1
|
Ghimire R, Shrestha R, Amaradhi R, Liu L, More S, Ganesh T, Ford AK, Channappanavar R. Toll-like receptor 7 (TLR7)-mediated antiviral response protects mice from lethal SARS-CoV-2 infection. J Virol 2025; 99:e0166824. [PMID: 40162785 PMCID: PMC12090760 DOI: 10.1128/jvi.01668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced impaired antiviral immunity and excessive inflammatory responses cause lethal pneumonia. However, the in vivo roles of key pattern recognition receptors that elicit protective antiviral and fatal inflammatory responses, specifically in the lungs, are not well described. Coronaviruses possess single-stranded RNA genome that activates TLR7/8 to induce an antiviral interferon (IFN) and robust inflammatory cytokine response. Here, using wild-type and TLR7-deficient (TLR7-/-) mice infected with mouse-adapted SARS-CoV-2 (MA-CoV-2), we examined the role of TLR7 in the lung antiviral and inflammatory response and severe pneumonia. We showed that TLR7 deficiency significantly increased lung virus loads and morbidity/mortality, which correlated with reduced levels of type I IFNs (Ifna/b), type III IFNs (Ifnl), and IFN-stimulated genes (ISGs) in the lungs. A detailed evaluation of MA-CoV-2-infected lungs revealed increased neutrophil accumulation and lung pathology in TLR7-/- mice. We further showed that blocking type I IFN receptor (IFNAR) signaling enhanced SARS-CoV-2 replication in the lungs and caused severe lung pathology, leading to 100% mortality compared to infected control mice. Moreover, immunohistochemical assessment of the lungs revealed increased numbers of SARS-CoV-2 antigen-positive macrophages, pneumocytes, and bronchial epithelial cells in TLR7-/- and IFNAR-deficient mice compared to control mice. In summary, we conclusively demonstrated that despite TLR7-induced robust lung inflammation, TLR7-induced IFN/ISG responses suppress lung virus replication and pathology and provide protection against SARS-CoV-2-induced fatal pneumonia. Additionally, given the similar disease outcomes in control, TLR7-/-, and IFNAR-deficient MA-CoV-2-infected mice and coronavirus disease 2019 (COVID-19) patients, we propose that MA-CoV-2-infected mice constitute an excellent model for studying COVID-19.IMPORTANCESevere coronavirus disease 2019 (COVID-19) is caused by a delicate balance between a strong antiviral and an exuberant inflammatory response. A robust antiviral immunity and regulated inflammation are protective, while a weak antiviral response and excessive inflammation are detrimental. However, the key host immune sensors that elicit protective antiviral and inflammatory responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge are poorly defined. Here, we examined the role of viral RNA-mediated TLR7 activation in the lung antiviral and inflammatory responses in SARS-CoV-2-infected mice. We demonstrate that TLR7 deficiency led to a high rate of morbidity and mortality, which correlated with an impaired antiviral interferon (IFN)-I/III response, enhanced lung virus replication, and severe lung pathology. Furthermore, we show that blocking IFN-I signaling using anti-IFN receptor antibody promoted SARS-CoV-2 replication in the lungs and caused severe disease. These results provide conclusive evidence that TLR7 and IFN-I receptor deficiencies lead to severe disease in mice, replicating clinical features observed in COVID-19 patients.
Collapse
Affiliation(s)
- Roshan Ghimire
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lin Liu
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sunil More
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexandra K. Ford
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
2
|
Yao C, Dong Y, Zhou H, Zou X, Alhaskawi A, Ezzi SHA, Wang Z, Lai J, Kota VG, Abdulla MHAH, Liu Z, Abdalbary SA, Alenikova O, Lu H. COVID-19 and acute limb ischemia: latest hypotheses of pathophysiology and molecular mechanisms. J Zhejiang Univ Sci B 2025; 26:333-352. [PMID: 40274383 PMCID: PMC12021539 DOI: 10.1631/jzus.b2300512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/01/2024] [Indexed: 04/26/2025]
Abstract
Coronavirus disease 2019 (COVID-19) is a multi-system disease that can lead to various severe complications. Acute limb ischemia (ALI) has been increasingly recognized as a COVID-19-associated complication that often predicts a poor prognosis. However, the pathophysiology and molecular mechanisms underlying COVID-19-associated ALI remain poorly understood. Hypercoagulability and thrombosis are considered important mechanisms, but we also emphasize the roles of vasospasm, hypoxia, and acidosis in the pathogenesis of the disease. The angiotensin-converting enzyme 2 (ACE2) pathway, inflammation, and platelet activation may be important molecular mechanisms underlying these pathological changes induced by COVID-19. Furthermore, we discuss the hypotheses of risk factors for COVID-19-associated ALI from genetic, age, and gender perspectives based on our analysis of molecular mechanisms. Additionally, we summarize therapeutic approaches such as use of the interleukin-6 (IL-6) blocker tocilizumab, calcium channel blockers, and angiotensin-converting enzyme inhibitors, providing insights for the future treatment of coronavirus-associated limb ischemic diseases.
Collapse
Affiliation(s)
- Chengjun Yao
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanzhao Dong
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haiying Zhou
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaodi Zou
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Ahmad Alhaskawi
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Sohaib Hasan Abdullah Ezzi
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zewei Wang
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingtian Lai
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Vishnu Goutham Kota
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | - Zhenfeng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Sahar Ahmed Abdalbary
- Department of Orthopaedic Physical Therapy, Faculty of Physical Therapy, Nahda University, Beni Suef 2711860, Egypt
| | - Olga Alenikova
- Republic Scientific Practical Center of Neurology and Neurosurgery, Ministry of Health of the Republic of Belarus, Minsk 220004, Belarus
| | - Hui Lu
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
3
|
Shrestha R, Johnson PM, Ghimire R, Whitley CJ, Channappanavar R. Differential TLR-ERK1/2 Activity Promotes Viral ssRNA and dsRNA Mimic-Induced Dysregulated Immunity in Macrophages. Pathogens 2024; 13:1033. [PMID: 39770293 PMCID: PMC11676137 DOI: 10.3390/pathogens13121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
RNA virus-induced excessive inflammation and impaired antiviral interferon (IFN-I) responses are associated with severe disease. This innate immune response, also referred to as "dysregulated immunity" is caused by viral single-stranded RNA (ssRNA)- and double-stranded-RNA (dsRNA)-mediated exuberant inflammation and viral protein-induced IFN antagonism. However, key host factors and the underlying mechanism driving viral RNA-mediated dysregulated immunity are poorly defined. Here, using viral ssRNA and dsRNA mimics, which activate toll-like receptor 7 (TLR7) and TLR3, respectively, we evaluated the role of viral RNAs in causing dysregulated immunity. We observed that murine bone marrow-derived macrophages (BMDMs), when stimulated with TLR3 and TLR7 agonists, induced differential inflammatory and antiviral cytokine response. TLR7 activation triggered a robust inflammatory cytokine/chemokine induction compared to TLR3 activation, whereas TLR3 stimulation induced significantly increased IFN/IFN stimulated gene (ISG) response relative to TLR7 activation. To define the mechanistic basis for dysregulated immunity, we examined cell-surface and endosomal TLR levels and downstream mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kB) activation. We identified significantly higher cell-surface and endosomal TLR7 levels compared to TLR3, which were associated with early and robust MAPK (p-ERK1/2, p-P38, and p-JNK) and NF-kB activation in TLR7-stimulated macrophages. Furthermore, blocking EKR1/2 and NF-kB activity reduced TLR3/7-induced inflammatory cytokine/chemokine levels, whereas only ERK1/2 inhibition enhanced viral RNA mimic-induced IFN/ISG responses. Collectively, our results illustrate that high cell-surface and endosomal TLR7 expression and robust ERK1/2 activation drive viral ssRNA mimic-induced excessive inflammatory and reduced IFN/ISG response and blocking ERK1/2 activity would likely mitigate viral-RNA/TLR-induced dysregulated immunity.
Collapse
Affiliation(s)
- Rakshya Shrestha
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (R.S.); (P.M.J.); (R.G.); (C.J.W.)
| | - Paige Marie Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (R.S.); (P.M.J.); (R.G.); (C.J.W.)
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (R.S.); (P.M.J.); (R.G.); (C.J.W.)
| | - Cody John Whitley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (R.S.); (P.M.J.); (R.G.); (C.J.W.)
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (R.S.); (P.M.J.); (R.G.); (C.J.W.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
4
|
Vásquez-Venegas C, Sotomayor CG, Ramos B, Castañeda V, Pereira G, Cabrera-Vives G, Härtel S. Human-in-the-Loop-A Deep Learning Strategy in Combination with a Patient-Specific Gaussian Mixture Model Leads to the Fast Characterization of Volumetric Ground-Glass Opacity and Consolidation in the Computed Tomography Scans of COVID-19 Patients. J Clin Med 2024; 13:5231. [PMID: 39274444 PMCID: PMC11396404 DOI: 10.3390/jcm13175231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: The accurate quantification of ground-glass opacities (GGOs) and consolidation volumes has prognostic value in COVID-19 patients. Nevertheless, the accurate manual quantification of the corresponding volumes remains a time-consuming task. Deep learning (DL) has demonstrated good performance in the segmentation of normal lung parenchyma and COVID-19 pneumonia. We introduce a Human-in-the-Loop (HITL) strategy for the segmentation of normal lung parenchyma and COVID-19 pneumonia that is both time efficient and quality effective. Furthermore, we propose a Gaussian Mixture Model (GMM) to classify GGO and consolidation based on a probabilistic characterization and case-sensitive thresholds. Methods: A total of 65 Computed Tomography (CT) scans from 64 patients, acquired between March 2020 and June 2021, were randomly selected. We pretrained a 3D-UNet with an international dataset and implemented a HITL strategy to refine the local dataset with delineations by teams of medical interns, radiology residents, and radiologists. Following each HITL cycle, 3D-UNet was re-trained until the Dice Similarity Coefficients (DSCs) reached the quality criteria set by radiologists (DSC = 0.95/0.8 for the normal lung parenchyma/COVID-19 pneumonia). For the probabilistic characterization, a Gaussian Mixture Model (GMM) was fitted to the Hounsfield Units (HUs) of voxels from the CT scans of patients with COVID-19 pneumonia on the assumption that two distinct populations were superimposed: one for GGO and one for consolidation. Results: Manual delineation of the normal lung parenchyma and COVID-19 pneumonia was performed by seven teams on 65 CT scans from 64 patients (56 ± 16 years old (μ ± σ), 46 males, 62 with reported symptoms). Automated lung/COVID-19 pneumonia segmentation with a DSC > 0.96/0.81 was achieved after three HITL cycles. The HITL strategy improved the DSC by 0.2 and 0.5 for the normal lung parenchyma and COVID-19 pneumonia segmentation, respectively. The distribution of the patient-specific thresholds derived from the GMM yielded a mean of -528.4 ± 99.5 HU (μ ± σ), which is below most of the reported fixed HU thresholds. Conclusions: The HITL strategy allowed for fast and effective annotations, thereby enhancing the quality of segmentation for a local CT dataset. Probabilistic characterization of COVID-19 pneumonia by the GMM enabled patient-specific segmentation of GGO and consolidation. The combination of both approaches is essential to gain confidence in DL approaches in our local environment. The patient-specific probabilistic approach, when combined with the automatic quantification of COVID-19 imaging findings, enhances the understanding of GGO and consolidation during the course of the disease, with the potential to improve the accuracy of clinical predictions.
Collapse
Affiliation(s)
- Constanza Vásquez-Venegas
- Department of Computer Science, Faculty of Engineering, University of Concepción, Concepción 4030000, Chile;
- Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Camilo G. Sotomayor
- Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
- Radiology Department, University of Chile Clinical Hospital, University of Chile, Santiago 8380420, Chile;
| | - Baltasar Ramos
- School of Medicine, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Víctor Castañeda
- Center of Medical Informatics and Telemedicine & National Center of Health Information Systems, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Gonzalo Pereira
- Radiology Department, University of Chile Clinical Hospital, University of Chile, Santiago 8380420, Chile;
| | - Guillermo Cabrera-Vives
- Department of Computer Science, Faculty of Engineering, University of Concepción, Concepción 4030000, Chile;
| | - Steffen Härtel
- Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
- Center of Medical Informatics and Telemedicine & National Center of Health Information Systems, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- National Center for Health Information Systems, Santiago 8380453, Chile
- Center of Mathematical Modelling, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
5
|
Cocetta V, Zorzi M, Bejor S, Cesta MC, De Pizzol M, Theurillat JP, Allegretti M, Alimonti A, Montopoli M, Rugge M. Retrospective Analysis of the Effect of Postmenopausal Women Medications on SARS-CoV-2 Infection Progression. Life (Basel) 2024; 14:1107. [PMID: 39337891 PMCID: PMC11433321 DOI: 10.3390/life14091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, it has been evident that women and young people were less susceptible to severe infections compared to males. In a previous study, we observed a reduced prevalence of SARS-CoV-2 infections in hormonal-driven breast cancer patients undergoing SERM (selective estrogen receptor modulator) therapy with respect to other treatments inhibiting estrogen synthesis. In addition to being used in anticancer therapy, SERMs are also prescribed for postmenopausal osteoporosis prevention and treatment. Therefore, in this study, a retrospective analysis of the clinical outcomes of SARS-CoV-2 infections in a population of women over 50 years who were treated for the management of menopausal symptoms was performed. SARS-CoV-2 infections, hospitalizations, and death rates were evaluated in women residing in the Italian north-eastern Veneto Region who were undergoing treatment with Estrogen Modulators (EMs); Estrogen or Progestin, and their combination (EPs); Bisphosphonates (BIs); or cholecalciferol (vitamin D3) ± calcium supplementation (CC). The final cohort study included 124,393 women, of whom 6412 were found to be SARS-CoV-2 infected (CoV2+ve). The results indicated that only women treated with vitamin D3 alone or in combination with calcium showed a significant reduction in their SARS-CoV-2 infection risk by 26% (OR 0.74; 95%CI 0.60-0.91). On the other hand, an increased risk of hospitalization (OR 2.69; 95%CI 1.77-4.07) was shown for the same treatments. The results highlighted in this work contribute to shedding some light on the widely debated role of vitamin D in the prevention of SARS-CoV-2 infections and the disease's treatment.
Collapse
Affiliation(s)
- Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | - Manuel Zorzi
- Veneto Tumour Registry, Azienda Zero, 35131 Padova, Italy
| | - Stefano Bejor
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | | | | | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, 6500 Bellinzona & Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| | | | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, 6500 Bellinzona & Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- VIMM-Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy
- Department of Medicine, University of Padova, 35122 Padova, Italy
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zurich, Switzerland
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, 6500 Bellinzona & Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- VIMM-Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy
| | - Massimo Rugge
- Veneto Tumour Registry, Azienda Zero, 35131 Padova, Italy
- Department of Medicine, University of Padova, 35122 Padova, Italy
| |
Collapse
|
6
|
Zong YH, Cao JF, Zhao Y, Gao M, Chen WL, Wu M, Xu X, Xu ZY, Zhang XQ, Tang JZ, Liu Y, Hu XS, Wang SQ, Zhang X. Mechanism of Lian Hua Qing Wen capsules regulates the inflammatory response caused by M 1 macrophage based on cellular experiments and computer simulations. Acta Trop 2024; 257:107320. [PMID: 39002739 DOI: 10.1016/j.actatropica.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE The polarization of macrophages with the resulting inflammatory response play a crucial part in tissue and organ damage due to inflammatory. Study has proved Lian Hua Qing Wen capsules (LHQW) can reduce activation of inflammatory response and damage of tissue derived from the inflammatory reactions. However, the mechanism of LHQW regulates the macrophage-induced inflammatory response is unclear. Therefore, we investigated the mechanism of LHQW regulated the inflammatory response of M1 macrophages by cellular experiments and computer simulations. METHODS This study has analysed the targets and mechanisms of macrophage regulating inflammatory response at gene and protein levels through bioinformatics. The monomeric components of LHQW were analyzed by High Performance Liquid Chromatography (HPLC). We established the in vitro cell model by M1 macrophages (Induction of THP-1 cells into M1 macrophages). RT-qPCR and immunofluorescence were used to detect changes in gene and protein levels of key targets after LHQW treatment. Computer simulations were utilized to verify the binding stability of monomeric components and protein targets. RESULTS Macrophages had 140,690 gene targets, inflammatory response had 12,192 gene targets, intersection gene targets were 11,772. Key monomeric components (including: Pinocembrin, Fargesone-A, Nodakenin and Bowdichione) of LHQW were screened by HPLC. The results of cellular experiments indicated that LHQW could significantly reduce the mRNA expression of CCR5, CSF2, IFNG and TNF, thereby alleviating the inflammatory response caused by M1 macrophage. The computer simulations further validated the binding stability and conformation of key monomeric components and key protein targets, and IFNG/Nodakenin was able to form the most stable binding conformation for its action. CONCLUSION In this study, the mechanism of LHQW inhibits the polarization of macrophages and the resulting inflammatory response was investigated by computer simulations and cellular experiments. We found that LHQW may not only reduce cell damage and death by acting on TNF and CCR5, but also inhibit the immune recognition process and inflammatory response by regulating CSF2 and IFNG to prevent polarization of macrophages. Therefore, these results suggested that LHQW may act through multiple targets to inhibit the polarization of macrophages and the resulting inflammatory response.
Collapse
Affiliation(s)
| | - Jun-Feng Cao
- College of Medicine, Southwest Jiaotong University, Chengdu, PR China
| | | | - Miao Gao
- Chengdu Medical College, Chengdu, PR China
| | | | - Mei Wu
- Chengdu Medical College, Chengdu, PR China
| | - Xiang Xu
- Chengdu Medical College, Chengdu, PR China
| | | | | | | | - Yulin Liu
- Chengdu Medical College, Chengdu, PR China
| | | | | | - Xiao Zhang
- Chengdu Medical College, Chengdu, PR China.
| |
Collapse
|
7
|
Dai X, Xu R, Li N. The Interplay between Airway Cilia and Coronavirus Infection, Implications for Prevention and Control of Airway Viral Infections. Cells 2024; 13:1353. [PMID: 39195243 PMCID: PMC11353096 DOI: 10.3390/cells13161353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Coronaviruses (CoVs) are a class of respiratory viruses with the potential to cause severe respiratory diseases by infecting cells of the upper respiratory tract, bronchial epithelium, and lung. The airway cilia are distributed on the surface of respiratory epithelial cells, forming the first point of contact between the host and the inhaled coronaviruses. The function of the airway cilia is to oscillate and sense, thereby defending against and removing pathogens to maintain the cleanliness and patency of the respiratory tract. Following infection of the respiratory tract, coronaviruses exploit the cilia to invade and replicate in epithelial cells while also damaging the cilia to facilitate the spread and exacerbation of respiratory diseases. It is therefore imperative to investigate the interactions between coronaviruses and respiratory cilia, as well as to elucidate the functional mechanism of respiratory cilia following coronavirus invasion, in order to develop effective strategies for the prevention and treatment of respiratory viral infections. This review commences with an overview of the fundamental characteristics of airway cilia, and then, based on the interplay between airway cilia and coronavirus infection, we propose that ciliary protection and restoration may represent potential therapeutic approaches in emerging and re-emerging coronavirus pandemics.
Collapse
Affiliation(s)
| | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| |
Collapse
|
8
|
Yunita R, Wahyuni AS, Sinaga BYM, Yamamoto Z, Soebandrio A, Kusumawati RL, Sembiring RJ, Pandia P. Role of ACE2 and TMPRSS2 polymorphisms on COVID-19 outcome and disease severity in adult patients: A prospective cohort study in a tertiary hospital, Indonesia. NARRA J 2024; 4:e919. [PMID: 39280326 PMCID: PMC11391966 DOI: 10.52225/narra.v4i2.919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/04/2024] [Indexed: 09/18/2024]
Abstract
Coronavirus disease 2019 (COVID-19) has led to a significant number of infections and deaths worldwide, yet its pathogenesis and severity remain incompletely understood. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2), play crucial roles as receptors and molecules responsible for the virus's entry into host cells, initiating the infection process. Their polymorphisms have been extensively studied in relation to COVID-19 severity. The aim of this study was to examine the association of ACE2 (rs2074192) and TMPRSS2 (rs12329760) polymorphisms with COVID-19 outcome and severity. A prospective cohort study was conducted in 2022 at Haji Adam Malik Hospital, Medan, Indonesia. We randomly recruited hospitalized adult patients with COVID-19, confirmed by real-time polymerase chain reaction (RT-PCR). The baseline demographic data, disease severity, underlying disease, comorbidities, and COVID-19 vaccination status were collected. The single-nucleotide polymorphism (SNP) was assessed using TaqMan SNP genotyping assay, and the levels of TMPRSS2 and ACE2 proteins were measured using enzyme-linked immunosorbent assay (ELISA). A total of 151 COVID-19 patients were recruited and there were significant associations between age and severity with mortality outcomes. The age, kidney and lung diseases, and vaccination status were associated with severity levels. The results showed the CC genotype of ACE2 had the highest proportion, followed by TT and CT genotypes among patients, while CT was the most prevalent genotype, followed by CC and TT for TMPRSS2. This study did not find a significant association between ACE2 and TMPRSS2 genetic variants with disease severity and outcome but highlighted a specific association of TMPRSS2 SNP with mortality within the group. In addition, ACE2 concentration was significant different between mild-moderate and severe-critical COVID-19 groups (p=0.033).
Collapse
Affiliation(s)
- Rina Yunita
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Arlinda S. Wahyuni
- Department of Community Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Bintang YM. Sinaga
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Zulham Yamamoto
- Department of Histology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Amin Soebandrio
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - R. Lia Kusumawati
- Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rosita J. Sembiring
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Pandiaman Pandia
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
9
|
Grune J, Bajpai G, Ocak PT, Kaufmann E, Mentkowski K, Pabel S, Kumowski N, Pulous FE, Tran KA, Rohde D, Zhang S, Iwamoto Y, Wojtkiewicz GR, Vinegoni C, Green U, Swirski FK, Stone JR, Lennerz JK, Divangahi M, Hulsmans M, Nahrendorf M. Virus-Induced Acute Respiratory Distress Syndrome Causes Cardiomyopathy Through Eliciting Inflammatory Responses in the Heart. Circulation 2024; 150:49-61. [PMID: 38506045 PMCID: PMC11216864 DOI: 10.1161/circulationaha.123.066433] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Viral infections can cause acute respiratory distress syndrome (ARDS), systemic inflammation, and secondary cardiovascular complications. Lung macrophage subsets change during ARDS, but the role of heart macrophages in cardiac injury during viral ARDS remains unknown. Here we investigate how immune signals typical for viral ARDS affect cardiac macrophage subsets, cardiovascular health, and systemic inflammation. METHODS We assessed cardiac macrophage subsets using immunofluorescence histology of autopsy specimens from 21 patients with COVID-19 with SARS-CoV-2-associated ARDS and 33 patients who died from other causes. In mice, we compared cardiac immune cell dynamics after SARS-CoV-2 infection with ARDS induced by intratracheal instillation of Toll-like receptor ligands and an ACE2 (angiotensin-converting enzyme 2) inhibitor. RESULTS In humans, SARS-CoV-2 increased total cardiac macrophage counts and led to a higher proportion of CCR2+ (C-C chemokine receptor type 2 positive) macrophages. In mice, SARS-CoV-2 and virus-free lung injury triggered profound remodeling of cardiac resident macrophages, recapitulating the clinical expansion of CCR2+ macrophages. Treating mice exposed to virus-like ARDS with a tumor necrosis factor α-neutralizing antibody reduced cardiac monocytes and inflammatory MHCIIlo CCR2+ macrophages while also preserving cardiac function. Virus-like ARDS elevated mortality in mice with pre-existing heart failure. CONCLUSIONS Our data suggest that viral ARDS promotes cardiac inflammation by expanding the CCR2+ macrophage subset, and the associated cardiac phenotypes in mice can be elicited by activating the host immune system even without viral presence in the heart.
Collapse
Affiliation(s)
- Jana Grune
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité, Berlin, Germany (J.G.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Physiology, Germany (J.G.)
- German Center for Cardiovascular Research, Partner Site Berlin (J.G.)
| | - Geetika Bajpai
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Pervin Tülin Ocak
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Cardiology, University Hospital Heidelberg, Germany (P.T.O.)
| | - Eva Kaufmann
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, Research Institute McGill University Health Centre, and McGill International TB Centre Montreal, Canada (E.K., K.A.T., M.D.)
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada (E.K.)
| | - Kyle Mentkowski
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Steffen Pabel
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (S.P.)
| | - Nina Kumowski
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Internal Medicine I, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen University, Germany (N.K.)
| | - Fadi E Pulous
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Kim A Tran
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, Research Institute McGill University Health Centre, and McGill International TB Centre Montreal, Canada (E.K., K.A.T., M.D.)
| | - David Rohde
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Shuang Zhang
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Yoshiko Iwamoto
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Gregory R Wojtkiewicz
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Claudio Vinegoni
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics (U.G., J.K.L.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY (F.K.S.)
| | - James R Stone
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (J.R.S.)
- Massachusetts General Hospital, Boston (J.R.S.)
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics (U.G., J.K.L.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, Research Institute McGill University Health Centre, and McGill International TB Centre Montreal, Canada (E.K., K.A.T., M.D.)
| | - Maarten Hulsmans
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Gordon Center for Medical Imaging (M.N.)
- Department of Internal Medicine, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
10
|
Peng J, Tang R, He J, Yu Q, Wang D, Qi D. S1PR3 inhibition protects against LPS-induced ARDS by inhibiting NF-κB and improving mitochondrial oxidative phosphorylation. J Transl Med 2024; 22:535. [PMID: 38840216 PMCID: PMC11151509 DOI: 10.1186/s12967-024-05220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/20/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Inflammation and endothelial barrier dysfunction are the major pathophysiological changes in acute respiratory distress syndrome (ARDS). Sphingosine-1-phosphate receptor 3 (S1PR3), a G protein-coupled receptor, has been found to mediate inflammation and endothelial cell (EC) integrity. However, the function of S1PR3 in ARDS has not been fully elucidated. METHODS We used a murine lipopolysaccharide (LPS)-induced ARDS model and an LPS- stimulated ECs model to investigate the role of S1PR3 in anti-inflammatory effects and endothelial barrier protection during ARDS. RESULTS We found that S1PR3 expression was increased in the lung tissues of mice with LPS-induced ARDS. TY-52156, a selective S1PR3 inhibitor, effectively attenuated LPS-induced inflammation by suppressing the expression of proinflammatory cytokines and restored the endothelial barrier by repairing adherens junctions and reducing vascular leakage. S1PR3 inhibition was achieved by an adeno-associated virus in vivo and a small interfering RNA in vitro. Both the in vivo and in vitro studies demonstrated that pharmacological or genetic inhibition of S1PR3 protected against ARDS by inhibiting the NF-κB pathway and improving mitochondrial oxidative phosphorylation. CONCLUSIONS S1PR3 inhibition protects against LPS-induced ARDS via suppression of pulmonary inflammation and promotion of the endothelial barrier by inhibiting NF-κB and improving mitochondrial oxidative phosphorylation, indicating that S1PR3 is a potential therapeutic target for ARDS.
Collapse
Affiliation(s)
- Junnan Peng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Rui Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Qian Yu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
11
|
Safdari H, Bagheri S, Talkhi N, Saberi Teymourian E, Hosseini Bafghi M, Ahmadi MH. Cq values as an indicator for COVID-19 outcomes: A study of the correlation between laboratory parameters. Immun Inflamm Dis 2024; 12:e1326. [PMID: 38923849 PMCID: PMC11194972 DOI: 10.1002/iid3.1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE The ongoing outbreak of the respiratory disease coronavirus disease 2019 (COVID-19) is currently presenting a major global health threat. This pandemic is unprecedented in recent human history. The objective of this study was to examine the relationship between cycle quantitation (Cq) and laboratory parameters in COVID-19 patients, aiming to determine if Cq levels can provide valuable insights into the COVID-19 disease. METHODS This study involved 234 participants who were divided into case and control groups. Real-time PCR tests were used to diagnose COVID-19 cases in the study participants. Blood tests, including complete blood count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), lactate dehydrogenase (LDH), D-dimer, IgG, and IgM, were also conducted. Statistical analysis was performed using SPSS 22 software. RESULTS The findings showed that COVID-19-positive cases had significantly higher levels of the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), D-dimer, ESR, CRP, and LDH compared to normal cases. Additionally, the case group had significantly lower lymphocyte and platelet counts. There was a statistically significant positive correlation between Cq levels and lymphocyte count (r = .124, p = .014). Conversely, there was a statistically significant inverse correlation between Cq levels and NLR (r = -.208, p = .017). Furthermore, the evaluation of hematological, inflammatory, and biochemical indexes in COVID-19 patients using the receiver-operating characteristics curve demonstrated statistically appropriate sensitivity and specificity. CONCLUSION Our outcomes indicated a significant association between Cq levels and PLR, NLR, D-dimer, CRP, and ESR in COVID-19 patients. Consequently, including the report of laboratory parameters alongside Cq values offers a promising prognosis.
Collapse
Affiliation(s)
- Hadi Safdari
- Department of Laboratory Sciences, School of Paramedical Sciences, Faculty of Paramedical and Rehabilitation SciencesMashhad University of Medical SciencesMashhadIran
| | - Saeede Bagheri
- Department of Laboratory Sciences, School of Paramedical Sciences, Faculty of Paramedical and Rehabilitation SciencesMashhad University of Medical SciencesMashhadIran
| | - Nasrin Talkhi
- Department of Biostatistics, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Elahe Saberi Teymourian
- Department of Laboratory Sciences, School of Paramedical Sciences, Faculty of Paramedical and Rehabilitation SciencesMashhad University of Medical SciencesMashhadIran
| | - Mahdi Hosseini Bafghi
- Department of Laboratory Sciences, School of Paramedical Sciences, Faculty of Paramedical and Rehabilitation SciencesMashhad University of Medical SciencesMashhadIran
| | - Mohammad Hossein Ahmadi
- Department of Laboratory Sciences, School of Paramedical Sciences, Faculty of Paramedical and Rehabilitation SciencesMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
12
|
Yang Y, Li F, Du L. Therapeutic nanobodies against SARS-CoV-2 and other pathogenic human coronaviruses. J Nanobiotechnology 2024; 22:304. [PMID: 38822339 PMCID: PMC11140877 DOI: 10.1186/s12951-024-02573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Nanobodies, single-domain antibodies derived from variable domain of camelid or shark heavy-chain antibodies, have unique properties with small size, strong binding affinity, easy construction in versatile formats, high neutralizing activity, protective efficacy, and manufactural capacity on a large-scale. Nanobodies have been arisen as an effective research tool for development of nanobiotechnologies with a variety of applications. Three highly pathogenic coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, have caused serious outbreaks or a global pandemic, and continue to post a threat to public health worldwide. The viral spike (S) protein and its cognate receptor-binding domain (RBD), which initiate viral entry and play a critical role in virus pathogenesis, are important therapeutic targets. This review describes pathogenic human CoVs, including viral structures and proteins, and S protein-mediated viral entry process. It also summarizes recent advances in development of nanobodies targeting these CoVs, focusing on those targeting the S protein and RBD. Finally, we discuss potential strategies to improve the efficacy of nanobodies against emerging SARS-CoV-2 variants and other CoVs with pandemic potential. It will provide important information for rational design and evaluation of therapeutic agents against emerging and reemerging pathogens.
Collapse
MESH Headings
- Single-Domain Antibodies/immunology
- Single-Domain Antibodies/pharmacology
- Single-Domain Antibodies/therapeutic use
- Single-Domain Antibodies/chemistry
- Humans
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Animals
- COVID-19/virology
- COVID-19/immunology
- COVID-19/therapy
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Middle East Respiratory Syndrome Coronavirus/immunology
- Virus Internalization/drug effects
- Pandemics
- Betacoronavirus/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/virology
- Pneumonia, Viral/immunology
- Severe acute respiratory syndrome-related coronavirus/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
Collapse
Affiliation(s)
- Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Center for Coronavirus Research, University of Minnesota, Minneapolis, MN, USA.
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Shrestha R, Johnson P, Ghimire R, Whitley C, Channappanavar R. Differential TLR-ERK1/2 activity promotes viral ssRNA and dsRNA mimic-induced dysregulated immunity in macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595760. [PMID: 38826464 PMCID: PMC11142249 DOI: 10.1101/2024.05.24.595760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
RNA virus induced excessive inflammation and impaired antiviral interferon (IFN-I) responses are associated with severe disease. This innate immune response, also referred to as 'dysregulated immunity,' is caused by viral single-stranded RNA (ssRNA) and double-stranded-RNA (dsRNA) mediated exuberant inflammation and viral protein-induced IFN antagonism. However, key host factors and the underlying mechanism driving viral RNA-mediated dysregulated immunity are poorly defined. Here, using viral ssRNA and dsRNA mimics, which activate toll-like receptor 7 (TLR7) and TLR3, respectively, we evaluated the role of viral RNAs in causing dysregulated immunity. We show that murine bone marrow-derived macrophages (BMDMs) stimulated with TLR3 and TLR7 agonists induce differential inflammatory and antiviral cytokine response. TLR7 activation triggered a robust inflammatory cytokine/chemokine induction compared to TLR3 activation, whereas TLR3 stimulation induced significantly increased IFN/IFN stimulated gene (ISG) response relative to TLR7 activation. To define the mechanistic basis for dysregulated immunity, we examined cell-surface and endosomal TLR levels and downstream mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kB) activation. We identified a significantly higher cell-surface and endosomal TLR7 expression compared to TLR3, which further correlated with early and robust MAPK (pERK1/2 and p-P38) and NF-kB activation in TLR7-stimulated macrophages. Furthermore, blocking EKR1/2, p38, and NF-kB activity reduced TLR3/7-induced inflammatory cytokine/chemokine levels, whereas only ERK1/2 inhibition enhanced viral RNA-mimic-induced IFN/ISG responses. Collectively, our results illustrate that high cell surface and endosomal TLR7 expression and robust ERK1/2 activation drive viral ssRNA mimic-induced excessive inflammatory and reduced IFN/ISG responses, and blocking ERK1/2 activity would mitigate viral-RNA/TLR-induced dysregulated immunity.
Collapse
Affiliation(s)
- Rakshya Shrestha
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University. Stillwater, OK, 74078
| | - Paige Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University. Stillwater, OK, 74078
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University. Stillwater, OK, 74078
| | - Cody Whitley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University. Stillwater, OK, 74078
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University. Stillwater, OK, 74078
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078
| |
Collapse
|
14
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Zhang J, Rissmann M, Kuiken T, Haagmans BL. Comparative Pathogenesis of Severe Acute Respiratory Syndrome Coronaviruses. ANNUAL REVIEW OF PATHOLOGY 2024; 19:423-451. [PMID: 37832946 DOI: 10.1146/annurev-pathol-052620-121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Over the last two decades the world has witnessed the global spread of two genetically related highly pathogenic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, the impact of these outbreaks differed significantly with respect to the hospitalizations and fatalities seen worldwide. While many studies have been performed recently on SARS-CoV-2, a comparative pathogenesis analysis with SARS-CoV may further provide critical insights into the mechanisms of disease that drive coronavirus-induced respiratory disease. In this review, we comprehensively describe clinical and experimental observations related to transmission and pathogenesis of SARS-CoV-2 in comparison with SARS-CoV, focusing on human, animal, and in vitro studies. By deciphering the similarities and disparities of SARS-CoV and SARS-CoV-2, in terms of transmission and pathogenesis mechanisms, we offer insights into the divergent characteristics of these two viruses. This information may also be relevant to assessing potential novel introductions of genetically related highly pathogenic coronaviruses.
Collapse
Affiliation(s)
- Jingshu Zhang
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Melanie Rissmann
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Thijs Kuiken
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| |
Collapse
|
16
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
17
|
McKendry R, Lemm NM, Papargyris L, Chiu C. Human Challenge Studies with Coronaviruses Old and New. Curr Top Microbiol Immunol 2024; 445:69-108. [PMID: 35181805 DOI: 10.1007/82_2021_247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coronavirus infections have been known to cause disease in animals since as early as the 1920s. However, only seven coronaviruses capable of causing human disease have been identified thus far. These Human Coronaviruses (HCoVs) include the causes of the common cold, but more recent coronaviruses that have emerged (i.e. SARS-CoV, MERS-CoV and SARS-CoV-2) are associated with much greater morbidity and mortality. HCoVs have been relatively under-studied compared to other common respiratory infections, as historically they have presented with mild symptoms. This has led to a relatively limited understanding of their animal reservoirs, transmission and determinants of immune protection. To address this, human infection challenge studies with HCoVs have been performed that enable a detailed clinical and immunological analysis of the host response at specific time points under controlled conditions with standardised viral inocula. Until recently, all such human challenge studies were conducted with common cold HCoVs, with the study of SARS-CoV and MERS-CoV unacceptable due to their greater pathogenicity. However, with the emergence of SARS-CoV-2 and the COVID-19 pandemic during which severe outcomes in young healthy adults have been rare, human challenge studies with SARS-CoV-2 are now being developed. Two SARS-CoV-2 human challenge studies in the UK studying individuals with and without pre-existing immunity are underway. As well as providing a platform for testing of antivirals and vaccines, such studies will be critical for understanding the factors associated with susceptibility to SARS-CoV-2 infection and thus developing improved strategies to tackle the current as well as future HCoV pandemics. Here, we summarise the major questions about protection and pathogenesis in HCoV infection that human infection challenge studies have attempted to answer historically, as well as the knowledge gaps that aim to be addressed with contemporary models.
Collapse
Affiliation(s)
- Richard McKendry
- Department of Infectious Disease, Imperial College London, London, UK
| | - Nana-Marie Lemm
- Department of Infectious Disease, Imperial College London, London, UK
| | - Loukas Papargyris
- Department of Infectious Disease, Imperial College London, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
18
|
Madera‐Sandoval RL, Cérbulo‐Vázquez A, Arriaga‐Pizano LA, Cabrera‐Rivera GL, Basilio‐Gálvez E, Miranda‐Cruz PE, García de la Rosa MT, Prieto‐Chávez JL, Rivero‐Arredondo SV, Cruz‐Cruz A, Rodríguez‐Hernández D, Salazar‐Ríos ME, Salazar‐Ríos E, Serrano‐Molina ED, De Lira‐Barraza RC, Villanueva‐Compean AH, Esquivel‐Pineda A, Ramírez‐Montes de Oca R, Unzueta‐Marta O, Flores‐Padilla G, Anda‐Garay JC, Sánchez‐Hurtado LA, Calleja‐Alarcón S, Romero‐Gutiérrez L, Torres‐Rosas R, Bonifaz LC, Pelayo R, Márquez‐Márquez E, López‐Macías CIIIR, Ferat‐Osorio E. Potential biomarkers for fatal outcome prognosis in a cohort of hospitalized COVID-19 patients with pre-existing comorbidities. Clin Transl Sci 2023; 16:2687-2699. [PMID: 37873554 PMCID: PMC10719476 DOI: 10.1111/cts.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023] Open
Abstract
The difficulty in predicting fatal outcomes in patients with coronavirus disease 2019 (COVID-19) impacts the general morbidity and mortality due to severe acute respiratory syndrome-coronavirus 2 infection, as it wears out the hospital services that care for these patients. Unfortunately, in several of the candidates for prognostic biomarkers proposed, the predictive power is compromised when patients have pre-existing comorbidities. A cohort of 147 patients hospitalized for severe COVID-19 was included in a descriptive, observational, single-center, and prospective study. Patients were recruited during the first COVID-19 pandemic wave (April-November 2020). Data were collected from the clinical history whereas immunophenotyping by multiparameter flow cytometry analysis allowed us to assess the expression of surface markers on peripheral leucocyte. Patients were grouped according to the outcome in survivors or non-survivors. The prognostic value of leucocyte, cytokines or HLA-DR, CD39, and CD73 was calculated. Hypertension and chronic renal failure but not obesity and diabetes were conditions more frequent among the deceased patient group. Mixed hypercytokinemia, including inflammatory (IL-6) and anti-inflammatory (IL-10) cytokines, was more evident in deceased patients. In the deceased patient group, lymphopenia with a higher neutrophil-lymphocyte ratio (NLR) value was present. HLA-DR expression and the percentage of CD39+ cells were higher than non-COVID-19 patients but remained similar despite the outcome. Receiver operating characteristic analysis and cutoff value of NLR (69.6%, 9.4), percentage NLR (pNLR; 71.1%, 13.6), and IL-6 (79.7%, 135.2 pg/mL). The expression of HLA-DR, CD39, and CD73, as many serum cytokines (other than IL-6) and chemokines levels do not show prognostic potential, were compared to NLR and pNLR values.
Collapse
Affiliation(s)
- Ruth Lizzeth Madera‐Sandoval
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | | | - Lourdes Andrea Arriaga‐Pizano
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Graciela Libier Cabrera‐Rivera
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
- Posgrado en InmunologíaInstituto Politécnico NacionalCiudad de MéxicoMexico
| | - Edna Basilio‐Gálvez
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
- Posgrado de Ciencias Químicobiológicas, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | - Patricia Esther Miranda‐Cruz
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - María Teresa García de la Rosa
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
- Posgrado en InmunologíaInstituto Politécnico NacionalCiudad de MéxicoMexico
| | - Jessica Lashkmin Prieto‐Chávez
- Centro de Instrumentos, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Silvia Vanessa Rivero‐Arredondo
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Alonso Cruz‐Cruz
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Daniela Rodríguez‐Hernández
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - María Eugenia Salazar‐Ríos
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Enrique Salazar‐Ríos
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Esli David Serrano‐Molina
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | | | | | - Alejandra Esquivel‐Pineda
- Medicina Interna, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Rubén Ramírez‐Montes de Oca
- Medicina Interna, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Omar Unzueta‐Marta
- Medicina Interna, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Guillermo Flores‐Padilla
- Medicina Interna, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Juan Carlos Anda‐Garay
- Medicina Interna, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Luis Alejandro Sánchez‐Hurtado
- Unidad de Cuidados Intensivos, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Salvador Calleja‐Alarcón
- Unidad de Cuidados Intensivos, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Laura Romero‐Gutiérrez
- Unidad de Cuidados Intensivos, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| | - Rafael Torres‐Rosas
- Laboratorio de Inmunología, Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de OdontologíaUniversidad Autónoma “Benito Juárez” de Oaxaca (UABJO)Oaxaca de JuárezMexico
| | - Laura C. Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
- Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro SocialCiudad de MéxicoMexico
| | - Rosana Pelayo
- Centro de Investigación Biomédica de OrienteIMSSPueblaMexico
- Unidad de Educación e Investigación, IMSSCiudad de MéxicoMexico
| | | | | | - Eduardo Ferat‐Osorio
- Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro SocialCiudad de MéxicoMexico
- División de Investigación en Salud, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social (IMSS)Ciudad de MéxicoMexico
| |
Collapse
|
19
|
Li T, Wang D, Wei H, Xu X. Cytokine storm and translating IL-6 biology into effective treatments for COVID-19. Front Med 2023; 17:1080-1095. [PMID: 38157195 DOI: 10.1007/s11684-023-1044-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
As of May 3, 2023, the Coronavirus disease 2019 (COVID-19) pandemic has resulted in more than 760 million confirmed cases and over 6.9 million deaths. Several patients have developed pneumonia, which can deteriorate into acute respiratory distress syndrome. The primary etiology may be attributed to cytokine storm, which is triggered by the excessive release of proinflammatory cytokines and subsequently leads to immune dysregulation. Considering that high levels of interleukin-6 (IL-6) have been detected in several highly pathogenic coronavirus-infected diseases, such as severe acute respiratory syndrome in 2002, the Middle East respiratory syndrome in 2012, and COVID-19, the IL-6 pathway has emerged as a key in the pathogenesis of this hyperinflammatory state. Thus, we review the history of cytokine storm and the process of targeting IL-6 signaling to elucidate the pivotal role played by tocilizumab in combating COVID-19.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Geriatric Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Dongsheng Wang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230001, China
| | - Xiaoling Xu
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
20
|
Baukmann HA, Cope JL, Bannard C, Schwinges AR, Lamparter MR, Groves S, Ravarani CN, Amulic B, Klinger JE, Schmidt MF. Exploring disease-causing traits for drug repurposing in critically ill COVID-19 patients: A causal inference approach. iScience 2023; 26:108185. [PMID: 37965141 PMCID: PMC10641251 DOI: 10.1016/j.isci.2023.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Despite recent development of vaccines to prevent SARS-CoV-2 infection, treatment of critically ill COVID-19 patients remains an important goal. In principle, genome-wide association studies (GWASs) provide a shortcut to the clinical evidence needed to repurpose existing drugs; however, genes identified frequently lack a causal disease link. We report an alternative method for finding drug repurposing targets, focusing on disease-causing traits beyond immediate disease genetics. Sixty blood cell types and biochemistries, and body mass index, were screened on a cohort of critically ill COVID-19 cases and controls that exhibited mild symptoms after infection, yielding high neutrophil cell count as a possible causal trait for critical illness. Our methodology identified CDK6 and janus kinase (JAK) inhibitors as treatment targets that were validated in an ex vivo neutrophil extracellular trap (NET) formation assay. Our methodology demonstrates the increased power for drug target identification by leveraging large disease-causing trait datasets.
Collapse
Affiliation(s)
| | | | - Colin Bannard
- University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | | | - Sarah Groves
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1DT, UK
| | | | - Borko Amulic
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1DT, UK
| | | | | |
Collapse
|
21
|
Zhang L, Li Y(H, Kibler K, Kraberger S, Varsani A, Turk J, Elmadbouly N, Aliskevich E, Spaccarelli L, Estifanos B, Enow J, Zanetti IR, Saldevar N, Lim E, Schlievert J, Browder K, Wilson A, Juan FA, Pinteric A, Garg A, Monder H, Saju R, Gisriel S, Jacobs B, Karr TL, Florsheim EB, Kumar V, Wallen J, Rahman M, McFadden G, Hogue BG, Lucas AR. Viral anti-inflammatory serpin reduces immuno-coagulopathic pathology in SARS-CoV-2 mouse models of infection. EMBO Mol Med 2023; 15:e17376. [PMID: 37534622 PMCID: PMC10493584 DOI: 10.15252/emmm.202317376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
SARS-CoV-2 acute respiratory distress syndrome (ARDS) induces uncontrolled lung inflammation and coagulopathy with high mortality. Anti-viral drugs and monoclonal antibodies reduce early COVID-19 severity, but treatments for late-stage immuno-thrombotic syndromes and long COVID are limited. Serine protease inhibitors (SERPINS) regulate activated proteases. The myxoma virus-derived Serp-1 protein is a secreted immunomodulatory serpin that targets activated thrombotic, thrombolytic, and complement proteases as a self-defense strategy to combat clearance. Serp-1 is effective in multiple animal models of inflammatory lung disease and vasculitis. Here, we describe systemic treatment with purified PEGylated Serp-1 as a therapy for immuno-coagulopathic complications during ARDS. Treatment with PEGSerp-1 in two mouse-adapted SARS-CoV-2 models in C57Bl/6 and BALB/c mice reduced lung and heart inflammation, with improved outcomes. PEGSerp-1 significantly reduced M1 macrophages in the lung and heart by modifying urokinase-type plasminogen activator receptor (uPAR), thrombotic proteases, and complement membrane attack complex (MAC). Sequential changes in gene expression for uPAR and serpins (complement and plasminogen inhibitors) were observed. PEGSerp-1 is a highly effective immune-modulator with therapeutic potential for severe viral ARDS, immuno-coagulopathic responses, and Long COVID.
Collapse
Affiliation(s)
- Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Yize (Henry) Li
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Karen Kibler
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Simona Kraberger
- Center of Fundamental and Applied MicrobiomicsBiodesign Institute, Arizona State UniversityTempeAZUSA
| | - Arvind Varsani
- School of Life SciencesArizona State UniversityTempeAZUSA
- Center of Fundamental and Applied MicrobiomicsBiodesign Institute, Arizona State UniversityTempeAZUSA
- Center for Evolution and Medicine, School of Life SciencesArizona State UniversityTempeAZUSA
| | - Julie Turk
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Nora Elmadbouly
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Emily Aliskevich
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Laurel Spaccarelli
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Bereket Estifanos
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Junior Enow
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Isabela Rivabem Zanetti
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Nicholas Saldevar
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Efrem Lim
- School of Life SciencesArizona State UniversityTempeAZUSA
- Center of Fundamental and Applied MicrobiomicsBiodesign Institute, Arizona State UniversityTempeAZUSA
| | - Jessika Schlievert
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Kyle Browder
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Anjali Wilson
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Fernando Arcos Juan
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Aubrey Pinteric
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Aman Garg
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Henna Monder
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Rohan Saju
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Savanah Gisriel
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Departments of Pathology & Lab MedicineYale‐New Haven HospitalNew HavenCTUSA
| | - Bertram Jacobs
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Timothy L Karr
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Neurodegenerative Disease Research Center & Proteomics Center, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Esther Borges Florsheim
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Vivek Kumar
- New Jersey Institute of TechnologyNewarkNJUSA
| | | | - Masmudur Rahman
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Grant McFadden
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Brenda G Hogue
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
- Center for Applied Structural Discovery, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Alexandra R Lucas
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| |
Collapse
|
22
|
Pustake M, Giri P, Ganiyani MA, Mumtaz K, Deshmukh K, Saju M, Nunez JV, Orlova N, Das A. Drawing Parallels between SARS, MERS, and COVID-19: A Comparative Overview of Epidemiology, Pathogenesis, and Pathological Features. Indian J Community Med 2023; 48:518-524. [PMID: 37662119 PMCID: PMC10470569 DOI: 10.4103/ijcm.ijcm_460_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 05/22/2023] [Indexed: 09/05/2023] Open
Abstract
Background Since November 2019, when the novel coronavirus arose in Wuhan City, over 188 million people worldwide have been infected with COVID-19. It is the third coronavirus outbreak in the twenty-first century. Until now, practically all coronavirus epidemics have occurred due to zoonotic spread from an animal or transitional host or through the consumption of their products. Coronaviruses can infect humans and cause severe illness and even death. Material and Methods This review was designed to help us recognize and harmonize the similarities and differences between these three coronaviridae family members. Result Measures aimed at containing the epidemic should be emphasized in this circumstance. Prioritizing and planning these activities require an understanding of the particulars of these three viruses. Given the pandemic's enormous death toll and rapid spread, we should be cognizant of the parallels and differences between these three viruses. Additionally, this pandemic warns us to be cautious against the possibility of a future pandemic. Conclusion We highlight the fundamental characteristics of coronaviruses that are critical for recognizing coronavirus epidemiology, pathogenesis, and pathological features that reveal numerous significant pathological attributes and evolutionary patterns in the viral genome that aid in better understanding and anticipating future epidemics.
Collapse
Affiliation(s)
- Manas Pustake
- Department of Internal Medicine, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Purushottam Giri
- Department of Community Medicine, IIMSR Medical College, Jalna, Maharashtra, India
| | - Mohammad Arfat Ganiyani
- Department of Internal Medicine, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Kahkashan Mumtaz
- Department of Pediatrics, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Krishna Deshmukh
- Department of Internal Medicine, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Michael Saju
- Department of Community Medicine, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | | | | | - Arghadip Das
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, India
| |
Collapse
|
23
|
Cerato JA, da Silva EF, Porto BN. Breaking Bad: Inflammasome Activation by Respiratory Viruses. BIOLOGY 2023; 12:943. [PMID: 37508374 PMCID: PMC10376673 DOI: 10.3390/biology12070943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
The nucleotide-binding domain leucine-rich repeat-containing receptor (NLR) family is a group of intracellular sensors activated in response to harmful stimuli, such as invading pathogens. Some NLR family members form large multiprotein complexes known as inflammasomes, acting as a platform for activating the caspase-1-induced canonical inflammatory pathway. The canonical inflammasome pathway triggers the secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 by the rapid rupture of the plasma cell membrane, subsequently causing an inflammatory cell death program known as pyroptosis, thereby halting viral replication and removing infected cells. Recent studies have highlighted the importance of inflammasome activation in the response against respiratory viral infections, such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While inflammasome activity can contribute to the resolution of respiratory virus infections, dysregulated inflammasome activity can also exacerbate immunopathology, leading to tissue damage and hyperinflammation. In this review, we summarize how different respiratory viruses trigger inflammasome pathways and what harmful effects the inflammasome exerts along with its antiviral immune response during viral infection in the lungs. By understanding the crosstalk between invading pathogens and inflammasome regulation, new therapeutic strategies can be exploited to improve the outcomes of respiratory viral infections.
Collapse
Affiliation(s)
- Julia A. Cerato
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
| | - Emanuelle F. da Silva
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
| | - Barbara N. Porto
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
24
|
Crum RJ, Huckestien BR, Dwyer G, Mathews L, Nascari DG, Hussey GS, Turnquist HR, Alcorn JF, Badylak SF. Mitigation of influenza-mediated inflammation by immunomodulatory matrix-bound nanovesicles. SCIENCE ADVANCES 2023; 9:eadf9016. [PMID: 37205761 PMCID: PMC10198633 DOI: 10.1126/sciadv.adf9016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Cytokine storm describes a life-threatening, systemic inflammatory syndrome characterized by elevated levels of proinflammatory cytokines and immune cell hyperactivation associated with multi-organ dysfunction. Matrix-bound nanovesicles (MBV) are a subclass of extracellular vesicle shown to down-regulate proinflammatory immune responses. The objective of this study was to assess the efficacy of MBV in mediating influenza-induced acute respiratory distress syndrome and cytokine storm in a murine model. Intravenous administration of MBV decreased influenza-mediated total lung inflammatory cell density, proinflammatory macrophage frequencies, and proinflammatory cytokines at 7 and 21 days following viral inoculation. MBV decreased long-lasting alveolitis and the proportion of lung undergoing inflammatory tissue repair at day 21. MBV increased the proportion of activated anti-viral CD4+ and CD8+ T cells at day 7 and memory-like CD62L+ CD44+, CD4+, and CD8+ T cells at day 21. These results show immunomodulatory properties of MBV that may benefit the treatment of viral-mediated pulmonary inflammation with applicability to other viral diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Raphael J. Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brydie R. Huckestien
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gaelen Dwyer
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Mathews
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David G. Nascari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heth R. Turnquist
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F. Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Ghimire R, Shrestha R, Amaradhi R, Patton T, Whitley C, Chanda D, Liu L, Ganesh T, More S, Channappanavar R. Toll-like receptor 7 (TLR7)-mediated antiviral response protects mice from lethal SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539929. [PMID: 37214943 PMCID: PMC10197544 DOI: 10.1101/2023.05.08.539929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
SARS-CoV-2-induced impaired antiviral and excessive inflammatory responses cause fatal pneumonia. However, the key pattern recognition receptors that elicit effective antiviral and lethal inflammatory responses in-vivo are not well defined. CoVs possess single-stranded RNA (ssRNA) genome that is abundantly produced during infection and stimulates both antiviral interferon (IFN) and inflammatory cytokine/ chemokine responses. Therefore, in this study, using wild-type control and TLR7 deficient BALB/c mice infected with a mouse-adapted SARS-COV-2 (MA-CoV-2), we evaluated the role of TLR7 signaling in MA-CoV-2-induced antiviral and inflammatory responses and disease outcome. We show that TLR7-deficient mice are more susceptible to MA-CoV-2 infection as compared to infected control mice. Further evaluation of MA-CoV-2 infected lungs showed significantly reduced mRNA levels of antiviral type I (IFNα/β) and type III (IFNλ) IFNs, IFN stimulated genes (ISGs, ISG15 and CXCL10), and several pro-inflammatory cytokines/chemokines in TLR7 deficient compared to control mice. Reduced lung IFN/ISG levels and increased morbidity/mortality in TLR7 deficient mice correlated with high lung viral titer. Detailed examination of total cells from MA-CoV-2 infected lungs showed high neutrophil count in TLR7 deficient mice compared to control mice. Additionally, blocking TLR7 activity post-MA-CoV-2 infection using a specific inhibitor also enhanced disease severity. In summary, our results conclusively establish that TLR7 signaling is protective during SARS-CoV-2 infection, and despite robust inflammatory response, TLR7-mediated IFN/ISG responses likely protect the host from lethal disease. Given similar outcomes in control and TLR7 deficient humans and mice, these results show that MA-CoV-2 infected mice serve as excellent model to study COVID-19.
Collapse
|
26
|
Liatsos GD. SARS-CoV-2 induced liver injury: Incidence, risk factors, impact on COVID-19 severity and prognosis in different population groups. World J Gastroenterol 2023; 29:2397-2432. [PMID: 37179584 PMCID: PMC10167898 DOI: 10.3748/wjg.v29.i16.2397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/17/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Liver is unlikely the key organ driving mortality in coronavirus disease 2019 (COVID-19) however, liver function tests (LFTs) abnormalities are widely observed mostly in moderate and severe cases. According to this review, the overall prevalence of abnormal LFTs in COVID-19 patients ranges from 2.5% to 96.8% worldwide. The geographical variability in the prevalence of underlying diseases is the determinant for the observed discrepancies between East and West. Multifactorial mechanisms are implicated in COVID-19-induced liver injury. Among them, hypercytokinemia with "bystander hepatitis", cytokine storm syndrome with subsequent oxidative stress and endotheliopathy, hypercoagulable state and immuno-thromboinflammation are the most determinant mechanisms leading to tissue injury. Liver hypoxia may also contribute under specific conditions, while direct hepatocyte injury is an emerging mechanism. Except for initially observed severe acute respiratory distress syndrome corona virus-2 (SARS-CoV-2) tropism for cholangiocytes, more recent cumulative data show SARS-CoV-2 virions within hepatocytes and sinusoidal endothelial cells using electron microscopy (EM). The best evidence for hepatocellular invasion by the virus is the identification of replicating SARS-CoV-2 RNA, S protein RNA and viral nucleocapsid protein within hepatocytes using in-situ hybridization and immunostaining with observed intrahepatic presence of SARS-CoV-2 by EM and by in-situ hybridization. New data mostly derived from imaging findings indicate possible long-term sequelae for the liver months after recovery, suggesting a post-COVID-19 persistent live injury.
Collapse
Affiliation(s)
- George D Liatsos
- Department of Internal Medicine, Hippokration General Hospital, Athens 11527, Attiki, Greece
| |
Collapse
|
27
|
Matskevych V, Kamyshnyi O, Vasylyk VM, Grynovska MB, Lenchuk T, Fishchuk R, Gospodaryov D, Yurkevych I, Strilbytska O, Petakh P, Lushchak O. Morphological prediction of lethal outcomes in the evaluation of lung tissue structural changes in patients on respiratory support with СOVID-19: Ukrainian experience. Pathol Res Pract 2023; 245:154471. [PMID: 37104960 PMCID: PMC10122962 DOI: 10.1016/j.prp.2023.154471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
The impact of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on lung tissue in patients on respiratory support is of significant scientific interest in predicting mortality. This study aimed to analyze post-mortem histological changes in the lung tissue of COVID-19 patients on respiratory support using vital radiology semiotics. A total of 41 autopsies were performed on patients who died of SARS-CoV-2 and had confirmed COVID-19 by polymerase chain reaction (PCR) and radiological evidence of lung tissue consolidation and ground glass opacity. The results showed that the duration of COVID-19 in patients on respiratory support was significantly associated with the development of all stages of diffuse alveolar damage, acute fibrous organizing pneumonia, pulmonary capillary congestion, fibrin thrombi, perivascular inflammation, alveolar hemorrhage, proliferating interstitial fibroblasts, and pulmonary embolism. The prediction model for lethal outcomes based on the duration of total respiratory support had a sensitivity of 68.3% and a specificity of 87.5%. In conclusion, for COVID-19 patients on long-term respiratory support with radiological signs of ground glass opacity and lung consolidation, post-mortem morphological features included various stages of diffuse alveolar lung damage, pulmonary capillary congestion, fibrin clots, and perivascular inflammation.
Collapse
Affiliation(s)
- Viktoriya Matskevych
- Department of Radiology and Radiation Medicine, Ivano-Frankivsk National Medical University, Ukraine
| | - Olexandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Volodymyr M Vasylyk
- Pathology Department, Municipal Non-profit Enterprise "Regional Clinical Hospital of Ivano-Frankivsk Regional Council", Ivano-Frankivsk, Ukraine
| | - Marta B Grynovska
- Department of Anesthesiology and Intensive Care, Ivano-Frankivsk National Medical University, Ukraine
| | - Tetiana Lenchuk
- Department of Radiology and Radiation Medicine, Ivano-Frankivsk National Medical University, Ukraine
| | - Roman Fishchuk
- Clinical Trials Unit, Municipal Non-profit Enterprise "Ivano-Frankivsk Central City Hospital", Ukraine
| | - Dmytro Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Ihor Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Pavlo Petakh
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine; Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine.
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine; Research and Development University, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
28
|
Sharbatdar Y, Mousavian R, Noorbakhsh Varnosfaderani SM, Aziziyan F, Liaghat M, Baziyar P, Yousefi Rad A, Tavakol C, Moeini AM, Nabi-Afjadi M, Zalpoor H, Kazemi-Lomedasht F. Diabetes as one of the long-term COVID-19 complications: from the potential reason of more diabetic patients' susceptibility to COVID-19 to the possible caution of future global diabetes tsunami. Inflammopharmacology 2023; 31:1029-1052. [PMID: 37079169 PMCID: PMC10116486 DOI: 10.1007/s10787-023-01215-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
According to recent researches, people with diabetes mellitus (type 1 and 2) have a higher incidence of coronavirus disease 2019 (COVID-19), which is caused by a SARS-CoV-2 infection. In this regard, COVID-19 may make diabetic patients more sensitive to hyperglycemia by modifying the immunological and inflammatory responses and increasing reactive oxygen species (ROS) predisposing the patients to severe COVID-19 and potentially lethal results. Actually, in addition to COVID-19, diabetic patients have been demonstrated to have abnormally high levels of inflammatory cytokines, increased virus entrance, and decreased immune response. On the other hand, during the severe stage of COVID-19, the SARS-CoV-2-infected patients have lymphopenia and inflammatory cytokine storms that cause damage to several body organs such as β cells of the pancreas which may make them as future diabetic candidates. In this line, the nuclear factor kappa B (NF-κB) pathway, which is activated by a number of mediators, plays a substantial part in cytokine storms through various pathways. In this pathway, some polymorphisms also make the individuals more competent to diabetes via infection with SARS-CoV-2. On the other hand, during hospitalization of SARS-CoV-2-infected patients, the use of some drugs may unintentionally lead to diabetes in the future via increasing inflammation and stress oxidative. Thus, in this review, we will first explain why diabetic patients are more susceptible to COVID-19. Second, we will warn about a future global diabetes tsunami via the SARS-CoV-2 as one of its long-term complications.
Collapse
Affiliation(s)
- Yasamin Sharbatdar
- Department of Anesthesiology, School of Allied Medical Sciences, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Ronak Mousavian
- Department of Clinical Biochemistry, School of Medicine, Cellular and Molecular Research Center, Medical Basic Science Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Chanour Tavakol
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mansour Moeini
- Department of Internal Medicine, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
29
|
Amoddeo A. A mathematical model and numerical simulation for SARS-CoV-2 dynamics. Sci Rep 2023; 13:4575. [PMID: 36941368 PMCID: PMC10027279 DOI: 10.1038/s41598-023-31733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Since its outbreak the corona virus-19 disease has been particularly aggressive for the lower respiratory tract, and lungs in particular. The dynamics of the abnormal immune response leading to lung damage with fatal outcomes is not yet fully understood. We present a mathematical model describing the dynamics of corona virus disease-19 starting from virus seeding inside the human respiratory tract, taking into account its interaction with the components of the innate immune system as classically and alternatively activated macrophages, interleukin-6 and -10. The numerical simulations have been performed for two different parameter values related to the pro-inflammatory interleukin, searching for a correlation among components dynamics during the early stage of infection, in particular pro- and anti-inflammatory polarizations of the immune response. We found that in the initial stage of infection the immune machinery is unable to stop or weaken the virus progression. Also an abnormal anti-inflammatory interleukin response is predicted, induced by the disease progression and clinically associated to tissue damages. The numerical results well reproduce experimental results found in literature.
Collapse
Affiliation(s)
- Antonino Amoddeo
- Department of Civil, Energy, Environment and Materials Engineering, Università 'Mediterranea' di Reggio Calabria, Via Graziella 1, Feo di Vito, 89122, Reggio Calabria, Italy.
| |
Collapse
|
30
|
Grabherr S, Waltenspühl A, Büchler L, Lütge M, Cheng HW, Caviezel-Firner S, Ludewig B, Krebs P, Pikor NB. An Innate Checkpoint Determines Immune Dysregulation and Immunopathology during Pulmonary Murine Coronavirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:774-785. [PMID: 36715496 PMCID: PMC9986052 DOI: 10.4049/jimmunol.2200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023]
Abstract
Hallmarks of life-threatening, coronavirus-induced disease include dysregulated antiviral immunity and immunopathological tissue injury. Nevertheless, the sampling of symptomatic patients overlooks the initial inflammatory sequela culminating in severe coronavirus-induced disease, leaving a fundamental gap in our understanding of the early mechanisms regulating anticoronavirus immunity and preservation of tissue integrity. In this study, we delineate the innate regulators controlling pulmonary infection using a natural mouse coronavirus. Within hours of infection, the cellular landscape of the lung was transcriptionally remodeled altering host metabolism, protein synthesis, and macrophage maturation. Genetic perturbation revealed that these transcriptional programs were type I IFN dependent and critically controlled both host cell survival and viral spread. Unrestricted viral replication overshooting protective IFN responses culminated in increased IL-1β and alarmin production and triggered compensatory neutrophilia, interstitial inflammation, and vascular injury. Thus, type I IFNs critically regulate early viral burden, which serves as an innate checkpoint determining the trajectory of coronavirus dissemination and immunopathology.
Collapse
Affiliation(s)
- Sarah Grabherr
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alexandra Waltenspühl
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lorina Büchler
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Sonja Caviezel-Firner
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Natalia B. Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
31
|
Logue J, Johnson RM, Patel N, Zhou B, Maciejewski S, Foreman B, Zhou H, Portnoff AD, Tian JH, Rehman A, McGrath ME, Haupt RE, Weston SM, Baracco L, Hammond H, Guebre-Xabier M, Dillen C, Madhangi M, Greene AM, Massare MJ, Glenn GM, Smith G, Frieman MB. Immunogenicity and protection of a variant nanoparticle vaccine that confers broad neutralization against SARS-CoV-2 variants. Nat Commun 2023; 14:1130. [PMID: 36854666 PMCID: PMC9972327 DOI: 10.1038/s41467-022-35606-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/12/2022] [Indexed: 03/02/2023] Open
Abstract
SARS-CoV-2 variants have emerged with elevated transmission and a higher risk of infection for vaccinated individuals. We demonstrate that a recombinant prefusion-stabilized spike (rS) protein vaccine based on Beta/B.1.351 (rS-Beta) produces a robust anamnestic response in baboons against SARS-CoV-2 variants when given as a booster one year after immunization with NVX-CoV2373. Additionally, rS-Beta is highly immunogenic in mice and produces neutralizing antibodies against WA1/2020, Beta/B.1.351, and Omicron/BA.1. Mice vaccinated with two doses of Novavax prototype NVX-CoV2373 (rS-WU1) or rS-Beta alone, in combination, or heterologous prime-boost, are protected from challenge. Virus titer is undetectable in lungs in all vaccinated mice, and Th1-skewed cellular responses are observed. We tested sera from a panel of variant spike protein vaccines and find broad neutralization and inhibition of spike:ACE2 binding from the rS-Beta and rS-Delta vaccines against a variety of variants including Omicron. This study demonstrates that rS-Beta vaccine alone or in combination with rS-WU1 induces antibody-and cell-mediated responses that are protective against challenge with SARS-CoV-2 variants and offers broader neutralizing capacity than a rS-WU1 prime/boost regimen alone. Together, these nonhuman primate and murine data suggest a Beta variant booster dose could elicit a broad immune response to fight new and future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- James Logue
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert M Johnson
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nita Patel
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Bin Zhou
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Bryant Foreman
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Haixia Zhou
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Jing-Hui Tian
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Asma Rehman
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Marisa E McGrath
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert E Haupt
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stuart M Weston
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lauren Baracco
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Holly Hammond
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Ross 1164, Baltimore, MD, 21205, USA
| | | | - Carly Dillen
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - M Madhangi
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Ann M Greene
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Greg M Glenn
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Gale Smith
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Matthew B Frieman
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
32
|
Zhu Y, Chen D, Zhu Y, Ge X, Li Z, Miao H. Clinical observation of glucocorticoid therapy for critically ill patients with COVID-19 pneumonia. J Int Med Res 2023; 51:3000605221149292. [PMID: 36843426 PMCID: PMC9972059 DOI: 10.1177/03000605221149292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
OBJECTIVE We aimed to investigate the clinical effects of intravenous glucocorticoid (GC) therapy for severe COVID-19 pneumonia. METHODS Seventy-two patients hospitalized with severe COVID-19 pneumonia who were discharged or died between 5 January 2020 and 3 March 2020 at Huangshi Infectious Disease Hospital were included. Patients were divided into a treatment group (GC group) and non-treatment group (non-GC group) according to whether they had received GCs within 7 days of hospital admission. RESULTS There was no significant difference between groups for Acute Physiology and Chronic Health Evaluation (APACHE) II score and 28-day survival rate. The rate of invasive mechanical ventilation was higher in the GC group than in the non-GC group. On day 7 after admission, the GC group had shorter fever duration and higher white blood cell count than the non-GC group. In subgroup analysis by age and severity, there was no significant difference in 28-day survival rate and other indicators. Compared with those in the non-GC group, patients in the GC group more frequently required admission to the intensive care unit. CONCLUSION In the present study, we found no significant improvement in patients with severe COVID-19 pneumonia treated with GCs within 7 days of admission.
Collapse
Affiliation(s)
- Yingjie Zhu
- Department of Emergency/Critical Care Medicine, Children's
Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Dongmei Chen
- Department of Emergency/Critical Care Medicine, Children's
Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Yanfang Zhu
- Department of Critical Care Medicine, Huangshi Hospital of TCM
(Infectious Disease Hospital), 12 Guangchang Road, Huangshi, China
| | - Xuhua Ge
- Department of Emergency/Critical Care Medicine, Children's
Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Zhuo Li
- Department of Emergency/Critical Care Medicine, Children's
Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Hongjun Miao
- Department of Emergency/Critical Care Medicine, Children's
Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China,Hongjun Miao, Children's Hospital of
Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China.
| |
Collapse
|
33
|
Zerangian N, Erabi G, Poudineh M, Monajjem K, Diyanati M, Khanlari M, Khalaji A, Allafi D, Faridzadeh A, Amali A, Alizadeh N, Salimi Y, Ghane Ezabadi S, Abdi A, Hasanabadi Z, ShojaeiBaghini M, Deravi N. Venous thromboembolism in viral diseases: A comprehensive literature review. Health Sci Rep 2023; 6:e1085. [PMID: 36778773 PMCID: PMC9900357 DOI: 10.1002/hsr2.1085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/25/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Venous thromboembolism (VTE) is known to be a common respiratory and/or cardiovascular complication in hospitalized patients with viral infections. Numerous studies have proven human immunodeficiency virus infection to be a prothrombotic condition. An elevated VTE risk has been observed in critically ill H1N1 influenza patients. VTE risk is remarkably higher in patients infected with the Hepatitis C virus in contrast to uninfected subjects. The elevation of D-dimer levels supported the association between Chikungunya and the Zika virus and the rise of clinical VTE risk. Varicella-zoster virus is a risk factor for both cellulitis and the consequent invasive bacterial disease which may take part in thrombotic initiation. Eventually, hospitalized patients infected with the coronavirus disease of 2019 (COVID-19), the cause of the ongoing worldwide pandemic, could mainly suffer from an anomalous risk of coagulation activation with enhanced venous thrombosis events and poor quality clinical course. Although the risk of VTE in nonhospitalized COVID-19 patients is not known yet, there are a large number of guidelines and studies on thromboprophylaxis administration for COVID-19 cases. This study aims to take a detailed look at the effect of viral diseases on VTE, the epidemiology of VTE in viral diseases, and the diagnosis and treatment of VTE.
Collapse
Affiliation(s)
- Nasibeh Zerangian
- Health Education and Health Promotion, Department of Health Education and Health Promotion, School of HealthMashhad University of Medical SciencesMashhadIran
| | - Gisou Erabi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | | | - Kosar Monajjem
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Maryam Diyanati
- Student Research CommitteeRafsanjan University of Medical SciencesRafsanjanIran
| | - Maryam Khanlari
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | | | - Diba Allafi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of MedicineMashhad University of Medical SciencesMashhadIran
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Arian Amali
- Student Research Committee, Paramedical DepartmentIslamic Azad University, Mashhad BranchMashhadIran
| | - Nilufar Alizadeh
- Doctor of Medicine (MD), School of MedicineIran University of Medical SciencesTehranIran
| | - Yasaman Salimi
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Sajjad Ghane Ezabadi
- Student's Scientific Research Center, School of MedicineTehran University of Medical SciencesTehranIran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Hasanabadi
- Doctor of Medicine (MD), School of MedicineQazvin University of Medical ScienceQazvinIran
| | - Mahdie ShojaeiBaghini
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Niloofar Deravi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
34
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
35
|
Long-term outcomes of COVID-19 convalescents: An 18.5-month longitudinal study in Wuhan. Int J Infect Dis 2023; 127:85-92. [PMID: 36509334 PMCID: PMC9733963 DOI: 10.1016/j.ijid.2022.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES This study aimed to describe the full scope of long-term outcomes and the ongoing pathophysiological alterations among COVID-19 survivors. METHODS We established a longitudinal cohort of 208 COVID-19 convalescents and followed them at 3.3 (interquartile range [IQR]: 1.3, 4.4, visit 1), 9.2 (IQR: 9.0, 9.6, visit 2), and 18.5 (IQR: 18.2, 19.1, visit 3) months after infection, respectively. Serial changes in multiple physical and psychological outcomes were comprehensively characterized. We, in addition, explored the potential risk factors of SARS-CoV-2 antibody response and sequelae symptoms. RESULTS We observed continuous improvement of sequelae symptoms, lung function, chest computed tomography (CT), 6-minute walk test, and the Borg dyspnea scale, whereas sequelae symptoms (at least one) and abnormal chest CT patterns still existed in 45.2% and about 30% of participants at 18.5 months, respectively. Anxiety and depression disorders were alleviated for the convalescents, although depression status was sustained for a longer duration. CONCLUSIONS Most COVID-19 convalescents had an overall improved physical and psychological health status, whereas sequelae symptoms, residual lesions on lung function, exercise impairment, and mental health disorders were still observed in a small proportion of participants at 18.5 months after infection. Implementing appropriate preventive and management strategies for the ever-growing COVID-19 population is warranted.
Collapse
|
36
|
COVID and Cancer: A Complete 3D Advanced Radiological CT-Based Analysis to Predict the Outcome. Cancers (Basel) 2023; 15:cancers15030651. [PMID: 36765610 PMCID: PMC9913442 DOI: 10.3390/cancers15030651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cancer patients infected with COVID-19 were shown in a multitude of studies to have poor outcomes on the basis of older age and weak immune systems from cancer as well as chemotherapy. In this study, the CT examinations of 22 confirmed COVID-19 cancer patients were analyzed. METHODOLOGY A retrospective analysis was conducted on 28 cancer patients, of which 22 patients were COVID positive. The CT scan changes before and after treatment and the extent of structural damage to the lungs after COVID-19 infection was analyzed. Structural damage to a lung was indicated by a change in density measured in Hounsfield units (HUs) and by lung volume reduction. A 3D radiometric analysis was also performed and lung and lesion histograms were compared. RESULTS A total of 22 cancer patients were diagnosed with COVID-19 infection. A repeat CT scan were performed in 15 patients after they recovered from infection. Most of the study patients were diagnosed with leukemia. A secondary clinical analysis was performed to show the associations of COVID treatment on the study subjects, lab data, and outcome on mortality. It was found that post COVID there was a decrease of >50% in lung volume and a higher density in the form of HUs due to scar tissue formation post infection. CONCLUSION It was concluded that COVID-19 infection may have further detrimental effects on the lungs of cancer patients, thereby, decreasing their lung volume and increasing their lung density due to scar formation.
Collapse
|
37
|
Zhou J, Liu Z, Zhang G, Xu W, Xing L, Lu L, Wang Q, Jiang S. Development of variant-proof severe acute respiratory syndrome coronavirus 2, pan-sarbecovirus, and pan-β-coronavirus vaccines. J Med Virol 2023; 95:e28172. [PMID: 36161303 PMCID: PMC9538210 DOI: 10.1002/jmv.28172] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with high transmission rates and striking immune evasion have posed a serious challenge to the application of current first-generation SARS-CoV-2 vaccines. Other sarbecoviruses, such as SARS-CoV and SARS-related coronaviruses (SARSr-CoVs), have the potential to cause outbreaks in the future. These facts call for the development of variant-proof SARS-CoV-2, pan-sarbecovirus or pan-β-CoV vaccines. Several novel vaccine platforms have been used to develop vaccines with broad-spectrum neutralizing antibody responses and protective immunity to combat the current SARS-CoV-2 and its variants, other sarbecoviruses, as well as other β-CoVs, in the future. In this review, we discussed the major target antigens and protective efficacy of current SARS-CoV-2 vaccines and summarized recent advances in broad-spectrum vaccines against sarbecoviruses and β-CoVs.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Zezhong Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Pharmacology, School of PharmacyFudan UniversityShanghaiChina
| | - Guangxu Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Lixiao Xing
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
38
|
Xing Y, Zhang Q, Jiu Y. Coronavirus and the Cytoskeleton of Virus-Infected Cells. Subcell Biochem 2023; 106:333-364. [PMID: 38159233 DOI: 10.1007/978-3-031-40086-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The cytoskeleton, which includes actin filaments, microtubules, and intermediate filaments, is one of the most important networks in the cell and undertakes many fundamental life activities. Among them, actin filaments are mainly responsible for maintaining cell shape and mediating cell movement, microtubules are in charge of coordinating all cargo transport within the cell, and intermediate filaments are mainly thought to guard against external mechanical pressure. In addition to this, cytoskeleton networks are also found to play an essential role in multiple viral infections. Due to the COVID-19 epidemic, including SARS-CoV-2, SARS-CoV and MERS-CoV, so many variants have caused wide public concern, that any virus infection can potentially bring great harm to human beings and society. Therefore, it is of great importance to study coronavirus infection and develop antiviral drugs and vaccines. In this chapter, we summarize in detail how the cytoskeleton responds and participates in coronavirus infection by analyzing the possibility of the cytoskeleton and its related proteins as antiviral targets, thereby providing ideas for finding more effective treatments.
Collapse
Affiliation(s)
- Yifan Xing
- Shanghai Institute of Immunity and Infection (Formerly Institut Pasteur of Shanghai), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yaming Jiu
- Shanghai Institute of Immunity and Infection (Formerly Institut Pasteur of Shanghai), Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
39
|
He Z, Du X, Zheng C, Yu X, Lin H, Tao S. High-Quality Artery Monitoring and Pathology Imaging Achieved by High-Performance Synchronous Electrical and Optical Output of Near-Infrared Organic Photodetector. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203870. [PMID: 36403247 PMCID: PMC9839857 DOI: 10.1002/advs.202203870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Near-infrared organic photodetectors (NIR-OPDs) are significant technologies in emerging biomedicine applications for uniquely wearable, noninvasive, low-cost advantages. However, biosignals are weak and changing rapidly so practical biodetection and bioimaging are still challenging for NIR-OPDs. Herein, high-performance NIR-OPDs with synchronous optical output are realized by recombining anode-injected electrons with photogenerated holes on emitters. Owing to high detection performance of 4.5 × 1012 Jones detectivity and 120 kHz -3 dB bandwidth, five arteries are monitored by transmission-type method and cardiac cycle is analyzed. Importantly, the synchronous optical output is direct emission demonstrating outstanding photon conversion efficiency approaching 20% and luminance signal-to-noise ratio over 8000. Consequently, pathology imaging is directly developed without complex readout circuits and arrays from which squamous metaplasia of cervix and carcinoma of large intestine are observed clearly. The NIR-OPD demonstrates strategies for high-performance synchronous electrical/optical output and directly imaging. Biomedicine applications implemented here are high level, representing important steps for NIR-OPDs toward providing clues for clinical diagnosis.
Collapse
Affiliation(s)
- Zeyu He
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Xiaoyang Du
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Caijun Zheng
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Xin Yu
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Hui Lin
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Silu Tao
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| |
Collapse
|
40
|
Waldstein KA, Varga SM. Respiratory viruses and the inflammasome: The double-edged sword of inflammation. PLoS Pathog 2022; 18:e1011014. [PMID: 36580480 PMCID: PMC9799286 DOI: 10.1371/journal.ppat.1011014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Kody A. Waldstein
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United Stated of America
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United Stated of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United Stated of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United Stated of America
| |
Collapse
|
41
|
Ranjbar M, Rahimi A, Baghernejadan Z, Ghorbani A, Khorramdelazad H. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible Treatments: All options on the Table. Int Immunopharmacol 2022; 113:109325. [PMID: 36252475 PMCID: PMC9561120 DOI: 10.1016/j.intimp.2022.109325] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is cause of the novel coronavirus disease (COVID-19). In the last two years, SARS-CoV-2 has infected millions of people worldwide with different waves, resulting in the death of many individuals. The evidence disclosed that the host immune responses to SARS-CoV-2 play a pivotal role in COVID-19 pathogenesis and clinical manifestations. In addition to inducing antiviral immune responses, SARS-CoV-2 can also cause dysregulated inflammatory responses characterized by the noticeable release of proinflammatory mediators in COVID-19 patients. Among these proinflammatory mediators, chemokines are considered a subset of cytokines that participate in the chemotaxis process to recruit immune and non-immune cells to the site of inflammation and infection. Researchers have demonstrated that monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor (CCR2) are involved in the recruitment of monocytes and infiltration of these cells into the lungs of patients suffering from COVID-19. Moreover, elevated levels of CCL2 have been reported in the bronchoalveolar lavage fluid (BALF) obtained from patients with severe COVID-19, initiating cytokine storm and promoting CD163+ myeloid cells infiltration in the airways and further alveolar damage. Therefore, CCL2/CCR axis plays a key role in the immunopathogenesis of COVID-19 and targeted therapy of involved molecules in this axis can be a potential therapeutic approach for these patients. This review discusses the biology of the CCL2/CCR2 axis as well as the role of this axis in COVID-19 immunopathogenesis, along with therapeutic options aimed at inhibiting CCL2/CCR2 and modulating dysregulated inflammatory responses in patients with severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mitra Ranjbar
- Department of Infectious Disease, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
42
|
Chrabańska M, Mazur A, Stęplewska K. Histopathological pulmonary findings of survivors and autopsy COVID-19 cases: A bi-center study. Medicine (Baltimore) 2022; 101:e32002. [PMID: 36451501 PMCID: PMC9704993 DOI: 10.1097/md.0000000000032002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), evolved into a global pandemic. As ACE2 on the surface of alveolar cells of the lung epithelium is one of the potential target receptors for SARS-CoV-2, the respiratory symptoms are the most common presentation of COVID-19. The aim of our study was to investigate the morphological findings in lung tissue after being infected by SARS-CoV-2 and compare histopathologic changes in patients with COVID-19 infection history who died to those who survived. We analyzed lung tissue samples from 9 patients who died from COVID-19 and from 35 patients with COVID-19 infection history who survived and had undergone lung surgery for different reasons. Most of histopathological changes in autopsy and survivors' cases overlapped; however, they occurred with different frequency. The predominant histologic finding both in the case of the deceased and the survivors was patchy distribution of foamy macrophages in the alveolar spaces. In comparison with autopsy cases viral cytopathic-like changes in hyperplastic pneumocytes were rarely observed in the survivors' lung tissue. Pulmonary edema, fibrin deposition within alveoli, bronchopneumonia, small vessel thrombosis and type II pneumocyte hyperplasia were also more often observed within autopsy cases. Life-threatening complications such as hyaline membrane formations and diffuse alveolar damage were present only within the deceased, whereas changes requiring enough time to progress to the fibrotic phase, such as organizing pneumonia, bronchiolization of the alveoli, and interstitial fibrosis were observed in the lung parenchyma only in survivors. Additionally, 14 cases of pulmonary pneumo-hematocele in patients with COVID-19 infection history who survived were observed. It is a newly observed entity in the form of a cystic lesion formed by large accumulation of blood and fibrin between the collapsed and rejected lung parenchyma and/or present with air-fluid levels. The thin wall of pneumo-hematocele is formed by the inter lobar interstitial fibroconnective tissue and has no epithelial lining or bronchial wall elements. As the COVID-19 pandemic continues, new complications following SARS-CoV-2 infection are identified. Newly observed entity in patients with COVID-19 infection history who survived is pulmonary pneumo-hematocele. The appearance of these lesion has become increasingly frequent.
Collapse
Affiliation(s)
- Magdalena Chrabańska
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Mazur
- Department of Ophthalmology, Regional Specialised Hospital No. 4, Bytom, Poland
| | - Katarzyna Stęplewska
- Department of Pathology, Institute of Medical Sciences, University of Opole, Opole, Poland
| |
Collapse
|
43
|
García-García T, Fernández-Rodríguez R, Redondo N, de Lucas-Rius A, Zaldívar-López S, López-Ayllón BD, Suárez-Cárdenas JM, Jiménez-Marín Á, Montoya M, Garrido JJ. Impairment of antiviral immune response and disruption of cellular functions by SARS-CoV-2 ORF7a and ORF7b. iScience 2022; 25:105444. [PMID: 36310646 PMCID: PMC9597514 DOI: 10.1016/j.isci.2022.105444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
SARS-CoV-2, the causative agent of the present COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome, and some have been implicated in facilitating infection and pathogenesis through their interaction with cellular components. Among these proteins, accessory protein ORF7a and ORF7b functions are poorly understood. In this study, A549 cells were transduced to express ORF7a and ORF7b, respectively, to explore more in depth the role of each accessory protein in the pathological manifestation leading to COVID-19. Bioinformatic analysis and integration of transcriptome results identified defined canonical pathways and functional groupings revealing that after expression of ORF7a or ORF7b, the lung cells are potentially altered to create conditions more favorable for SARS-CoV-2, by inhibiting the IFN-I response, increasing proinflammatory cytokines release, and altering cell metabolic activity and adhesion. Based on these results, it is plausible to suggest that ORF7a or ORF7b could be used as biomarkers of progression in this pandemic.
Collapse
Affiliation(s)
- Tránsito García-García
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Natalia Redondo
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Ana de Lucas-Rius
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Sara Zaldívar-López
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Blanca Dies López-Ayllón
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - José M. Suárez-Cárdenas
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - María Montoya
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
- Corresponding author
| | - Juan J. Garrido
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
- Corresponding author
| |
Collapse
|
44
|
Sheikh A, Huang H, Parvin S, Badruzzaman M, Ahamed T, Hossain E, Baran IS, Saud ZA. A multi-population-based genomic analysis uncovers unique haplotype variants and crucial mutant genes in SARS-CoV-2. J Genet Eng Biotechnol 2022; 20:149. [PMID: 36318347 PMCID: PMC9626712 DOI: 10.1186/s43141-022-00431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Background COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Rigorous detection and treatment strategies against SARS-CoV-2 have become very challenging due to continuous evolutions to the viral genome. Therefore, careful genomic analysis is sorely needed to understand transmission, the cellular mechanism of pathogenicity, and the development of vaccines or drugs. Objective In this study, we intended to identify SARS-CoV-2 genome variants that may help understand the cellular and molecular foundation of coronavirus infections required to develop effective intervention strategies. Methods SARS-CoV-2 genome sequences were downloaded from an open-source public database, processed, and analyzed for variants in target detection sites and genes. Results We have identified six unique variants, G---AAC, T---AAC---T, AAC---T, AAC--------T, C----------T, and C--------C, at the nucleocapsid region and eleven major hotspot mutant genes: nsp3, surface glycoprotein, nucleocapsid phosphoprotein, ORF8, nsp6, nsp2, nsp4, helicase, membrane glycoprotein, 3′-5′ exonuclease, and 2′-O-ribose methyltransferases. In addition, we have identified eleven major mutant genes that may have a crucial role in SARS-CoV-2 pathogenesis. Conclusion Studying haplotype variants and 11 major mutant genes to understand the mechanism of action of fatal pathogenicity and inter-individual variations in immune responses is inevitable for managing target patient groups with identified variants and developing effective anti-viral drugs and vaccines. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00431-3.
Collapse
Affiliation(s)
- Afzal Sheikh
- grid.443108.a0000 0000 8550 5526Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Dhaka 1706 Bangladesh
| | - He Huang
- Research and Development Department, Bioengineering Lab. Co., Ltd, 657 Nagatake Midori-ku, Sagamihara-shi, Kanagawa-ken 252-0154 Japan
| | - Sultana Parvin
- grid.263023.60000 0001 0703 3735Department of Biology, Faculty of Science and Engineering, Saitama University, Saitama, Japan
| | - Mohammad Badruzzaman
- grid.443108.a0000 0000 8550 5526Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Dhaka 1706 Bangladesh
| | - Tofayel Ahamed
- grid.443108.a0000 0000 8550 5526Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Dhaka 1706 Bangladesh
| | - Ekhtear Hossain
- grid.263880.70000 0004 0386 0655Department of Biological Sciences and Chemistry, Southern University and A&M College, 244 William James Hall, Baton Rouge, LA 70813 USA
| | - Iri Sato Baran
- Genesis Institute of Genetic Research, Genesis Healthcare Corporation, Yebisu Garden Place Tower 15F/26F 4-20-3 Ebisu, Shibuya-ku, Tokyo, Japan
| | - Zahangir Alam Saud
- grid.412656.20000 0004 0451 7306Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| |
Collapse
|
45
|
Zhu X, Trimarco JD, Williams CA, Barrera A, Reddy TE, Heaton NS. ZBTB7A promotes virus-host homeostasis during human coronavirus 229E infection. Cell Rep 2022; 41:111540. [PMID: 36243002 PMCID: PMC9533670 DOI: 10.1016/j.celrep.2022.111540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/24/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular fate after infection with human coronaviruses (HCoVs) is typically death. Previous data suggest, however, that the transcriptional state of an individual cell may sometimes allow additional outcomes of infection. Here, to probe the range of interactions a permissive cell type can have with a HCoV, we perform a CRISPR activation screen with HCoV-229E. The screen identified the transcription factor ZBTB7A, which strongly promotes cell survival after infection. Rather than suppressing viral infection, ZBTB7A upregulation allows the virus to induce a persistent infection and homeostatic state with the cell. We also find that control of oxidative stress is a primary driver of cellular survival during HCoV-229E infection. These data illustrate that, in addition to the nature of the infecting virus and the type of cell that it encounters, the cellular gene expression profile prior to infection can affect the eventual fate.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph D. Trimarco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Courtney A. Williams
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Alejandro Barrera
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Timothy E. Reddy
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA,Corresponding author
| |
Collapse
|
46
|
Elkhatib WF, Abdelkareem SS, Khalaf WS, Shahin MI, Elfadil D, Alhazmi A, El-Batal AI, El-Sayyad GS. Narrative review on century of respiratory pandemics from Spanish flu to COVID-19 and impact of nanotechnology on COVID-19 diagnosis and immune system boosting. Virol J 2022; 19:167. [PMID: 36280866 PMCID: PMC9589879 DOI: 10.1186/s12985-022-01902-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
The rise of the highly lethal severe acute respiratory syndrome-2 (SARS-2) as corona virus 2019 (COVID-19) reminded us of the history of other pandemics that happened in the last century (Spanish flu) and stayed in the current century, which include Severe-Acute-Respiratory-Syndrome (SARS), Middle-East-Respiratory-Syndrome (MERS), Corona Virus 2019 (COVID-19). We review in this report the newest findings and data on the origin of pandemic respiratory viral diseases, reservoirs, and transmission modes. We analyzed viral adaption needed for host switch and determinants of pathogenicity, causative factors of pandemic viruses, and symptoms and clinical manifestations. After that, we concluded the host factors associated with pandemics morbidity and mortality (immune responses and immunopathology, ages, and effect of pandemics on pregnancy). Additionally, we focused on the burdens of COVID-19, non-pharmaceutical interventions (quarantine, mass gatherings, facemasks, and hygiene), and medical interventions (antiviral therapies and vaccines). Finally, we investigated the nanotechnology between COVID-19 analysis and immune system boosting (Nanoparticles (NPs), antimicrobial NPs as antivirals and immune cytokines). This review presents insights about using nanomaterials to treat COVID-19, improve the bioavailability of the abused drugs, diminish their toxicity, and improve their performance.
Collapse
Affiliation(s)
- Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
| | - Shereen S Abdelkareem
- Department of Alumni, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt
| | - Wafaa S Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Mona I Shahin
- Zoology Department, Faculty of Tymaa, Tabuk University, Tymaa, 71491, Kingdom of Saudi Arabia
| | - Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca, Casablanca, Morocco
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Ahmed I El-Batal
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
47
|
Barreto-Duran E, Szczepański A, Gałuszka-Bulaga A, Surmiak M, Siedlar M, Sanak M, Rajfur Z, Milewska A, Lenart M, Pyrć K. The interplay between the airway epithelium and tissue macrophages during the SARS-CoV-2 infection. Front Immunol 2022; 13:991991. [PMID: 36275746 PMCID: PMC9582145 DOI: 10.3389/fimmu.2022.991991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The first line of antiviral immune response in the lungs is secured by the innate immunity. Several cell types take part in this process, but airway macrophages (AMs) are among the most relevant ones. The AMs can phagocyte infected cells and activate the immune response through antigen presentation and cytokine release. However, the precise role of macrophages in the course of SARS-CoV-2 infection is still largely unknown. In this study, we aimed to evaluate the role of AMs during the SARS-CoV-2 infection using a co-culture of fully differentiated primary human airway epithelium (HAE) and human monocyte-derived macrophages (hMDMs). Our results confirmed abortive SARS-CoV-2 infection in hMDMs, and their inability to transfer the virus to epithelial cells. However, we demonstrated a striking delay in viral replication in the HAEs when hMDMs were added apically after the epithelial infection, but not when added before the inoculation or on the basolateral side of the culture. Moreover, SARS-CoV-2 inhibition by hMDMs seems to be driven by cell-to-cell contact and not by cytokine production. Together, our results show, for the first time, that the recruitment of macrophages may play an important role during the SARS-CoV-2 infection, limiting the virus replication and its spread.
Collapse
Affiliation(s)
- Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Zenon Rajfur
- Astronomy and Applied Computer Sciences, Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marzena Lenart
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- *Correspondence: Krzysztof Pyrć, ; Marzena Lenart,
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- *Correspondence: Krzysztof Pyrć, ; Marzena Lenart,
| |
Collapse
|
48
|
Obeng EM, Fianu I, Danquah MK. Multivalent ACE2 engineering-A promising pathway for advanced coronavirus nanomedicine development. NANO TODAY 2022; 46:101580. [PMID: 35942040 PMCID: PMC9350675 DOI: 10.1016/j.nantod.2022.101580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 05/06/2023]
Abstract
The spread of coronavirus diseases has resulted in a clarion call to develop potent drugs and vaccines even as different strains appear beyond human prediction. An initial step that is integral to the viral entry into host cells results from an active-targeted interaction of the viral spike (S) proteins and the cell surface receptor, called angiotensin-converting enzyme 2 (ACE2). Thus, engineered ACE2 has been an interesting decoy inhibitor against emerging coronavirus infestation. This article discusses promising innovative ACE2 engineering pathways for current and emerging coronavirus therapeutic development. First, we provide a brief discussion of some ACE2-associated human coronaviruses and their cell invasion mechanism. Then, we describe and contrast the individual spike proteins and ACE2 receptor interactions, highlighting crucial hotspots across the ACE2-associated coronaviruses. Lastly, we address the importance of multivalency in ACE2 nanomedicine engineering and discuss novel approaches to develop and achieve multivalent therapeutic outcomes. Beyond coronaviruses, these approaches will serve as a paradigm to develop new and improved treatment technologies against pathogens that use ACE2 receptor for invasion.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, 615 McCallie Ave, Chattanooga, TN 37403, United States
| |
Collapse
|
49
|
Goyal R, Gautam RK, Chopra H, Dubey AK, Singla RK, Rayan RA, Kamal MA. Comparative highlights on MERS-CoV, SARS-CoV-1, SARS-CoV-2, and NEO-CoV. EXCLI JOURNAL 2022; 21:1245-1272. [PMID: 36483910 PMCID: PMC9727256 DOI: 10.17179/excli2022-5355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/23/2022] [Indexed: 01/25/2023]
Abstract
The severe acute respiratory syndrome (SARS-CoV, now SARS-CoV-1), middle east respiratory syndrome (MERS-CoV), Neo-CoV, and 2019 novel coronavirus (SARS-CoV-2/COVID-19) are the most notable coronaviruses, infecting the number of people worldwide by targeting the respiratory system. All these viruses are of zoonotic origin, predominantly from bats which are one of the natural reservoir hosts for coronaviruses. Thus, the major goal of our review article is to compare and contrast the characteristics and attributes of these coronaviruses. The SARS-CoV-1, MERS-CoV, and COVID-19 have many viral similarities due to their classification, they are not genetically related. COVID-19 shares approximately 79 % of its genome with SARS-CoV-1 and about 50 % with MERS-CoV. The shared receptor protein, ACE2 exhibit the most striking genetic similarities between SARS-CoV-1 and SARS-CoV-2. SARS-CoV primarily replicates in the epithelial cells of the respiratory system, but it may also affect macrophages, monocytes, activated T cells, and dendritic cells. MERS-CoV not only infects and replicates inside the epithelial and immune cells, but it may lyse them too, which is one of the common reasons for MERS's higher mortality rate. The details of infections caused by SARS-CoV-2 and lytic replication mechanisms in host cells are currently mysterious. In this review article, we will discuss the comparative highlights of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and Neo-CoV, concerning their structural features, morphological characteristics, sources of virus origin and their evolutionary transitions, infection mechanism, computational study approaches, pathogenesis and their severity towards several diseases, possible therapeutic approaches, and preventive measures.
Collapse
Affiliation(s)
- Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India,MM School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rupesh K. Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Rau, Indore, India-453331,*To whom correspondence should be addressed: Rupesh K. Gautam, Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Opposite IIM Indore, Rau-Pithampur Road, Indore – 453331 (M.P.), India; Tel.: +91 9413654324, E-mail:
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India-140401
| | | | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China,School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Rehab A. Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, 5422031, Egypt
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China,King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh,Enzymoics, 7 Peterlee Place, Hebersham NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
50
|
Xiang M, Wu X, Jing H, Liu L, Wang C, Wang Y, Novakovic VA, Shi J. The impact of platelets on pulmonary microcirculation throughout COVID-19 and its persistent activating factors. Front Immunol 2022; 13:955654. [PMID: 36248790 PMCID: PMC9559186 DOI: 10.3389/fimmu.2022.955654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/15/2022] [Indexed: 12/05/2022] Open
Abstract
Patients with COVID-19 often have hypoxemia, impaired lung function, and abnormal imaging manifestations in acute and convalescent stages. Alveolar inflammation, pulmonary vasculitis, and thromboembolism synergistically damage the blood-air barrier, resulting in increased pulmonary permeability and gas exchange disorders. The incidence of low platelet counts correlates with disease severity. Platelets are also involved in the impairment of pulmonary microcirculation leading to abnormal lung function at different phases of COVID-19. Activated platelets lose the ability to protect the integrity of blood vessel walls, increasing the permeability of pulmonary microvasculature. High levels of platelet activation markers are observed in both mild and severe cases, short and long term. Therefore, the risk of thrombotic events may always be present. Vascular endothelial injury, immune cells, inflammatory mediators, and hypoxia participate in the high reactivity and aggregation of platelets in various ways. Microvesicles, phosphatidylserine (PS), platelets, and coagulation factors are closely related. The release of various cell-derived microvesicles can be detected in COVID-19 patients. In addition to providing a phospholipid surface for the synthesis of intrinsic factor Xase complex and prothrombinase complex, exposed PS also promotes the decryption of tissue factor (TF) which then promotes coagulant activity by complexing with factor VIIa to activate factor X. The treatment of COVID-19 hypercoagulability and thrombosis still focuses on early intervention. Antiplatelet therapy plays a role in relieving the disease, inhibiting the formation of the hypercoagulable state, reducing thrombotic events and mortality, and improving sequelae. PS can be another potential target for the inhibition of hypercoagulable states.
Collapse
Affiliation(s)
- Mengqi Xiang
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Langjiao Liu
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Chunxu Wang
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Yufeng Wang
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
- Department of Research, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Jialan Shi, ;
| |
Collapse
|