1
|
Zhang L, Miao X, Li Y, Hu F, Ma D, Zhang Z, Sun Q, Zhu Y, Zhu Q. Traditional processing, uses, phytochemistry, pharmacology and toxicology of Aconitum sinomontanum Nakai: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115317. [PMID: 35469829 DOI: 10.1016/j.jep.2022.115317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a folk medicine, Aconitum sinomontanum Nakai (Ranunculaceae) a perennial herbaceous flowering plant, is a widely used traditional Chinese medicine. Its rhizomes and roots are known as 'Gaowutou' in China, and it has been traditionally used for the treatment of rheumatoid arthritis, painful swelling of joints, bruises and injuries and has been known to grow well in regions of high altitude such as Gansu, Tibet etc. THE AIM OF THE REVIEW: This systematic review the comprehensive knowledge of the A. sinomontanum, including its traditional processing and uses, chemical constituents, pharmacological activities, toxicity assessment, pharmacokinetics and metabolism, and its use in clinical settings to emphasize the benefits of this species. We also discuss expectations for prospective research and implementation of this herb. This work lays a solid foundation for further development of A. sinomontanum. MATERIALS AND METHOD Information on the studies of A. sinomontanum was collected from scientific journals, books, and reports via library and electronic data search (PubMed, Elsevier, Scopus, Google Scholar, Springer, Science Direct, Wiley, ACS, EMBASE, Web of Science and CNKI). Meanwhile, it was also obtained from published works of material medica, folk records, ethnopharmacological literatures, Ph.D. and Masters dissertation. RESULTS As a member of the Ranunculaceae family, A. sinomontanum possesses its up-and-coming biological characteristics. It is widely reported for treating rheumatoid arthritis, painful swelling of joints, bruises and injuries. Currently, over 71 phytochemical ingredients have been obtained and identified from different parts of A. sinomontanum. Among them, alkaloids, flavonoids, steroids, glycosides are the major bioactive constituents. Activities such as antinociceptive, anti-inflammatory, antitumor, antiarrhythmic, local anesthetic, antipyretic, antimicrobial, insecticidal and others have been corroborated in vivo and in vitro. These properties are attributed to different alkaloids. In addition, many of the active ingredients, such as lappaconitine, ranaconitine and total alkaloids have been used as quality markers. CONCLUSION This work contributes to update the ethnopharmacological uses, chemical constituents, pharmacological activities, toxicity assessment, pharmacokinetics and metabolism, and clinical settings information for A. sinomontanum, which provide basic information to help better understand the pharmacological and toxicological activities of A. sinomontanum in human. However, further in-depth studies are needed to determine the medical uses of this herb and its chemical constituents, pharmacological activities, clinical applications and toxicology.
Collapse
Affiliation(s)
- Lijun Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China.
| | - Yun Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China
| | - Dongni Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Pharmacy Department, Dunhuang Hospital of Gansu Province, Dunhuang, 736200, PR China
| | - Zhuanping Zhang
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Quanming Sun
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Yuanfeng Zhu
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Qingli Zhu
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| |
Collapse
|
2
|
Liu XY, Ke BW, Qin Y, Wang FP. The diterpenoid alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2022; 87:1-360. [PMID: 35168778 DOI: 10.1016/bs.alkal.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The diterpenoid alkaloids are a family of extremely important natural products that have long been a research hotspot due to their myriad of intricate structures and diverse biological properties. This chapter systematically summarizes the past 11 years (2009-2019) of studies on the diterpenoid alkaloids, including the "so-called" atypical ones, covering the classification and biogenetic relationships, phytochemistry together with 444 new alkaloids covering 32 novel skeletons and the corrected structures, chemical reactions including conversion toward toxoids, synthetic studies, as well as biological activities. It should be noted that the synthetic studies, especially the total syntheses of various diterpenoid alkaloids, are for the first time reviewed in this treatise. This chapter, in combination with our four previous reviews in volumes 42, 59, 67, and 69, will present to the readers a more completed and updated profile of the diterpenoid alkaloids.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bo-Wen Ke
- West China Hospital, Sichuan University, Chengdu, China
| | - Yong Qin
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Feng-Peng Wang
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Yan Y, Li X, Wang Z, Yang X, Yin T. C 18-diterpenoid alkaloids in tribe Delphineae (Ranunculaceae): phytochemistry, chemotaxonomy, and bioactivities. RSC Adv 2021; 12:395-405. [PMID: 35424499 PMCID: PMC8978619 DOI: 10.1039/d1ra08132b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
This review systematically summarizes the C18-diterpenoid alkaloid (DA) compositions isolated from the genera Aconitum and Delphinium in the Delphineae tribe (Ranunculaceae). A total of 117 distinct C18-DA components have been reported, including 58 lappaconitine-type DAs, 54 ranaconitine-type DAs, and five rearranged-type DAs. These components mainly originated from plants from the subgenus Lycoctonum in the genus Aconitum or less frequently from plants within the genus Delphinium. Natural C18-DAs have exhibited a wide range of bioactivities, including analgesic, antiarrhythmic, anti-inflammatory, anti-tumor, and insecticidal activities, which are closely related to their chemical structures. The high chemical and biological diversities among the reported C18-DA constituents in Delphineae plants indicated their potential as a vast resource for drug discovery. Additionally, the Delphineae plant C18-DAs exhibited chemotaxonomic values and showed a high regularity of distribution at different taxonomic levels; therefore, the Delphineae plant C18-DAs can serve as good chemical molecular markers in the taxonomic treatment of plants within this tribe, especially in the infrageneric division.
Collapse
Affiliation(s)
- Yuanfeng Yan
- Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zhuhai Campus of Zunyi Medical University Zhuhai 519041 China
| | - Xing Li
- Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zhuhai Campus of Zunyi Medical University Zhuhai 519041 China
| | - Ze Wang
- Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zhuhai Campus of Zunyi Medical University Zhuhai 519041 China
| | - Xiaoyan Yang
- Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zhuhai Campus of Zunyi Medical University Zhuhai 519041 China
| | - Tianpeng Yin
- Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zhuhai Campus of Zunyi Medical University Zhuhai 519041 China
| |
Collapse
|
4
|
Li Y, Zeng J, Tian YH, Hou Y, Da H, Fang J, Gao K. Isolation, identification, and activity evaluation of diterpenoid alkaloids from Aconitum sinomontanum. PHYTOCHEMISTRY 2021; 190:112880. [PMID: 34311277 DOI: 10.1016/j.phytochem.2021.112880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
A phytochemical study led to the isolation of 25 diterpenoid alkaloids from Aconitum sinomontanum, of which six were described for the first time. Among them compounds 1-3 are anhydrolycoctonine derivatives, rare rearranged aconitine-type C19-diterpenoid alkaloids. To our best knowledge, less than ten of this type of alkaloids were isolated just from the genus Aconitum. The structures of these unreported compounds were elucidated by extensive analysis of NMR spectroscopic data and X-ray diffraction. The biological activities of compounds 1-3, 5-9, and 12-25 were evaluated. Among the tested compounds, compounds 2 and 17 showed potent inhibitory effect on the capsaicin (selective TRPV1 agonist) mediated activation of transient receptor potential vanilloid 1 (TRPV1) channels expressed in HEK-293 cells with inhibition rate of 31.78% and 30.94% at the concentration of 10 μM. Compounds 1-3, 5-9, 13, and 18-25 exhibited weak cytotoxic activity against human tumor cell lines NCI-H226 and MDA-MB-231 with inhibition rate over 10% at the concentration of 10 μM. Compound 16 showed most inhibitory effect on the expression of Nrf2 (NF-E2-related factor-2)-regulated gene with inhibition rate of 25% at the concentration of 20 μM.
Collapse
Affiliation(s)
- Ya Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jun Zeng
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Yu-Hua Tian
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical Collage, #1 Ningde Road, Qingdao, 266073, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Honghong Da
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Shen Y, Liang WJ, Shi YN, Kennelly EJ, Zhao DK. Structural diversity, bioactivities, and biosynthesis of natural diterpenoid alkaloids. Nat Prod Rep 2021; 37:763-796. [PMID: 32129397 DOI: 10.1039/d0np00002g] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 2009 to 2018. Diterpenoid alkaloids, originating from the amination of natural tetracyclic diterpenes, are a diverse class of compounds having complex structural features with many stereocenters. The important pharmacological activities and structural complexity of the diterpenoid alkaloids have long interested scientists due to their medicinal uses, infamous toxicity, and unique biosynthesis. Since 2009, 373 diterpenoid alkaloids, assigned to 46 skeletons, have been isolated and identified from plants mostly in the Ranunculaceae family. The names, classes, molecular weight, molecular formula, NMR data, and plant sources of these diterpene alkaloids are collated here. This review will be a detailed update of the naturally occurring diterpene alkaloids reported from the plant kingdom from 2009-2018, providing an in-depth discussion of their diversity, biological activities, pharmacokinetics, toxicity, application, evolution, and biosynthesis.
Collapse
Affiliation(s)
- Yong Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P. R. China and Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, P. R. China. and Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, P. R. China and School of Life Science, Yunnan University, Kunming, 650504, P. R. China and Kunming Kangren Biotechnology Co., Ltd., Kunming, 650203, P. R. China and Research & Development Center for Functional Products, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Wen-Juan Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Ya-Na Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P. R. China and Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650000, P. R. China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, 10468, USA. and Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, 10016, USA
| | - Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, P. R. China. and Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, P. R. China and School of Life Science, Yunnan University, Kunming, 650504, P. R. China and Kunming Kangren Biotechnology Co., Ltd., Kunming, 650203, P. R. China
| |
Collapse
|
6
|
Thawabteh AM, Thawabteh A, Lelario F, Bufo SA, Scrano L. Classification, Toxicity and Bioactivity of Natural Diterpenoid Alkaloids. Molecules 2021; 26:4103. [PMID: 34279443 PMCID: PMC8271992 DOI: 10.3390/molecules26134103] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Diterpenoid alkaloids are natural compounds having complex structural features with many stereo-centres originating from the amination of natural tetracyclic diterpenes and produced primarily from plants in the Aconitum, Delphinium, Consolida genera. Corals, Xenia, Okinawan/Clavularia, Alcyonacea (soft corals) and marine sponges are rich sources of diterpenoids, despite the difficulty to access them and the lack of availability. Researchers have long been concerned with the potential beneficial or harmful effects of diterpenoid alkaloids due to their structural complexity, which accounts for their use as pharmaceuticals as well as their lousy reputation as toxic substances. Compounds belonging to this unique and fascinating family of natural products exhibit a broad spectrum of biological activities. Some of these compounds are on the list of clinical drugs, while others act as incredibly potent neurotoxins. Despite numerous attempts to prepare synthetic products, this review only introduces the natural diterpenoid alkaloids, describing 'compounds' structures and classifications and their toxicity and bioactivity. The purpose of the review is to highlight some existing relationships between the presence of substituents in the structure of such molecules and their recognised bioactivity.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Samih Darwazah Institute for Pharmaceutical Industries, Faculty of Pharmacy Nursing and Health Professions, Birzeit University, Bir Zeit 71939, Palestine
| | - Alà Thawabteh
- Medical Imaging Department, Faculty of Health Profession, Al-Quds University, Jerusalem 20002, Palestine
| | - Filomena Lelario
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Sabino Aurelio Bufo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg 2092, South Africa
| | - Laura Scrano
- Department of European Cultures (DICEM), University of Basilicata, 75100 Matera, Italy
| |
Collapse
|
7
|
Jiang GY, Qin LL, Gao F, Huang S, Zhou XL. Fifteen new diterpenoid alkaloids from the roots of Aconitum kirinense Nakai. Fitoterapia 2020; 141:104477. [PMID: 31927015 DOI: 10.1016/j.fitote.2020.104477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/17/2023]
Abstract
Extensive phytochemical investigation from the roots of Aconitum kirinense Nakai led to the identification of fifteen new compounds, including four ranaconitine type C18-diterpenoid alkaloids (kirisines A-D, 1-4), one lappaconitine type C18-diterpenoid alkaloid (kirisine E, 5), seven denudatine type C20-diterpenoid alkaloids (kirisines F-L, 6-12), and three napelline type C20-diterpenoid alkaloids (kirisines M-O, 13-15), together with 25 known ones. Their structures were elucidated by extensive spectroscopic analyses. Among them, compounds 1 and 2 are rare diterpenoid alkaloid with 9,14-methylenedioxy group, and the latter also has a rare chloro-substituent. The diterpenoid alkaloids isolated were C18, C19 and C20-category, which might provide further clues for understanding the chemotaxonomic significance of this plant. The isolated compounds were tested for neuroprotective activity and acetylcholinesterase inhibitory activity. Compounds 7, 18, 30 and 40 which exhibited moderate activity at 80 μM against acetylcholinesterase.
Collapse
Affiliation(s)
- Guang-You Jiang
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Li-Li Qin
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Feng Gao
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Shuai Huang
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xian-Li Zhou
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
8
|
Wu Y, Shao S, Guo Q, Xu C, Xia H, Zhang T, Shi J. Aconicatisulfonines A and B, Analgesic Zwitterionic C20-Diterpenoid Alkaloids with a Rearranged Atisane Skeleton from Aconitum carmichaelii. Org Lett 2019; 21:6850-6854. [DOI: 10.1021/acs.orglett.9b02479] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuzhuo Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Shuai Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Huan Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| |
Collapse
|
9
|
YANG GX, MA GL, LI H, HUANG T, XIONG J, HU JF. Advanced natural products chemistry research in China between 2015 and 2017. Chin J Nat Med 2018; 16:881-906. [DOI: 10.1016/s1875-5364(18)30131-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Indexed: 10/27/2022]
|