1
|
Zheng S, Gao E, Guo L, Xie L, Zhao B, Hong Q, Li J, Hu X, Tao B. LncRNA MIAT binding to GATA3 activates MAPK signaling pathway and influences bronchopulmonary dysplasia. Int J Biol Macromol 2025; 286:138280. [PMID: 39626812 DOI: 10.1016/j.ijbiomac.2024.138280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/18/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Bronchopulmonary dysplasia (BPD) manifests in premature neonates with aberrant pulmonary function. Numerous long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of BPD. This study aims to elucidate the impact of the lncRNA myocardial infarction-associated transcript (MIAT) on the initiation and progression of BPD. Initially, BPD murine models were established through hyperoxia induction in newborn mice. Subsequently, MIAT and GATA binding protein 3 (GATA3) expression levels were assessed, and intravenous administration of short hairpin RNAs (shRNAs) targeting MIAT and GATA3 was performed. Pulmonary histological alterations were examined through histological staining. Levels of inflammatory mediators were quantified using enzyme-linked immunosorbent assay (ELISA) kits. The interaction between MIAT and GATA3 was scrutinized through RNA immunoprecipitation, RNA pull-down, and fluorescence in situ hybridization. The downstream mechanisms of GATA3 were explored using bioinformatics analysis. In summary, lncRNA MIAT exhibited elevated expression in the lung tissues of BPD-afflicted mice. MIAT localized to the nucleus and interacted with GATA3, thereby activating the mitogen-activated protein kinase (MAPK) pathway. Knockdown of MIAT or silencing of GATA3 attenuated the inflammatory response, deactivated the MAPK pathway, and ameliorated BPD symptoms in mice, on the other hand, p-Cresyl sulfate potassium can activate the MAPK signaling pathway and attenuates the effects of si-MIAT or si-GAT3. These improvements were characterized by enhanced alveolar differentiation and reduced glycogen and collagen deposition. In conclusion, lncRNA MIAT plays a pivotal role in activating the MAPK pathway and exacerbating hyperoxia-induced BPD in mice through the binding to GATA3. It's an important discovery for the pathogenesis of BPD and may provide some new treatment for infants diagnosed with BPD.
Collapse
Affiliation(s)
- Siqiang Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Erji Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Liang Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Lei Xie
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bin Zhao
- Department of Pulmonary Nodule Center, Shandong Public Health Clinical Center, Jinan, Shandong 250100, China
| | - Qi Hong
- Department of Thoracic Surgery, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, Liaoning 110044, China
| | - Juanjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xuefei Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Bo Tao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| |
Collapse
|
2
|
Eminaga O, Lau H, Shkolyar E, Wardelmann E, Abbas M. Deep learning identifies histopathologic changes in bladder cancers associated with smoke exposure status. PLoS One 2024; 19:e0305135. [PMID: 39083547 PMCID: PMC11290674 DOI: 10.1371/journal.pone.0305135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
Smoke exposure is associated with bladder cancer (BC). However, little is known about whether the histologic changes of BC can predict the status of smoke exposure. Given this knowledge gap, the current study investigated the potential association between histology images and smoke exposure status. A total of 483 whole-slide histology images of 285 unique cases of BC were available from multiple centers for BC diagnosis. A deep learning model was developed to predict the smoke exposure status and externally validated on BC cases. The development set consisted of 66 cases from two centers. The external validation consisted of 94 cases from remaining centers for patients who either never smoked cigarettes or were active smokers at the time of diagnosis. The threshold for binary categorization was fixed to the median confidence score (65) of the development set. On external validation, AUC was used to assess the randomness of predicted smoke status; we utilized latent feature presentation to determine common histologic patterns for smoke exposure status and mixed effect logistic regression models determined the parameter independence from BC grade, gender, time to diagnosis, and age at diagnosis. We used 2,000-times bootstrap resampling to estimate the 95% Confidence Interval (CI) on the external validation set. The results showed an AUC of 0.67 (95% CI: 0.58-0.76), indicating non-randomness of model classification, with a specificity of 51.2% and sensitivity of 82.2%. Multivariate analyses revealed that our model provided an independent predictor for smoke exposure status derived from histology images, with an odds ratio of 1.710 (95% CI: 1.148-2.54). Common histologic patterns of BC were found in active or never smokers. In conclusion, deep learning reveals histopathologic features of BC that are predictive of smoke exposure and, therefore, may provide valuable information regarding smoke exposure status.
Collapse
Affiliation(s)
- Okyaz Eminaga
- AI Vobis, Palo Alto, California, United States of America
| | - Hubert Lau
- Department of Pathology and Laboratory Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Eugene Shkolyar
- Department of Urology, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Eva Wardelmann
- Department of Pathology, University Hospital of Muenster, Münster, Germany
| | - Mahmoud Abbas
- Department of Pathology, University Hospital of Muenster, Münster, Germany
| |
Collapse
|
3
|
Yang J, Yuan Y, Wang L, Deng G, Huang J, Liu Y, Gu W. Suppression of long noncoding RNA SNHG6 alleviates cigarette smoke-induced lung inflammation by modulating NF-κB signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:2634-2641. [PMID: 38205902 DOI: 10.1002/tox.24132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a widespread inflammatory disease with a high mortality rate. Long noncoding RNAs play important roles in pulmonary diseases and are potential targets for inflammation intervention. METHODS The expression of small nucleolar RNA host gene 6 (SNHG6) in mouse lung epithelial cell line MLE12 with or without cigarette smoke extract (CSE) treatment was first detected using quantitative reverse-transcription PCR. ELISA was used to evaluate the release of inflammatory cytokines (TNF-α, IL-1β, and IL-6). The binding site of miR-182-5p with SNHG6 was predicted by using miRanda, which was verified by double luciferase reporter assay. RESULTS Here, we revealed that SNHG6 was upregulated in CS-exposed MLE12 alveolar epithelial cells and lungs from COPD-model mice. SNHG6 silencing weakened CS-induced inflammation in MLE12 cells and mouse lungs. Mechanistic investigations revealed that SNHG6 could upregulate IκBα kinase through sponging the microRNA miR-182-5p, followed by activated NF-κB signaling. The suppressive effects of SNHG6 silencing on CS-induced inflammation were blocked by an miR-182-5p inhibitor. CONCLUSION Overall, our findings suggested that SNHG6 regulates CS-induced inflammation in COPD by activating NF-κB signaling, thereby offering a novel potential target for COPD treatment.
Collapse
Affiliation(s)
- Junxia Yang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Yaping Yuan
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Linxuan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Guoping Deng
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Jiaru Huang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Yuan Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Wenchao Gu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Li B, Zhang J, Dong H, Feng X, Yu L, Zhu J, Zhang J. Systematic analysis of various RNA transcripts and construction of biological regulatory networks at the post-transcriptional level for chronic obstructive pulmonary disease. J Transl Med 2023; 21:790. [PMID: 37936118 PMCID: PMC10631086 DOI: 10.1186/s12967-023-04674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Although chronic inflammation, oxidative stress, airway remodeling, and protease-antiprotease imbalance have been implicated in chronic obstructive pulmonary disease (COPD), the exact pathogenesis is still obscure. Gene transcription and post-transcriptional regulation have been taken into account as key regulators of COPD occurrence and development. Identifying the hub genes and constructing biological regulatory networks at the post-transcriptional level will help extend current knowledge on COPD pathogenesis and develop potential drugs. METHODS All lung tissues from non-smokers (n = 6), smokers without COPD (smokers, n = 7), and smokers with COPD (COPD, n = 7) were collected to detect messenger RNA (mRNA), microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNA) expression and identify the hub genes. Biological regulatory networks were constructed at the post-transcriptional level, including the RNA-binding protein (RBP)-hub gene interaction network and the competitive endogenous RNA (ceRNA) network. In addition, we assessed the composition and abundance of immune cells in COPD lung tissue and predicted potential therapeutic drugs for COPD. Finally, the hub genes were confirmed at both the RNA and protein levels. RESULTS Among the 20 participants, a total of 121169 mRNA transcripts, 1871 miRNA transcripts, 4244 circRNA transcripts, and 122130 lncRNA transcripts were detected. There were differences in the expression of 1561 mRNAs, 48 miRNAs, 33 circRNAs, and 545 lncRNAs between smokers and non-smokers, as well as 1289 mRNAs, 69 miRNAs, 32 circRNAs, and 433 lncRNAs between smokers and COPD patients. 18 hub genes were identified in COPD. TGF-β signaling and Wnt/β-catenin signaling may be involved in the development of COPD. Furthermore, the circRNA/lncRNA-miRNA-mRNA ceRNA networks and the RBP-hub gene interaction network were also constructed. Analysis of the immune cell infiltration level revealed that M2 macrophages and activated NK cells were increased in COPD lung tissues. Finally, we identified that the ITK inhibitor and oxybutynin chloride may be effective in treating COPD. CONCLUSIONS We identified several novel hub genes involved in COPD pathogenesis. TGF-β signaling and Wnt/β-catenin signaling were the most dysregulated pathways in COPD patients. Our study constructed post-transcriptional biological regulatory networks and predicted small-molecule drugs for the treatment of COPD, which enhanced the existing understanding of COPD pathogenesis and suggested an innovative direction for the therapeutic intervention of the disease.
Collapse
Affiliation(s)
- Beibei Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiajun Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Hui Dong
- Center of Research Equipment Management, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Xueyan Feng
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Liang Yu
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Jinyuan Zhu
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Jin Zhang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, China.
| |
Collapse
|
5
|
Xie J, Wu Y, Tao Q, Liu H, Wang J, Zhang C, Zhou Y, Wei C, Chang Y, Jin Y, Ding Z. The role of lncRNA in the pathogenesis of chronic obstructive pulmonary disease. Heliyon 2023; 9:e22460. [PMID: 38034626 PMCID: PMC10687241 DOI: 10.1016/j.heliyon.2023.e22460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by progressive and irreversible airflow obstruction with abnormal lung function. Because its pathogenesis involves multiple aspects of oxidative stress, immunity and inflammation, apoptosis, airway and lung repair and destruction, the clinical approach to COPD treatment is not further updated. Therefore, it is crucial to discover a new means of COPD diagnosis and treatment. COPD etiology is associated with complex interactions between environmental and genetic determinants. Numerous genes are involved in the pathogenic process of this illness in research samples exposed to hazardous environmental conditions. Among them, Long non-coding RNAs (lncRNAs) have been reported to be involved in the molecular mechanisms of COPD development induced by different environmental exposures and genetic susceptibility encounters, and some potential lncRNA biomarkers have been identified as early diagnostic, disease course determination, and therapeutic targets for COPD. In this review, we summarize the expression profiles of the reported lncRNAs that have been reported in COPD studies related to environmental risk factors such as smoking and air pollution exposure and provided an overview of the roles of those lncRNAs in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hua Liu
- Anhui Institute for Food and Drug Control, Hefei, Anhui, China
| | - Jingjing Wang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chunwei Zhang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yuanzhi Zhou
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chengyan Wei
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui, China
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Zhen Ding
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui, China
| |
Collapse
|
6
|
Liang Z, Zhang Y, Xu Y, Zhang X, Wang Y. Hesperidin inhibits tobacco smoke-induced pulmonary cell proliferation and EMT in mouse lung tissues via the p38 signaling pathway. Oncol Lett 2023; 25:30. [PMID: 36589667 PMCID: PMC9773313 DOI: 10.3892/ol.2022.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Tobacco smoke (TS) is the major cause of lung cancer. The abnormal proliferation and epithelial-mesenchymal transition (EMT) of lung cells promote occurrence and development of lung cancer. The p38 pathway intervenes in this cancer development. Hesperidin also serves a role in human health and disease prevention. The roles of p38 in TS-mediated abnormal cell proliferation and EMT, and the hesperidin intervention thereof are not yet understood. In the present study, it was demonstrated that TS upregulated proliferating cell nuclear antigen, vimentin and N-cadherin expression, whereas it downregulated E-cadherin expression, as assessed using western blotting and reverse transcription-quantitative PCR. Furthermore, it was observed that inhibition of the p38 pathway inhibit TS-induced proliferation and EMT. Hesperidin treatment prevented the TS-induced activation of the p38 pathway, EMT and cell proliferation in mouse lungs. The findings of the present study may provide insights into the pathogenesis of TS-related lung cancer.
Collapse
Affiliation(s)
- Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yumeng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinyi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yanan Wang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Suzhou, Jiangsu 215002, P.R. China
| |
Collapse
|
7
|
Qiao X, Hou G, He YL, Song DF, An Y, Altawil A, Zhou XM, Wang QY, Kang J, Yin Y. The Novel Regulatory Role of the lncRNA–miRNA–mRNA Axis in Chronic Inflammatory Airway Diseases. Front Mol Biosci 2022; 9:927549. [PMID: 35769905 PMCID: PMC9234692 DOI: 10.3389/fmolb.2022.927549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammatory airway diseases, characterized by airway inflammation and airway remodelling, are increasing as a cause of morbidity and mortality for all age groups and races across the world. The underlying molecular mechanisms involved in chronic inflammatory airway diseases have not been fully explored. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have recently attracted much attention for their roles in the regulation of a variety of biological processes. A number of studies have confirmed that both lncRNAs and miRNAs can regulate the initiation and progression of chronic airway diseases by targeting mRNAs and regulating different cellular processes, such as proliferation, apoptosis, inflammation, migration, and epithelial–mesenchymal transition (EMT). Recently, accumulative evidence has shown that the novel regulatory mechanism underlying the interaction among lncRNAs, miRNAs and messenger RNAs (mRNAs) plays a critical role in the pathophysiological processes of chronic inflammatory airway diseases. In this review, we comprehensively summarized the regulatory roles of the lncRNA–miRNA–mRNA network in different cell types and their potential roles as biomarkers, indicators of comorbidities or therapeutic targets for chronic inflammatory airway diseases, particularly chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu-Lin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Fang Song
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| | - Qiu-Yue Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| |
Collapse
|
8
|
Xu L, Dong Z. LINC00599 influences smoke-related chronic obstructive pulmonary disease and regulates CSE-induced epithelial cell apoptosis and inflammation by targeting miR-212-5p/BASP1 axis. Hum Exp Toxicol 2022; 41:9603271221146790. [PMID: 36541900 DOI: 10.1177/09603271221146790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
LINC00599 has been reported to be upregulated in response to cigarette smoking. However, the effect and underlying mechanism of LINC00599 in chronic obstructive pulmonary disease (COPD) are still under exploration. In this study, LINC00599 was upregulated in the COPD patients and was of clinical value to distinguish COPD patients. COPD cell models were established using 16HBE cells under cigarette smoke extract (CSE) treatment. LINC00599 levels were elevated in a dose and time-dependent way in response to CSE stimulation. The effect of LINC00599 on CSE-induced 16HBE cells was explored. The results showed that LINC00599 deficiency reversed the CSE-induced inhibition on cell viability and proliferation, and rescued the CSE-induced enhancement on cell 16HBE cell apoptosis and inflammation response. Moreover, LINC00599 bound with miR-212-5p to upregulate the BASP1 (brain abundant membrane attached signal protein 1) expression. MiR-212-5p was expressed at a low level in the tissue samples of COPD patients, and its levels were upregulated in LINC00599 silenced cells. BASP1 was targeted by miR-212-5p and its upregulation was identified in the tissue samples of COPD patients and cell models. BASP1 levels were downregulated after miR-212-5p overexpression or LINC00599 silencing. Moreover, the rescue assays demonstrated that BASP1 overexpression reversed the effect of silenced LINC00599 on 16HBE cells after CSE treatment, which indicated that LINC00599 promoted the COPD development by regulating BASP1 expression. In conclusion, LINC00599 facilitated CSE-induced cell apoptosis and inflammation response, while inhibiting the cell viability and proliferation in COPD progression via modulating miR-212-5p/BASP1 axis.
Collapse
Affiliation(s)
- Liyun Xu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Zhiyi Dong
- Department of Integrated Chinese and Western Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|