1
|
Lin CE, Chen LF, Chung CH, Chang CC, Chang HA. Resting EEG source-level connectivity pattern to predict anhedonia improvement with agomelatine treatment in patients with major depression. J Affect Disord 2025; 382:579-590. [PMID: 40286929 DOI: 10.1016/j.jad.2025.04.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/05/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Neuroimaging studies have revealed that dysfunction of reward circuitry in the brain underlies anhedonia, a core symptom of major depressive disorder (MDD) that is related to treatment outcomes. However, the relationship between the brain network at the level of neuronal oscillations and the longitudinal improvement in the severity of anhedonia is still unknown. METHODS The study enrolled 84 unmedicated patients with MDD. Anhedonia severity was measured using the Snaith-Hamilton Pleasure Scale (SHAPS). EEG data in the resting state was obtained both at baseline and following an 8-week course of agomelatine 25 mg taken once daily. Whole-brain functional connectivity (FC) of source-level resting-state EEG and FC-derived graph metrics (i.e., global topological properties: global efficiency and local efficiency) were calculated in distinct frequency bands. RESULTS SHAPS scores were significantly improved from baseline to 8 weeks. Concurrently, there was a decrease in alpha-1 (8.5-10 Hz) connectivity between the right-hemisphere precuneus (PreC) and the left-hemisphere inferior frontal gyrus (IFG). Reduced alpha-2 (10.5-12 Hz) connectivity between the right-hemisphere transverse temporal gyrus (TTG) and the left-hemisphere superior frontal gyrus (SFG) and middle frontal gyrus (MFG) was observed. Global efficiency in the alpha-1 (p < 0.001) and alpha-2 (p = 0.003) frequency bands and local efficiency in the alpha-1 frequency band (p = 0.003) were reduced. Correlation analyses showed that alpha-1 local efficiency at baseline predicted improvement in SHAPS scores (r = -0.261, p = 0.017). CONCLUSION Global topological properties of source-level EEG FC can predict anhedonia improvement during antidepressant treatment, which might help guide treatment decisions and advance precision psychopharmacology.
Collapse
Affiliation(s)
- Ching-En Lin
- Department of Psychiatry, Taipei Tzu Chi Hospital, New Taipei City, Taiwan; Tzu Chi University, Hualien, Taiwan
| | - Li-Fen Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan; Data Analysis and Management Center, Department of Medical Research, Tri-Service General Hospital, Taipei, Taiwan
| | - Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
2
|
Das KK, Pandey R, Dubey AK. Piezo-electronics: A paradigm for self-powered bioelectronics. Biomaterials 2025; 318:123118. [PMID: 39904184 DOI: 10.1016/j.biomaterials.2025.123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Recent breakthroughs in electroactive piezo-biomaterials have driven significant progress towards the development of both, diagnostic and therapeutic purposes, enabling vital sign monitoring, such as heart rate, etc. while also supporting tissue regeneration. Bioelectronic medicine provides a promising method for controlling tissue and organ functions, with 'piezo-electronics' emphasizing the lasting role of electro-active piezo-biomaterials in self-powered devices. This article critically analyses a range of self-powered bioelectronic technologies, including wearable, implantable, regenerative, and cancer therapy applications. Piezoelectric nanogenerators (PENGs) are essential in wearable and implantable systems such as pressure and strain measurements, sensor for human-machine interface, self-powered pacemakers, deep brain stimulation, cochlear implant, tissue restoration and sustained drug delivery, controlled by electrical stimuli from PENGs etc. Regenerative bioelectronics play a key role in healing tissues, such as bone, neural, cardiac, tendon, ligament, skeletal muscle etc. using self-powered implants, which have ability to restore tissue functionality. Additionally, piezoelectric biomaterials are being utilized in cancer treatment, offering more targeted therapies with minimal side effects. Various cancerous tumors can be destroyed by reactive oxygen species (ROS), generated by piezo-biomaterials. Data science is also emerging as a crucial tool in optimizing self-powered bioelectronics, enhancing patient outcomes through data-driven strategies, and broadening the role of bioelectronic technologies in modern healthcare.
Collapse
Affiliation(s)
- Kuntal Kumar Das
- Bioelectronics Laboratory, Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ratnanjali Pandey
- Bioelectronics Laboratory, Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ashutosh Kumar Dubey
- Bioelectronics Laboratory, Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
3
|
Jiang Y, Qi Z, Zhu H, Shen K, Liu R, Fang C, Lou W, Jiang Y, Yuan W, Cao X, Chen L, Zhuang Q. Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease. Neural Regen Res 2025; 20:1628-1643. [PMID: 38845220 PMCID: PMC11688550 DOI: 10.4103/nrr.nrr-d-23-01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/12/2024] [Accepted: 04/21/2024] [Indexed: 08/07/2024] Open
Abstract
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.
Collapse
Affiliation(s)
- Yimiao Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Huixian Zhu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Kangli Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Ruiqi Liu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Chenxin Fang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Weiwei Lou
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Yifan Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Wangrui Yuan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Qianxing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
4
|
de Souza DN, Seas A, Blethen K, Feigal J, Shah BR, Grant GA, Harward SC. Focused ultrasound as an emerging therapy for neuropsychiatric disease: Historical perspectives and a review of current clinical data. Psychiatry Clin Neurosci 2025; 79:215-228. [PMID: 39936841 DOI: 10.1111/pcn.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Psychiatric disorders are a common source of disease morbidity with high rates of refractoriness to first-line treatments. As such, many have investigated the utility of neurosurgical interventions for treatment-resistant forms of these conditions. More recently among these, functional neurosurgical techniques using high- and low-intensity focused ultrasound (FUS) have emerged as promising options in this arena, largely due to their minimally-invasive nature and encouraging early safety and efficacy data. Existing clinical data have thus far demonstrated FUS to be a potentially useful intervention for treatment-refractory forms of obsessive-compulsive disorder, major depressive disorder, various anxiety disorders, substance-use disorder, and schizophrenia. This report presents a comprehensive review of existing clinical trial data, summarizing key findings, study specifications, and providing critical analysis. In addition to giving the most complete summary of modern clinical research on this topic to date, this report characterizes the current state of this body of literature using bibliometric analysis, succinctly highlighting the most investigated topics and the most promising areas of modern investigation. Based on our review of the literature, current work on this topic is highly heterogeneous with regard to specific treatment protocols and anatomic targets for FUS - targeting multiple nuclei at a wide variety of intensities. We recommend that future studies aim to clarify more precise therapeutic targets and specific treatment protocols which optimize the efficacy of these techniques.
Collapse
Affiliation(s)
- Daniel N de Souza
- Department of Neurosurgery, NYU Langone Health, New York City, New York, USA
| | - Andreas Seas
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
| | - Kathryn Blethen
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jacob Feigal
- Department of Psychiatry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bhavya R Shah
- Division of Neuroradiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gerald A Grant
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Stephen C Harward
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Yoshioka T, Yamada D, Hagiwara A, Kajino K, Iio K, Saitoh T, Nagase H, Saitoh A. Delta opioid receptor agonists activate PI3K-mTORC1 signaling in parvalbumin-positive interneurons in mouse infralimbic prefrontal cortex to exert acute antidepressant-lie effects. Mol Psychiatry 2025; 30:2038-2048. [PMID: 39643691 PMCID: PMC12015109 DOI: 10.1038/s41380-024-02814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 12/09/2024]
Abstract
The delta opioid receptor (DOP) is a promising target for novel antidepressants due to its potential for rapid action with minimal adverse effects; however, the functional mechanism underlying acute antidepressant actions remains elusive. We report that subcutaneous injection of the selective DOP agonist KNT-127 reduced immobility in the forced swimming test, and that this antidepressant-like response was reversed by intracerebroventricular injection of the selective mechanistic (or mammalian) target of rapamycin (mTOR) inhibitor rapamycin or the phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002. KNT-127 also alleviated social avoidance and reduced sucrose consumption (anhedonia) among chronic vicarious social defeat stress model mice, which were similarly reversed by PI3K and mTOR inhibitors. In addition, KNT-127 increased phosphorylation levels of the mTOR signaling-related proteins Akt and p70S6 kinase in medial prefrontal cortex as revealed by immunoblotting. In the forced swimming test, a microinfusion of KNT-127 and another DOP agonist SNC80 in the infralimbic prefrontal cortex (IL-PFC) attenuated the immobility, which were blocked by rapamycin and LY294002. Perfusion of KNT-127 onto IL-PFC slices increased miniature excitatory postsynaptic current frequency and reduced miniature inhibitory postsynaptic current frequency in pyramidal neurons as measured by whole-cell patch-clamping, and both responses were reversed by rapamycin. Imaging of brain slices from transgenic mice with DOP-promoter-driven green fluorescent protein revealed that most DOPs were expressed in parvalbumin-positive interneurons in the IL-PFC. These findings suggest that DOP agonists exert antidepressant-like actions by suppressing GABA release from parvalbumin-positive interneurons via the PI3K-Akt-mTORC1-p70S6 kinase pathway, thereby enhancing IL-PFC pyramidal neuron excitation.
Collapse
Affiliation(s)
- Toshinori Yoshioka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Akari Hagiwara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Keita Kajino
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Keita Iio
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
| |
Collapse
|
6
|
Arns M, Williams NR. Interoception Biomarkers for Precision Neuromodulation. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:444-446. [PMID: 40335248 DOI: 10.1016/j.bpsc.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 05/09/2025]
|
7
|
Soleimani G, Nitsche MA, Hanlon CA, Lim KO, Opitz A, Ekhtiari H. Four dimensions of individualization in brain stimulation for psychiatric disorders: context, target, dose, and timing. Neuropsychopharmacology 2025; 50:857-870. [PMID: 40148682 PMCID: PMC12032117 DOI: 10.1038/s41386-025-02094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Non-invasive Brain Stimulation (NIBS) technologies, including transcranial electrical (tES) and magnetic (TMS) stimulation, have emerged as promising interventions for various psychiatric disorders. FDA-approved TMS protocols in depression, OCD and nicotine use disorder provide a meaningful improvement. Treatment efficacy however remains inconsistent across individuals, and one relevant reason is intervention effect variability based on individual factors. There is a growing effort to develop individualized interventions, reinforced recently by FDA approval of a new TMS protocol that includes individualized fMRI-based targeting along with other modifications with higher reported effect size than previous "one size fits all" protocols. This paper discusses the dimensions for individualizing tES/TMS protocols to enhance therapeutic efficacy. We propose a multifaceted approach to personalizing NIBS, considering four levels: (1) context, (2) target, (3) dose, and (4) timing. By addressing inter- and intra-individual variability, we highlight a path toward precision medicine using individualized Brain Stimulation to treat psychiatric diseases. Despite challenges and limitations, this approach encourages broader and more systematic adoption of personalized Brain Stimulation techniques to improve clinical outcomes.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany
- Germany Center for Mental Health (DZPG) Center Bochum, Bochum, Germany
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- BrainsWay, Burlington, MA, 01803, USA
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Laureate Institute for Brain Researches (LIBR), Tulsa, OK, USA.
| |
Collapse
|
8
|
Dong J, Dai M, Guo Z, Xu T, Li F, Li J. The Targets of Deep Brain Stimulation in the Treatment of Treatment-Resistant Depression: A Review. Brain Behav 2025; 15:e70505. [PMID: 40321033 PMCID: PMC12050660 DOI: 10.1002/brb3.70505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
PURPOSE The purpose of this review is to evaluate the current state and potential future directions of deep brain stimulation (DBS) therapy for treatment-resistant depression (TRD), a condition that significantly impacts patients' quality of life and for which conventional treatments are often ineffective. METHOD This review synthesizes evidence from clinical trials and preclinical studies published in five years, identified through PubMed searches using keywords ("Deep Brain Stimulation" OR DBS) AND ("Treatment-Resistant Depression" OR TRD). Included studies encompassed clinical research (randomized/non-randomized trials, cohort studies) and mechanistic preclinical studies, excluding non-English publications and nonhuman experiments. Screening prioritized neuroanatomical targets (e.g., SCG, NAcc) and stimulation parameter optimization data. Examining the therapeutic mechanisms of DBS, the neuroanatomical targets utilized, and the clinical outcomes observed. It also discusses the challenges faced in DBS application and proposes potential technological advancements, such as closed-loop therapy and fiber tracking technology. FINDING Preliminary evidence exists regarding the efficacy and safety of DBS in the treatment of TRD in the subcortical cingulate gyrus (SCG), nucleus accumbens (NAcc), ventral capsule/ventral striatum (VC/VS), anterior limb of the internal capsule (ALIC), and so forth. Nevertheless, the optimal stimulation target remains undetermined. The review highlights the complexity of TRD and the need for personalized treatment strategies, noting that genetic, epigenetic, and neurophysiological changes are implicated in DBS's therapeutic effects. CONCLUSION In conclusion, while DBS for TRD remains an experimental therapy, it offers a unique and potentially effective treatment option for patients unresponsive to traditional treatments. The review emphasizes the need for further research to refine DBS targets and parameters, improve patient selection, and develop personalized treatment plans to enhance efficacy and safety in TRD management.
Collapse
Affiliation(s)
- Jianyang Dong
- Department of RehabilitationShenzhen University, Shenzhen University General HospitalShenzhenChina
| | - Mengying Dai
- Department of RehabilitationShenzhen Children's HospitalShenzhenChina
| | - Zinan Guo
- Department of RehabilitationShenzhen University, Shenzhen University General HospitalShenzhenChina
| | - Ting Xu
- Department of Neurology, Guangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| | - Fangming Li
- Department of NeurologyShenzhen University, Shenzhen University General HospitalShenzhenChina
| | - Jianjun Li
- Department of RehabilitationShenzhen University, Shenzhen University General HospitalShenzhenChina
| |
Collapse
|
9
|
Attali D, Tiennot T, Manuel TJ, Daniel M, Houdouin A, Annic P, Dizeux A, Haroche A, Dadi G, Henensal A, Moyal M, Le Berre A, Paolillo C, Charron S, Debacker C, Lui M, Lekcir S, Mancusi R, Gallarda T, Sharshar T, Sylla K, Oppenheim C, Cachia A, Tanter M, Aubry JF, Plaze M. Deep transcranial ultrasound stimulation using personalized acoustic metamaterials improves treatment-resistant depression in humans. Brain Stimul 2025; 18:1004-1014. [PMID: 40311843 DOI: 10.1016/j.brs.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/17/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Neuromodulation of deep brain regions has shown promise for treatment-resistant depression (TRD). However, it currently requires neurosurgical electrode implantation, posing significant risks and limiting widespread use while TRD affects around 100 million people worldwide. Low-intensity transcranial ultrasound stimulation (TUS) could allow precise and non-invasive deep neuromodulation, provided that the challenge of the defocusing effects of the skull is tackled. OBJECTIVE/HYPOTHESIS Here, we present the development of a portable and neuronavigated TUS prototype based on the use of patient-specific metamaterials (metalens) that correct for skull-induced aberrations. We then present the first application of metalens-based Transcranial Ultrasound Stimulation (mTUS) in TRD. The primary objective was to assess the safety and efficacy of mTUS targeting on individual level specific white matter tracts of the subcallosal cingulate involved in TRD. METHODS The safety and precision of this device was addressed through a series of numerical simulations and experimental measurements on ex vivo human skulls. Five participants with TRD were included in this open-label study (ClinicalTrials.gov identifier: NCT06085950) and underwent an intensive 5-day course of mTUS with a total of 25 sessions of 5 min each. RESULTS No serious adverse events occurred during the study. By day 5 of treatment, depression severity was reduced by an average of 60.9 % (range: [30 %-83.9 %]), and four out of five patients qualified as responders, with two of them in remission. CONCLUSIONS This study provides first-in-human evidence of the potential of mTUS as a precise, safe and effective non-invasive neuromodulation technique for neuropsychiatric disorders involving deep brain regions, offering a safer and more accessible alternative to invasive approaches.
Collapse
Affiliation(s)
- David Attali
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, 75015, Paris, France; S17-18 Adult Psychiatry Department, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France; Anesthesia and Intensive Care Department, GHU Paris Psychiatrie & Neurosciences, Pôle Neuro, Sainte-Anne Hospital, 75014, Paris, France
| | - Thomas Tiennot
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, 75015, Paris, France
| | - Thomas J Manuel
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, 75015, Paris, France
| | - Maxime Daniel
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, 75015, Paris, France
| | - Alexandre Houdouin
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, 75015, Paris, France
| | - Philippe Annic
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, 75015, Paris, France
| | - Alexandre Dizeux
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, 75015, Paris, France
| | - Alexandre Haroche
- S17-18 Adult Psychiatry Department, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-brain Team, 75014, Paris, France
| | - Ghita Dadi
- S17-18 Adult Psychiatry Department, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France
| | - Adèle Henensal
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-brain Team, 75014, Paris, France
| | - Mylène Moyal
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-brain Team, 75014, Paris, France
| | - Alice Le Berre
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-brain Team, 75014, Paris, France; Department of Neuroradiology, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France
| | - Cécile Paolillo
- S17-18 Adult Psychiatry Department, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France; Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France
| | - Sylvain Charron
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-brain Team, 75014, Paris, France; Department of Neuroradiology, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France
| | - Clément Debacker
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-brain Team, 75014, Paris, France; Department of Neuroradiology, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France
| | - Maliesse Lui
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-brain Team, 75014, Paris, France; Department of Neuroradiology, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France
| | - Sabrina Lekcir
- Clinical Research and Innovation Department, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France
| | - Rosella Mancusi
- Clinical Research and Innovation Department, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France
| | - Thierry Gallarda
- S17-18 Adult Psychiatry Department, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France
| | - Tarek Sharshar
- Anesthesia and Intensive Care Department, GHU Paris Psychiatrie & Neurosciences, Pôle Neuro, Sainte-Anne Hospital, 75014, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Khaoussou Sylla
- Clinical Research and Innovation Department, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France
| | - Catherine Oppenheim
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-brain Team, 75014, Paris, France; Department of Neuroradiology, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France
| | - Arnaud Cachia
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-brain Team, 75014, Paris, France; Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France
| | - Mickael Tanter
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, 75015, Paris, France
| | - Jean-Francois Aubry
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, 75015, Paris, France.
| | - Marion Plaze
- S17-18 Adult Psychiatry Department, GHU Paris Psychiatrie & Neurosciences, Site Sainte-Anne, 75014, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-brain Team, 75014, Paris, France
| |
Collapse
|
10
|
Savvateev I, Grimm C, Markicevic M, Grandjean J, Sastre D, Gozzi A, Wenderoth N, Polania R, Zerbi V. Functional-based parcellation of the mouse prefrontal cortex for network perturbation analysis. Cell Rep 2025; 44:115622. [PMID: 40287941 DOI: 10.1016/j.celrep.2025.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/06/2024] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
The prefrontal cortex (PFC) is a brain region involved in higher-order cognitive processes such as attention, emotional regulation, and social behavior. However, the delineation of distinct subdivisions within the mouse PFC and their contributions to the broader brain network function remain debated. This study utilizes resting-state functional magnetic resonance imaging (MRI) from a cohort of 100 C57BL/6J wild-type mice to derive the functional connectivity (FC)-based parcellation of the mouse PFC with voxel resolution. Our findings reveal clusters that deviate from the established anatomical subdivisions within the cingulate and prelimbic areas while aligning in infralimbic and orbital cortices. Upon the chemogenetic perturbation of one of the clusters, FC perturbations occur only within the functional network linked to the targeted cluster and do not spread to neighboring anatomical areas or functional clusters. We propose FC-based parcellation as a valuable approach for tracking the site of activation and network impact of neurostimulation strategies.
Collapse
Affiliation(s)
- Iurii Savvateev
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christina Grimm
- Neuro-X Institute, School of Engineering (STI), EPFL, Lausanne, Switzerland
| | - Marija Markicevic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Joanes Grandjean
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen 6525 AJ, the Netherlands; Department of Medical Imaging, Radboud University Medical Centre, Nijmegen 6525 GA, the Netherlands
| | - David Sastre
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Rafael Polania
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Valerio Zerbi
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
11
|
Reneaux M, Mayberg H, Friston K, Pinotsis DA. A computational account of joint SSRI and anti-inflammatory treatment. Front Immunol 2025; 16:1472732. [PMID: 40352929 PMCID: PMC12061865 DOI: 10.3389/fimmu.2025.1472732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction Depression is a chronic disorder that impacts millions worldwide. Traditional treatments may not always work. Inflammation seems to be an underlying cause for chronicity and treatment non-response. Methods We present a computational model that elucidates the interplay between inflammation, serotonin levels, and brain activity. Results The model delineates how inflammation impacts extracellular serotonin, while cerebral activity reciprocally influences serotonin concentration. Understanding the reciprocal interplay between the immune system and brain dynamics is important, as unabated inflammation can lead to relapsing depression. The model predicts dynamics within the prefrontal cortex (PFC) and subcallosal cingulate cortex (SCC), mirroring patterns observed in depressive conditions. It also accommodates pharmaceutical interventions that encompass anti-inflammatory and antidepressant agents, concurrently evaluating their efficacy with regard to the severity of depressive symptoms Our model shows that for mild and moderate levels of depression anti-depressant agents or anti-inflammatory agents acting in isolation can bring serotonergic levels and brain activity to control levels. However, for severe depression only joint treatment of anti-depressant and anti-inflammatory agents can bring the serotonergic levels and activity to control levels. Discussion This study is a first step to mechanistically understand the intricate link between the immune system and depression, the role of inflammation and potential treatments. It explores the impact of anti-depressant and anti-inflammatory drug treatments and assesses their relevance with regard to depression severity.
Collapse
Affiliation(s)
- Melissa Reneaux
- Centre for Mathematical Neuroscience and Psychology and Department of Psychology, City St. George’s —University of London, London, United Kingdom
- Psychology and Behavior Program, School of Liberal Studies and Media, UPES, Dehradun, India
| | - Helen Mayberg
- Department of Neurology and Neurosurgery, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London (UCL), London, United Kingdom
| | - Dimitris A. Pinotsis
- Centre for Mathematical Neuroscience and Psychology and Department of Psychology, City St. George’s —University of London, London, United Kingdom
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
12
|
Halassa MM, Frank MJ, Garety P, Ongur D, Airan RD, Sanacora G, Dzirasa K, Suresh S, Fitzpatrick SM, Rothman DL. Developing algorithmic psychiatry via multi-level spanning computational models. Cell Rep Med 2025:102094. [PMID: 40300598 DOI: 10.1016/j.xcrm.2025.102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/14/2025] [Accepted: 04/01/2025] [Indexed: 05/01/2025]
Abstract
Modern psychiatry faces challenges in translating neurobiological insights into treatments for severe illnesses. The mid-20th century witnessed the rise of molecular mechanisms as pathophysiological and treatment models, with recent holistic proposals keeping this focus unaltered. In this perspective, we explore how psychiatry can utilize systems neuroscience to develop a vertically integrated understanding of brain function to inform treatment. Using schizophrenia as a case study, we discuss scale-related challenges faced by researchers studying molecules, circuits, networks, and cognition and clinicians operating within existing frameworks. We emphasize computation as a bridging language, with algorithmic models like hierarchical predictive processing offering explanatory potential for targeted interventions. Developing such models will not only facilitate new interventions but also optimize combining existing treatments by predicting their multi-level effects. We conclude with the prognosis that the future is bright, but that continued investment in research closely driven by clinical realities will be critical.
Collapse
Affiliation(s)
- Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| | - Michael J Frank
- Department of Cognitive and Psychological Sciences, Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Philippa Garety
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dost Ongur
- McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Raag D Airan
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Sahil Suresh
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | | | - Douglas L Rothman
- Department of Biomedical Engineering, Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
Russo S, Claar LD, Furregoni G, Marks LC, Krishnan G, Zauli FM, Hassan G, Solbiati M, d'Orio P, Mikulan E, Sarasso S, Rosanova M, Sartori I, Bazhenov M, Pigorini A, Massimini M, Koch C, Rembado I. Thalamic feedback shapes brain responses evoked by cortical stimulation in mice and humans. Nat Commun 2025; 16:3627. [PMID: 40240330 PMCID: PMC12003640 DOI: 10.1038/s41467-025-58717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Cortical stimulation with single pulses is a common technique in clinical practice and research. However, we still do not understand the extent to which it engages subcortical circuits that may contribute to the associated evoked potentials (EPs). Here we show that cortical stimulation generates remarkably similar EPs in humans and mice, with a late component similarly modulated by the state of the targeted cortico-thalamic network. We then optogenetically dissect the underlying circuit in mice, demonstrating that the EPs late component is caused by a thalamic hyperpolarization and rebound. The magnitude of this late component correlates with bursting frequency and synchronicity of thalamic neurons, modulated by the subject's behavioral state. A simulation of the thalamo-cortical circuit highlights that both intrinsic thalamic currents as well as cortical and thalamic GABAergic neurons contribute to this response profile. We conclude that single pulse cortical stimulation engages cortico-thalamo-cortical circuits largely preserved across different species and stimulation modalities.
Collapse
Affiliation(s)
- Simone Russo
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, 20157, Italy
- Department of Philosophy 'Piero Martinetti', University of Milan, Milan, Italy
- Brain and Consciousness, Allen Institute, Seattle, USA
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Giulia Furregoni
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, 20157, Italy
- School of Advanced Studies, Center of Neuroscience, University of Camerino, Camerino, Italy
| | - Lydia C Marks
- Brain and Consciousness, Allen Institute, Seattle, USA
| | - Giri Krishnan
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Flavia Maria Zauli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, 20157, Italy
- Department of Philosophy 'Piero Martinetti', University of Milan, Milan, Italy
- ASST Grande Ospedale Metropolitano Niguarda, "C. Munari" Epilepsy Surgery Centre, Milan, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, 20157, Italy
- Department of Philosophy 'Piero Martinetti', University of Milan, Milan, Italy
| | - Michela Solbiati
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, 20157, Italy
- ASST Grande Ospedale Metropolitano Niguarda, "C. Munari" Epilepsy Surgery Centre, Milan, Italy
| | - Piergiorgio d'Orio
- ASST Grande Ospedale Metropolitano Niguarda, "C. Munari" Epilepsy Surgery Centre, Milan, Italy
- University of Parma, Parma, 43121, Italy
| | - Ezequiel Mikulan
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, 20157, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, 20157, Italy
| | - Ivana Sartori
- ASST Grande Ospedale Metropolitano Niguarda, "C. Munari" Epilepsy Surgery Centre, Milan, Italy
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, 20122, Italy
- UOC Maxillo-facial Surgery and dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, 20157, Italy
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, 20122, Italy
- Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, M5G 1M1, Canada
| | - Christof Koch
- Brain and Consciousness, Allen Institute, Seattle, USA
| | - Irene Rembado
- Brain and Consciousness, Allen Institute, Seattle, USA.
| |
Collapse
|
14
|
Zebley B, Liston C. Ultrasonic Modulation of Depression-Related Brain Circuits. Biol Psychiatry 2025; 97:761-763. [PMID: 40155118 DOI: 10.1016/j.biopsych.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 04/01/2025]
Affiliation(s)
- Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
15
|
Riis TS, Feldman DA, Kwon SS, Vonesh LC, Koppelmans V, Brown JR, Solzbacher D, Kubanek J, Mickey BJ. Noninvasive Modulation of the Subcallosal Cingulate and Depression With Focused Ultrasonic Waves. Biol Psychiatry 2025; 97:825-834. [PMID: 39396736 PMCID: PMC11954670 DOI: 10.1016/j.biopsych.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Severe forms of depression have been linked to excessive subcallosal cingulate cortex (SCC) activity. Stimulation of the SCC with surgically implanted electrodes can alleviate depression, but current noninvasive techniques cannot directly and selectively modulate deep targets. We developed a new noninvasive neuromodulation approach that can deliver low-intensity focused ultrasonic waves to the SCC. METHODS Twenty-two individuals with treatment-resistant depression participated in a randomized, double-blind, sham-controlled study. Ultrasonic stimulation was delivered to the bilateral SCC during concurrent functional magnetic resonance imaging to quantify target engagement. Mood state was measured with the Sadness subscale of the Positive and Negative Affect Schedule before and after 40 minutes of real or sham SCC stimulation. Change in depression severity was measured with the 6-item Hamilton Depression Rating Scale at 24 hours and 7 days. RESULTS Functional magnetic resonance imaging demonstrated a target-specific decrease in SCC activity during stimulation (p = .028, n = 16). In 7 of 16 participants, SCC neuromodulation was detectable at the individual participant level with a single 10-minute scan (p < .05, small-volume correction). Mood and depression scores improved more with real than with sham stimulation. In the per-protocol sample (n = 19), real stimulation was superior to sham for 6-item Hamilton Depression Rating Scale scores at 24 hours and for Sadness scores (both p < .05, d > 1). Nonsignificant trends were found in the intent-to-treat sample. CONCLUSIONS This small pilot study indicates that ultrasonic stimulation modulates SCC activity and can rapidly reduce depressive symptoms. The capability to noninvasively and selectively target deep brain areas creates new possibilities for the future development of circuit-directed therapeutics and for the analysis of deep-brain circuit function in humans.
Collapse
Affiliation(s)
- Thomas S Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah.
| | - Daniel A Feldman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Department of Radiology, University of Utah, Salt Lake City, Utah; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah
| | - Sarah S Kwon
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah
| | - Lily C Vonesh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah
| | - Vincent Koppelmans
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah
| | - Jefferson R Brown
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah
| | - Daniela Solzbacher
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah
| | - Brian J Mickey
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
16
|
Xie S, Liu Y, Yang A, Meng F, Jiang C, Fang H, Han R, Zhang J, Shi L. Scalp block improves electrophysiological stability and patient cooperation during deep brain stimulation surgery. Sci Rep 2025; 15:12596. [PMID: 40221513 PMCID: PMC11993571 DOI: 10.1038/s41598-025-97141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Deep Brain Stimulation (DBS) is a critical intervention for various neurological disorders. While effective, the traditional local infiltration anesthesia used in DBS surgeries often hinders electrophysiological recording quality and patient cooperativeness. The research aims to evaluate the impact of local infiltration versus scalp block anesthetic methods on electrophysiological signal quality and patient cooperativeness during DBS surgeries. This study involved patients who participated in an intraoperative task during the bilateral subthalamic nucleus DBS surgery for Parkinson's Disease between Jan 2020 and Dec 2022. Patients were either administered the traditional local infiltration anesthesia or the modified scalp block anesthesia. Intraoperative electrophysiological recording data and anesthetic data was collected. Spike sorting was performed to evaluate the recording stability. Patient cooperativeness and intraoperative experience was assessed and compared. The patients under scalp block anesthesia exhibited shorter pre-acquisition time, longer stable recording time, higher number of tasks per site, higher number of neurons recorded per task (all ps < 0.05). In behavior, patients under scalp block anesthesia showed higher accuracy in tasks (p < 0.05), while the response time was comparable. The overall satisfaction of anesthesia was also higher in scalp block, as revealed by the visual analogue scale, Likert scale and mean arterial pressure (all ps < 0.05). The modified scalp block anesthetic method offers considerable advantages over traditional local infiltration anesthesia in DBS surgeries. It helps to improve both patient comfort and cooperation during the surgery, and thereby enhancing the overall quality of neurological data and efficacy of DBS procedures.
Collapse
Affiliation(s)
- Sining Xie
- Department of Anesthesia, Beijing Tiantan Hospital, Capital Medical University, Beijing, 101100, China
| | - Yan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 101100, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 101100, China
- Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Beijing, 101100, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 101100, China
- Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Beijing, 101100, China
| | - Chenguan Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 101100, China
| | - Huaying Fang
- Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing, 100048, China
- Academy for Multidisciplinary Studies, Capital Normal University, Beijing, 100048, China
| | - Ruquan Han
- Department of Anesthesia, Beijing Tiantan Hospital, Capital Medical University, Beijing, 101100, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 101100, China.
- Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Beijing, 101100, China.
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 101100, China.
- Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Beijing, 101100, China.
| |
Collapse
|
17
|
Luo L, Jing W, Guo Y, Liu D, He A, Lu Y. A cell-type-specific circuit of somatostatin neurons in the habenula encodes antidepressant action in male mice. Nat Commun 2025; 16:3417. [PMID: 40210897 PMCID: PMC11985912 DOI: 10.1038/s41467-025-58591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
Major depression is characterized by an array of negative experiences, including hopelessness and anhedonia. We hypothesize that inhibition of negative experiences or aversion may generate antidepressant action. To directly test this hypothesis, we perform multimodal behavioral screenings in male mice and identify somatostatin (SST)-expressing neurons in the region X (HBX) between the lateral and medial habenula as a specific type of antidepressant neuron. SST neuronal activity modulation dynamically regulates antidepressant induction and relief. We also explore the circuit basis for encoding these modulations using single-unit recordings. We find that SST neurons receive inhibitory synaptic inputs directly from cholecystokinin-expressing neurons in the bed nucleus of the stria terminalis and project excitatory axon terminals onto proenkephalin-expressing neurons in the interpeduncular nucleus. This study reveals a cell-type-specific circuit of SST neurons in the HBX that encodes antidepressant action, and the control of the circuit may contribute to improving well-being.
Collapse
Affiliation(s)
- Lingli Luo
- Innovation Center of Brain Medical Sciences, Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Jing
- Innovation Center of Brain Medical Sciences, Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Guo
- Innovation Center of Brain Medical Sciences, Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Innovation Center of Brain Medical Sciences, Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China.
- Department of Medical Genetics, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Aodi He
- Innovation Center of Brain Medical Sciences, Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Youming Lu
- Innovation Center of Brain Medical Sciences, Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Joyce MKP, Datta D, Arellano JI, Duque A, Morozov YM, Morrison JH, Arnsten AFT. Contrasting patterns of extrasynaptic NMDAR-GluN2B expression in macaque subgenual cingulate and dorsolateral prefrontal cortices. Front Neuroanat 2025; 19:1553056. [PMID: 40255911 PMCID: PMC12006084 DOI: 10.3389/fnana.2025.1553056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Expression of the N-methyl-D-aspartate receptor, particularly when containing the GluN2B subunit (NMDAR-GluN2B), varies across the prefrontal cortex (PFC). In humans, the subgenual cingulate cortex (SGC) contains among the highest levels of NMDAR-GluN2B expression, while the dorsolateral prefrontal cortex (dlPFC) exhibits a more moderate level of NMDAR-GluN2B expression. NMDAR-GluN2B are commonly associated with ionotropic synaptic function and plasticity and are essential to the neurotransmission underlying working memory in the macaque dlPFC in the layer III circuits, which in humans are afflicted in schizophrenia. However, NMDAR-GluN2B can also be found at extrasynaptic sites, where they may trigger distinct events, including some linked to neurodegenerative processes. The SGC is an early site of tau pathology in sporadic Alzheimer's disease (sAD), which mirrors its high NMDAR-GluN2B expression. Additionally, the SGC is hyperactive in depression, which can be treated with NMDAR antagonists. Given the clinical relevance of NMDAR in the SGC and dlPFC, the current study used immunoelectron microscopy (immunoEM) to quantitatively compare the synaptic and extrasynaptic expression patterns of NMDAR-GluN2B across excitatory and inhibitory neuron dendrites in rhesus macaque layer III SGC and dlPFC. We found a larger population of extrasynaptic NMDAR-GluN2B in dendrites of putative pyramidal neurons in SGC as compared to the dlPFC, while the dlPFC had a higher proportion of synaptic NMDAR-GluN2B. In contrast, in putative inhibitory dendrites from both areas, extrasynaptic expression of NMDAR-GluN2B was far more frequently observed over synaptic expression. These findings may provide insight into varying cortical vulnerability to alterations in excitability and neurodegenerative forces.
Collapse
Affiliation(s)
- Mary Kate P. Joyce
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - Dibyadeep Datta
- Department of Psychiatry, Yale Medical School, New Haven, CT, United States
| | - Jon I. Arellano
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - Alvaro Duque
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - Yury M. Morozov
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - John H. Morrison
- Department of Neurology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| |
Collapse
|
19
|
Yachou Y, Bouaziz N, Makdah G, Senova YS, Januel D, Pelissolo A, Mallet L, Leboyer M, Houenou J, Opitz A, Wischnewski M, Laidi C. Transcranial direct current stimulation in patients with depression: An electric field modeling meta-analysis. J Affect Disord 2025; 374:540-552. [PMID: 39778744 DOI: 10.1016/j.jad.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Transcranial Direct Current Stimulation (tDCS) has shown potential in modulating cortical activity and treating depression. Despite its promise, variability in electrode montage configurations and electric field strength across studies has resulted in inconsistent outcomes. Traditional meta-analytic methods assessing the effect of tDCS in depression typically do not compare tDCS montage and the anatomical distribution of electric field, which is a major source of inter-experimental variability. We hypothesize that considering these parameters and anatomical variability in a meta-analysis might unravel brain regions associated with tDCS response in patients with depression. We correlate the clinical outcome (Effect size) with electric field intensities across 8 diverse head models, analyzing data from 29 studies involving 1766 patients between 2000 and 2023. Our analysis found a significant effect of tDCS on depression, with a Hedge's g = 0.66 (95 % CI: 0.565 to 0.767). Although studies aimed to target the L-DLPFC, particularly Brodmann area (BA) 46, based on the Frontal Brain Asymmetry theory, our findings show that all the montages do not selectively target the L-DLPFC as intended. Instead, our findings indicated that the electric field impact was dispersing broadly across the frontal lobes and exhibiting significant heterogeneity. We found a correlation between electric field strength and clinical outcomes in BA 10, BA 11, and the anterior part of BA 46 despite tDCS montages heterogeneity and individual variability, suggesting that targeting frontopolar prefrontal and orbitofrontal cortices could be ideal for tDCS in treating depression. Our work underscores brain regions associated with tDCS response and highlights the need for simulation-guided, personalized trials that consider individual anatomical differences.
Collapse
Affiliation(s)
- Yassine Yachou
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France; NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France.
| | - Noomane Bouaziz
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France; Clinical research center, Ville-Evrard Hospital, Neuilly-sur-Marne, France
| | - Gabriel Makdah
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Yann-Sühan Senova
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Dominique Januel
- Clinical research center, Ville-Evrard Hospital, Neuilly-sur-Marne, France
| | - Antoine Pelissolo
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Luc Mallet
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Marion Leboyer
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Josselin Houenou
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France; NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Charles Laidi
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France; NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France.
| |
Collapse
|
20
|
Neufeld NH, Blumberger DM. An Update on the Use of Neuromodulation Strategies in the Treatment of Schizophrenia. Am J Psychiatry 2025; 182:332-340. [PMID: 40165555 DOI: 10.1176/appi.ajp.20250068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The field of neuromodulation has evolved tremendously and now includes a vast array of interventions utilizing different technologies that span electrical, magnetic, and ultrasound forms of stimulation. The evolution of interventions holds the promise of fewer adverse effects and a noninvasive approach, increasing the scale at which these interventions may be offered in hospital and community settings. While the majority of neuromodulation studies have focused on patients with mood disorders, predominantly depression, there is an unmet need for patients with schizophrenia, who are in dire need of novel therapeutic options. Advances in neuroimaging and approaches for examining individual variability and transdiagnostic symptoms may lead to more effective neuromodulation treatments in this patient population. This overview explores the modern landscape of invasive and noninvasive neuromodulation treatments for patients with schizophrenia. It begins with approaches that involve diffuse stimulation of the cortex and subcortex and then reviews more focal stimulation approaches at the cortical and subcortical levels. The authors also reflect on the relationship between our understanding of the neurobiology of schizophrenia and neuromodulation interventions.
Collapse
Affiliation(s)
- Nicholas H Neufeld
- Kimel Family Translational Imaging-Genetics Laboratory (Neufeld), Campbell Family Mental Health Research Institute (Neufeld, Blumberger), Schizophrenia Division (Neufeld), and Temerty Centre for Therapeutic Brain Intervention (Neufeld, Blumberger), Centre for Addiction and Mental Health (CAMH), Toronto; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Neufeld, Blumberger)
| | - Daniel M Blumberger
- Kimel Family Translational Imaging-Genetics Laboratory (Neufeld), Campbell Family Mental Health Research Institute (Neufeld, Blumberger), Schizophrenia Division (Neufeld), and Temerty Centre for Therapeutic Brain Intervention (Neufeld, Blumberger), Centre for Addiction and Mental Health (CAMH), Toronto; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Neufeld, Blumberger)
| |
Collapse
|
21
|
Lee H, Lin F. Identification of Cortical Targets for Modulating Function Supported by the Human Hippocampal Network. Hum Brain Mapp 2025; 46:e70167. [PMID: 40202284 PMCID: PMC11979967 DOI: 10.1002/hbm.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/13/2025] [Accepted: 02/03/2025] [Indexed: 04/10/2025] Open
Abstract
Individualized transcranial magnetic stimulation (TMS) targeting using functional connectivity analysis of functional magnetic resonance imaging (fMRI) has been demonstrated to be advantageous in inducing neuroplasticity. However, how this approach can benefit modulating the episodic memory function supported by the hippocampal network remains elusive. We use the resting-state fMRI data from a large cohort to reveal tentative TMS targets at cortical regions within the hippocampal network. Functional MRI from 1,133 individuals in the Human Connectome Project was used to analyze the hippocampal network using seed-based functional connectivity. Using a weighted sum of time series at the cortex, we identified the average centroids of individualized targets at the medial prefrontal cortex (mPFC) and posterior parietal cortices (PPCs) at (-10, 49, 7) and (-40, -67, 30) in the left hemisphere, respectively. The mPFC and PPC coordinate at the right hemispheres are (11, 51, 6) and (48, -59, 24) in the right hemisphere, respectively. Centroids of the individualized functional connectivity at the mPFC and PPC were reproducible between sessions with separations in average about 2 and 4 mm, respectively. These separations were significantly smaller than the distance to average functional connectivity centroids (~10 mm) and atlas coordinate (~20 mm). These coordinates can be reliably identified (> 90% of individuals) using cortical "seedmaps." Our results suggest candidate TMS target coordinates to modulate the hippocampal function.
Collapse
Affiliation(s)
- Hsin‐Ju Lee
- Sunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Fa‐Hsuan Lin
- Sunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
22
|
Lee TW. Framing major depressive disorder as a condition of network imbalance at the compartment level: a proof-of-concept study. Cereb Cortex 2025; 35:bhaf089. [PMID: 40302610 DOI: 10.1093/cercor/bhaf089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Major depressive disorder (MDD) is associated with hypoactivity in the frontoparietal (FP) system and hyperactivity in the limbic (LM) system. The widely accepted limbic-cortical dysregulation model has recently been extended by the concept of imbalanced reciprocal suppression between these 2 systems. This study investigates the refined theoretical framework. Neuroimaging datasets from 60 MDD and 60 healthy controls were obtained from the Canadian Biomarker Integration Network in Depression database, including structural magnetic resonance imaging (MRI) and resting-state functional MRI (rsfMRI). The cerebral cortex was parcellated using the modular analysis and similarity measurements (MOSI) technique. For each node, the average amplitude of low-frequency fluctuation (avgALFF) and nodal strength were calculated. Correlation analyses were conducted to establish an adjacency matrix and assess the relationship between nodal power and strength. The results indicated that the LM system in MDD displayed higher partition numbers and avgALFF (P < 0.005). A significant negative correlation between nodal strength and power was replicated (P < 1E-10), suggesting that greater functional input enhances regional neural suppression. Notably, MDD participants exhibited a higher negative correlation between FP nodal power and LM-FP connectivity (stronger suppression) but a lower negative correlation between LM nodal power and FP-LM connectivity (weaker suppression). These findings support the theory of abnormal cortical signal organization and reciprocal suppression in MDD.
Collapse
Affiliation(s)
- Tien-Wen Lee
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, 111 Howard Blvd., Suite 204, Mount Arlington, NJ 07856, United States
| |
Collapse
|
23
|
Ercan Dogan A, Aslan Genc H, Balaç S, Hun Senol S, Ayas G, Dogan Z, Bora E, Ceylan D, Şar V. DMN network and neurocognitive changes associated with dissociative symptoms in major depressive disorder: a research protocol. Front Psychiatry 2025; 16:1516920. [PMID: 40236494 PMCID: PMC11996865 DOI: 10.3389/fpsyt.2025.1516920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/26/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Depression is a heterogeneous disorder with diverse clinical presentations and etiological underpinnings, necessitating the identification of distinct subtypes to enhance targeted interventions. Dissociative symptoms, commonly observed in major depressive disorder (MDD) and linked to early life trauma, may represent a unique clinical dimension associated with specific neurocognitive deficits. Although emerging research has begun to explore the role of dissociation in depression, most studies have provided only descriptive analyses, leaving the mechanistic interplay between these phenomena underexplored. The primary objective of this study is to determine whether MDD patients with prominent dissociative symptoms differ from those without such symptoms in clinical presentation, neurocognitive performance, and markers of functional connectivity. This investigation will be the first to integrate comprehensive clinical evaluations, advanced neurocognitive testing, and high-resolution brain imaging to delineate the contribution of dissociative symptoms in MDD. Methods We will recruit fifty participants for each of three groups: (1) depressive patients with dissociative symptoms, (2) depressive patients without dissociative symptoms, and (3) healthy controls. Diagnostic assessments will be performed using the Structured Clinical Interview for DSM-5 (SCID) alongside standardized scales for depression severity, dissociation, and childhood trauma. Neurocognitive performance will be evaluated through a battery of tests assessing memory, attention, executive function, and processing speed. Structural and functional magnetic resonance imaging (MRI) will be conducted on a 3 Tesla scanner, focusing on the connectivity of the Default Mode Network with key regions such as the orbitofrontal cortex, insula, and posterior cingulate cortex. Data analyses will employ SPM-12 and Matlab-based CONN and PRONTO tools, with multiclass Gaussian process classification applied to differentiate the three groups based on clinical, cognitive, and imaging data. Discussion The results of this study will introduce a novel perspective on understanding the connection between major depressive disorder and dissociation. It could also aid in pinpointing a distinct form of depression associated with dissociative symptoms and early childhood stressors. Conclusion Future research, aiming to forecast the response to biological and psychological interventions for depression, anticipates this subtype and provides insights.
Collapse
Affiliation(s)
- Asli Ercan Dogan
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
| | - Herdem Aslan Genc
- Department of Child and Adolescent Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| | - Sinem Balaç
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
| | - Sevin Hun Senol
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
| | - Görkem Ayas
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| | - Zafer Dogan
- Department of EEE, MLIP Research Group & KUIS AI Center, Koç, University, Istanbul, Türkiye
| | - Emre Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, Izmir, Türkiye
- Department of Psychiatry, School of Medicine, Dokuz Eylül University, Izmir, Türkiye
| | - Deniz Ceylan
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Vedat Şar
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
| |
Collapse
|
24
|
Łysik A, Logoń K, Szczygieł A, Wołoszczak J, Wrześniewska M, Leszek J. Innovative approaches in the treatment-resistant depression: exploring different therapeutic pathways. GeroScience 2025:10.1007/s11357-025-01615-8. [PMID: 40131590 DOI: 10.1007/s11357-025-01615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Treatment-resistant depression (TRD) remains a vital challenge in psychiatry, affecting a significant number of patients with major depressive disorder. Current pharmacological approaches often do not provide sufficient therapeutic results, prompting the need for innovative treatments. This review summarizes recent advances in TRD management, including non-pharmacological therapies such as transcranial magnetic stimulation, deep brain stimulation, electroconvulsive therapy, and vagus nerve stimulation, and describes their mechanisms of action. Novel pharmacotherapies, particularly glutamatergic modulators like ketamine and esketamine, have shown promising results with esketamine being available to eligible patients in Poland since 2023 within a drug program. Electroconvulsive therapy remains an effective treatment for TRD, usually with small side effects mainly including transient memory impairment, headache, or cardiovascular changes. Transcranial magnetic stimulation is a non-invasive procedure with proven efficacy; therefore several psychiatric organizations recommend it as a treatment option for major depressive disorder in their clinical guidelines. Deep brain stimulation is a relatively new treatment modality for TRD, with its primary risk being associated with the required neurosurgical procedure. Vagus nerve stimulation seems to be a promising adjunctive treatment for TRD, showing significant improvements in depressive symptoms, especially at higher electrical doses but with no side effects. While these treatments appear to have potential, personalized approaches are crucial for optimizing outcomes. Future research should focus on refining the techniques, improving safety profiles, and validating the long-term efficacy.
Collapse
Affiliation(s)
- Anna Łysik
- Faculty of Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10, 50-367, Wrocław, Poland.
| | - Katarzyna Logoń
- Faculty of Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10, 50-367, Wrocław, Poland
| | - Aleksandra Szczygieł
- Faculty of Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10, 50-367, Wrocław, Poland
| | - Julia Wołoszczak
- Faculty of Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10, 50-367, Wrocław, Poland
| | - Martyna Wrześniewska
- Faculty of Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10, 50-367, Wrocław, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wroclaw Medical University, Wyb. L. Pasteura 10, 50-367, Wrocław, Poland
| |
Collapse
|
25
|
Cui B, Mocchi MM, Metzger BA, Kalva P, Magnotti JF, Fiedorowicz JG, Waters A, Kovach CK, Reed YY, Mathura RK, Steger C, Pascuzzi B, Kanja K, Veerakumar A, Tiruvadi V, Crowell A, Denison L, Rozell CJ, Pouratian N, Goodman W, Riva Posse P, Mayberg HS, Bijanki KR. Affective bias predicts changes in depression during deep brain stimulation therapy. Front Hum Neurosci 2025; 19:1539857. [PMID: 40201337 PMCID: PMC11977254 DOI: 10.3389/fnhum.2025.1539857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Deep brain stimulation (DBS) is a promising treatment for refractory depression, utilizing surgically implanted electrodes to stimulate specific anatomical targets within the brain. However, limitations of patient-reported and clinician-administered mood assessments pose obstacles in evaluating DBS treatment efficacy. In this study, we investigated whether an affective bias task, which leverages the inherent negative interpretation bias seen in individuals with depression, could serve as a reliable measure of mood changes during DBS therapy in patients with treatment-resistant depression. Methods Two cohorts of patients (n = 8, n = 2) undergoing DBS for treatment-resistant depression at different academic medical centers completed an affective bias task at multiple time points before and after DBS implantation. The affective bias task involved rating the emotional content of a series of static photographic stimuli of facial expressions throughout their DBS treatment. Patients' ratings were compared with those of non-depressed controls to calculate affective bias scores. Linear mixed-effects modeling was used to assess changes in bias scores over time and their relationship with depression severity measured by the Hamilton Depression Rating Scale (HDRS-17). Results We observed significant improvements in total affective bias scores over the course of DBS treatment in both cohorts. Pre-DBS, patients exhibited a negative affective bias, which was nearly eliminated post-DBS, with total bias scores approaching those of non-depressed controls. Positive valence trials showed significant improvement post-DBS, while negative valence trials showed no notable change. A control analysis indicated that stimulation status did not significantly affect bias scores, and thus stimulation status was excluded from further modeling. Linear mixed-effects modeling revealed that more negative bias scores were associated with higher HDRS-17 scores, particularly for positive valence stimuli. Additionally, greater time elapsed since DBS implantation was associated with a decrease in HDRS-17 scores, indicating clinical improvement over time. Discussion Our findings demonstrate that the affective bias task leverages the inherent negative interpretation bias seen in individuals with depression, providing a standardized measure of how these biases change over time. Unlike traditional mood assessments, which rely on subjective introspection, the affective bias task consistently measures changes in mood, offering potential as a tool to monitor mood changes and evaluate the candidacy of DBS treatment in refractory depression.
Collapse
Affiliation(s)
- Brian Cui
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Madaline M. Mocchi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Brian A. Metzger
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Prathik Kalva
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - John F. Magnotti
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Jess G. Fiedorowicz
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Allison Waters
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christopher K. Kovach
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Yvonne Y. Reed
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Raissa K. Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Camille Steger
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bailey Pascuzzi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Kourtney Kanja
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ashan Veerakumar
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Vineet Tiruvadi
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrea Crowell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Lydia Denison
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Nader Pouratian
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, United States
| | - Wayne Goodman
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Patricio Riva Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Helen S. Mayberg
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Kelly Rowe Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
26
|
Dold M, Pereira J, Sajonz B, Coenen VA, Thielen J, Janssen MLF, Tangermann M. Dareplane: a modular open-source software platform for BCI research with application in closed-loop deep brain stimulation. J Neural Eng 2025; 22:026029. [PMID: 40014925 DOI: 10.1088/1741-2552/adbb20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Objective.This work introduces Dareplane, a modular and broad technology-agnostic open source software platform for brain-computer interface (BCI) research with an application focus on adaptive deep brain stimulation (aDBS). One difficulty for investigating control approaches for aDBS resides with the complex setups required for aDBS experiments, a challenge Dareplane tries to address.Approach.The key features of the platform are presented and the composition of modules into a full experimental setup is discussed in the context of a Python-based orchestration module. The performance of a typical experimental setup on Dareplane for aDBS is evaluated in three benchtop experiments, covering (a) an easy-to-replicate setup using an Arduino microcontroller, (b) a setup with hardware of an implantable pulse generator, and (c) a setup using an established and CE certified external neurostimulator. The full technical feasibility of the platform in the aDBS context is demonstrated in a first closed-loop session with externalized leads on a patient with Parkinson's disease receiving DBS treatment and further in a non-invasive BCI speller application using code-modulated visual evoked potential (c-VEP).Main results.The platform is implemented and open-source accessible onhttps://github.com/bsdlab/Dareplane. Benchtop results show that performance of the platform is sufficient for current aDBS latencies, and the platform could successfully be used in the aDBS experiment. The timing-critical c-VEP speller could be successfully implemented on the platform achieving expected information transfer rates.Significance.The Dareplane platform supports aDBS setups, and more generally the research on neurotechnological systems such as BCIs. It provides a modular, technology-agnostic, and easy-to-implement software platform to make experimental setups more resilient and replicable.
Collapse
Affiliation(s)
- Matthias Dold
- Data-Driven Neurotechnology Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joana Pereira
- Data-Driven Neurotechnology Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jordy Thielen
- Data-Driven Neurotechnology Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Marcus L F Janssen
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Michael Tangermann
- Data-Driven Neurotechnology Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Chen Y, Menegas W, Zhang Q, Feng G. Common marmoset: An emerging non-human primate model for translational applications in brain disorders. Curr Opin Neurobiol 2025; 92:102998. [PMID: 40090137 DOI: 10.1016/j.conb.2025.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
One of the fundamental challenges for modern neuroscience has been to translate discoveries from model organisms into effective therapeutics for human brain disorders. This challenge partly arises from the structural and functional differences between rodent and human brains [1]. To bridge this gap, non-human primates (NHPs) can be used as an intermediate step because of their genetic, physiological, and behavioral similarities to humans. Among NHPs, the common marmoset has become a valuable animal model in neuroscience research due to its fast generation time and unique biological and behavioral characteristics [2]. In this review, we first summarize the progress toward developing models for brain disorders. We then discuss emerging technologies and resources that will help advance our understanding of the neurobiological mechanisms underlying different brain disorders using marmoset genetic models. Finally, we describe using marmoset models to test novel therapeutic approaches such as gene therapy and neural circuit manipulation.
Collapse
Affiliation(s)
- Yefei Chen
- Yang Tan Collective, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - William Menegas
- Yang Tan Collective, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Qiangge Zhang
- Yang Tan Collective, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Guoping Feng
- Yang Tan Collective, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
28
|
Farrahizadeh M, Mahmoudian S, Akbarnejad Z, Joghataei MT, Farhadi M, Shahbazi A. Molecular and behavioral effects of Acamprosate in male rats with sodium salicylate-induced tinnitus. Behav Brain Res 2025; 480:115370. [PMID: 39631507 DOI: 10.1016/j.bbr.2024.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/09/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Imbalance in inhibitory and excitatory neurotransmitters have been reported in tinnitus. Acamprosate modulates the excitatory and inhibitory neurotransmission in the nucleus accumbens (NAc). This study aims to assess the effect of Acamprosate on tinnitus, anxiety, depression, and molecular changes in nucleus accumbens (NAc), in Sodium-Salisylate (S-salicylate) model of tinnitus. METHODS Forty-four adult male wistar rats were used in this study. The study included Control, Saline, and S-salicylate groups during the first week, which then subdivided into five groups as Control, Saline, S-salicylate, Acamprosate, and S-salicylate+Acamprosate. Gap-in Noise (GIN) and pre-pulse inhibition (PPI) were used to assessment of tinnitus at baseline, day7 and day14. Anxiety and depression were evaluated on day 14, by elevated plus maze (EPM), open field (OF), and tail suspension (TST) tests. The protein expression of GABAAR-δ, NR1 and NR2B in NAc were also measured using western blot technique. RESULTS After seven days GIN reduced in S-salicylate compare to Control and Saline groups (P < 0.5), while PPI unchanged. After 14 days, GIN reduced in S-salicylate and S-salicylate+Acamprosate groups compare to Control; Saline; and Acamprosate groups (P < 0.5). Additionally, GIN was higher in S-salicylate+Acamprosate compare to S-salicylate group (P < 0.5). PPI was not changed after 14 days. Open arm time in EPM test was decreased in S-salicylate and S-salicylate+Acamprosate groups compare to Control; Saline; and Acamprosate groups (P < 0.5). Central Zone time in OF test was reduced in S-salicylate group compare to Control, Saline, Acamprosate, and S-salicylate+Acamprosate groups (P < 0.5). Immobility Time in TST was increased in S-salicylate group compare to Control, Saline, Acamprosate, and S-salicylate+Acamprosate groups (P < 0.5). GABAAR-δ was decreased in S-salicylate groups compare to Control, Saline, Acamprosate; and S-salicylate+Acamprosate groups (P < 0.5). NR1 and NR2B in NAc were increased in S-salicylate group compare to Control, Saline, Acamprosate, and S-salicylate+Acamprosate groups (P < 0.5). CONCLUSION S-salicylate can induce tinnitus-like behaviors in rat. Furthermore, S-salicylate induced depression/anxiety like behaviors, and changed the expression of GABAR and NMDAR subunits in NAc. Acamprosate partially reversed these changes. In conclusion, NAc may be involved in the pathophysiologic mechanisms of tinnitus.
Collapse
Affiliation(s)
- Maryam Farrahizadeh
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Pennington KR, Debs L, Chung S, Bava J, Garin CM, Vale FL, Bick SK, Englot DJ, Terry AV, Constantinidis C, Blake DT. Basal forebrain activation improves working memory in senescent monkeys. Brain Stimul 2025; 18:185-194. [PMID: 39924100 PMCID: PMC12076211 DOI: 10.1016/j.brs.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025] Open
Abstract
Brain aging contributes to cognitive decline and risk of dementia. Degeneration of the basal forebrain cholinergic system parallels these changes in aging, Alzheimer's dementia, Parkinson's dementia, and Lewy body dementia, and thus is a common element linked to executive function across the lifespan and in disease states. Here, we tested the potential of one-hour daily intermittent basal forebrain stimulation to improve cognition in senescent Rhesus monkeys, and its mechanisms of action. Stimulation in five animals improved working memory duration in each animal over 8-12 weeks, with peak improvements observed in the first four weeks. In an ensuing three month period without stimulation, improvements were retained. With additional stimulation, performance remained above baseline throughout the 15 months of the study. Studies with a cholinesterase inhibitor in five animals produced inconsistent improvements in behavior. One of five animals improved significantly. Manipulating the stimulation pattern demonstrated selectivity for both stimulation and recovery period duration in two animals. Brain stimulation led to acute increases in cerebrospinal fluid levels of tissue plasminogen activator, which is an activating element for two brain neurotrophins, Nerve Growth Factor (NGF) and Brain-Derived Growth Factor (BDNF), in four animals. Stimulation also led to improved glucose utilization in stimulated hemispheres relative to contralateral in three animals. Glucose utilization also consistently declines with aging and some dementias. Together, these findings suggest that intermittent stimulation of the nucleus basalis of Meynert improves executive function and reverses some aspects of brain aging.
Collapse
Affiliation(s)
- Kendyl R Pennington
- Dept Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Luca Debs
- Dept Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sophia Chung
- Neuroscience Program, Vanderbilt University, Nashville, TN, 37235, USA
| | - Janki Bava
- Dept Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Clément M Garin
- Dept Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Fernando L Vale
- Dept Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sarah K Bick
- Dept Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA; Dept Neurosurgery, Vanderbilt University, Nashville, TN, USA
| | - Dario J Englot
- Dept Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA; Dept Neurosurgery, Vanderbilt University, Nashville, TN, USA
| | - Alvin V Terry
- Dept Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Christos Constantinidis
- Neuroscience Program, Vanderbilt University, Nashville, TN, 37235, USA; Dept Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA; Dept Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - David T Blake
- Dept Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Dept Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
30
|
Chen X, Gan Y, Zhang K, Wu Y, Li Y, Lan T, Zhuang X, Chen S, Yu S. MicroRNA-204-5p Deficiency within the vmPFC Region Contributes to Neuroinflammation and Behavioral Disorders via the JAK2/STAT3 Signaling Pathway in Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403080. [PMID: 39792918 PMCID: PMC11905084 DOI: 10.1002/advs.202403080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/17/2024] [Indexed: 01/12/2025]
Abstract
Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression. Knockdown of miR-204-5p in the vmPFC of normal rats results in depression and anxiety-like behaviors accompanied with the activation of microglia, elevated levels of pro-inflammatory cytokines, and increased numbers of neural apoptotic cells, effects which appear to be mediated by activation of the JAK2/STAT3 signaling pathway. Electrophysiological recordings further demonstrate that knockdown of miR-204-5p induces abnormal excitability of pyramidal neurons. In contrast, upregulation of miR-204-5p in the vmPFC of CUMS rats significantly causes inhibition of JAK2/STAT3 signaling pathway, improvements in neuronal impairments, and an abolition of the depression and anxiety-like behaviors. Moreover, pharmacological blocking of the JAK2/STAT3 signaling pathway significantly ameliorates abnormal behaviors resulting from miR-204-5p deficiency within the vmPFC. Collectively, these results provide robust evidence that the miR-204-5p/JAK2/STAT3 pathway may critically involve in the pathogenesis of depression, which may serve as potentially critical therapeutic target in the treatment of MDD.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Mental DisordersThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
| | - Yeting Gan
- Key Laboratory of Mental DisordersThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
| | - Kaiqi Zhang
- Key Laboratory of Mental DisordersThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
| | - Yuhan Wu
- Key Laboratory of Mental DisordersThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
| | - Ye Li
- Key Laboratory of Mental DisordersThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
| | - Tian Lan
- Key Laboratory of Mental DisordersThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
| | - Xianghua Zhuang
- Department of Endocrinology and MetabolismThe Second Hospital of Shandong UniversityJinanShandong250033China
| | - Shihong Chen
- Department of Endocrinology and MetabolismThe Second Hospital of Shandong UniversityJinanShandong250033China
| | - Shuyan Yu
- Key Laboratory of Mental DisordersThe Second Hospital of Shandong UniversitySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
- Department of Medical Psychology and EthicsSchool of Basic Medical sciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
31
|
Jensen MA, Neimat JS, Kerezoudis P, Ali R, Richardson RM, Halpern CH, Ojemann SG, Ponce FA, Lee KH, Haugen LM, Permezel FE, Klassen BT, Kondziolka D, Miller KJ. Principles of Stereotactic Surgery. Oper Neurosurg (Hagerstown) 2025; 28:303-321. [PMID: 39627171 PMCID: PMC11809997 DOI: 10.1227/ons.0000000000001422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/19/2024] [Indexed: 02/12/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Stereotactic procedures are used to manage a diverse set of patients across a variety of clinical contexts. The stereotactic devices and software used in these procedures vary between surgeons, but the fundamental principles that constitute safe and accurate execution do not. The aim of this work is to describe these principles to equip readers with a generalizable knowledge base to execute and understand stereotactic procedures. METHODS A combination of a review of the literature and empirical experience from several experienced surgeons led to the creation of this work. Thus, this work is descriptive and qualitative by nature, and the literature is used to support instead of generate the ideas of this framework. RESULTS The principles detailed in this work are categorized based on 5 clinical domains: imaging, registration, mechanical accuracy, target planning and adjustment, and trajectory planning and adjustment. Illustrations and tables are used throughout to convey the concepts in an efficient manner. CONCLUSION Stereotactic procedures are complex, requiring a thorough understanding of each step of the workflow. The concepts described in this work enable functional neurosurgeons with the fundamental knowledge necessary to provide optimal patient care.
Collapse
Affiliation(s)
- Michael A. Jensen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph S. Neimat
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | | | - Rushna Ali
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Casey H. Halpern
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven G. Ojemann
- Department of Neurosurgery, University of Colorado Health Neurosciences Center, Denver, Colorado, USA
| | - Francisco A. Ponce
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura M. Haugen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Kai J. Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
32
|
Zhu M, Gong Q. Alterations in brain activity and functional connectivity originating residual inhibition of tinnitus induced by tailor-made notched music training. Hear Res 2025; 457:109129. [PMID: 39765106 DOI: 10.1016/j.heares.2024.109129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 02/14/2025]
Abstract
Tinnitus arises from the intricate interplay of multiple, parallel but overlapping networks, involving neuroplastic changes in both auditory and non-auditory activity. Tailor-made notched music training (TMNMT) has emerged as a promising therapeutic approach for tinnitus. Residual inhibition (RI) represents one of the rare interventions capable of temporarily alleviating tinnitus, offering a valuable tool that can be applied to tinnitus research to explore underlying tinnitus mechanisms. To our knowledge, this study is the first to investigate the neural mechanisms underlying the RI effect of TMNMT through analysis of neural source activity and functional connectivity of EEG. Forty-four participants with tinnitus were divided into TMNMT group (twenty-two participants; ECnm, NMnm, RInm represented that EEG recordings with eyes closed stimuli-pre, stimuli-ing, stimuli-post by TMNMT music, respectively) and Placebo control group (twenty-two participants; ECpb, PBpb, RIpb represented that EEG recordings with eyes closed stimuli-pre, stimuli-ing, stimuli-post by Placebo music, respectively) in a single-blind manner. Source localization analysis revealed that RI effect of TMNMT significantly increased in current density at the delta band in the insula, subgenual anterior cingulate cortex (sgACC), parahippocampus (PHC), and secondary auditory cortex (AⅡ), and significantly increased in current density at the theta band in the sgACC, and significantly decreased in current density at the alpha band in the precuneus, PHC, primary (AI) and secondary (AII) auditory cortex. Meanwhile, RI effect of Placebo significantly decreased in current density at the alpha band in the PHC. Functional connectivity analysis demonstrated that RI effect of TMNMT significantly increased in phase coherence between the left AⅡ and the right sgACC; and between the left PHC and the left retrosplenial cortex (RSC) at the theta band. It significantly decreased in phase coherence between the left PHC and the right precuneus, the right posterior cingulate cortex (PCC), the right AⅡ; between the right PHC and the right PCC; and between the right PCC and the right AⅡ at the alpha band. RI effect of Placebo significantly increased in phase coherence between the left insula and the right precuneus, the left PHC, the right PHC, the left AⅠ, the left AⅡ; between the left sgACC and the right PHC; between the left AⅡ and the right PHC, the left PCC at the delta band. It was found that the current density of sgACC was significantly positively correlated with the tinnitus evaluation indicators (Loudness, VAS, THI, TFI) at the alpha band in TMNMT group. These findings indicated that TMNMT, a novel music therapy for tinnitus, revealed a robust RI effect, and RI effect of TMNMT was not only involved in the activity of auditory networks (AⅠ, AⅡ), but also extended to non-auditory networks, particularly higher-level auditory association cortices, such as the sgACC, PHC and PCC. The current study provides valuable experimental evidence and promising practical prospects for the potential applications of TMNMT in tinnitus treatment.
Collapse
Affiliation(s)
- Min Zhu
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Qin Gong
- School of Biomedical Engineering, Tsinghua University, Beijing, China; School of Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
33
|
Gholamali Nezhad F, Tassone VK, Khoo Y, Wu M, Lin Q, Demchenko I, Janssen-Aguilar R, Ceniti AK, Rizvi SJ, Lou W, Giacobbe P, Kennedy SH, Lozano AM, McAndrews MP, Bhat V. Lack of neuropsychological effects following short-term subcallosal cingulate gyrus deep brain stimulation in treatment-resistant depression: a randomised crossover study. BMJ MENTAL HEALTH 2025; 28:e301408. [PMID: 40021211 PMCID: PMC11873328 DOI: 10.1136/bmjment-2024-301408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/09/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND The subcallosal cingulate gyrus (SCG) is integral to cognitive function and mood regulation. Open-label SCG deep brain stimulation (DBS) studies demonstrate improvement or stabilisation of cognitive function in treatment-resistant depression (TRD). OBJECTIVE This randomised controlled study aims to evaluate the neuropsychological effects of SCG-DBS. METHODS 35 participants with TRD received active or sham stimulation over two 3-month periods. A neuropsychological battery was administered to assess processing speed, learning and memory, and cognitive flexibility. Composite measures were derived for each domain after Period I. A mixed model for repeated measures analysis was performed for each test, with further analysis of significant measures to determine sustainability after Period II. FINDINGS No significant differences in changes in depression scores were observed between groups. There were no significant deteriorations in cognitive performance following active SCG-DBS. Category Fluency Test performance improved after 3 months of active SCG-DBS (p=0.002); however, this was non-significant after correcting for multiple comparisons and was not observed after Period II (p=0.615). CONCLUSION AND IMPLICATIONS While no cognitive deterioration was observed following SCG-DBS, significant improvements in cognitive function were not evident. There may be a transient enhancement in processing speed; however, this effect is not fully understood. Future studies should include larger cohorts and extended stimulation periods to explore the long-term effects of SCG-DBS in TRD and the sustainability of improvements in cognitive domains.
Collapse
Affiliation(s)
- Fatemeh Gholamali Nezhad
- Interventional Psychiatry Program, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yuelee Khoo
- Interventional Psychiatry Program, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Michelle Wu
- Interventional Psychiatry Program, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Qiaowei Lin
- Interventional Psychiatry Program, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ilya Demchenko
- Interventional Psychiatry Program, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Reinhard Janssen-Aguilar
- Interventional Psychiatry Program, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Amanda K Ceniti
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St Michael's Hospital, Toronto, Ontario, Canada
- Centre for Depression and Suicide Studies, St Michael's Hospital, Toronto, Ontario, Canada
| | - Sakina J Rizvi
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St Michael's Hospital, Toronto, Ontario, Canada
- Centre for Depression and Suicide Studies, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Wendy Lou
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sidney H Kennedy
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St Michael's Hospital, Toronto, Ontario, Canada
- Centre for Depression and Suicide Studies, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Mary Pat McAndrews
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| |
Collapse
|
34
|
Boby K, Veerasingam S. Depression diagnosis: EEG-based cognitive biomarkers and machine learning. Behav Brain Res 2025; 478:115325. [PMID: 39515528 DOI: 10.1016/j.bbr.2024.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Depression is a complex mental illness that has significant effects on people as well as society. The traditional techniques for the diagnosis of depression, along with the potential of nascent biomarkers especially EEG-based biomarkers, are studied. This review explores the significance of cognitive biomarkers, offering a comprehensive understanding of their role in the overall assessment of depression. It also investigates the effects of depression on various brain regions, outlines promising areas for future research, and emphasizes the importance of understanding the neurophysiological roots of depression. Furthermore, it elucidates how machine learning and deep learning models are integrated into EEG-based depression diagnosis, emphasizing their importance in optimizing personalized therapeutic protocols and improving diagnostic accuracy with EEG data analysis.
Collapse
Affiliation(s)
- Kiran Boby
- Department of Instrumentation and Control Engineering, NIT Tiruchirappalli, Thuvakudi, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Sridevi Veerasingam
- Department of Instrumentation and Control Engineering, NIT Tiruchirappalli, Thuvakudi, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
35
|
De Jesus O. Neurosurgical Breakthroughs of the Last 50 Years: A Historical Journey Through the Past and Present. World Neurosurg 2025; 196:123816. [PMID: 39986538 DOI: 10.1016/j.wneu.2025.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
This article presented the author's historical perspective on 25 of the most significant neurosurgical breakthrough events of the last 50 years. These breakthroughs have advanced neurosurgical patient care and management. They have improved the management of aneurysms, arteriovenous malformations, tumors, stroke, traumatic brain injury, movement disorders, epilepsy, hydrocephalus, and spine pathologies. Neurosurgery has evolved through research, innovation, and technology. Several neurosurgical breakthroughs were achieved using neuroendoscopy, neuronavigation, radiosurgery, endovascular techniques, and refinements in computer technology. With these breakthroughs, neurosurgery did not change; it just progressed. Neurosurgery should continue its progress through research to obtain new knowledge for the benefit of our patients.
Collapse
Affiliation(s)
- Orlando De Jesus
- Section of Neurosurgery, Department of Surgery, University of Puerto Rico, Medical Sciences Campus, San Juan, PR.
| |
Collapse
|
36
|
Guo Y, Forssell M, Kusyk DM, Jain V, Swink I, Corcoran O, Lee Y, Goswami C, Whiting AC, Cheng BC, Grover P. DeepFocus: a transnasal approach for optimized deep brain stimulation of reward circuit nodes. J Neural Eng 2025; 22:016048. [PMID: 39832448 DOI: 10.1088/1741-2552/adac0c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Objective.Transcranial electrical stimulation (TES) is an effective technique to modulate brain activity and treat diseases. However, TES is primarily used to stimulate superficial brain regions and is unable to reach deeper targets. The spread of injected currents in the head is affected by volume conduction and the additional spreading of currents as they move through head layers with different conductivities, as is discussed in Forssellet al(2021J. Neural Eng.18046042). In this paper, we introduce DeepFocus, a technique aimed at stimulating deep brain structures in the brain's 'reward circuit' (e.g. the orbitofrontal cortex, Brodmann area 25, amygdala, etc).Approach.To accomplish this, DeepFocus utilizes transnasal electrode placement (under the cribriform plate and within the sphenoid sinus) in addition to electrodes placed on the scalp, and optimizes current injection patterns across these electrodes. To quantify the benefit of DeepFocus, we develop the DeepROAST simulation and optimization platform. DeepROAST simulates the effect of complex skull-base bones' geometries on the electric fields generated by DeepFocus configurations using realistic head models. It also uses optimization methods to search for focal and efficient current injection patterns, which we use in our simulation and cadaver studies.Main results.In simulations, optimized DeepFocus patterns created larger and more focal fields in several regions of interest than scalp-only electrodes. In cadaver studies, DeepFocus patterns created large fields at the medial orbitofrontal cortex (OFC) with magnitudes comparable to stimulation studies, and, in conjunction with established cortical stimulation thresholds, suggest that the field intensity is sufficient to create neural response, e.g. at the OFC.Significance.This minimally invasive stimulation technique can enable more efficient and less risky targeting of deep brain structures to treat multiple neural conditions.
Collapse
Affiliation(s)
- Yuxin Guo
- Neuroscience Institute, 4400 Fifth Avenue, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Mats Forssell
- Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Dorian M Kusyk
- Allegheny Health Network, 320 E North Ave, Pittsburgh, PA 15212, United States of America
| | - Vishal Jain
- Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Isaac Swink
- Allegheny Health Network, 320 E North Ave, Pittsburgh, PA 15212, United States of America
| | - Owen Corcoran
- Allegheny Health Network, 320 E North Ave, Pittsburgh, PA 15212, United States of America
| | - Yuhyun Lee
- Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Chaitanya Goswami
- Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Alexander C Whiting
- Allegheny Health Network, 320 E North Ave, Pittsburgh, PA 15212, United States of America
| | - Boyle C Cheng
- Allegheny Health Network, 320 E North Ave, Pittsburgh, PA 15212, United States of America
| | - Pulkit Grover
- Neuroscience Institute, 4400 Fifth Avenue, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
- Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
37
|
Joyce MKP, Uchendu S, Arnsten AFT. Stress and Inflammation Target Dorsolateral Prefrontal Cortex Function: Neural Mechanisms Underlying Weakened Cognitive Control. Biol Psychiatry 2025; 97:359-371. [PMID: 38944141 PMCID: PMC11671620 DOI: 10.1016/j.biopsych.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Most mental disorders involve dysfunction of the dorsolateral prefrontal cortex (dlPFC), a recently evolved brain region that subserves working memory, abstraction, and the thoughtful regulation of attention, action, and emotion. For example, schizophrenia, depression, long COVID, and Alzheimer's disease are all associated with dlPFC dysfunction, with neuropathology often being focused in layer III. The dlPFC has extensive top-down projections, e.g., to the posterior association cortices to regulate attention and to the subgenual cingulate cortex via the rostral and medial PFC to regulate emotional responses. However, the dlPFC is particularly dependent on arousal state and is very vulnerable to stress and inflammation, which are etiological and/or exacerbating factors for most mental disorders. The cellular mechanisms by which stress and inflammation impact the dlPFC are a topic of current research and are summarized in this review. For example, the layer III dlPFC circuits that generate working memory-related neuronal firing have unusual neurotransmission, depending on NMDA receptor and nicotinic α7 receptor actions that are blocked under inflammatory conditions by kynurenic acid. These circuits also have unusual neuromodulation, with the molecular machinery to magnify calcium signaling in spines needed to support persistent firing, which must be tightly regulated to prevent toxic calcium actions. Stress rapidly weakens layer III connectivity by driving feedforward calcium-cAMP (cyclic adenosine monophosphate) opening of potassium channels on spines. This is regulated by postsynaptic noradrenergic α2A adrenergic receptor and mGluR3 (metabotropic glutamate receptor 3) signaling but dysregulated by inflammation and/or chronic stress exposure, which contribute to spine loss. Treatments that strengthen the dlPFC via pharmacological (the α2A adrenergic receptor agonist, guanfacine) or repetitive transcranial magnetic stimulation manipulation provide a rational basis for therapy.
Collapse
Affiliation(s)
- Mary Kate P Joyce
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Stacy Uchendu
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut.
| |
Collapse
|
38
|
Joyce M, Datta D, Arellano J, Duque A, Morozov YM, Morrison JH, Arnsten A. Contrasting patterns of extrasynaptic NMDAR-GluN2B expression in macaque subgenual cingulate and dorsolateral prefrontal cortices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636752. [PMID: 39975025 PMCID: PMC11839065 DOI: 10.1101/2025.02.05.636752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Expression of the N-methyl-D-aspartate receptor, particularly when containing the GluN2B subunit (NMDAR-GluN2B) varies across the prefrontal cortex (PFC). In humans, the subgenual cingulate cortex (SGC) contains among the highest levels of NMDAR-GluN2B expression, while the dorsolateral prefrontal cortex (dlPFC) exhibits a more moderate level of NMDAR-GluN2B expression. NMDAR-GluN2B are commonly associated with ionotropic synaptic function and plasticity, and are essential to the neurotransmission underlying working memory in the macaque dlPFC in the layer III circuits afflicted in schizophrenia. However, NMDAR-GluN2B can also be found at extrasynaptic sites, where they may trigger distinct events, including some linked to neurodegenerative processes. The SGC is an early site of tau pathology in sporadic Alzheimer's Disease (sAD), which mirrors its high NMDAR-GluN2B expression. Additionally, the SGC is hyperactive in depression, which is treated with NMDAR antagonists. Given the clinical relevance of NMDAR in the SGC and dlPFC, the current study used immunoelectron microscopy (immunoEM) to quantitatively compare the synaptic and extrasynaptic expression patterns of NMDAR-GluN2B across excitatory and inhibitory neuron dendrites in the rhesus macaque SGC and dlPFC. We found a larger population of extrasynaptic NMDAR-GluN2B in dendritic shafts and spines of putative pyramidal neurons in SGC as compared to the dlPFC, while the dlPFC had a higher proportion of synaptic NMDAR-GluN2B. In contrast, in putative inhibitory dendrites from both areas, extrasynaptic expression of NMDAR-GluN2B was far more frequently observed over synaptic expression. These findings may provide insight into varying cortical vulnerability to alterations in excitability and to neurodegenerative forces. Scope Statement NMDAR are ionotropic receptors that contribute to neurotransmission and second messenger signaling events. NMDAR can induce a diverse array of neuronal events, in part due to variation in subunit composition and subcellular localization of receptor expression. Expression of the GluN2B subunit varies across the prefrontal cortex in humans. This subunit is highly expressed in the subgenual cingulate, an area associated with mood and emotion, and more moderately expressed in the dorsolateral prefrontal cortex, an area associated with cognitive processes. Extrasynaptic NMDAR, which often contain with the GluN2B subunit, have been linked to detrimental cellular events like neurodegeneration. Here, using high resolution electron microscopy in rhesus macaques, we found evidence that extrasynaptic NMDAR-GluN2B expression may be more prominent in subgenual cortex than in the dorsolateral prefrontal cortex. Conversely, synaptic NMDAR-GluN2B may be more prominent in the dorsolateral prefrontal cortex, consistent with their essential contribution to neuronal firing during working memory. These findings may help to illuminate the propensity of the subgenual cortex to tonic hyperactivity in major depression and its vulnerability to neurodegeneration in Alzheimer's disease, and may help to explain how rapid acting antidepressants exert therapeutic action across diverse neural circuits.
Collapse
|
39
|
Lan Z, Zhu LL, Dai YR, Wu YK, Shen T, Yang JJ, Li JT, Xia M, Wang X, Wei D, Liu B, Chen T, Tang Y, Gong Q, Wang F, Qiu J, Xie P, Li L, He Y, Su YA, Si T. Disrupted functional connectivity of the emotion regulation network in major depressive disorder and its association with symptom improvement: A multisite resting-state functional MRI study. Psychol Med 2025; 55:e21. [PMID: 39905829 PMCID: PMC12017356 DOI: 10.1017/s0033291724003489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/23/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear. METHODS A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy. RESULTS Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients. CONCLUSIONS These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
Collapse
Affiliation(s)
- Zhihui Lan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lin-lin Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - You-ran Dai
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yan-kun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Tian Shen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing-jing Yang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ji-tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaoqin Wang
- Department of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Dongtao Wei
- Department of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Bangshan Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiang Qiu
- Department of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingjiang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | | | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
40
|
Sharma LP, Ganesh UM, Arumugham SS, Srinivas D, Venkatasubramanian G, Reddy YJ. Deep brain stimulation - A primer for psychiatrists. Asian J Psychiatr 2025; 104:104354. [PMID: 39787631 DOI: 10.1016/j.ajp.2024.104354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Deep Brain Stimulation is a form of neurostimulation where electrical stimulation is delivered via intracranial electrodes over specific subcortical targets. It has been increasingly used as an alternative to ablative procedures for psychiatric disorders refractory to standard treatments. This review describes the common psychiatric indications for DBS, the current evidence base, putative mechanisms, and future directions.
Collapse
Affiliation(s)
- Lavanya P Sharma
- OCD Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), India.
| | - Uma Maheswari Ganesh
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), India
| | - Shyam Sundar Arumugham
- OCD Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), India
| | - Dwarakanath Srinivas
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), India
| | - Ganesan Venkatasubramanian
- OCD Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), India
| | - Yc Janardhan Reddy
- OCD Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), India
| |
Collapse
|
41
|
Ramezani F, Mardani P, Nemati F, Cattarinussi G, Sambataro F, Schiena G, Brambilla P, Delvecchio G. Effect of ketamine on task-based functional magnetic resonance imaging findings in major depressive disorder: A mini-review. J Affect Disord 2025; 370:181-189. [PMID: 39489183 DOI: 10.1016/j.jad.2024.10.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/09/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Over the last two decades, ketamine has gained significant interest in psychiatry as a potential treatment for major depressive disorder (MDD), especially in individuals who are resistant to traditional therapies or are at a high risk of suicide. Task-based functional magnetic resonance imaging (fMRI) studies can provide insight into how ketamine alters brain function and contributes to its antidepressant properties. METHODS This mini-review followed the MOOSE guidelines for systematic reviews of observational studies. We conducted a literature search in PubMed, Web of Science, and Scopus aiming at identifying fMRI studies investigating the effect of ketamine on brain function in MDD. RESULTS Eight articles were included in the study. Results showed that ketamine affects brain activity in MDD, especially in the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex, and amygdala. Interestingly, the majority of the reviewed studies showed a correlation between the changes in brain activity induced by ketamine and improvements in clinical depressive symptoms. These correlations involved the prefrontal cortex, ACC, and cortico-cerebellar circuits. LIMITATIONS Lack of longitudinal data on the lasting effects of ketamine on brain activity and the small number of studies. CONCLUSIONS This review identifies key research areas that can enhance our understanding of ketamine's effects on the brain in MDD. It calls for studies on ketamine's mechanisms of action, long-term impact, dose-response optimization, and comparisons with other fast-acting antidepressants. Addressing these areas can optimize ketamine's therapeutic use and reveal new treatment targets.
Collapse
Affiliation(s)
| | - Peyman Mardani
- Department of Psychology and Counseling, Faculty of Humanities, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nemati
- Department of Psychology, University of Tabriz, Tabriz, Iran
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Giandomenico Schiena
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
42
|
Shinohara R, Furuyashiki T. Prefrontal contributions to mental resilience: Lessons from rodent studies of stress and antidepressant actions. Neurosci Res 2025; 211:16-23. [PMID: 36549388 DOI: 10.1016/j.neures.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Individual variability of stress susceptibility led to the concept of stress resilience to adapt well upon stressors. However, the neural mechanisms of stress resilience and its relevance to antidepressant actions remain elusive. In rodents, chronic stress induces dendritic atrophy and decreases dendritic spine density in the medial prefrontal cortex (mPFC), recapitulating prefrontal alterations in depressive patients, and the mPFC promotes stress resilience. Whereas dopamine neurons projecting to the nucleus accumbens potentiated by chronic stress promote stress susceptibility, dopamine neurons projecting to the mPFC activated upon acute stress contribute to dendritic growth of mPFC neurons via dopamine D1 receptors, leading to stress resilience. Rodent studies have also identified the roles of prefrontal D1 receptors as well as D1 receptor-expressing mPFC neurons projecting to multiple subcortical areas and dendritic spine formation in the mPFC for the sustained antidepressant-like effects of low-dose ketamine. Thus, understanding the cellular and neural-circuit mechanism of prefrontal D1 receptor actions paves the way for bridging the gap between stress resilience and the sustained antidepressant-like effects. The mechanistic understanding of stress resilience might be exploitable for developing antidepressants based on a naturally occurring mechanism, thus safer than low-dose ketamine.
Collapse
Affiliation(s)
- Ryota Shinohara
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| |
Collapse
|
43
|
Gharabaghi A, Groppa S, Navas-Garcia M, Schnitzler A, Muñoz-Delgado L, Marshall VL, Karl J, Zhang L, Alvarez R, Feldman MS, Soileau MJ, Luo L, Zauber SE, Walter BL, Wu C, Lei H, Herz DM, Chung MH, Pathak Y, Blomme B, Cheeran B, Luca C, Weiss D. Accelerated symptom improvement in Parkinson's disease via remote internet-based optimization of deep brain stimulation therapy: a randomized controlled multicenter trial. COMMUNICATIONS MEDICINE 2025; 5:31. [PMID: 39890864 PMCID: PMC11785990 DOI: 10.1038/s43856-025-00744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has emerged as an important therapeutic intervention for neurological and neuropsychiatric disorders. After initial programming, clinicians are tasked with fine-tuning DBS parameters through repeated in-person clinic visits. We aimed to evaluate whether DBS patients achieve clinical benefit more rapidly by incorporating remote internet-based adjustment (RIBA) of stimulation parameters into the continuum of care. METHODS We conducted a randomized controlled multicenter study (ClinicalTrails.gov NCT05269862) involving patients scheduled for de novo implantation with a DBS System to treat Parkinson's Disease. Eligibility criteria included the ability to incorporate RIBA as part of routine follow-up care. Ninety-six patients were randomly assigned in a 1:1 ratio using automated allocation, blocked into groups of 4, allocation concealed, and no stratification. After surgery and initial configuration of stimulation parameters, optimization of DBS settings occurred in the clinic alone (IC) or with additional access to RIBA. The primary outcome assessed differences in the average time to achieve a one-point improvement on the Patient Global Impression of Change score between groups. Patients, caregivers, and outcome assessors were not blinded to group assignment. Most of the data collection took place in the patient's home environment. RESULTS Access to RIBA reduces the time to symptom improvement, with patients reporting 15.1 days faster clinical benefit (after 39.1 (SD 3.3) days in the RIBA group (n = 48) and after 54.2 (SD 3.7) days in the IC group (n = 48)). None of the reported adverse events are related to RIBA. CONCLUSIONS This study demonstrates safety and efficacy of internet-based adjustment of DBS therapy, while providing clinical benefit earlier than in-clinic optimization of stimulation parameters by increasing patient access to therapy adjustment.
Collapse
Affiliation(s)
- Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital Tübingen (UKT), Faculty of Medicine, University Tübingen, 72076, Tübingen, Germany.
- Center for Bionic Intelligence Tübingen Stuttgart (BITS), 72076, Tübingen, Germany.
- German Center for Mental Health (DZPG), 72076, Tübingen, Germany.
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marta Navas-Garcia
- Neurosurgery Department, La Princesa University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital de La Princesa, Madrid, Spain
| | - Alfons Schnitzler
- Department of Neurology, and Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Vicky L Marshall
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Jessica Karl
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lin Zhang
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Ramiro Alvarez
- Unidad de Enfermedades Neurodegenerativas, Departamento de Neurociencias, Servicio de Neurologia, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | - Mary S Feldman
- Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | - Lan Luo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Benjamin L Walter
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hong Lei
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - Damian M Herz
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | - Corneliu Luca
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Daniel Weiss
- Center for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Yang T, Shen T, Duan B, Liu Z, Wang C. In Vivo Electrochemical Biosensing Technologies for Neurochemicals: Recent Advances in Electrochemical Sensors and Devices. ACS Sens 2025; 10:100-121. [PMID: 39748564 DOI: 10.1021/acssensors.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In vivo electrochemical sensing of neurotransmitters, neuromodulators, and metabolites plays a critical role in real-time monitoring of various physiological or psychological processes in the central nervous system. Currently, advanced electrochemical biosensors and technologies have been emerging as prominent ways to meet the surging requirements of in vivo monitoring of neurotransmitters and neuromodulators ranging from single cells to brain slices, even the entire brain. This review introduces the fundamental working principles and summarizes the achievements of in vivo electrochemical biosensing technologies including voltammetry, amperometry, potentiometry, field-effect transistor (FET), and organic electrochemical transistor (OECT). According to the elaborate feature of sensing technology, versatile strategies have been devoted to solve critical issues associated with the sensing of neurochemicals under an intricate physiological environment. Voltammetry is a universal technique to investigate electrochemical processes in complex matrices which could realize the miniaturization of electrodes, while amperometry serves as a well-suited approach offering high temporal resolution which is favorable for the fast oxidation-reduction kinetics of neurochemicals. Potentiometry realizes quantitative analysis by recording the potential difference with reduced invasiveness and high compatibility. FET and OECT serve as amplification strategies with higher sensitivity than traditional technologies. Furthermore, we point out the current shortcomings and address the challenges and perspectives of in vivo electrochemical biosensing technologies.
Collapse
Affiliation(s)
- Tuo Yang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Tongjun Shen
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Boyuan Duan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zeyang Liu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
45
|
Goldstein KE, Pietrzak RH, Challman KN, Chu KW, Beck KD, Brenner LA, Interian A, Myers CE, Shafritz KM, Szeszko PR, Goodman M, Haznedar MM, Hazlett EA. Multi-modal risk factors differentiate suicide attempters from ideators in military veterans with major depressive disorder. J Affect Disord 2025; 369:588-598. [PMID: 39341292 DOI: 10.1016/j.jad.2024.09.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The suicide rate for United States military veterans is 1.5× higher than that of non-veterans. To meaningfully advance suicide prevention efforts, research is needed to delineate factors that differentiate veterans with suicide attempt/s, particularly in high-risk groups, e.g., major depressive disorder (MDD), from those with suicidal ideation (no history of attempt/s). The current study aimed to identify clinical, neurocognitive, and neuroimaging variables that differentiate suicide-severity groups in veterans with MDD. METHODS Sixty-eight veterans with a DSM-5 diagnosis of MDD, including those with no ideation or suicide attempt (N = 21; MDD-SI/SA), ideation-only (N = 17; MDD + SI), and one-or-more suicide attempts (N = 30; MDD + SA; aborted, interrupted, actual attempts), participated in this study. Participants underwent a structured diagnostic interview, neurocognitive assessment, and 3 T-structural/diffusion tensor magnetic-resonance-imaging (MRI). Multinomial logistic regression models were conducted to identify variables that differentiated groups with respect to the severity of suicidal behavior. RESULTS Relative to veterans with MDD-SI/SA, those with MDD + SA had significantly higher left cingulum fractional anisotropy, decreased attentional control on emotional-Stroop, and faster response time with intact accuracy on Go/No-Go. Relative to MDD + SI, MDD + SA had higher left cingulum fractional anisotropy and faster response time with intact accuracy on Go/No-Go. LIMITATIONS Findings are based on retrospective, cross-sectional data and cannot identify causal relationships. Also, a healthy control group was not included given the study's focus on differentiating suicide profiles in MDD. CONCLUSIONS This study suggests that MRI and neurocognition differentiate veterans with MDD along the suicide-risk spectrum and could inform suicide-risk stratification and prevention efforts in veterans and other vulnerable populations.
Collapse
Affiliation(s)
- Kim E Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert H Pietrzak
- United States Department of Veterans Affairs National Center for PTSD, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Katelyn N Challman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - King-Wai Chu
- Mental Illness Research, Education, and Clinical Center (MIRECC VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Kevin D Beck
- Research Service, VA New Jersey Health Care System, East Orange, NJ, USA; Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Lisa A Brenner
- VA Rocky Mountain Mental Illness Research Education and Clinical Center, Eastern Colorado Health Care System, Aurora, CO, USA; Departments of Physical Medicine and Rehabilitation, Psychiatry, and Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Alejandro Interian
- Mental Health and Behavioral Sciences, VA New Jersey Health Care System, Lyons, NJ, USA; Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Catherine E Myers
- Research Service, VA New Jersey Health Care System, East Orange, NJ, USA; Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Keith M Shafritz
- Department of Psychology, Hofstra University, Hempstead, NY, USA; Institute of Behavioral Science, Feinstein Institutes of Medical Research, Northwell Health, Manhasset, NY, USA
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA; Mental Health Patient Care Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Marianne Goodman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA; Mental Health Patient Care Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - M Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Health Patient Care Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Erin A Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA; Research & Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
46
|
Zelek-Molik A, Gądek-Michalska A, Wilczkowski M, Bielawski A, Maziarz K, Kreiner G, Nalepa I. Restraint stress effects on glutamate signaling protein levels in the rats' frontal cortex: Does β1 adrenoceptor activity matter? Front Pharmacol 2025; 15:1451895. [PMID: 39834820 PMCID: PMC11743458 DOI: 10.3389/fphar.2024.1451895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Stress-evoked dysfunctions of the frontal cortex (FC) are correlated with changes in the functioning of the glutamatergic system, and evidence demonstrates that noradrenergic transmission is an important regulator of this process. In the current study, we adopted a restraint stress (RS) model in male Wistar rats to investigate whether the blockade of β1 adrenergic receptors (β1AR) with betaxolol (BET) in stressed animals influences the body's stress response and the expression of selected signaling proteins in the medial prefrontal cortex (mPFC). Methods The study was divided into two parts. In the first part, rats were exposed to RS for 3, 7, or 14 days, and the expression of glutamate signaling proteins (p(S845)/t GluA1, p(Y1472)/t GluN2B, VGLUT1, and VGLUT2) in the FC was analyzed to determine the optimal RS duration for studying the mechanisms of hypofrontality. In the second part, rats were exposed to RS for 14 days, and BET (5 mg/kg, p. o.) was administered during the last 8 days immediately after RS. The body's stress reaction was assessed by analyzing body weight and blood levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT). Behavioral responses were evaluated using the novel object recognition (NOR) and elevated plus maze (EPM) tests. The impact of RS and BET on the expression of p(Y530)/t Fyn and p (S133)/t CREB in the mPFC was measured via Western blotting. Results and Discussion The first part of the study demonstrated a decreased level of glutamate receptors in rats exposed to 14 days of RS, following an initial increase observed after 7 days of RS. Results from the second part revealed that chronic RS reduced body weight, impaired recognition memory in the NOR test, augmented blood levels of ACTH, and increased the expression of p(Y530) Fyn in the mPFC. However, β1AR blockade did not alter the effects of RS on weight gain, cognitive function, or the expression of p(Y530) Fyn. β1AR blockade normalized only the blood concentration of ACTH. These results suggest that decreased Fyn kinase activity, indicated by phosphorylation at Y530, underlies the stress-evoked downregulation of GluN2B in the FC in a manner independent of β1AR activity.
Collapse
Affiliation(s)
- Agnieszka Zelek-Molik
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Gądek-Michalska
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Michał Wilczkowski
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Adam Bielawski
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Maziarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
47
|
Liu S, Xiao Q, Tang J, Li Y, Zhu P, Liang X, Huang D, Liu L, Deng Y, Jiang L, Qi Y, Li J, Zhang L, Zhou C, Chao F, Wu X, Du L, Luo Y, Tang Y. Running exercise decreases microglial activation in the medial prefrontal cortex in an animal model of depression. J Affect Disord 2025; 368:674-685. [PMID: 39303886 DOI: 10.1016/j.jad.2024.09.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Running exercise effectively ameliorates depressive symptoms in humans and depression-like behaviors in animals, but the underlying mechanisms remain unclear. Microglia-mediated neuroinflammation plays a major role in the development of depression. The medial prefrontal cortex (mPFC) is a key brain region involved in depression and is sensitive to physical activity. Whether the antidepressant effect of running exercise involves changes in mPFC microglia is not understood. METHODS The animals were subjected to chronic unpredictable stress (CUS) intervention followed by treadmill running. The sucrose preference test and elevated plus maze test or tail suspension test were used for behavioral assessment of the animals. The number of microglia in the mPFC was quantified by immunohistochemistry and stereology. The density and morphology of microglia were analyzed via immunofluorescence staining combined with three-dimensional laser scanning techniques. The mRNA expressions of inflammatory cytokines in the mPFC were examined via quantitative real-time PCR. RESULTS Running exercise effectively alleviated depressive-like behaviors in depression model animals. Running exercise reversed the increase in the number of microglia and the density of activated microglia in the mPFC of CUS animals. Running exercise effectively reversed the changes in microglia (reduced cell body area, total branch length and branch complexity) in the mPFC of CUS animals. Furthermore, running exercise regulated the gene expressions of pro-/antiinflammatory cytokines in the mPFC of CUS animals. CONCLUSIONS Our results suggested that the antidepressant effects of running exercise may involve decreasing the number of activated microglia, reversing morphological changes in microglia in the mPFC, and reducing inflammatory responses.
Collapse
Affiliation(s)
- Shan Liu
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qian Xiao
- Department of Radioactive Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jing Tang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yue Li
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Peilin Zhu
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Dujuan Huang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Li Liu
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yuhui Deng
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lin Jiang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yingqiang Qi
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lei Zhang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chunni Zhou
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fenglei Chao
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xingyu Wu
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lian Du
- Department of Psychiatry, The First Affliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Yong Tang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
48
|
Zalasky NA, Luo F, Kim LH, Noor MS, Brown EC, Arantes AP, Ramasubbu R, Gruber AJ, Kiss ZHT, Clark DL. Integration of valence and conflict processing through cellular-field interactions in human subgenual cingulate during emotional face processing in treatment-resistant depression. Mol Psychiatry 2025; 30:188-200. [PMID: 39030263 DOI: 10.1038/s41380-024-02667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
The subgenual anterior cingulate cortex (sgACC) has been identified as a key brain area involved in various cognitive and emotional processes. While the sgACC has been implicated in both emotional valuation and emotional conflict monitoring, it is still unclear how this area integrates multiple functions. We characterized both single neuron and local field oscillatory activity in 14 patients undergoing sgACC deep brain stimulation for treatment-resistant depression. During recording, patients were presented with a modified Stroop task containing emotional face images that varied in valence and congruence. We further analyzed spike-field interactions to understand how network dynamics influence single neuron activity in this area. Most single neurons responded to both valence and congruence, revealing that sgACC neuronal activity can encode multiple processes within the same task, indicative of multifunctionality. During peak neuronal response, we observed increased spectral power in low frequency oscillations, including theta-band synchronization (4-8 Hz), as well as desynchronization in beta-band frequencies (13-30 Hz). Theta activity was modulated by current trial congruency with greater increases in spectral power following non-congruent stimuli, while beta desynchronizations occurred regardless of emotional valence. Spike-field interactions revealed that local sgACC spiking was phase-locked most prominently to the beta band, whereas phase-locking to the theta band occurred in fewer neurons overall but was modulated more strongly for neurons that were responsive to task. Our findings provide the first direct evidence of spike-field interactions relating to emotional cognitive processing in the human sgACC. Furthermore, we directly related theta oscillatory dynamics in human sgACC to current trial congruency, demonstrating it as an important regulator during conflict detection. Our data endorse the sgACC as an integrative hub for cognitive emotional processing through modulation of beta and theta network activity.
Collapse
Affiliation(s)
- Nicole A Zalasky
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Feng Luo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Linda H Kim
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - M Sohail Noor
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Elliot C Brown
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ana P Arantes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Rajamannar Ramasubbu
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Aaron J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Zelma H T Kiss
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Darren L Clark
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
49
|
Ruan H, Tong G, Jin M, Koch K, Wang Z. Mechanisms of nucleus accumbens deep brain stimulation in treating mental disorders. FUNDAMENTAL RESEARCH 2025; 5:48-54. [PMID: 40166085 PMCID: PMC11955059 DOI: 10.1016/j.fmre.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 04/02/2025] Open
Abstract
Growing evidence supports the effectiveness of deep brain stimulation (DBS) in treating various psychiatric disorders. DBS has the potential to selectively stimulate specific subcortical brain areas thus providing high-frequency electric stimulation of these regions. The nucleus accumbens (NAc), a frequent DBS target, has shown promise in treating psychiatric conditions like depression, obsessive-compulsive disorder, and addiction. In this review, we provide an overview across studies investigating the effects of NAc DBS in humans and animals and discuss potential mechanisms underlying its clinical efficacy. We address the anatomical properties of NAc and discuss, in particular, the frequently reported differential effects of NAc shell and NAc core DBS. Moreover, by outlining the various NAc cell types, transmitter systems (i.e., predominantly GABAergic and dopaminergic systems) and anatomical pathways that have been shown to be relevant for NAc DBS stimulation effects, we aim to further elucidate the neurobiological determinants of NAc DBS efficacy. Finally, since treatment effects of NAc DBS are most probably also related to alterations in NAc connected circuits or networks, we review studies focusing on the investigation of NAc DBS network effects. By examining these various components that are assumed to be of relevance in the context of NAc DBS, this review will hopefully contribute to increasing our knowledge about the mechanisms underlying NAc DBS and optimizing future selection of optimal DBS targets.
Collapse
Affiliation(s)
- Hanyang Ruan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich 81675, Germany
| | - Geya Tong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Minghui Jin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Kathrin Koch
- TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich 81675, Germany
- Department of Neuroradiology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich 81675, Germany
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- School of Psychology, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| |
Collapse
|
50
|
Trapp NT, Liu X, Li Z, Bruss J, Keller CJ, Boes AD, Jiang J. Dorsolateral prefrontal cortex TMS evokes responses in the subgenual anterior cingulate cortex: Evidence from human intracranial EEG. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629857. [PMID: 39763715 PMCID: PMC11703267 DOI: 10.1101/2024.12.20.629857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Transcranial magnetic stimulation combined with intracranial local field potential recordings in humans (TMS-iEEG) represents a new method for investigating electrophysiologic effects of TMS with spatiotemporal precision. We applied TMS-iEEG to the dorsolateral prefrontal cortex (dlPFC) in two subjects and demonstrate evoked activity in the subgenual anterior cingulate cortex (sgACC). This study provides direct electrophysiologic evidence that dlPFC TMS, as targeted for depression treatment, can modulate brain activity in the sgACC.
Collapse
Affiliation(s)
- Nicholas T Trapp
- University of Iowa Department of Psychiatry, Iowa City, IA, USA
- Iowa Neuroscience Institute, Iowa City, IA, USA
| | - Xianqing Liu
- University of Iowa Stead Family Department of Pediatrics, Iowa City, IA, USA
| | - Zhuoran Li
- University of Iowa Stead Family Department of Pediatrics, Iowa City, IA, USA
| | - Joel Bruss
- University of Iowa Stead Family Department of Pediatrics, Iowa City, IA, USA
| | - Corey J Keller
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA
| | - Aaron D Boes
- University of Iowa Department of Psychiatry, Iowa City, IA, USA
- Iowa Neuroscience Institute, Iowa City, IA, USA
- University of Iowa Stead Family Department of Pediatrics, Iowa City, IA, USA
- University of Iowa Department of Neurology, Iowa City, IA, USA
| | - Jing Jiang
- University of Iowa Department of Psychiatry, Iowa City, IA, USA
- Iowa Neuroscience Institute, Iowa City, IA, USA
- University of Iowa Stead Family Department of Pediatrics, Iowa City, IA, USA
| |
Collapse
|