzas-Rodriguez
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée "La Ligue," CNRS UMR, Université de Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, Light JE, Kolla V, Evans AE. Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 2009; 15:3244-50. [PMID: 19417027 DOI: 10.1158/1078-0432.ccr-08-1815] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuroblastoma, the most common and deadly solid tumor in children, exhibits heterogeneous clinical behavior, from spontaneous regression to relentless progression. Current evidence suggests that the TRK family of neurotrophin receptors plays a critical role in these diverse behaviors. Neuroblastomas expressing TrkA are biologically favorable and prone to spontaneous regression or differentiation, depending on the absence or presence of its ligand (NGF) in the microenvironment. In contrast, TrkB-expressing tumors frequently have MYCN amplification and are very aggressive and often fatal tumors. These tumors also express the TrkB ligand (BDNF), resulting in an autocrine or paracrine survival pathway. Exposure to BDNF promotes survival, drug resistance, and angiogenesis of TrkB-expressing tumors. Here we review the role of Trks in normal development, the different functions of Trk isoforms, and the major Trk signaling pathways. We also review the roles these receptors play in the heterogeneous biological and clinical behavior of neuroblastomas, and the activation of Trk receptors in other cancers. Finally we address the progress that has been made in developing targeted therapy with Trk-selective inhibitors to treat neuroblastomas and other tumors with activated Trk expression.
Collapse
Affiliation(s)
- Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Baj G, Tongiorgi E. BDNF splice variants from the second promoter cluster support cell survival of differentiated neuroblastoma upon cytotoxic stress. J Cell Sci 2009; 122:36-43. [DOI: 10.1242/jcs.033316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) is a key survival factor for neural cells. In particular, in neuroblastoma tumour cells, expression of the BDNF/TrkB autocrine signalling system promotes a more malignant phenotype and resistance to chemotherapy. The human BDNF gene contains two clusters of upstream exons encoding the 5′UTR (exon 1 to exon 3 and exon 4 to exon 9a), these are alternatively spliced to a common exon 9, which contains the coding region and the 3′UTR. At least 34 different BDNF mRNA transcripts can be generated, although their physiological role is still unknown. The purpose of this study is to determine which BDNF transcript is involved in cell survival of the human neuroblastoma cell lines SH-SY-5Y (single-copy MYCN) and SK-N-BE (amplified MYCN). Expression of human BDNF mRNAs encoding all possible isoforms was characterised in the two neuroblastoma cell lines. We then investigated whether selective silencing of the different BDNF mRNAs using specific siRNAs could reduce cell survival in response to serum deprivation or the anticancer drugs cisplatin, doxorubicin and etoposide. We found that three isoforms located in the second exon cluster are essential for neuroblastoma cell survival under cytotoxic stress. Notably, promoters of the second exon cluster, but not the first, are controlled by Ca2+-sensitive elements.
Collapse
Affiliation(s)
- Gabriele Baj
- University of Trieste, BRAIN Centre for Neuroscience, Department of Biology, Via Giorgieri 10, 34127 Trieste, Italy
| | - Enrico Tongiorgi
- University of Trieste, BRAIN Centre for Neuroscience, Department of Biology, Via Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
31
|
Miyake I, Ohira M, Nakagawara A, Sakai R. Distinct role of ShcC docking protein in the differentiation of neuroblastoma. Oncogene 2008; 28:662-73. [PMID: 18997821 DOI: 10.1038/onc.2008.413] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological and clinical heterogeneity of neuroblastoma is closely associated with signaling pathways that control cellular characteristics such as proliferation, survival and differentiation. The Shc family of docking proteins is important in these pathways by mediating cellular signaling. In this study, we analysed the expression levels of ShcA and ShcC proteins in 46 neuroblastoma samples and showed that a significantly higher level of ShcC protein is observed in neuroblastomas with poor prognostic factors such as advanced stage and MYCN amplification (P<0.005), whereas the expression level of ShcA showed no significant association with these factors. Using TNB1 cells that express a high level of ShcC protein, it was demonstrated that knockdown of ShcC by RNAi caused elevation in the phosphorylation of ShcA, which resulted in sustained extracellular signal-regulated kinase activation and neurite outgrowth. The neurites induced by ShcC knockdown expressed several markers of neuronal differentiation suggesting that the expression of ShcC potentially has a function in inhibiting the differentiation of neuroblastoma cells. In addition, marked suppression of in vivo tumorigenicity of TNB1 cells in nude mice was observed by stable knockdown of ShcC protein. These findings indicate that ShcC is a therapeutic target that might induce differentiation in the aggressive type of neuroblastomas.
Collapse
Affiliation(s)
- I Miyake
- Growth Factor Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
32
|
Kitlinska J. Neuropeptide Y (NPY) in neuroblastoma: effect on growth and vascularization. Peptides 2007; 28:405-12. [PMID: 17229489 DOI: 10.1016/j.peptides.2006.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 08/08/2006] [Indexed: 10/23/2022]
Abstract
Neuroblastomas are pediatric tumors of sympathetic origin, expressing neuronal markers, such as NPY and its receptors. Due to this, neuroblastomas are often associated with elevated plasma levels of NPY, which correlates with poor clinical outcome of the disease. This clinical data corroborates the recent discovery of growth-promoting actions of NPY in neuroblastomas. The peptide has been shown to stimulate proliferation of neuroblastoma cells in an autocrine manner and induce tumor vascularization. Since both processes are mediated by the same Y2 and Y5 receptors, targeting this pathway may be a potential bidirectional therapy for these children's tumors.
Collapse
Affiliation(s)
- Joanna Kitlinska
- Department of Physiology and Biophysics, Georgetown University Medical Center, Basic Science Building Rm. 234, Washington, DC 20057, United States.
| |
Collapse
|
33
|
Yamaguchi Y, Tabata K, Asami S, Miyake M, Suzuki T. A Novel Cyclophane Compound, CPPy, Facilitates NGF-Induced TrkA Signal Transduction and Induces Cell Differentiation in Neuroblastoma. Biol Pharm Bull 2007; 30:638-43. [PMID: 17409494 DOI: 10.1248/bpb.30.638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroblastoma (NB) often causes spontaneously regression, and can mature to ganglioneuroma. The form with the most favorable prognosis expresses high levels of TrkA, a high-affinity receptor for nerve growth factor (NGF), whereas advanced NB and associated cell lines have abnormalities in the NGF/TrkA signaling pathway. A novel cyclophane, cyclophane pyridine (CPPy), was designed to conserve the tyrosine phosphorylation of TrkA, thereby enhancing NGF/TrkA signal transduction. We investigated whether this compound improved NGF-induced tyrosine phosphorylation of the Y490 domain of TrkA and conserved the expression of an early gene (c-fos) in human NB cell lines (IMR-32 and NB-39). As determined by Western blotting, TrkA (Y490) phosphorylation was enhanced by the combination of CPPy (10(-8) M) and NGF (100 ng/ml) compared with NGF alone. CPPy also conserved NGF-induced c-fos mRNA expression. Moreover, CPPy induced the morphological differentiation of NB cells, leading to expression of the neuronal marker gene GAP-43. These data suggest that CPPy can induce the differentiation of NB cell lines by facilitating NGF-induced TrkA/Ras/MAPK signal transduction, and may therefore be an effective therapeutic agent for NB.
Collapse
|
34
|
Kitlinska J. Neuropeptide Y in neural crest-derived tumors: effect on growth and vascularization. Cancer Lett 2006; 245:293-302. [PMID: 16513255 DOI: 10.1016/j.canlet.2006.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/14/2006] [Accepted: 01/16/2006] [Indexed: 11/17/2022]
Abstract
Neuropeptide Y (NPY) is a sympathetic neurotransmitter recently found to be a potent growth and angiogenic factor. The peptide and its receptors are abundant in neural crest-derived tumors, such as sympathetic neuroblastomas and pheochromocytomas, as well as parasympathetic Ewing's sarcoma family of tumors. NPY regulates their growth directly, by an autocrine activation of tumor cell proliferation or apoptosis, and indirectly, by its angiogenic activity. The overall effect of the peptide on tumor growth depends on a balance between these processes and the type of receptors expressed in the tumor cells. Thus, NPY and its receptors may become targets for the treatment of neural tumors, directed against both tumor cell proliferation and angiogenesis.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Humans
- Models, Biological
- Neoplasms, Nerve Tissue/metabolism
- Neoplasms, Nerve Tissue/pathology
- Neoplasms, Nerve Tissue/physiopathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Neural Crest/metabolism
- Neural Crest/pathology
- Neuroblastoma/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/physiopathology
- Neuropeptide Y/biosynthesis
- Neuropeptide Y/physiology
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/physiopathology
Collapse
Affiliation(s)
- Joanna Kitlinska
- Department of Physiology and Biophysics, Georgetown Universitty Medical Center, Basic Science Building Rm. 234, Washington, DC 20057.
| |
Collapse
|
35
|
Terui E, Matsunaga T, Yoshida H, Kouchi K, Kuroda H, Hishiki T, Saito T, Yamada SI, Shirasawa H, Ohnuma N. Shc family expression in neuroblastoma: high expression of shcC is associated with a poor prognosis in advanced neuroblastoma. Clin Cancer Res 2005; 11:3280-7. [PMID: 15867224 DOI: 10.1158/1078-0432.ccr-04-1681] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biological features and prognosis of neuroblastoma, a neural crest-derived pediatric tumor, are closely associated with expression of the Trk receptor. Because the Shc family proteins (ShcA, ShcB, and ShcC) are adaptors for various receptors, including Trk receptors, and are regulators of neuronal cell development, we speculated that they may play a role in neuroblastoma. Therefore, in this study, we used semiquantitative reverse transcription-PCR to examine the expression of these three genes in 15 neuroblastoma cell lines, an all-trans-retinoic acid-treated neuroblastoma cell line, and 52 tumor samples. In neuroblastoma cell lines and tumor samples, shcA was ubiquitously and highly expressed. Little expression of shcA was observed. Also, shcB was hardly expressed in neuroblastoma cell lines, but its expression in RT-BM-1 cells was enhanced after all-trans-retinoic acid-induced differentiation, and it was highly expressed in low-stage tumors (P = 0.0095). This suggests that ShcB participates in cellular differentiation and may correlate with a favorable prognosis in neuroblastoma. Finally, the expression of shcC was observed in most of the neuroblastoma cell lines and in some stage 4 patients. Patients with a high expression of shcC had a very poor prognosis (P < 0.0001) and amplification of MYCN, and all died within 31 months after diagnosis. Therefore, ShcC seems to be associated with an aggressive tumor phenotype, perhaps by enhancing TrkB signals. Our results suggest that the expressions of shcB and shcC are important biological factors in neuroblastoma and are useful prognostic indicators.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Line, Tumor
- Child
- Child, Preschool
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Infant
- Male
- N-Myc Proto-Oncogene Protein
- Neuroblastoma/genetics
- Neuroblastoma/mortality
- Neuroblastoma/pathology
- Nuclear Proteins/genetics
- Oncogene Proteins/genetics
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, trkA/genetics
- Receptor, trkB/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Src Homology 2 Domain-Containing, Transforming Protein 2
- Survival Analysis
- Survival Rate
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Elena Terui
- Department of Pediatric Surgery (E6), Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Clinical and Molecular Evidence for c-kit Receptor as a Therapeutic Target in Neuroblastic Tumors. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.380.11.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: Clinicobiological characteristics of neuroblastic tumor (NT) expressing c-kit tyrosine kinase receptor and/or its ligand, stem cell factor (SCF), are debated. This study aimed at investigating the clinicobiological features of primary NTs expressing c-kit and/or SCF in order to define the clinical relevance of selective therapeutic targeting.
Experimental Design: c-Kit and SCF expression was studied in 168 NTs using immunohistochemistry and in 106 of 168 using Northern blot. Quantitative determination of c-kit expression in 54 additional NTs was also done using real-time reverse transcription-PCR. Correlations between c-kit and SCF expression and clinicobiological features were analyzed using χ2 test, univariate, and multivariate regression analyses.
Results: c-Kit protein was detected in 21 of 168 NTs (13%) and its mRNA in 23 of 106 NTs (22%). SCF protein was shown in 30 of 106 NTs (28%) and its mRNA in 33 of 106 NTs (31%). No mutations in exon 11 of c-kit gene were identified. By univariate analysis, c-kit and SCF expression correlated with advanced stage, MYCN amplification, and 1p36 allelic loss. Cox simple regression analysis showed that overall survival probability was 17% in the c-kit–positive subset versus 68% in the negative (P < 0.001), 43% in the SCF-positive subset versus 78% in the negative (P < 0.001). When using real-time reverse transcription-PCR, significant levels of c-kit mRNA were found in 35 of 54 NTs (65%), but the correlations with clinicobiological features were no longer documented.
Conclusions: c-Kit expression can be detected in the majority of primary NTs. High levels of expression are preferentially found in tumors with unfavorable clinicobiological variables. c-Kit may represent a useful therapeutic target in a subset of otherwise untreatable NTs.
Collapse
|
37
|
Affiliation(s)
- Joshua B Rubin
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
38
|
Nakamura Y, Ozaki T, Koseki H, Nakagawara A, Sakiyama S. Accumulation of p27 KIP1 is associated with BMP2-induced growth arrest and neuronal differentiation of human neuroblastoma-derived cell lines. Biochem Biophys Res Commun 2003; 307:206-13. [PMID: 12850001 DOI: 10.1016/s0006-291x(03)01138-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic proteins (BMPs) play an essential role in cell fate determination. In this study, we found that BMP2 treatment resulted in growth arrest and differentiation in human neuroblastoma-derived cell lines, SH-SY5Y and RTBM1. Within 30min of BMP2 exposure, phosphorylation of Smad1/5 was observed in these cell lines. In RTBM1 cells, BMP2-induced differentiation was accompanied by a significant decrease in the expression level of DAN, an antagonist of BMP in frog embryos. Immunoblot analysis revealed that BMP2 treatment caused a down-regulation of p53 family members and hence of cyclin-dependent kinase inhibitor p21(WAF1). We found a significant accumulation of p27(KIP1) in response to BMP2, whereas the expression level of Skp2, which is required for ubiquitin-dependent p27(KIP1) degradation, was decreased during this differentiation process. Our results suggest that p27(KIP1) contributes to the BMP-induced growth arrest and neuronal differentiation of neuroblastoma, and BMP treatment might provide a new therapeutic strategy.
Collapse
Affiliation(s)
- Yohko Nakamura
- Division of Biochemistry, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Neuroblastoma is a tumour derived from primitive cells of the sympathetic nervous system and is the most common solid tumour in childhood. Interestingly, most infants experience complete regression of their disease with minimal therapy, even with metastatic disease. However, older patients frequently have metastatic disease that grows relentlessly, despite even the most intensive multimodality therapy. Recent advances in understanding the biology and genetics of neuroblastomas have allowed classification into low-, intermediate- and high-risk groups. This allows the most appropriate intensity of therapy to be selected - from observation alone to aggressive, multimodality therapy. Future therapies will focus increasingly on the genes and biological pathways that contribute to malignant transformation or progression.
Collapse
MESH Headings
- Aneuploidy
- Cell Transformation, Neoplastic/genetics
- Child, Preschool
- Chromosomes, Human/genetics
- Chromosomes, Human/ultrastructure
- Forecasting
- Ganglioneuroma/genetics
- Ganglioneuroma/pathology
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Genes, myc
- Genetic Predisposition to Disease
- Genetic Testing
- Humans
- Infant
- Infant, Newborn
- Loss of Heterozygosity
- Models, Genetic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neuroblastoma/classification
- Neuroblastoma/genetics
- Neuroblastoma/pathology
- Neuroblastoma/therapy
- Prognosis
- Receptor, trkA/genetics
- Receptor, trkA/physiology
- Receptor, trkB/genetics
- Receptor, trkB/physiology
- Remission, Spontaneous
- Risk
Collapse
Affiliation(s)
- Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, Pennsylvania 19104-4318, USA.
| |
Collapse
|
40
|
Cantarella G, Lempereur L, Presta M, Ribatti D, Lombardo G, Lazarovici P, Zappalà G, Pafumi C, Bernardini R. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J 2002; 16:1307-9. [PMID: 12154004 DOI: 10.1096/fj.01-1000fje] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nerve growth factor (NGF) has important functions during embryonic development and on various tissues and organs under normal and pathological conditions during the extrauterine life. RT-PCR analysis and immunological methods demonstrate that human umbilical vein endothelial cells (HUVECs) express the NGF receptors trkA(NGFR) and p75NTR. NGF treatment caused a rapid phosphorylation of trkA(NGFR) in HUVECs, determining a parallel increase of phosphorylated ERK1/2. Accordingly, NGF induced a significant increase in HUVEC proliferation that was abolished by the trkA(NGFR) inhibitor K252a. Also, HUVECs express significant levels of NGF under standard culture conditions that were up-regulated during serum starvation. Endogenous NGF was responsible for the basal levels of trkA(NGFR) and ERK1/2 phosphorylation observed in untreated HUVEC cultures. Finally, NGF exerted a potent, direct, angiogenic activity in vivo when delivered onto the chorioallantoic membrane of the chicken embryo. The data indicate that NGF may play an important role in blood vessel formation in the nervous system and in several pathological processes, including tumors and inflammatory diseases. Unraveling mechanisms of NGF-dependent angiogenesis could provide valuable tools for novel therapeutic approaches in antiangiogenic therapy.
Collapse
MESH Headings
- Animals
- Autocrine Communication
- Blood Vessels/anatomy & histology
- Blood Vessels/embryology
- Cell Division
- Cells, Cultured
- Chick Embryo
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/metabolism
- Extraembryonic Membranes/anatomy & histology
- Extraembryonic Membranes/blood supply
- Extraembryonic Membranes/drug effects
- Humans
- Models, Biological
- Neovascularization, Physiologic
- Nerve Growth Factor/pharmacology
- Nerve Growth Factor/physiology
- RNA, Messenger/biosynthesis
- Receptor, Nerve Growth Factor/biosynthesis
- Receptor, Nerve Growth Factor/genetics
- Receptor, trkA/biosynthesis
- Receptor, trkA/genetics
Collapse
Affiliation(s)
- Giuseppina Cantarella
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, I-95125 Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Teng J, Wang ZY, Bjorling DE. Estrogen-induced proliferation of urothelial cells is modulated by nerve growth factor. Am J Physiol Renal Physiol 2002; 282:F1075-83. [PMID: 11997324 DOI: 10.1152/ajprenal.00215.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both nerve growth factor (NGF) and estrogen have been shown to stimulate proliferation of various cell types. Human urothelial cells (HUC) express the alpha- and beta-subtypes of the estrogen receptor (ER(alpha) and ER(beta)) as well as tyrosine kinase A (trkA), the high-affinity receptor for NGF. We investigated interactions between estrogen and NGF relative to cell proliferation using primary cultures of HUC. 17 beta-estradiol (E2) stimulated NGF synthesis by HUC, and E2 (50 nM), the ER(alpha) agonist 16 alpha-iodo-17 beta-estradiol (10 nM), or the ER(beta) agonist genistein (50 nM) each stimulated HUC proliferation, an effect that was abolished by the estrogen antagonist ICI-182,780 (100 nM). NGF (1-100 ng/ml) stimulated HUC proliferation, and this was abolished by NGF antiserum (0.1 microl/ml) or the trkA antagonist K252a (100 nM). HUC proliferation stimulated by E2 was also abolished by NGF antiserum or K252a. Finally, we observed that treatment of HUC with NGF (50 ng/ml) or E2 (50 nM) stimulated trkA phosphorylation, and this was abolished by K252a (100 nM) or NGF antiserum (0.1 microl/ml). These data indicate that the effects of ER activation on HUC proliferation at least partly involve activation of trkA by NGF.
Collapse
Affiliation(s)
- Jian Teng
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
42
|
Perel Y, Amrein L, Dobremez E, Rivel J, Daniel JY, Landry M. Galanin and galanin receptor expression in neuroblastic tumours: correlation with their differentiation status. Br J Cancer 2002; 86:117-22. [PMID: 11857022 PMCID: PMC2746536 DOI: 10.1038/sj.bjc.6600019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2001] [Revised: 10/18/2001] [Accepted: 10/24/2001] [Indexed: 11/09/2022] Open
Abstract
Neuroblastoma and its benign differentiated counterpart, ganglioneuroma, are paediatric neuroblastic tumours arising in the sympathetic nervous system. Their broad spectrum of clinical virulence is mainly related to heterogeneous biologic background and tumour differentiation. Neuroblastic tumours synthesize various neuropeptides acting as neuromodulators. Previous studies suggested that galanin plays a role in sympathetic tissue where it could be involved in differentiation and development. We investigated the expression and distribution of galanin and its three known receptors (Gal-R1, Gal-R2, Gal-R3) in 19 samples of neuroblastic tumours tissue by immunohistochemistry, in situ hybridization and fluorescent-ligand binding. This study provides clear evidence for galanin and galanin receptor expression in human neuroblastic tumours. The messengers coding for galanin, Gal-R1 and -R3 were highly expressed in neuroblastoma and their amount dramatically decreased in ganglioneuroma. In contrast, Gal-R2 levels remained unchanged. Double labelling studies showed that galanin was mainly co-expressed with its receptors whatever the differentiation stage. In neuroblastic tumours, galanin might promote cell-survival or counteract neuronal differentiation through the different signalling pathways mediated by galanin receptors. Finally, our results suggest that galanin influences neuroblastoma growth and development as an autocrine/paracrine modulator. These findings suggest potential critical implications for galanin in neuroblastic tumours development.
Collapse
Affiliation(s)
- Y Perel
- Laboratory of Differentiation and Development Biology, EA DRED 483, University of Bordeaux 2, 146, rue Leo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | |
Collapse
|
43
|
Bergmann E, Wanzel M, Weber A, Shin I, Christiansen H, Eilers M. Expression of P27(KIP1) is prognostic and independent of MYCN amplification in human neuroblastoma. Int J Cancer 2001; 95:176-83. [PMID: 11307151 DOI: 10.1002/1097-0215(20010520)95:3<176::aid-ijc1030>3.0.co;2-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amplification of the MYCN gene is significantly associated with an unfavorable prognosis and rapid progression in human neuroblastoma tumors. One potential mechanism by which MYCN may cause these effects is by deregulating cell proliferation. Tissue culture experiments support a model in which MYC genes stimulate cell cycle progression by antagonizing the function of the cell cycle inhibitor p27(kip1). In culture, activation of MYC induces both sequestration of p27(kip1) by cyclin D complexes and its subsequent proteolytic degradation. We have tested whether this model applies to human neuroblastoma in a retrospective study of 100 primary tumor biopsy samples from neuroblastoma patients with a documented follow-up. Consistent with this hypothesis, MYCN-amplified tumors express high levels of both cyclin A and proliferating cell nuclear antigen, 2 marker proteins of cell proliferation. Further, expression levels of p27(kip1) are of prognostic significance in human neuroblastoma patients. Similar to tissue culture systems, p27(kip1) is sequestered by cyclin D complexes in a subset of human neuroblastoma samples. Surprisingly, however, expression levels of p27(kip1) are prognostic independent of MYCN amplification, and tumors that have an amplified MYCN gene do not express elevated levels of D-type cyclins or contain significantly lower levels of p27(kip1). Our data do not support a model in which regulation of p27(kip1) function is an important mechanism by which amplified MYCN deregulates cell proliferation in neuroblastoma.
Collapse
Affiliation(s)
- E Bergmann
- Universitäts-Kinderklinik, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Castellon R, Mirkin BL. Retroviral transfer of the ?-nerve growth factor gene into murine neuroectodermal tumor cells modulates cell proliferation rate, neurite formation, and NGF binding site expression. J Neurosci Res 2000. [DOI: 10.1002/(sici)1097-4547(20000115)59:2<265::aid-jnr13>3.0.co;2-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Van Golen CM, Feldman EL. Insulin-like growth factor I is the key growth factor in serum that protects neuroblastoma cells from hyperosmotic-induced apoptosis. J Cell Physiol 2000; 182:24-32. [PMID: 10567913 DOI: 10.1002/(sici)1097-4652(200001)182:1<24::aid-jcp3>3.0.co;2-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neuroblastoma is a childhood tumor of the peripheral nervous system that remains largely uncurable by conventional methods. Mannitol induces apoptosis in neuroblastoma cell types and insulin-like growth factor I (IGF-I) protects these cells from hyperosmotic-induced apoptosis by affecting apoptosis-regulatory proteins. In the current study, we investigate factors that enable SH-SY5Y neuroblastoma cells to survive in the presence of an apoptotic stimulus. When SH-SY5Y cells are exposed to high mannitol concentrations, more than 60% of the cells are apoptotic within 48 h. Normal CS prevents hyperosmotic-induced apoptosis in a dose-dependent manner, with 0.6% CS protecting 50% of the cells, and 3% CS rescuing more than 70% of the cells from apoptosis. Serum also delays the commitment point for SH-SY5Y cells from 9 h to 35 h. A survey of several growth factors, including epidermal growth factor (EGF), platelet-derived growth factor (PDGF), nerve growth factor (NGF), fibroblast growth factor (FGF), and IGF-I reveals that IGF-I is a component of serum necessary for protection of neuroblastoma cells from death. Mitochondrial membrane depolarization occurs in greater than 40% of the cells after mannitol exposure and caspase-3 activation is increased in high mannitol conditions after 9 h. IGF-I blocks both the mitochondrial membrane depolarization and caspase-3 activation normally induced by hyperosmotic treatment in neuroblastoma cells. Our results suggest that (1) IGF-I is a key factor in serum necessary for protection from death and (2) IGF-I acts upstream from the mitochondria and the caspases to prevent apoptosis in human neuroblastoma.
Collapse
Affiliation(s)
- C M Van Golen
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
46
|
|
47
|
Abstract
Each human neoplasm has its own molecular bases for tumor development and biology that are generally described as the tissue-specific characteristics of the tumor. There is no doubt that neuroblastoma (NBL) is not same as Wilms tumor, and Wilms tumor is not the same as retinoblastoma, though they may have a common mechanism to initiate and sustain abnormal growth. One of the reasons for these variations is the difference inherent in progenitor cells, from which the tumor is derived and whose developmental lineage is specifically determined. Neuroblastoma, one of the most common pediatric solid tumors, originates from the neural crest anlage of the sympathicoadrenal system. For a long time, pediatric oncologists have sought answers to the questions of why NBL can have such diverse clinical behavior as aggressive, unremitting growth on the one hand, and differentiation or spontaneous regression on the other, and why these patterns are affected by the patient's age. Recent research has focused on nerve growth factor (NGF), the first growth factor discovered 45 years ago. It provides a key to opening the door to understanding some aspects of the neuroblastoma mystery. It does so by linking NBL and normal developmental pathways of the sympathicoadrenal system.
Collapse
Affiliation(s)
- A Nakagawara
- Division of Biochemistry, Chiba Cancer Center Research Institute, Japan.
| |
Collapse
|