1
|
Akhavan-Kharazian N, Izadi-Vasafi H, Tabashiri-Isfahani M, Hatami-Boldaji H. A review on smart dressings with advanced features. Wound Repair Regen 2025; 33:e70014. [PMID: 40326754 DOI: 10.1111/wrr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/05/2025] [Accepted: 03/06/2025] [Indexed: 05/07/2025]
Abstract
Wound care is a multifaceted and collaborative process, and chronic wounds can have significant repercussions on a patient's well-being and impose a financial burden on the healthcare industry. While traditional wound dressings can effectively facilitate healing, their limitations in addressing the intricacies of the wound healing process remain a formidable obstacle. Smart wound dressings have emerged as a promising solution to tackle this challenge, offering numerous advantages over conventional dressings, such as real-time monitoring of wound healing and enhanced wound care management. These advanced medical dressings incorporate microelectronic sensors that can monitor the wound environment and provide timely interventions for accelerated and comprehensive healing. Furthermore, advancements in drug delivery systems have enabled real-time monitoring, targeted therapy, and controlled release of medications. Smart wound dressings exhibit versatility, as they are available in various forms and can be utilised for treating different types of acute or chronic wounds. Ultimately, the development of innovative wound care technologies and treatments plays a vital role in addressing the complexities presented by wounds and enhancing patients' quality of life. This review sheds light on the diverse types of smart dressings and their distinctive features, emphasising their potential in advancing the field of wound care.
Collapse
Affiliation(s)
- Neda Akhavan-Kharazian
- Department of Polymer Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Hossein Izadi-Vasafi
- Department of Polymer Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | | | - Hossein Hatami-Boldaji
- Department of Polymer Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| |
Collapse
|
2
|
Reddy PD, Raman A, Eljamri S, Shaffer A, Padia R. Disparities in Medication Prescriptions and Post-Tracheostomy Outcomes in Pediatric Patients. Ann Otol Rhinol Laryngol 2025; 134:341-348. [PMID: 39744987 DOI: 10.1177/00034894241310342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
BACKGROUND Granulation tissue formation and tracheitis are common pediatric tracheostomy complications. Ciprofloxacin/dexamethasone is frequently prescribed, but the influence of social determinants on this topic is unexplored. METHODS This study extends a prior cohort study of pediatric tracheostomy patients at a single academic institution from 2016 to 2020. Social determinants of health, including race, insurance status, and residence characteristics, including Area Deprivation Index (ADI), were evaluated. Logistic regression, Wilcoxon rank-sum, and log-rank tests (α = .05) analyzed relationships between these determinants and prescriptions and post-tracheostomy outcomes. RESULTS This cohort included 182 patients; 98/182 (53.9%) were male, and 140/182 (76.9%) were White, non-Hispanic. Non-White race was associated with increased odds of receiving nebulized ciprofloxacin/dexamethasone (OR = 2.80, 95% CI = 1.25-6.29). In those with tracheal culture results available (n = 63), Staphylococcus aureus was more common with public insurance (29/47, 7 with MRSA, 61.7%) compared with private (5/16, 3 with MRSA, 31.3%; OR = 3.54, 95% CI = 1.05-11.9). ADI was greater in the 7 patients with Streptococcus pneumoniae (median = 95, IQR = 88-99) compared to without (median = 77, IQR = 65-81, P = .003). Patients with tracheitis lived further from our center (median = 44.7 miles, IQR = 27.7-91.4 miles) compared with those who did not develop tracheitis (median = 33.4 miles, IQR = 12.0-85.2 miles, P = .02). Antibiotic resistance was more prevalent in children discharged home (14/35, 40.0%) than to transitional care (3/28, 10.7%; OR = 5.56, 95% CI = 1.40-22.0) and was associated with longer hospital stays (median = 70 days, range = 34-152 vs median = 35 days, range = 15-75 days, P = .02). Non-White patients experience increased odds of decannulation over time compared with White patients (HR = 2.85, 95% CI = 1.21-6.70). Discharge locations and ADI were associated with dressing choice post-tracheostomy. DISCUSSION This study revealed racial disparities in ciprofloxacin/dexamethasone usage, residence-related differences in tracheal culture results, and ADI-related dressing choices, which highlight the need for tailored, equitable care to optimize outcomes. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- Pooja D Reddy
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Akshaya Raman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Soukaina Eljamri
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amber Shaffer
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Reema Padia
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Tabaru A, Yigit O, Akyel S, Kapusuz Gencer Z, Bayram I. Reevaluating the Routine Use of Mastoid Pressure Dressings in Otologic Surgery: A Randomized Controlled Trial. EAR, NOSE & THROAT JOURNAL 2025:1455613251333644. [PMID: 40208852 DOI: 10.1177/01455613251333644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025] Open
Abstract
OBJECTIVE The use of mastoid pressure dressings (MPDs) after otologic surgery has been a standard practice for decades, believed to minimize complications such as hematoma and wound infection. However, the efficacy of MPDs in improving patient outcomes has been questioned. This study aimed to evaluate the necessity and impact of MPDs on postoperative pain, complications, and overall patient comfort. METHOD In this prospective, randomized, controlled trial, 200 patients undergoing major ear surgeries were randomly assigned to receive either a MPD group or a non-MPD (NMPD) group. Postoperative pain was assessed using the Visual Analog Scale at the 3rd, 6th, and 24th hour. Complications, including hematoma, wound infection, and skin erythema, were systematically recorded. RESULTS Patients in the MPD group reported significantly-higher pain levels at all measured intervals than in the NMPD group (P < .05). Complications such as skin erythema and auricular bruising were more prevalent in the MPD group. Importantly, there was no significant difference between the two groups in the incidence of hematomas or wound infections. CONCLUSION The findings suggest that MPDs may contribute to increased postoperative pain and discomfort without offering significant benefits in preventing complications. Given the lack of significant benefit and the increased patient discomfort observed with MPDs, their routine use in otologic surgery may warrant reconsideration. Future research should further explore optimal postoperative care strategies to enhance patient comfort and outcomes.
Collapse
Affiliation(s)
- Alper Tabaru
- Otolaryngology Department, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ozgur Yigit
- Otolaryngology Department, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Salih Akyel
- Otolaryngology Department, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Zeliha Kapusuz Gencer
- Otolaryngology Department, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Iskender Bayram
- Otolaryngology Department, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
4
|
Pourdehghan K, Najafi F, Majdi F, Amani N, Samadi N, Akbari Javar H. Preparation and characterization of duloxetine-loaded nanofiber scaffold composed of polyvinyl alcohol and chitosan as wound healing agent, fabricated by electrospinning method. Pharm Dev Technol 2025; 30:351-371. [PMID: 40162534 DOI: 10.1080/10837450.2025.2486797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Wound is a disruption in the epithelial integrity of the skin or mucosa, which is caused by internal or external pathological processes. In this study, a nanofiber as wound dressing loaded with Duloxetine was produced by electrospinning technique. The diameter of nanofibers containing 20% and 40% Duloxetine was around 236 nm and 272 nm, respectively. Tensile testing results showed that elongation at break percentage soared from 11.5% for drug-free nanofibers to 40.01% for nanofibers containing 40% Duloxetine. All nanofibers had uniform bead-free structure. Contact angle of nanofibers with and without drug was 84.3° and 99.3°, respectively. The drug release profile revealed that after the burst release over the first 8 h, the curve witnessed a slow sustained release for a longer period. The nanofibers had antibacterial activity against gram-positive and gram-negative bacteria and the crosslinked nanofibers with 40% duloxetine had the largest diameter of inhibition zone at roughly 43 mm for Staphylococcus aureus, 40 mm for Escherichia coli, and 30 mm for Pseudomonas aeruginosa. Clinical studies showed that the percentage of wound area reduction was approximately 96.41% for nanofibers containing 40% duloxetine which was higher than positive control containing phenytoin at around 92.24% and also the other group with 20% duloxetine at 81.68%.
Collapse
Affiliation(s)
- Kimiya Pourdehghan
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faraz Najafi
- Department of Pharmacoeconomics and Pharmaceutical Management, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Majdi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nooshafarin Amani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Samadi
- Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Mohammadi G, Safari M, Karimi M, Iranpanah A, Farzaei MH, Fakhri S, Echeverría J. Preparation and characterization of Pistacia atlantica oleo-gum-resin-loaded electrospun nanofibers and evaluating its wound healing activity in two rat models of skin scar and burn wound. Front Pharmacol 2024; 15:1474981. [PMID: 39654617 PMCID: PMC11625589 DOI: 10.3389/fphar.2024.1474981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Background A growing body of research is dedicated to developing new therapeutic agents for wound healing with fewer adverse effects. One of the proceedings being taken today in wound healing research is to identify promising biological materials that not only heal wounds but also vanish scarring. The effectiveness of nanofibers like polyvinyl alcohol (PVA), in improving wound healing can be related to their unique properties. Pistacia atlantica Desf. subsp. kurdica (Zohary) Rech. f. (PAK) [Anacardiaceae], also known as "Baneh" in traditional Iranian medicine, is one of the most effective herbal remedies for the treatment of different diseases like skin injuries due to its numerous pharmacological and biological properties, including anti-inflammatory, antioxidant, and anti-bacterial effects. Purpose Our study aimed to evaluate the wound-healing activity of nanofibers containing PVA/PAK oleo-gum-resin in two rat models of burn and excision wound repair. Material and Methods PVA/PKA nanofibers were prepared using the electrospinning method. Scanning electron microscope (SEM) images and mechanical properties of nanofibers were explored. Diffusion and releasing experiments of nanofibers were performed by the UV visible method at different time intervals and up to 72 h. The animal models were induced by excision and burn in Wistar rat's skin and the wound surface area was measured during the experiment for 10 and 21 days, respectively. On the last day, the wound tissue was removed for histological studies, and serum oxidative factors were measured to evaluate the antioxidant properties of the PVA/PKA. Data analysis was performed using ImageJ, Expert Design, and statistical analysis methods. Results and discussion PVA/PKA nanofibers were electrospun at different voltages (15, 18, and 20 kV). The most suitable fibers were obtained when the nozzle was positioned 15 cm away from the collector, with a working voltage of 15 kV, and an injection rate of 0.5 mm per hour, using the 30:70 w/v PKA gum. In the SEM images, it was found that the surface tension of the polymer solution decreased by adding the gum and yield thinner and longer fibers at a voltage of 15 kV with an average diameter of 96 ± 24 nm. The mechanical properties of PVA/PKA nanofibers showed that the presence of gum increased the tensile strength and decreased the tensile strength of the fibers simultaneously. In vivo results showed that PVA/PKA nanofibers led to a significant reduction in wound size and tissue damage (regeneration of the epidermal layer, higher density of dermal collagen fibers, and lower presence of inflammatory cells) compared to the positive (phenytoin and silver sulfadiazine) and negative control (untreated) groups. Wound contraction was higher in rats treated with PVA/PKA nanofibers. Additionally, antioxidative serum levels of catalase and glutathione were higher in the PVA/PKA nanofiber groups even in comparison to positive control groups. Conclusion Pistacia atlantica oleo-gum-resin-loaded electrospun nanofibers potentially improve excision and burn models of skin scars in rats through antioxidative and tissue regeneration mechanisms.
Collapse
Affiliation(s)
- Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mosayyeb Safari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Karimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
6
|
P A, M RJ, Joy JM, Visnuvinayagam S, Remya S, Mathew S. Development of κ-carrageenan-based transparent and absorbent biodegradable films for wound dressing applications. Int J Biol Macromol 2024; 282:137084. [PMID: 39500428 DOI: 10.1016/j.ijbiomac.2024.137084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Wound healing remains a critical challenge in healthcare, requiring advanced wound dressings with superior properties like transparency, absorbency, and biocompatibility. However, gaps exist in the use of marine-derived biopolymers for sustainable dressings. This study addresses this gap by combining κ-carrageenan (KC) with polyvinyl pyrrolidone (PVP) to develop transparent and absorbent biodegradable films through solvent casting and lyophilization techniques. Lyophilized films exhibited superior absorbency (9.17 g/cm2) and moisture management, with a water vapour transmission rate of 3990.67 g/m2/24 h, while solvent-cast films showed 78 % transmittance, enabling wound visualization. Mechanical testing revealed high tensile strength (31.5 MPa) and folding endurance (410 folds), ensuring durability. In vitro bactericidal assays confirmed efficacy against MRSA and E. coli, and in vivo tests on Wistar rats showed complete wound healing within 16 days with 91.1 % closure, outperforming untreated controls (76.7 %). This is the first study to explore lyophilized KC-PVP films for wound dressing applications, demonstrating potential for drug release, absorbency, and biodegradability. The innovative combination of biopolymers and fabrication techniques offers a sustainable, high-performance solution for wound care.
Collapse
Affiliation(s)
- Amruth P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Life Sciences, Christ University, Hosur Main Road, Bhavani Nagar, Bangalore 560029, Karnataka, India
| | - Rosemol Jacob M
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Jean Mary Joy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Zoology, St. Teresa's College (Autonomous), Ernakulam 682011, Kerala, India
| | - S Visnuvinayagam
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - S Remya
- Fish Processing Technology, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India.
| |
Collapse
|
7
|
Kolour AK, Shahrousvand M, Mohammadi-Rovshandeh J, Puppi D, Farzaneh D. Absorbable and biodegradable enzyme-crosslinked gelatin/alginate semi-IPN hydrogel wound dressings containing curcumin. Int J Biol Macromol 2024; 279:134938. [PMID: 39187095 DOI: 10.1016/j.ijbiomac.2024.134938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Effective wound management presents a substantial financial and time-related obstacle for healthcare institutions. Enhancing healthcare involves implementing innovative wound treatment methods to minimize healing time and expenses. This study is centered on the development of a non-toxic wound dressing using only two natural polymers and an enzyme. By adding 10 % wt microbial transglutaminase, the mechanical properties of the dressing were improved. This formulation increased the swelling rate by 70 %, deswelling rate by 15 %, conversion rate by 9 %, and networking rate by 20 %. Additionally, the non-toxic dressing showed a cell viability rate of 106 %. In drug delivery tests, explosive release behavior was observed, which is advantageous for open wounds. Cell staining experiments were also carried out to evaluate wound behavior in terms of collagen formation, granulation, and inflammation. The results suggest that the optimized hydrogel has great potential as a wound dressing. Its excellent absorption, antioxidant, and biocompatibility characteristics enhance tissue granulation rate and reduce wound treatment time by half compared to conventional methods, while also minimizing scarring risk. This innovative treatment, which eliminates the need for frequent changes, is beneficial for both secondary intentions and severe open wounds requiring bottom-up healing.
Collapse
Affiliation(s)
- Alireza Kheradvar Kolour
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran.
| | - Jamshid Mohammadi-Rovshandeh
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran.
| | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
| | - Dorsa Farzaneh
- Biomaterials Engineering Department, Faculty of Medical Sciences and Technology, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Najafloo R, Milan PB, Karimi A, Bagher Z, Kalmer RR, Ghasemian M, Faridi-Majidi R. Crosslinking gelatin with robust inherent antibacterial natural polymer for wound healing. Int J Biol Macromol 2024; 280:136144. [PMID: 39353527 DOI: 10.1016/j.ijbiomac.2024.136144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Gelatin-based biomaterials are widely acknowledged as a promising choice for wound dressings, given their similarity to the extracellular matrix and biocompatibility. However, the challenge of cross-linking gelatin while preserving its biocompatibility and cost-effectiveness persists. This study aimed to enhance the properties of gelatin by incorporating the oxidized lignosulfonate (OLS) biopolymer as an inexpensive and biocompatible natural material. The polyphenolic structure of OLS acts as both a cross-linking agent and an antibacterial component. The OLS/gelatin films were prepared using a casting method with varying weight ratios (0.1, 0.2, 0.3, 0.4, and 0.5 w/w). FTIR analysis confirmed the formation of Schiff-base and hydrogen bonds between gelatin and OLS. The resulting films exhibited enhanced mechanical properties (Young's modulus ∼40 MPa), no cytotoxicity, and excellent cell adhesion and morphology. Antimicrobial tests showed significant activity against Escherichia coli and Staphylococcus aureus, with higher activity against S. aureus (17 mm inhibition zone and 99 % bactericidal rate). In vivo studies in a mouse model demonstrated that the gelatin/0.2OLS dressing significantly improved wound healing, including re-epithelialization, collagen formation, inflammation reduction, and blood vessel density, compared to untreated wounds. These findings suggest that the synthesized novel gelatin/OLS wound dressing has promising healing and antibacterial properties.
Collapse
Affiliation(s)
- Raziyeh Najafloo
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran.
| | - Afzal Karimi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran.
| | - Zohreh Bagher
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran; ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran 1445613131, Iran
| | | | - Melina Ghasemian
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| | - Raheleh Faridi-Majidi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1417935840 Tehran, Iran
| |
Collapse
|
9
|
Holm D, Schommer K, Kottner J. Review of Medical Adhesive Technology in the Context of Medical Adhesive-Related Skin Injury. J Wound Ostomy Continence Nurs 2024; 51:S9-S17. [PMID: 39313962 DOI: 10.1097/won.0000000000001115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In clinical practice, a large variety of medical devices adhere to skin to perform their function. The repeated application and removal of these devices can lead to skin damage or medical adhesive-related skin injury. Awareness of this problem has increased in the past decade, and this adverse event can be prevented with appropriate selection of adhesive products and the appropriate techniques for application and removal. A wide variety of adhesives and backing systems have been developed to create medical devices with an array of attributes, so they can accomplish many different indications in the clinical setting and meet various needs, including doing the clinical job without damaging the skin and causing further patient complications. The selection of an adhesive product should take into consideration a patient's skin assessment and history of medical adhesive-related skin injury, and using only the minimal adhesive strength needed to perform the function while protecting the skin from damage.
Collapse
Affiliation(s)
- David Holm
- David Holm, PhD, Solventum, Maplewood, MN
- Kimberly Schommer, RN, BSN, PHN, VA-BC, Solventum, Maplewood, MN
- Jan Kottner, RN, PhD, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kimberly Schommer
- David Holm, PhD, Solventum, Maplewood, MN
- Kimberly Schommer, RN, BSN, PHN, VA-BC, Solventum, Maplewood, MN
- Jan Kottner, RN, PhD, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Kottner
- David Holm, PhD, Solventum, Maplewood, MN
- Kimberly Schommer, RN, BSN, PHN, VA-BC, Solventum, Maplewood, MN
- Jan Kottner, RN, PhD, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Clare J, Lindley MR, Ratcliffe E. The Potential of Fish Oil Components and Manuka Honey in Tackling Chronic Wound Treatment. Microorganisms 2024; 12:1593. [PMID: 39203434 PMCID: PMC11356504 DOI: 10.3390/microorganisms12081593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic wounds are becoming an increasing burden on healthcare services, as they have extended healing times and are susceptible to infection, with many failing to heal, which can lead ultimately to amputation. Due to the additional rise in antimicrobial resistance and emergence of difficult-to-treat Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE pathogens), novel treatments will soon be required asides from traditional antibiotics. Many natural substances have been identified as having the potential to aid in both preventing infection and increasing the speed of wound closure processes. Manuka honey is already in some cases used as a topical treatment in the form of ointments, which in conjunction with dressings and fish skin grafts are an existing US Food and Drug Administration-approved treatment option. These existing treatment options indicate that fatty acids from fish oil and manuka honey are well tolerated by the body, and if the active components of the treatments were better understood, they could make valuable additions to topical treatment options. This review considers two prominent natural substances with established manufacturing and global distribution-marine based fatty acids (including their metabolites) and manuka honey-their function as antimicrobials and how they can aid in wound repair, two important aspects leading to resolution of chronic wounds.
Collapse
Affiliation(s)
- Jenna Clare
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Martin R. Lindley
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney 2052, Australia;
| | - Elizabeth Ratcliffe
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
11
|
Bonde S, Chandarana C, Prajapati P, Vashi V. A comprehensive review on recent progress in chitosan composite gels for biomedical uses. Int J Biol Macromol 2024; 272:132723. [PMID: 38825262 DOI: 10.1016/j.ijbiomac.2024.132723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Chitosan (CS) composite gels have emerged as promising materials with diverse applications in biomedicine. This review provides a concise overview of recent advancements and key aspects in the development of CS composite gels. The unique properties of CS, such as biocompatibility, biodegradability, and antimicrobial activity, make it an attractive candidate for gel-based composites. Incorporating various additives, such as nanoparticles, polymers, and bioactive compounds, enhances the mechanical, thermal, and biological and other functional properties of CS gels. This review discusses the fabrication methods employed for CS composite gels, including blending and crosslinking, highlighting their influence on the final properties of the gels. Furthermore, the uses of CS composite gels in tissue engineering, wound healing, drug delivery, and 3D printing highlight their potential to overcome a number of the present issues with drug delivery. The biocompatibility, antimicrobial properties, electroactive, thermosensitive and pH responsive behavior and controlled release capabilities of these gels make them particularly suitable for biomedical applications. In conclusion, CS composite gels represent a versatile class of materials with significant potential for a wide range of applications. Further research and development efforts are necessary to optimize their properties and expand their utility in pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Smita Bonde
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India.
| | - Chandani Chandarana
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| | - Parixit Prajapati
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| | - Vidhi Vashi
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| |
Collapse
|
12
|
Madadian E, Naseri E, Legault R, Ahmadi A. Development of 3D-Printable Albumin-Alginate Foam for Wound Dressing Applications. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e1175-e1185. [PMID: 39359603 PMCID: PMC11442183 DOI: 10.1089/3dp.2022.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In this article, a method to develop 3D printable hybrid sodium alginate and albumin foam, crosslinked with calcium chloride mist is introduced. Using this method, highly porous structures are produced without the need of further postprocessing (such as freeze drying). The proposed method is particularly beneficial in the development of wound dressing as the printed foams show excellent lift-off and water absorption properties. Compared with methods that use liquid crosslinker, the use of mist prevents the leaching of biocompounds into the liquid crosslinker. 3D printing technique was chosen to provide more versatility over the wound dressing geometry. Calcium chloride and rhodamine B were used as the crosslinking material and the model drug, respectively. Various biomaterial inks were prepared by different concentrations of sodium alginate and albumin, and the fabricated scaffolds were crosslinked in mist, liquid, or kept without crosslinking. The effects of biomaterial composition and the crosslinking density on the wound dressing properties were assessed through printability studies. The mist-crosslinked biomaterial ink composed of 1% (w/v) sodium alginate and 12% (w/v) albumin showed the superior printability. The fabricated scaffolds were also characterized through porosity, mechanical, degradation, and drug release tests. The mist-crosslinked scaffolds showed superior mechanical properties and provided relatively prolonged drug release.
Collapse
Affiliation(s)
- Elias Madadian
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada
- Department of Mechanical Engineering, École de technologie supérieure, Montreal, Canada
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Emad Naseri
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada
| | - Ryan Legault
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada
| | - Ali Ahmadi
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada
- Department of Mechanical Engineering, École de technologie supérieure, Montreal, Canada
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
13
|
Sadeghianmaryan A, Ahmadian N, Wheatley S, Alizadeh Sardroud H, Nasrollah SAS, Naseri E, Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review. Int J Biol Macromol 2024; 266:131207. [PMID: 38552687 DOI: 10.1016/j.ijbiomac.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.
Collapse
Affiliation(s)
- Ali Sadeghianmaryan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA; Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Nivad Ahmadian
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, Ontario, Canada
| | - Sydney Wheatley
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Emad Naseri
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
14
|
Dyson E, Sikkink S, Nocita D, Twigg P, Westgate G, Swift T. Evaluating the Irritant Factors of Silicone and Hydrocolloid Skin Contact Adhesives Using Trans-Epidermal Water Loss, Protein Stripping, Erythema, and Ease of Removal. ACS APPLIED BIO MATERIALS 2024; 7:284-296. [PMID: 38150300 PMCID: PMC10792606 DOI: 10.1021/acsabm.3c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023]
Abstract
A composite silicone skin adhesive material was designed to improve its water vapor permeability to offer advantages to wearer comfort compared to existing skin adhesive dressings available (including perforated silicone and hydrocolloid products). The chemical and mechanical properties of this novel dressing were analyzed to show that it has a high creep compliance, offering anisotropic elasticity that is likely to place less stress on the skin. A participant study was carried out in which 31 participants wore a novel silicone skin adhesive (Sil2) and a hydrocolloid competitor and were monitored for physiological response to the dressings. Trans-epidermal water loss (TEWL) was measured pre- and postwear to determine impairment of skin barrier function. Sil2 exhibited a higher vapor permeability than the hydrocolloid dressings during wear. Peel strength measurements and dye counter staining of the removed dressings showed that the hydrocolloid had a higher adhesion to the participants' skin, resulting in a greater removal of proteins from the stratum corneum and a higher pain rating from participants on removal. Once the dressings were removed, TEWL of the participants skin beneath the Sil2 was close to normal in comparison to the hydrocolloid dressings that showed an increase in skin TEWL, indicating that the skin had been highly occluded. Analysis of the skin immediately after removal showed a higher incidence of erythema following application of hydrocolloid dressings (>60%) compared to Sil2, (<30%). In summary, this modified silicone formulation demonstrates superior skin protection properties compared to hydrocolloid dressings and is more suitable for use as a skin adhesive.
Collapse
Affiliation(s)
- Edward Dyson
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Stephen Sikkink
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Davide Nocita
- Faculty
of Engineering and Informatics, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Peter Twigg
- Faculty
of Engineering and Informatics, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Gill Westgate
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Thomas Swift
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| |
Collapse
|
15
|
Karamanlioglu M, Yesilkir-Baydar S. Characterization of gelatin-based wound dressing biomaterials containing increasing coconut oil concentrations. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:16-44. [PMID: 37773094 DOI: 10.1080/09205063.2023.2265624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
This study determined the influence and ideal ratios of various coconut oil (CO) amounts in gelatin (G) based-films as wound dressings since there are limited comparative studies to evaluate the sole effect of increasing CO on protein-based biomaterials. Homogenous films at G:CO ratio of 4:0,4:2,4:3,4:4 (w:w) corresponding to CO-0, CO-2, CO-3, CO-4, respectively, were obtained using solution casting. SEM showed CO caused rougher surfaces decreasing mechanical strength. However, no pores were observed in CO-4 due to bigger clusters of oil improving stretchability compared to CO-3; and durability since aging of CO-4 was >10% lower than CO-0 in aqueous media. FTIR showed triglycerides' band only in CO films with increasing amplitude. Moreover, amide-I of CO-2 was involved in more hydrogen bonding, therefore, CO-2 had the highest melt-like transition temperatures (Tmax) at ∼163 °C while others' were at ∼133 °C; and had more ideal mechanical properties among CO films. XTT showed that increased CO improved 3T3 cell viability as CO-0 significantly decreased viability at 10,50,75,100 μg/mL (p < 0.05), whereas CO-2 and CO-3 within 5-75 μg/mL and CO-4 within 5-100 μg/mL range increased viability ≥100% suggesting proliferation. All CO samples at 25 μg/mL stimulated 3T3 cell migration in Scratch Assay indicating wound healing. CO amounts mainly improved thermal and healing properties of gelatin-based biomaterial. CO-2 was more thermally stable and CO-4 had better influence on cell viability and wound healing than CO-0. Therefore, increased CO ratios, specifically 4:2 and 4:4, G:CO (w:w), in gelatin-based films can be ideal candidates for wound dressing materials.
Collapse
Affiliation(s)
| | - Serap Yesilkir-Baydar
- Department of Biomedical Engineering, Istanbul Gelisim University, Istanbul, Turkey
- Life Sciences and Biomedical Engineering Application and Research Center, Istanbul Gelisim University, Istanbul, Turkey
| |
Collapse
|
16
|
Razavi SZ, Saljoughi E, Mousavi SM, Matin MM. Polycaprolactone/cress seed mucilage based bilayer antibacterial films containing ZnO nanoparticles with superabsorbent property for the treatment of exuding wounds. Int J Biol Macromol 2024; 256:128090. [PMID: 37979764 DOI: 10.1016/j.ijbiomac.2023.128090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
In this research, a novel double-layer film based on polycaprolactone and cress seed mucilage containing zinc oxide nanoparticles (0.5-2 %) was synthesized using solution casting technique, as an interactive multi-functional wound dressing. The bilayer films were characterized by measuring moisture content, contact angle parameter, porosity, water vapor transmission rate (WVTR), color attributes and opacity, swelling, degradation, mechanical properties, cell viability, and antimicrobial activity, as well as using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results indicated that the film containing 1.5 % zinc oxide nanoparticles had the best performance, with high swelling ability (3600 %) and 25 % degradation within 24 h of placement in a wound simulator solution. Its mechanical properties, including tensile strength and elongation at break, were 9 MPa and 5.53 %, respectively. In investigating the antimicrobial activity of the optimal film against Escherichia coli and Staphylococcus aureus, the diameter of the inhibition zone was observed to be 39.33 and 42 mm, respectively. Moreover, increasing the number of ZnO-NPs hindered the growth of NIH/3T3 cells, but the 1.5 % ZnO-NP loaded film showed a high percentage of cell viability in 1 day (90 %) and 3 days (93 %), which is suitable for biomedical applications.
Collapse
Affiliation(s)
- Seyedeh Zeynab Razavi
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ehsan Saljoughi
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Seyed Mahmoud Mousavi
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Niculescu AG, Georgescu M, Marinas IC, Ustundag CB, Bertesteanu G, Pinteală M, Maier SS, Al-Matarneh CM, Angheloiu M, Chifiriuc MC. Therapeutic Management of Malignant Wounds: An Update. Curr Treat Options Oncol 2024; 25:97-126. [PMID: 38224423 DOI: 10.1007/s11864-023-01172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
OPINION STATEMENT Malignant fungating wounds (MFW) are severe skin conditions generating tremendous distress in oncological patients with advanced cancer stages because of pain, malodor, exudation, pruritus, inflammation, edema, and bleeding. The classical therapeutic approaches such as surgery, opioids, antimicrobials, and application of different wound dressings are failing in handling pain, odor, and infection control, thus urgently requiring the development of alternative strategies. The aim of this review was to provide an update on the current therapeutic strategies and the perspectives on developing novel alternatives for better malignant wound management. The last decade screened literature evidenced an increasing interest in developing natural treatment alternatives based on beehive, plant extracts, pure vegetal compounds, and bacteriocins. Promising therapeutics can also be envisaged by involving nanotechnology due to either intrinsic biological activities or drug delivery properties of nanomaterials. Despite recent progress in the field of malignant wound care, the literature is still mainly based on in vitro and in vivo studies on small animal models, while the case reports and clinical trials (less than 10 and only one providing public results) remain scarce. Some innovative treatment approaches are used in clinical practice without prior extensive testing in fungating wound patients. Extensive research is urgently needed to fill this knowledge gap and translate the identified promising therapeutic approaches to more advanced testing stages toward creating multidimensional wound care strategies.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061, Bucharest, Romania
| | - Mihaela Georgescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Department of Dermatology, Dr. Carol Davila Central Military, Emergency University Hospital, Bucharest, Romania
| | - Ioana Cristina Marinas
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania.
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Gloria Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, 020022, Bucharest, Romania
| | - Mariana Pinteală
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Stelian Sergiu Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
- Department of Chemical Engineering, Faculty of Industrial Design and Business Management, Gheorghe Asachi" Technical University of Iasi, Iasi, Romania
| | - Cristina Maria Al-Matarneh
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Marian Angheloiu
- Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest-Giurgiu Street, Giurgiu, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, Bucharest, Romania
- The Romanian Academy, 25, Calea Victoriei, District 1, Bucharest, Romania
| |
Collapse
|
18
|
Borhani M, Dadpour S, Haghighizadeh A, Etemad L, Soheili V, Memar B, Vafaee F, Rajabi O. Crosslinked hydrogel loaded with chitosan-supported iron oxide and silver nanoparticles as burn wound dressing. Pharm Dev Technol 2023; 28:962-977. [PMID: 37943117 DOI: 10.1080/10837450.2023.2278613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
Burns can result in infection, disability, psychosocial and economic issues. Advanced wound dressings like hydrogel absorb exudate and maintain moisture. Considering the antimicrobial properties of silver nanoparticles and iron oxide nanoparticles, the efficiency of cross-linked hydrogel loaded with chitosan-supported iron oxide and silver nanoparticles for burn wounds repair was investigated in animal model. Cellulose hydrogel dressing made from carboxymethylcellulose and hydroxyethylcellulose crosslinked with different concentrations of citric acid (10, 15, 20, and 30%) was produced. The physicochemical characteristics of the synthetized hydrogels including Fourier-Transform Infrared spectroscopy, Thermal behavior, Swelling properties, and Scanning Electron Microscope (SEM) were evaluated. The silver nanoparticles and iron nanoparticles were produced and the characteristics, cytotoxicity, antimicrobial activities and their synergistic effect were investigated. After adding nanoparticles to hydrogels, the effects of the prepared wound dressings were investigated in a 14-day animal model of burn wound. The results showed that the mixture comprising 12.5 ppm AgNps, and IONPs at a concentration ≤100 ppm was non-cytotoxic. Moreover, the formulations with 20% CA had a swelling ratio of almost 250, 340, and 500 g/g at pHs of 5, 6.2, and 7.4 after one hour, which are lower than those of formulations with 5 and 10% CA. The total mass loss (59.31%) and the exothermic degradation happened in the range of 273-335 °C and its Tm was observed at 318.52 °C for hydrogels with 20% CA. Thus, the dressing comprising 20% CA which was loaded with 12.5 ppm silver nanoparticles (AgNPs) and 100 ppm iron oxide nanoparticles (IONPs) indicated better physicochemical, microbial and non-cytotoxic characteristics, and accelerated the process of wound healing after 14 days. It was concluded that the crosslinked hydrogel loaded with 12.5 ppm AgNPs and 100 ppm IONPs possesses great wound healing activity and could be regarded as an effective topical burn wound healing treatment.
Collapse
Affiliation(s)
- Mina Borhani
- Department of Pharmaceutical Control, Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Dadpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atoosa Haghighizadeh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Department of Pathology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Farzad Vafaee
- Department of Pharmaceutical Control, Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Bao MZ, Zhou LB, Zhao L, Zhang H, Li Y, Yang L, Tai AT. Efficacy of lidocaine wet compress combined with red-light irradiation for chronic wounds. World J Clin Cases 2023; 11:7277-7283. [PMID: 37969445 PMCID: PMC10643062 DOI: 10.12998/wjcc.v11.i30.7277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Chronic wounds that fail to progress through normal phases of healing present a significant healthcare burden owing to prolonged treatment and associated costs. Traditional wound care typically involves regular dressing changes, which can be painful. Recent approaches have explored the use of lidocaine to manage pain and red-light irradiation (RLI), known for its anti-inflammatory and cell proliferation effects, to potentially enhance wound healing. AIM To investigate the therapeutic efficacy of lidocaine wet compression (LWC) combined with RLI for chronic wounds. METHODS We enrolled 150 patients with chronic wounds from the Wound and Ostomy Outpatient Clinic of the Second Hospital of Anhui Medical University from April to September 2022. The wounds were treated with dressing changes. The patients were randomly assigned to the control and experimental groups using a random number table and given the same first dressing change (2% LWC for 5 min and routine dressing change). From the second dressing change, in addition to 2% LWC for 5 min and routine dressing change, the experimental group received RLI, whereas the control group continued to receive the same LWC and dressing change. The first and second dressing changes were performed on days 1 and 2, respectively. The third dressing change was performed 3 d after the second change. The frequency of subsequent dressing changes was determined based on wound exudation and pain. Pain during the first three dressing changes was evaluated in both groups. The average number of dressing changes within 28 d and the degree of wound healing on day 28 were also recorded. RESULTS During the initial dressing change, no noticeable differences were observed in the pain levels experienced by the two groups, indicating similar pain tolerance. However, during the second and third dressing changes, the experimental group reported significantly less pain than the control group. Furthermore, over 28 d, the experimental group required fewer dressing changes than the control group. CONCLUSION Notably, the effectiveness of wound healing on the 28th day was significantly higher in the experimental group than that of in the control group. The combination of LWC and RLI was effective in reducing early-stage pain, promoting wound healing, decreasing the frequency of dressing changes, and enhancing patients' overall quality of life with chronic wounds.
Collapse
Affiliation(s)
- Man-Zhen Bao
- Department of Nursing, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Lian-Bang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Ling Zhao
- Department of General Surgery, Huaibei People’s Hospital of Anhui Province, Huaibei 235000, Anhui Province, China
| | - Hui Zhang
- Department of Outpatient, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Yuan Li
- Department of Outpatient, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Li Yang
- Department of Outpatient, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - An-Ting Tai
- Department of Outpatient, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| |
Collapse
|
20
|
Zahoor S, Tahir HM, Ali S, Ali A, Muzamil A, Murtaza Z, Zahoor N. Diabetic wound healing potential of silk sericin protein based hydrogels enriched with plant extracts. Int J Biol Macromol 2023:125184. [PMID: 37276909 DOI: 10.1016/j.ijbiomac.2023.125184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
The complications associated with diabetic wounds make their healing process prolonged. Hydrogels could be ideal wound dressings therefore present research was conducted to prepare silk sericin (an adhesive protein polymer) based hydrogels in combination with plant extracts and to evaluate its effectiveness against wound healing process in mice with alloxan induced diabetes. Excision wounds were formed via a biopsy puncture (6 mm). Experimental hydrogels were prepared and applied topically on the diabetic wounds. All the hydrogel treatment groups showed significantly higher (P < 0.001) percent wound contraction from day 3 to day 11 as compared to the negative diabetic control group. The serum level of anti-inflammatory cytokine (Interleukin-10) and tissue inhibitor metalloproteinase (TIMP) was significantly higher (P < 0.001), while the level of pro-inflammatory cytokines (tumor necrosis factor-α, Interleukin-6) and matrix metalloproteinases (MMP-2, MMP-9) was significantly lower (P < 0.001) in hydrogels treatment groups as compared to diabetic control group. Although all the hydrogels showed effective results, however the best results were shown by 4 % sericin+4 % banyan+4 % onion based hydrogel. It can be concluded that Sericin based hydrogel enriched with banyan and onion extracts can be used as an effective remedy for the treatment of diabetic wounds due to their high healing and regenerative properties.
Collapse
Affiliation(s)
- Samia Zahoor
- Department of Zoology, Government College University Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University Lahore, Pakistan.
| | - Ayesha Muzamil
- Department of Zoology, Government College University Lahore, Pakistan
| | - Zainab Murtaza
- Department of Zoology, Government College University Lahore, Pakistan
| | - Nimbra Zahoor
- Department of Botany, Government College University Lahore, Pakistan
| |
Collapse
|
21
|
Dias IKR, Lacerda BK, Arantes V. High-yield production of rod-like and spherical nanocellulose by controlled enzymatic hydrolysis of mechanically pretreated cellulose. Int J Biol Macromol 2023:125053. [PMID: 37244329 DOI: 10.1016/j.ijbiomac.2023.125053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
In this study, a simple and scalable mechanical pretreatment was evaluated as means to increase the cellulose accessibility of cellulose fibers, with the aim of improving the efficiency of enzymatic reactions for the production of cellulose nanoparticles (CNs). In addition, the effects of enzyme type (endoglucanase - EG, endoxylanase - EX, and a cellulase preparation - CB), composition ratio (0-200UEG:0-200UEX or EG, EX, and CB alone), and loading (0 U-200 U) were investigated in relation to CN yield, morphology, and properties. The combination of mechanical pretreatment and specific conditions for enzymatic hydrolysis substantially improved CN production yield, reaching up to 83 %. The production of rod-like or spherical nanoparticles and their chemical composition were highly dependent on the type of enzyme, composition ratio, and loading. However, these enzymatic conditions minimally affected the crystallinity index (approximately 80 %) and thermal stability (Tmax within 330-355 °C). Collectively, these results demonstrate that mechanical pretreatment followed by enzymatic hydrolysis under specific conditions is a suitable method to produce nanocellulose with a high yield and tunable properties such as purity, rod-like or spherical forms, high thermal stability, and high crystallinity. Therefore, this production route is a promising approach to produce tailored CNs with the potential to offer superior performance in a variety of sophisticated applications, including, but not limited to, wound dressings, drug delivery, thermoplastic composites, 3D (bio)printing, and smart packaging.
Collapse
Affiliation(s)
- Isabella K R Dias
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Bruna K Lacerda
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Valdeir Arantes
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil.
| |
Collapse
|
22
|
Nagaraj A, Rekha PD. Development of a bioink using exopolysaccharide from Rhizobium sp. PRIM17. Int J Biol Macromol 2023; 234:123608. [PMID: 36773865 DOI: 10.1016/j.ijbiomac.2023.123608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Biopolymers play a significant role in tissue engineering, including in the formulation of bioinks that require careful selection of the biopolymers having properties ideal for printability and supporting biological entities such as cells. Alginate is one of the most widely explored natural biopolymers for tissue engineering applications due to its biocompatibility, cross-linking ability, hydrophilic nature, and easy incorporation with other polymers. Here, a succinoglycan-like exopolysaccharide (EPS-R17) produced by a bacterial strain Rhizobium sp. PRIM17 was incorporated with alginate for the development of a bioink. The physicochemical characterization of EPS-R17 was performed before formulating the bioink with alginate. The bioink formulation was prepared by mixing different concentrations of EPS with an alginate solution at room temperature under sterile atmosphere. The prepared bioink was characterized for rheological properties, biocompatibility, and a bioplotting experiment was also conducted to mimick the extrusion bioprinting. The EPS-R17 was composed of glucose, galactose, and rhamnose with a molecular weight of 69.98 kDa. It was thermally stable up to 260 °C and showed characteristic FT-IR peaks (1723.3 cm-1) for succinyl groups. The EPS-R17 showed biocompatibility with keratinocytes (HaCaT), and fibroblasts (HDF) in vitro. The rheological properties of EPS-R17-alginate bioink at different combinations showed shear thinning behavior at 25 and 37 °C. Amplitude sweep measurements showed the gel-like nature of the polymer combinations in the solution system superior to alginate or EPS-R17 alone. The combination of 1 % EPS-R17 and 1.5 % alginate showed good compressive strength and swelling behavior. Extrusion bioprinting mimicked using a bioplotting experiment showed the sustained cell viability in the polymer matrix of EPS-R17-alginate bioink. The results indicate that the EPS-R17 can be used in combination with alginate for bioinks for bioprinting applications for providing physical properties and favorable bioactivities.
Collapse
Affiliation(s)
- Athmika Nagaraj
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, India
| | - Punchappady Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, India.
| |
Collapse
|
23
|
Lan Z, Kar R, Chwatko M, Shoga E, Cosgriff-Hernandez E. High porosity PEG-based hydrogel foams with self-tuning moisture balance as chronic wound dressings. J Biomed Mater Res A 2023; 111:465-477. [PMID: 36606332 PMCID: PMC11542385 DOI: 10.1002/jbm.a.37498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
A major challenge in chronic wound treatment is maintaining an appropriate wound moisture balance throughout the healing process. Wound dehydration hinders wound healing due to impeded molecule transport and cell migration with associated tissue necrosis. In contrast, wounds that produce excess fluid contain high levels of reactive oxygen species and matrix metalloproteases that impede cell recruitment, extracellular matrix reconstruction, and angiogenesis. Dressings are currently selected based on the relative amount of wound exudate with no universal dressing available that can maintain appropriate wound moisture balance to enhance healing. This work aimed to develop a high porosity poly(ethylene glycol) diacrylate hydrogel foam that can both rapidly remove exudate and provide self-tuning moisture control to prevent wound dehydration. A custom foaming device was used to vary hydrogel foam porosity from 25% to 75% by adjusting the initial air-to-solution volume ratio. Hydrogel foams demonstrated substantial improvements in water uptake volume and rate as compared to bulk hydrogels while maintaining similar hydration benefits with slow dehydration rates. The hydrogel foam with the highest porosity (~75%) demonstrated the greatest water uptake and rate, which outperformed commercial dressing products, Curafoam® and Silvercel®, in water absorption, moisture retention, and exudate management. Investigation of the water vapor transmission rates of each dressing at varied hydration levels was characterized and demonstrated the dynamic moisture-controlling capability of the hydrogel foam dressing. Overall, the self-tuning moisture control of this hydrogel foam dressing holds great promise to improve healing outcomes for both dry and exudative chronic wounds.
Collapse
Affiliation(s)
- Ziyang Lan
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, 78712, USA
| | - Malgorzata Chwatko
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506, USA
| | - Erik Shoga
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, 78712, USA
| | | |
Collapse
|
24
|
Gul R, Mir M, Ali MN. An Appraisal of pH triggered Bacitracin drug release, through composite hydrogel systems. J Biomater Appl 2023; 37:1699-1715. [PMID: 36977474 DOI: 10.1177/08853282231160212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Comparative investigations on environmentally triggered drug delivery and wound healing characteristics of flexible hydrogel composites, Chitosan-Gelatin (C/G) and 2-Hydroxyethyl Methacrylate-Gelatin (H/G); are presented here. These composites, prepared through facile synthesis and curing methods, indicate the potential to smartly respond to the pH changes in wounds by releasing drug simultaneously and aiding in faster healing. An in-vitro investigation of the composite characteristics were included testing for Equilibrium Water Capacity Studies, Fourier Transform Infrared Spectroscopy (FTIR) investigations as well as UV based drug release and gravimetric hydrogel degradation profiles. This was followed by cutaneous application testing of the hydrogel systems in balb-c mice. Observations and testing results indicated the potential applicability of the hydrogel systems as dressings for topical/transdermal applications, provided that further detailed in-vivo characteristics are accounted for.
Collapse
Affiliation(s)
- Rabail Gul
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), 66959National University of Sciences and Technology (NUST), Islamabad, Pakistan
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Mariam Mir
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), 66959National University of Sciences and Technology (NUST), Islamabad, Pakistan
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Murtaza N Ali
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), 66959National University of Sciences and Technology (NUST), Islamabad, Pakistan
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
25
|
Leisi S, Farahpour MR. Effectiveness of topical administration of platelet-rich plasma on the healing of methicillin-resistant Staphylococcus aureus-infected full-thickness wound model. J Plast Reconstr Aesthet Surg 2023; 77:416-429. [PMID: 36640596 DOI: 10.1016/j.bjps.2022.11.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
This study aimed to investigate the wound-healing activity of animal platelet-rich plasma (PRP) in wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) in rats. After wound induction, the rats were divided into three groups: noninfected animals treated with PRP (PRP group), MRSA-infected animals treated with mupirocin (standard control group), and MRSA-infected animals treated with PRP (MRSA+PRP group). Scratch assays, MTT test, and live/dead cells were also investigated. Total bacterial count, parameters of wound area, histopathological assessment, and expressions of IL-1β, TNF-α, iNOS, PDGF, FGF-2, and TGF-β mRNA levels and immunofluorescent staining of CD31 and collagen type 1 were assessed. The results showed that culture with PRP increased migration. PRP only showed cytotoxicity in a concentration of 100%. Topical application of PRP (50 µL) reduced the wound area and total bacterial count compared with the control group (P<0.05). The mRNA levels of IL-1β, TNF-α, and iNOS expression on days 7 and 14 (P<0.05) decreased in the treated groups compared with control rats. The mRNA levels of PDGF and TGF-β expression (P<0.05) increased in the treatment groups compared with control rats on days 3 and 7 (P<0.05). FGF-2 expression was significantly higher in the treated groups compared with the control group on days 7 and 14 (P<0.05). Moreover, positive expressions of macrophage colony-stimulating factor (M-CSF), CD31, collagen type 1 and cytokeratin proteins keratinocyte proliferation, and re-epithelization were significantly (P<0.05) increased in both PRP and MRSA+PRP-treated groups compared with the control groups on days 7 and 14. Topical administration of PRP accelerated the wound healing in MRSA-infected wound by decreasing the inflammation and improving the proliferative phase.
Collapse
Affiliation(s)
- Samaneh Leisi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| |
Collapse
|
26
|
Reduced graphene oxide-modified polyvinyl alcohol hydrogel with potential application as skin wound dressings. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
27
|
Gwarzo ID, Mohd Bohari SP, Abdul Wahab R, Zia A. Recent advances and future prospects in topical creams from medicinal plants to expedite wound healing: a review. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Iliyasu Datti Gwarzo
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
| | - Siti Pauliena Mohd Bohari
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Cosmetic and Fragrance Laboratory, Institute of Bioproduct Development, Universiti Teknologi Malaysia, UTM Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Advance Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Arifullah Zia
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Department of Biology, Faculty of Science, Nangarhar University, Darunta, Jalalabad, Afghanistan
| |
Collapse
|
28
|
Biopolymer-Based Wound Dressings with Biochemical Cues for Cell-Instructive Wound Repair. Polymers (Basel) 2022; 14:polym14245371. [PMID: 36559739 PMCID: PMC9783382 DOI: 10.3390/polym14245371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine is an active research sphere that focuses on the repair, regeneration, and replacement of damaged tissues and organs. A plethora of innovative wound dressings and skin substitutes have been developed to treat cutaneous wounds and are aimed at reducing the length or need for a hospital stay. The inception of biomaterials with the ability to interact with cells and direct them toward desired lineages has brought about innovative designs in wound healing and tissue engineering. This cellular engagement is achieved by cell cues that can be biochemical or biophysical in nature. In effect, these cues seep into innate repair pathways, cause downstream cell behaviours and, ultimately, lead to advantageous healing. This review will focus on biomolecules with encoded biomimetic, instructive prompts that elicit desired cellular domino effects to achieve advanced wound repair. The wound healing dressings covered in this review are based on functionalized biopolymeric materials. While both biophysical and biochemical cues are vital for advanced wound healing applications, focus will be placed on biochemical cues and in vivo or clinical trial applications. The biochemical cues aforementioned will include peptide therapy, collagen matrices, cell-based therapy, decellularized matrices, platelet-rich plasma, and biometals.
Collapse
|
29
|
Fu K, Zheng X, Chen Y, Wu L, Yang Z, Chen X, Song W. Role of matrix metalloproteinases in diabetic foot ulcers: Potential therapeutic targets. Front Pharmacol 2022; 13:1050630. [PMID: 36339630 PMCID: PMC9631429 DOI: 10.3389/fphar.2022.1050630] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are pathological states of tissue destruction of the foot or lower extremity in diabetic patients and are one of the serious chronic complications of diabetes mellitus. Matrix metalloproteinases (MMPs) serve crucial roles in both pathogenesis and wound healing. The primary functions of MMPs are degradation, which involves removing the disrupted extracellular matrix (ECM) during the inflammatory phase, facilitating angiogenesis and cell migration during the proliferation phase, and contracting and rebuilding the tissue during the remodeling phase. Overexpression of MMPs is a feature of DFUs. The upregulated MMPs in DFUs can cause excessive tissue degradation and impaired wound healing. Regulation of MMP levels in wounds could promote wound healing in DFUs. In this review, we talk about the roles of MMPs in DFUs and list potential methods to prevent MMPs from behaving in a manner detrimental to wound healing in DFUs.
Collapse
Affiliation(s)
- Kang Fu
- School of Life Sciences, Hubei University, Wuhan, China
| | - Xueyao Zheng
- School of Life Sciences, Hubei University, Wuhan, China
| | - Yuhan Chen
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Liuying Wu
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Zhiming Yang
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Xu Chen
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Wei Song
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
- *Correspondence: Wei Song,
| |
Collapse
|
30
|
Chandel V, Biswas D, Roy S, Vaidya D, Verma A, Gupta A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022; 11:2683. [PMID: 36076865 PMCID: PMC9455162 DOI: 10.3390/foods11172683] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Pectin is a heterogeneous hydrocolloid present in the primary cell wall and middle lamella in all dicotyledonous plants, more commonly in the outer fruit coat or peel as compared to the inner matrix. Presently, citrus fruits and apple fruits are the main sources for commercial extraction of pectin, but ongoing research on pectin extraction from alternate fruit sources and fruit wastes from processing industries will be of great help in waste product reduction and enhancing the production of pectin. Pectin shows multifunctional applications including in the food industry, the health and pharmaceutical sector, and in packaging regimes. Pectin is commonly utilized in the food industry as an additive in foods such as jams, jellies, low calorie foods, stabilizing acidified milk products, thickener and emulsifier. Pectin is widely used in the pharmaceutical industry for the preparation of medicines that reduce blood cholesterol level and cure gastrointestinal disorders, as well as in cancer treatment. Pectin also finds use in numerous other industries, such as in the preparation of edible films and coatings, paper substitutes and foams. Due to these varied uses of pectin in different applications, there is a great necessity to explore other non-conventional sources or modify existing sources to obtain pectin with desired quality attributes to some extent by rational modifications of pectin with chemical and enzymatic treatments.
Collapse
Affiliation(s)
- Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Devina Vaidya
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Verma
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Gupta
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| |
Collapse
|
31
|
Feng L, Chen Q, Cheng H, Yu Q, Zhao W, Zhao C. Dually-Thermoresponsive Hydrogel with Shape Adaptability and Synergetic Bacterial Elimination in the Full Course of Wound Healing. Adv Healthc Mater 2022; 11:e2201049. [PMID: 35817589 DOI: 10.1002/adhm.202201049] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/21/2022] [Indexed: 01/27/2023]
Abstract
Incomplete contact between a pre-formed hydrogel and irregular wound limits the therapeutic effect of the dressing and increases the risk of infection; while great concerns have remained regarding the potential toxicity of the residual additives of chemical crosslinking for in situ forming hydrogels. Therefore, it is desirable to develop a self-adaptive hydrogel in response to skin temperature with shape adaptability and efficient antibacterial properties to prevent microbial invasion. Herein, a dually-thermoresponsive hydrogel composed of poly(N-isopropylacrylamide) (PNIPAm) and methacrylated κ-carrageenan (MA-κ-CA) is designed with compliance at physiological temperature to realize shape adaptability for completely covering irregular wounds. Furthermore, the hydrogel with near-infrared (NIR)-responsive polypyrrole-polydopamine nanoparticles (PPy-PDA NPs) and Zn2+ -derived zeolitic imidazolate framework (ZIF-8) can generate localized heat and gradually release Zn2+ to realize safe, effective synergetic photothermal-chemical bactericidal capability. In addition, the release rate of Zn2+ can be accelerated by NIR-induced heating, and thus a more efficient sterilization can be provided to severely infected wounds. Therefore, the proposed hydrogel would serve as a promising wound dressing for the full course of wound healing, with the abilities of perfectly covering the wound and adapting to regenerating tissue, and controllable photothermal-chemical antibacterial capability to reach high bactericidal efficiency and long-term release of antibacterial agents.
Collapse
Affiliation(s)
- Lan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Huitong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiao Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610065, China.,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
32
|
Kaur G, Narayanan G, Garg D, Sachdev A, Matai I. Biomaterials-Based Regenerative Strategies for Skin Tissue Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:2069-2106. [PMID: 35451829 DOI: 10.1021/acsabm.2c00035] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin tissue wound healing proceeds through four major stages, including hematoma formation, inflammation, and neo-tissue formation, and culminates with tissue remodeling. These four steps significantly overlap with each other and are aided by various factors such as cells, cytokines (both anti- and pro-inflammatory), and growth factors that aid in the neo-tissue formation. In all these stages, advanced biomaterials provide several functional advantages, such as removing wound exudates, providing cover, transporting oxygen to the wound site, and preventing infection from microbes. In addition, advanced biomaterials serve as vehicles to carry proteins/drug molecules/growth factors and/or antimicrobial agents to the target wound site. In this review, we report recent advancements in biomaterials-based regenerative strategies that augment the skin tissue wound healing process. In conjunction with other medical sciences, designing nanoengineered biomaterials is gaining significant attention for providing numerous functionalities to trigger wound repair. In this regard, we highlight the advent of nanomaterial-based constructs for wound healing, especially those that are being evaluated in clinical settings. Herein, we also emphasize the competence and versatility of the three-dimensional (3D) bioprinting technique for advanced wound management. Finally, we discuss the challenges and clinical perspective of various biomaterial-based wound dressings, along with prospective future directions. With regenerative strategies that utilize a cocktail of cell sources, antimicrobial agents, drugs, and/or growth factors, it is expected that significant patient-specific strategies will be developed in the near future, resulting in complete wound healing with no scar tissue formation.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ganesh Narayanan
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Deepa Garg
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Abhay Sachdev
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ishita Matai
- Department of Biotechnology, School of Biological Sciences, Amity University Punjab, Mohali 140306, India
| |
Collapse
|
33
|
Karamanlioglu M, Yeşilkır Baydar S. Production and Characterization of a Coconut Oil Incorporated Gelatin-Based Film and Its Potential Biomedical Application. Biomed Mater 2022; 17. [PMID: 35504270 DOI: 10.1088/1748-605x/ac6c67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/03/2022] [Indexed: 11/12/2022]
Abstract
The influence of coconut oil (CO) on a gelatin-based film was investigated when used as a potential wound dressing material. There is limited study on CO in protein-based wound dressing materials. Therefore, in this study a self-supporting, continuous and homogenous CO incorporated gelatin-based film was formulated and obtained by solution casting method. The influence of CO on physicochemical and thermal properties of gelatin-based film was also determined. Moreover, the effect CO in gelatin films on cell viability and cell migration was analysed with a preliminary cell culture study. Homogenous dispersion of 10% (w/w) CO was obtained in films when 3% (v/w) Tween 80, a surfactant, was incorporated to 20% (w/w) plasticized gelatin film forming solution. Effect of CO on gelatin-based film was observed via phase separation by SEM analysis. Water uptake of gelatin film with no CO, GE film; and 10% (w/w) CO incorporated GE film, GE-CO, were 320% and 210%, respectively, after 3 hours in water. FTIR analysis showed triglyceride component of CO and increased hydrogen bonding between NH groups of gelatin in GE-CO films. DSC results suggested a more ordered structure of GE-CO film due to an increase in melt-like transition temperature and melting enthalpy of GE-CO film. CO content also increased cell viability, assessed by XTT Assay since cell viability was approximately 100% when L929 cell culture was incubated with GE-CO of 5-100 μg/mL. Moreover, GE-CO samples within 5-25 μg/mL concentration range, increased proliferation of L929 cells since cell viability was significantly higher than the 100% viable cell culture control (P < 0.05) which is also an indication of efficient healing. However, GE decreased viability of L929 cells significantly at 100-10 μg/mL concentration range (P < 0.05) and were toxic at concentrations of 100, 75 and 50 μg/mL which decreased ∿50% of the viability of the cells. Scratch Assay to assess in vitro wound healing showed cell migration towards scratch after 24 h as an indication of wound healing only in GE-CO samples. This study showed that, CO could efficiently be added to gelatin-based films for preparation of a primary wound dressing biomaterial which is also demonstrated to have a promising wound healing effect for minor wounds.
Collapse
Affiliation(s)
- Mehlika Karamanlioglu
- Biomedical Engineering, Istanbul Gelisim University, Faculty of Engineering and Architecture, Department of Biomedical Engineering, Istanbul, 34310, TURKEY
| | - Serap Yeşilkır Baydar
- Biomedical Engineering, Istanbul Gelisim University, Avcılar, Istanbul, Istanbul, 34310, TURKEY
| |
Collapse
|
34
|
Le VAT, Trinh TX, Chien PN, Giang NN, Zhang XR, Nam SY, Heo CY. Evaluation of the Performance of a ZnO-Nanoparticle-Coated Hydrocolloid Patch in Wound Healing. Polymers (Basel) 2022; 14:919. [PMID: 35267741 PMCID: PMC8912749 DOI: 10.3390/polym14050919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrocolloid dressings are an important method for accelerating wound healing. A combination of a hydrocolloid and nanoparticles (NPs), such as gold (Au), improves the wound healing rate, but Au-NPs are expensive and unable to block ultraviolet (UV) light. Herein, we combined zinc oxide nanoparticles (ZnO-NPs) with hydrocolloids for a less expensive and more effective UV-blocking treatment of wounds. Using Sprague-Dawley rat models, we showed that, during 10-day treatment, a hydrocolloid patch covered with ZnO-NPs (ZnO-NPs-HC) macroscopically and microscopically stimulated the wound healing rate and improved wound healing in the inflammation phase as shown by reducing of pro-inflammatory cytokines (CD68, IL-8, TNF-α, MCP-1, IL-6, IL-1β, and M1) up to 50%. The results from the in vitro models (RAW264.7 cells) also supported these in vivo results: ZnO-NPs-HCs improved wound healing in the inflammation phase by expressing a similar level of pro-inflammatory mediators (TNF-α and IL-6) as the negative control group. ZnO-NPs-HCs also encouraged the proliferation phase of the healing process, which was displayed by increasing expression of fibroblast biomarkers (α-SMA, TGF-β3, vimentin, collagen, and M2) up to 60%. This study provides a comprehensive analysis of wound healing by measuring the biomarkers in each phase and suggests a cheaper method for wound dressing.
Collapse
Affiliation(s)
- Van Anh Thi Le
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Tung X. Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Xin-Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Chan-Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
35
|
Zmejkoski DZ, Marković ZM, Mitić DD, Zdravković NM, Kozyrovska NO, Bugárová N, Todorović Marković BM. Antibacterial composite hydrogels of graphene quantum dots and bacterial cellulose accelerate wound healing. J Biomed Mater Res B Appl Biomater 2022; 110:1796-1805. [PMID: 35191591 DOI: 10.1002/jbm.b.35037] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022]
Abstract
The increased antibiotic resistance of pathogenic bacteria requires intense research of new wound healing agents. Novel wound dressings should be designed to provide wound disinfection, good moisture, and fast epithelization. In this study, bacterial cellulose (BC) was impregnated with graphene quantum dots (GQDs) for potential use in wound healing treatment. The BC was successfully loaded with approximately 11.7 wt% of GQDs. The actual release of GQDs from new designed composite hydrogels were 13%. Novel GQDs-BC hydrogel composites are biocompatible and showed significant inhibition towards Staphylococcus aureus and Streptococcus agalactiae and bactericidal effect towards Methicillin-resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The in vitro healing analysis showed significant migration of human fibroblasts after the GQDs-BC hydrogels application. Furthermore, after 72 h exposure to GQDs-BC, endothelial nitric oxide synthase, vascular endothelial growth factor A, matrix metallopeptidase 9, and Vimentin gene expression in fibroblast were significantly upregulated promoting angiogenesis. GQDs-BC hydrogel composites showed very good wound fluid absorption and water retention, which satisfies good dressing properties. All obtained results propose new designed GQDs-BC hydrogels as potential wound dressings.
Collapse
Affiliation(s)
- Danica Z Zmejkoski
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Marković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dijana D Mitić
- Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Nemanja M Zdravković
- Scientific Veterinary Institute of Serbia, Department for Bacteriology and Parasitology, Belgrade, Serbia
| | - Natalia O Kozyrovska
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nikol Bugárová
- Slovak Academy of Sciences, Polymer Institute, Bratislava, Slovakia
| | - Biljana M Todorović Marković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
36
|
Koshy N, Eapen FC, Das BR, Kamat YD. Hands-free dressing for primary total knee arthroplasty: a retrospective cohort analysis. CURRENT ORTHOPAEDIC PRACTICE 2022. [DOI: 10.1097/bco.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Demir GC, Erdemli Ö, Keskin D, Tezcaner A. Xanthan-gelatin and xanthan-gelatin-keratin wound dressings for local delivery of Vitamin C. Int J Pharm 2021; 614:121436. [PMID: 34974152 DOI: 10.1016/j.ijpharm.2021.121436] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 01/17/2023]
Abstract
Recently, functional dressings that can protect the wound area from dehydration and bacterial infection and support healing have gained importance in place of passive dressings. This study aimed to develop temporary and regenerative xanthan/gelatin (XGH) and keratin/xanthan/gelatin hydrogels (KXGHs) that have high absorption capacity and applicability as a wound dressing that can provide local delivery of Vitamin C (VC). Firstly, xanthan/gelatin hydrogels were produced by crosslinking with different glycerol concentrations and characterized to determine the hydrogel composition. According to their weight ratios, xanthan, gelatin, and glycerol hydrogels are named. If their weight ratio is 1:1:2 (w/w/w), the group name is selected as X1:GEL1:GLY2. X1:GEL1:GLY2 hydrogel was selected for biocompatibility, mechanical property, water vapor transmission rate (WVTR), and porosity. The addition of keratin to X1:GEL1:GLY2 improved L929 fibroblasts viability and increased protein release. Water vapor transmission of XGHs and KXGHs was between 3059.09 ± 126 and 4523 ± 133 g m-2 d-1; therefore, they can be suitable for granulating, low to moderate exudate wounds. XGH and KXGHs loaded with VC had higher water uptake, making it more convenient for exudate wounds. VC was released for 100 h, and VC containing XGHs and KXGHs increased the collagen synthesis of L929 fibroblasts. All of the hydrogels (XGH, KXGH, and VC-KXGHs) inhibited the bacteria transmission. In conclusion, our results suggest that VC-XGH and VC-KXGH can be candidates for temporary wound dressing materials for skin wounds.
Collapse
Affiliation(s)
- Gizem Cigdem Demir
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Özge Erdemli
- Department of Molecular Biology and Genetics, Başkent University, Turkey
| | - Dilek Keskin
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Turkey; BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Research Center, Middle East Technical University, Turkey
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Turkey; BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Research Center, Middle East Technical University, Turkey.
| |
Collapse
|
38
|
Tudoroiu EE, Dinu-Pîrvu CE, Albu Kaya MG, Popa L, Anuța V, Prisada RM, Ghica MV. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals (Basel) 2021; 14:1215. [PMID: 34959615 PMCID: PMC8706040 DOI: 10.3390/ph14121215] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Presently, notwithstanding the progress regarding wound-healing management, the treatment of the majority of skin lesions still represents a serious challenge for biomedical and pharmaceutical industries. Thus, the attention of the researchers has turned to the development of novel materials based on cellulose derivatives. Cellulose derivatives are semi-synthetic biopolymers, which exhibit high solubility in water and represent an advantageous alternative to water-insoluble cellulose. These biopolymers possess excellent properties, such as biocompatibility, biodegradability, sustainability, non-toxicity, non-immunogenicity, thermo-gelling behavior, mechanical strength, abundance, low costs, antibacterial effect, and high hydrophilicity. They have an efficient ability to absorb and retain a large quantity of wound exudates in the interstitial sites of their networks and can maintain optimal local moisture. Cellulose derivatives also represent a proper scaffold to incorporate various bioactive agents with beneficial therapeutic effects on skin tissue restoration. Due to these suitable and versatile characteristics, cellulose derivatives are attractive and captivating materials for wound-healing applications. This review presents an extensive overview of recent research regarding promising cellulose derivatives-based materials for the development of multiple biomedical and pharmaceutical applications, such as wound dressings, drug delivery devices, and tissue engineering.
Collapse
Affiliation(s)
- Elena-Emilia Tudoroiu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mădălina Georgiana Albu Kaya
- Department of Collagen, Division Leather and Footwear Research Institute, National Research and Development Institute for Textile and Leather, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Răzvan Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| |
Collapse
|
39
|
Safari B, Aghazadeh M, Davaran S, Roshangar L. Exosome-loaded hydrogels: a new cell-free therapeutic approach for skin regeneration. Eur J Pharm Biopharm 2021; 171:50-59. [PMID: 34793943 DOI: 10.1016/j.ejpb.2021.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/13/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023]
Abstract
The treatment of unhealable and chronic cutaneous wounds is a significant challenge for the healthcare system. Hence, there has been heightened interest in the development of innovative therapeutic approaches for the acceleration of wound healing. Regenerative medicine based on mesenchymal stem cells (MSCs) has shown appropriate potential in skin repair. The regenerative properties of stem cells are mainly attributed to paracrine effects of secreted products, including exosomes. There are advantages to using exosomes as a cell-free approach instead of direct application of stem cells. Exosomes have nanoscale dimension and are immune-tolerant, Exosomes have the nanoscale dimension and are immune-tolerant. They can easily endocytose, and transfer the cargo content to recipient cells. They contribute to the regulation of the wound healing process by activating specific signaling pathways. To preserve exosome bioactivity and controlled release of effective concentration during prolonged wound care, the design of an optimized delivery system is necessary. Accordingly, hydrogels with their unique properties are promising candidates as exosome delivery and wound management products. This article investigates the characteristics of exosomes, their molecular mechanism in wound healing, and the advantages of the hydrogel delivery system. Also, published reports on the potential of exosome-loaded hydrogels in skin regeneration have been reviewed.
Collapse
Affiliation(s)
- Banafsheh Safari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Grip J, Steene E, Einar Engstad R, Hart J, Bell A, Skjæveland I, Basnet P, Škalko-Basnet N, Mari Holsæter A. Development of a novel beta-glucan supplemented hydrogel spray formulation and wound healing efficacy in a db/db diabetic mouse model. Eur J Pharm Biopharm 2021; 169:280-291. [PMID: 34728362 DOI: 10.1016/j.ejpb.2021.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/15/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022]
Abstract
To relief the severe economic and social burdens and patient suffering caused by the increasing incidence of chronic wounds, more effective treatments are urgently needed. In this study, we focused on developing a novel sprayable wound dressing with the active ingredient β-1,3/1,6-glucan (βG). Since βG is already available as the active ingredient in a commercial wound healing product provided as a hydrogel in a tube (βG-Gel), the sprayable format should bring clinical benefit by being easily sprayed onto wounds; whilst retaining βG-Gel's physical stability, biological safety and wound healing efficacy. Potentially sprayable βG hydrogels were therefore formulated, based on an experimental design setup. One spray formulation, named βG-Spray, was selected for further investigation, as it showed favorable rheological and spraying properties. The βG-Spray was furthermore found to be stable at room temperature for more than a year, retaining its rheological properties and sprayability. The cytotoxicity of βG-Spray in keratinocytes in vitro, was shown to be promising even at the highest tested concentration of 100 μg/ml. The βG-Spray also displayed favorable fluid affinity characteristics, with a capacity to both donate and absorb close to 10% fluid relative to its own weight. Finally, the βG-Spray was proven comparably effective to the commercial product, βG-Gel, and superior to both the water and the carrier controls (NoβG-Spray), in terms of its ability to promote wound healing in healing-impaired animals. Contraction was found to be the main wound closure mechanism responsible for the improvement seen in the βG-treatment groups (βG-Spray and βG-Gel). In conclusion, the novel sprayable βG formulation, confirmed its potential to expand the clinical use of βG as wound dressing.
Collapse
Affiliation(s)
- Jostein Grip
- Biotec BetaGlucans AS, Tromsø 9019, Norway; Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | | | | | - Jeff Hart
- Cica Biomedical Ltd, Knaresborough, North Yorkshire, HG5 9AY, UK
| | - Andrea Bell
- Cica Biomedical Ltd, Knaresborough, North Yorkshire, HG5 9AY, UK
| | | | - Purusotam Basnet
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Obstetrics and Gynecology, University Hospital of North Norway, Sykehusveien, Tromsø 5738, 9038, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Ann Mari Holsæter
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| |
Collapse
|
41
|
Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112319. [PMID: 34474870 DOI: 10.1016/j.msec.2021.112319] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
Chronic wounds are highly susceptible to bacterial infections. Previously, we loaded a natural antimicrobial peptide of low cost and high safety, ε-polylysine (EPL), into the electrospun nanofiber mat of starch. The mat showed comparable antibacterial activity but markedly better biocompatibility than the commercial silver-containing dressing. To further optimize material property, in this paper, we use hyaluronic acid (HA) to replace starch. Results show that EPL-loaded HA nanofiber mats (OHA-EPL) have suitable water vapor permeability, good biocompatibility and broad-spectrum antibacterial property similar to that of EPL-loaded starch nanofiber mat (Starch-EPL). Differently, the content of EPL in OHA-EPL nanofiber mats increases from 19.2% to 27.9%, the tensile strength rises from 0.3 MPa to 0.6 MPa, the elongation grows from 62.0% to 130.0%, and the fiber degradation and EPL release accelerates. In addition, OHA-EPL can absorb up to 26.3-times exudate, which is much higher than Starch-EPL (15.1 times). Combined with the excellent biological activity of HA, OHA-EPL may produce better therapeutic effects than Starch-EPL.
Collapse
|
42
|
Jirkovec R, Samkova A, Kalous T, Chaloupek J, Chvojka J. Preparation of a Hydrogel Nanofiber Wound Dressing. NANOMATERIALS 2021; 11:nano11092178. [PMID: 34578494 PMCID: PMC8465883 DOI: 10.3390/nano11092178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023]
Abstract
The study addressed the production of a hydrogel nanofiber skin cover and included the fabrication of hydrogel nanofibers from a blend of polyvinyl alcohol and alginate. The resulting fibrous layer was then crosslinked with glutaraldehyde, and, after 4 h of crosslinking, although the gelling component, i.e., the alginate, crosslinked, the polyvinyl alcohol failed to do so. The experiment included the comparison of the strength and ductility of the layers before and after crosslinking. It was determined that the fibrous layer following crosslinking evinced enhanced mechanical properties, which acted to facilitate the handling of the material during its application. The subsequent testing procedure proved that the fibrous layer was not cytotoxic. The study further led to the production of a modified hydrogel nanofiber layer that combined polyvinyl alcohol with alginate and albumin. The investigation of the fibrous layers produced determined that following contact with water the polyvinyl alcohol dissolved leading to the release of the albumin accompanied by the swelling of the alginate and the formation of a hydrogel.
Collapse
Affiliation(s)
- Radek Jirkovec
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic; (T.K.); (J.C.); (J.C.)
- Correspondence: ; Tel.: +420-48-535-3230
| | - Alzbeta Samkova
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic;
| | - Tomas Kalous
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic; (T.K.); (J.C.); (J.C.)
| | - Jiri Chaloupek
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic; (T.K.); (J.C.); (J.C.)
| | - Jiri Chvojka
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic; (T.K.); (J.C.); (J.C.)
| |
Collapse
|
43
|
Hajimohammadi K, Makhdoomi K, Zabihi RE, Parizad N. Treating post-renal transplant surgical site infection with combination therapy: a case study. ACTA ACUST UNITED AC 2021; 30:478-483. [PMID: 33876694 DOI: 10.12968/bjon.2021.30.8.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Surgical site infection (SSI) is one of the most common and debilitating complications of surgery. The risk of SSI rises if the patient has underlying health-related risk factors. This article reports on the complicated case of 61-year-old female with a history of obesity and diabetes. She was diagnosed with end-stage renal disease (ESRD) and had been receiving haemodialysis since 2012. She underwent a kidney transplant and developed a multidrug-resistant Pseudomonas aeruginosa SSI following surgery. She experienced delayed wound healing with a partially dehisced incision. Despite conventional wound care, there was no progress in wound healing. The authors combined sharp debridement, irrigation and antibiotic therapy with a silver-containing antimicrobial dressing for 1 month. Her SSI improved significantly and she returned to theatre for wound closure. The patient recovered well and was discharged from the hospital after suture removal. Wound care professionals can use combination therapies to manage SSIs effectively and reduce patient and healthcare costs.
Collapse
Affiliation(s)
- Kazem Hajimohammadi
- Wound Manager, Imam Khomeini Teaching Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Khadijeh Makhdoomi
- Nephrologist, Associate Professor, Nephrology and Kidney Transplant Research Center, Urmia University of Medical Science, Urmia, Iran
| | - Roghayeh Esmaeili Zabihi
- Lecturer, Department of Nursing, Faculty of Nursing and Midwifery, Urmia University of Medical Science, Urmia, Iran
| | - Naser Parizad
- Assistant Professor, Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
44
|
Vakilian S, Jamshidi-Adegani F, Al Yahmadi A, Al-Broumi M, Ur Rehman N, Anwar MU, Alam K, Al-Wahaibi N, Shalaby A, Alyaqoobi S, Al-Harrasi A, Mustafa K, Al-Hashmi S. A competitive nature-derived multilayered scaffold based on chitosan and alginate, for full-thickness wound healing. Carbohydr Polym 2021; 262:117921. [PMID: 33838800 DOI: 10.1016/j.carbpol.2021.117921] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/27/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
The aim of this study was to evaluate a bioactive multilayer wound dressing, based on chitosan and alginate. To enhance healing potential, Dracaena Cinnabari and Aloe Vera were loaded as separate layers into the scaffold. The bare and bioactive multilayered scaffolds were fabricated by an iterative layering freeze-drying technique. Following of topographical, chemical, and physical assessment, the performance of the scaffolds was evaluated in vitro and in vivo. The results revealed adequate attachment, and proliferation of human foreskin fibroblasts, indicating excellent biocompatibility of the bioactive scaffold. In vivo, the performance of the multi-layered scaffold loaded with the bioactive materials was comparable with Comfeel plus®. The wounds treated with the bioactive scaffold exhibited superior hypergranulation, fibroblast maturation, epithelization, and collagen deposition, with minimal inflammation, and crust formation. It is concluded that the synergism of extracellular matrix-mimicking multi-layered scaffolding with Aloe Vera and Dracaena Cinnabari could be considered as a supportive wound dressing.
Collapse
Affiliation(s)
- Saeid Vakilian
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, P. O. Box: 33, PC 616, Oman
| | - Fatemeh Jamshidi-Adegani
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, P. O. Box: 33, PC 616, Oman
| | - Afra Al Yahmadi
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, P. O. Box: 33, PC 616, Oman
| | - Mohammed Al-Broumi
- Natural Products Laboratory, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, P. O. Box: 33, PC 616, Oman
| | - Najeeb Ur Rehman
- Natural Products Laboratory, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, P. O. Box: 33, PC 616, Oman
| | - Muhammad U Anwar
- X-Ray Diffraction & Crystallography Lab, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, P. O. Box: 33, PC 616, Oman
| | - Khurshid Alam
- Department of Mechanical and Industrial Engineering, Sultan Qaboos University, 123, Muscat, Oman
| | - Nasar Al-Wahaibi
- Department of Allied Health Sciences, College of Medicine & Health Sciences, Sultan Qaboos University, P. O. Box: 35, Alkoudh.123, Oman
| | - Asem Shalaby
- Department of Pathology, College of Medicine & Health Sciences, Sultan Qaboos University, P. O. Box: 35, Alkoudh.123, Oman
| | - Sausan Alyaqoobi
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, P. O. Box: 33, PC 616, Oman
| | - Ahmed Al-Harrasi
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, P. O. Box: 33, PC 616, Oman
| | - Kamal Mustafa
- Department of Clinical Dentistry, Tissue Engineering Research Group, University of Bergen, Norway
| | - Sulaiman Al-Hashmi
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, P. O. Box: 33, PC 616, Oman.
| |
Collapse
|
45
|
Moslemi M. Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydr Polym 2021; 254:117324. [DOI: 10.1016/j.carbpol.2020.117324] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023]
|
46
|
Next-generation surgical meshes for drug delivery and tissue engineering applications: materials, design and emerging manufacturing technologies. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00108-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Surgical meshes have been employed in the management of a variety of pathological conditions including hernia, pelvic floor dysfunctions, periodontal guided bone regeneration, wound healing and more recently for breast plastic surgery after mastectomy. These common pathologies affect a wide portion of the worldwide population; therefore, an effective and enhanced treatment is crucial to ameliorate patients’ living conditions both from medical and aesthetic points of view. At present, non-absorbable synthetic polymers are the most widely used class of biomaterials for the manufacturing of mesh implants for hernia, pelvic floor dysfunctions and guided bone regeneration, with polypropylene and poly tetrafluoroethylene being the most common. Biological prostheses, such as surgical grafts, have been employed mainly for breast plastic surgery and wound healing applications. Despite the advantages of mesh implants to the treatment of these conditions, there are still many drawbacks, mainly related to the arising of a huge number of post-operative complications, among which infections are the most common. Developing a mesh that could appropriately integrate with the native tissue, promote its healing and constructive remodelling, is the key aim of ongoing research in the area of surgical mesh implants. To this end, the adoption of new biomaterials including absorbable and natural polymers, the use of drugs and advanced manufacturing technologies, such as 3D printing and electrospinning, are under investigation to address the previously mentioned challenges and improve the outcomes of future clinical practice. The aim of this work is to review the key advantages and disadvantages related to the use of surgical meshes, the main issues characterizing each clinical procedure and the future directions in terms of both novel manufacturing technologies and latest regulatory considerations.
Graphic abstract
Collapse
|
47
|
Wu C, Yu Z, Li Y, Zhou K, Cao C, Zhang P, Li W. Cryogenically printed flexible chitosan/bioglass scaffolds with stable and hierarchical porous structures for wound healing. ACTA ACUST UNITED AC 2020; 16:015004. [PMID: 33245049 DOI: 10.1088/1748-605x/abb2d7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wound healing is a dynamic and well-orchestrated process that can be promoted by creating an optimal environment with wound dressing. An ideal wound dressing material should possess a suitable matrix, structure and bioactive components, functioning synergistically to accelerate wound healing. Wound dressings that allow reproducibility and customizability are highly desirable in clinical practice. In this study, using chitosan (CS) as the matrix and bioglass (BG) as the biological component, a spatially designed dressing scaffold was fabricated from a home-made cryogenic printing system. The micro- and macro-structures of the scaffold were highly controllable and reproducible. The printed scaffold exhibited interconnected and hierarchical pore structures, as well as good flexibility and water absorption capacity, and these properties were not affected by the content of BG. Nevertheless, when the content of BGs exceeded 20% that of CS, the tension strength and elongation rate reduced, but in vitro antibacterial, cell proliferation and migration performance were enhanced. In vivo examinations revealed that the composite scaffold significantly promoted wound healing process, with the group having 30% bioglass showing better wound closure, neovascularization and collagen deposition than other groups. These results indicate that the 3D printed CS/BG composite scaffold is a promising dressing material that accelerates wound healing.
Collapse
Affiliation(s)
- Chunxuan Wu
- The second Clinical Medical School, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Zhang W, Ma X, Li Y, Fan D. Preparation of smooth and macroporous hydrogel via hand-held blender for wound healing applications: in vitro and in vivo evaluations. ACTA ACUST UNITED AC 2020; 15:055032. [PMID: 32544897 DOI: 10.1088/1748-605x/ab9d6f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wound dressings play an indispensable role in wound healing. However, traditional wound dressings have several disadvantages, such as poor mechanical properties and small pore diameters, which do not allow sufficient gas exchange. To overcome these shortcomings, this paper reports a polyvinyl alcohol (PVA)-based hydrogel physically crosslinked at -20 °C and containing polyethylene glycol (PEG) and nanohydroxyapatite (HAP). The physical and chemical properties of the hydrogels formed by different stirring methods (stirring with a glass rod or a hand-held homogenizer) were compared. The average roughness of Gel 1 (prepared using a hand-held homogenizer) is 112.6 nm, which is much lower than the average surface roughness of Gel 2 (1222 nm, prepared using a glass rod). Moreover, the hydrogel made by the unconventional mixing method (with a homogenizer) showed better performance, including a more interconnected open-pore microstructure and better mechanical properties. Finally, a full-thickness skin defect test was performed. The experimental results demonstrated that the hydrogel has considerable potential for applications in wound dressings.
Collapse
Affiliation(s)
- Weiyu Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an 710069, People's Republic of China. Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, People's Republic of China. Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, People's Republic of China
| | | | | | | |
Collapse
|
50
|
Marine Algae Polysaccharides as Basis for Wound Dressings, Drug Delivery, and Tissue Engineering: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8070481] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.
Collapse
|