1
|
Zhang L, Liu X, Xu M, Cheng X, Li N, Xu H, Feng Y, Guan T, Xiao L. Patrinia scabiosaefolia L. Modulates the Intestinal Microecology to Treat DSS-Induced Ulcerative Colitis: UHPLC-OE-MS/MS, Network Pharmacology, and Experimental Validation. Foods 2025; 14:1145. [PMID: 40238255 PMCID: PMC11988699 DOI: 10.3390/foods14071145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Patrinia scabiosaefolia L. (P. scabiosaefolia), a traditional food and medicinal plant, is used to treat internal inflammation. This study investigated the mechanisms by which P. scabiosaefolia improves ulcerative colitis (UC) via combined UHPLC-OE-MS/MS, network pharmacology, molecular docking, and animal experiments. A total of 72 compounds were detected in the P. scabiosaefolia extraction, with 15 key components (ranking by degree value) selected for further analysis. GO enrichment analysis suggested that PS may alleviate UC-related renal dysfunction by modulating immune responses, inflammation, and cell signaling pathways. Based on protein-protein interaction results, five core targets of P. scabiosaefolia in UC (ranking by degree value) were identified, and molecular docking revealed strong binding free affinity (<-7 kcal/mol) of active components (Vulgarin and 4-(Diphenylphosphino)benzoic acid) with TNF, AKT1, CASP3, BCL2, and MMP9. In animal experiments, P. scabiosaefolia-treated mice showed significant reductions in IL-6, TNF-α, LPS, and D-Lactate levels (p < 0.05); improved colon histopathological damage; and significantly increased the mRNA expression of tight junction proteins (ZO-1, Claudin, OCC) in colon tissue (p < 0.05). Furthermore, P. scabiosaefolia-treated mice exhibited a significant increase in beneficial gut bacteria (Enterococcus and Lactobacillus) (p < 0.05), effectively restoring the gut imbalance caused by DSS. In conclusion, P. scabiosaefolia can treat UC through the modulation of the intestinal microecology.
Collapse
Affiliation(s)
- Longfei Zhang
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China; (L.Z.); (X.L.); (M.X.); (X.C.); (N.L.); (H.X.); (Y.F.); (T.G.)
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225000, China
| | - Xiaoxiao Liu
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China; (L.Z.); (X.L.); (M.X.); (X.C.); (N.L.); (H.X.); (Y.F.); (T.G.)
| | - Mingze Xu
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China; (L.Z.); (X.L.); (M.X.); (X.C.); (N.L.); (H.X.); (Y.F.); (T.G.)
| | - Xinyi Cheng
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China; (L.Z.); (X.L.); (M.X.); (X.C.); (N.L.); (H.X.); (Y.F.); (T.G.)
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225000, China
| | - Ning Li
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China; (L.Z.); (X.L.); (M.X.); (X.C.); (N.L.); (H.X.); (Y.F.); (T.G.)
| | - Haiyan Xu
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China; (L.Z.); (X.L.); (M.X.); (X.C.); (N.L.); (H.X.); (Y.F.); (T.G.)
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225000, China
| | - Yining Feng
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China; (L.Z.); (X.L.); (M.X.); (X.C.); (N.L.); (H.X.); (Y.F.); (T.G.)
| | - Tianzhu Guan
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China; (L.Z.); (X.L.); (M.X.); (X.C.); (N.L.); (H.X.); (Y.F.); (T.G.)
| | - Lixia Xiao
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China; (L.Z.); (X.L.); (M.X.); (X.C.); (N.L.); (H.X.); (Y.F.); (T.G.)
| |
Collapse
|
2
|
Huang XL, Wu LN, Huang Q, Zhou Y, Qing L, Xiong F, Dong HP, Zhou TM, Wang KL, Liu J. Unraveling the mechanism of malancao in treating ulcerative colitis: A multi-omics approach. World J Clin Cases 2024; 12:3105-3122. [PMID: 38898844 PMCID: PMC11185383 DOI: 10.12998/wjcc.v12.i17.3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Malancao (MLC) is a traditional Chinese medicine with a long history of utilization in treating ulcerative colitis (UC). Nevertheless, the precise molecular mechanisms underlying its efficacy remain elusive. This study leveraged ultra-high-performance liquid chromatography coupled with exactive mass spectrometry (UHPLC-QE-MS), network pharmacology, molecular docking (MD), and gene microarray analysis to discern the bioactive constituents and the potential mechanism of action of MLC in UC management. AIM To determine the ingredients related to MLC for treatment of UC using multiple databases to obtain potential targets for fishing. METHODS This research employs UHPLC-QE-MS for the identification of bioactive compounds present in MLC plant samples. Furthermore, the study integrates the identified MLC compound-related targets with publicly available databases to elucidate common drug disease targets. Additionally, the R programming language is utilized to predict the central targets and molecular pathways that MLC may impact in the treatment of UC. Finally, MD are conducted using AutoDock Vina software to assess the affinity of bioactive components to the main targets and confirm their therapeutic potential. RESULTS Firstly, through a comprehensive analysis of UHPLC-QE-MS data and public database resources, we identified 146 drug-disease cross targets related to 11 bioactive components. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis highlighted that common disease drug targets are primarily involved in oxidative stress management, lipid metabolism, atherosclerosis, and other processes. They also affect AGE-RAGE and apoptosis signaling pathways. Secondly, by analyzing the differences in diseases, we identified key research targets. These core targets are related to 11 active substances, including active ingredients such as quercetin and luteolin. Finally, MD analysis revealed the stability of compound-protein binding, particularly between JUN-Luteolin, JUN-Quercetin, HSP90AA1-Wogonin, and HSP90AA1-Rhein. Therefore, this suggests that MLC may help alleviate intestinal inflammation in UC, restore abnormal lipid accumulation, and regulate the expression levels of core proteins in the intestine. CONCLUSION The utilization of MLC has demonstrated notable therapeutic efficacy in the management of UC by means of the compound target interaction pathway. The amalgamation of botanical resources, metabolomics, natural products, MD, and gene chip technology presents a propitious methodology for investigating therapeutic targets of herbal medicines and discerning novel bioactive constituents.
Collapse
Affiliation(s)
- Xing-Long Huang
- Hospital of Traditional Chinese Medicine in Qijiang District, Chongqing 401420, China
- Xing-Long Huang and Lu-Na Wu
| | - Lu-Na Wu
- Hospital of Traditional Chinese Medicine in Qijiang District, Chongqing 401420, China
- Xing-Long Huang and Lu-Na Wu
| | - Qin Huang
- Hospital of Traditional Chinese Medicine in Qijiang District, Chongqing 401420, China
| | - Yue Zhou
- Hospital of Traditional Chinese Medicine in Qijiang District, Chongqing 401420, China
| | - Lei Qing
- Qijiang Health Center for Maternal and Child Care, Chongqing 401420, China
| | - Feng Xiong
- Hospital of Traditional Chinese Medicine in Qijiang District, Chongqing 401420, China
| | - Hui-Ping Dong
- Hospital of Traditional Chinese Medicine in Qijiang District, Chongqing 401420, China
| | - Tai-Min Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| | - Kai-Li Wang
- Hospital of Traditional Chinese Medicine in Qijiang District, Chongqing 401420, China
| | - Jue Liu
- Hospital of Traditional Chinese Medicine in Qijiang District, Chongqing 401420, China
| |
Collapse
|
3
|
Dou Y, Shu L, Jia X, Yao Y, Chen S, Xu Y, Li Y. Rapid classification and identification of chemical constituents in Leonurus japonicus Houtt based on UPLC-Q-Orbitrap-MS combined with data post-processing techniques. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4978. [PMID: 37946617 DOI: 10.1002/jms.4978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
Leonurus japonicus Houtt (LJH) is a bulk medicinal material commonly used in clinical practice, but its complex constituents have not been completely understood, posing challenges to pharmacology, pharmacokinetic research, and scientific and rational drug use. As a result, it is critical to develop an efficient and accurate method for classifying and identifying the chemical composition of LJH. In this study, ultra-performance liquid chromatography-quadrupole electrostatic field-orbital trap high resolution mass spectrometry (UPLC-Q-Orbitrap-MS) was successfully established, along with two data post-processing techniques, characteristic fragmentations (CFs) and neutral losses (NLs), to quickly classify and identify the chemical constituents in LJH. As a result, 44 constituents of LJH were identified, including four alkaloids, 20 flavonoids, two phenylpropanoids, 17 organic acids, and one amino acid. The method in this paper enables classification and identification of chemical compositions rapidly, providing a scientific foundation for further research on the effective and toxic substances of LJH.
Collapse
Affiliation(s)
- Yajie Dou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuchen Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siyue Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Punetha S, Vuppu S. The sustainable conversion of floral waste into natural snake repellent and docking studies for antiophidic activity. Toxicon 2023; 233:107254. [PMID: 37597788 DOI: 10.1016/j.toxicon.2023.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Snakes play an important role as predators, prey, ecosystem regulators and in advancing the human economy and pharmaceutical industries by producing venom-based medications such as anti-serums and anti-venoms. On the other hand, snakebites are responsible for over 120,000 annual fatalities; due to snakebites people lose their lives and suffer from diseases such as snake envenoming, epilepsy, and symptoms such as punctures, swelling, haemorrhage, bruising, blistering, and inflammation. Moreover, there are several challenges associated with different interventions for managing snakebites. Therefore, finding a natural way of repelling snakes without harming them will save lives and decrease the disease's symptoms. Usually, snakes are exacerbated by noxious odours and shrill sounds. There are various strategies to repel snakes, including chemical, natural, and electronic repellents being the most prevalent. Chemical snake repellents such as mothballs, sulphur powder, and cayenne pepper act as a barrier; natural snake repellents produce a pungent and foul smell, while electronic repellents generate high-frequency ultrasonic waves to repel snakes. On the other hand, anti-serums are available commercially to prevent the adverse effects of snakebite, which are species-specific, expensive, have inadequate pharmacology and impaired interaction with the immune system. Similarly, there are monovalent or polyvalent anti-serums used for the production of anti-venom depending on the snake species and the number of snakebites occurred in that area, e.g., Soro antibotropicocrotalico contains specific antibodies for Pit vipers and rattlesnakes, and Antielapidico targets coral snakes. The purpose of this review is to investigate natural, effective, and inexpensive snake-repellent from Vellore Institute of Technology (VIT) floral waste, which can be mixed with natural products such as vinegar, citronella, cinnamon, garlic, cedar, and clove and allowed for bacterial degradation which will lead to the release of several gases during floral waste degradation, including ammonia, sulphur, manganese, selenium, and gallic acid due to bacterial growth like Proteus, Bacillus, Streptococcus, etc. We assumed to convert these gases into liquid form using Linde's technique which may repel snakes. Further, molecular docking studies were performed on snake venom toxins (Phospholipase A2 (PDB-1MG6), Protein Cytotoxin II (PDB-1CB9), α-Dendrotoxins (PDB-1DTX), Neurotoxin from cobra venom (PDB-1CTX) and Cardiotoxin III (PDB-2CRS). Phytocompounds of Vellore degraded floral waste from GC-MS analysis (Tetracosane, 12, Oleanen-3-yl Acetate, (3-Alpha), Eicosane-7-Hexyl, Octadecane,3-Ethyl-5(2-Ethyl Butyl), Nonadecane,4-Methyl, Hexatriacontane and Nonacosane) were used as a ligand to determine their binding affinity with venom proteins and may be assumed to be used as an antidote for snakebite. Finally, we analysed that 12-oleanen-3yl acetate,3-α (CID-45044112) a triterpenoid showing a maximum binding affinity with all snake venom proteins (-13.8k/cal) with Phospholipase A2 (PLA2), Cardiotoxin-II (-8.2k/cal), Dendrotoxin (-12.1 k/cal), Cardiotoxin-III (-8.2 kcal/mol) and alpha-Neurotoxin (-11.0 kcal/mol), which may have potential to counteract the adverse effects caused by snakebites, however, in-vitro and in-vivo studies still challenging tasks for our further analysis. Overall, we propose an innovative method for the sustainable conversion of floral waste into snake repellent, as well as molecular docking studies were performed with phytocompounds and snake venom proteins for antiophidic activity, which can be experimentally investigated further to confirm its use as anti-venom for snakebites.
Collapse
Affiliation(s)
- Swati Punetha
- Vellore Institute of Technology, School of Biosciences and Technology, Vellore, Tamil Nadu, India
| | - Suneetha Vuppu
- Vellore Institute of Technology, School of Biosciences and Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Nuchuchua O, Inpan R, Srinuanchai W, Karinchai J, Pitchakarn P, Wongnoppavich A, Imsumran A. Phytosome Supplements for Delivering Gymnema inodorum Phytonutrients to Prevent Inflammation in Macrophages and Insulin Resistance in Adipocytes. Foods 2023; 12:foods12112257. [PMID: 37297501 DOI: 10.3390/foods12112257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Gymnema inodorum (GI) is a leafy green vegetable found in the northern region of Thailand. A GI leaf extract has been developed as a dietary supplement for metabolic diabetic control. However, the active compounds in the GI leaf extract are relatively nonpolar. This study aimed to develop phytosome formulations of the GI extract to improve the efficiencies of their phytonutrients in terms of anti-inflammatory and anti-insulin-resistant activities in macrophages and adipocytes, respectively. Our results showed that the phytosomes assisted the GI extract's dispersion in an aqueous solution. The GI phytocompounds were assembled into a phospholipid bilayer membrane as spherical nanoparticles about 160-180 nm in diameter. The structure of the phytosomes allowed phenolic acids, flavonoids and triterpene derivatives to be embedded in the phospholipid membrane. The existence of GI phytochemicals in phytosomes significantly changed the particle's surface charge from neutral to negative within the range of -35 mV to -45 mV. The phytosome delivery system significantly exhibited the anti-inflammatory activity of the GI extract, indicated by the lower production of nitric oxide from inflamed macrophages compared to the non-encapsulated extract. However, the phospholipid component of phytosomes slightly interfered with the anti-insulin-resistant effects of the GI extract by decreasing the glucose uptake activity and increasing the lipid degradation of adipocytes. Altogether, the nano-phytosome is a potent carrier for transporting GI phytochemicals to prevent an early stage of T2DM.
Collapse
Affiliation(s)
- Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Ratchanon Inpan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanwisa Srinuanchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arisa Imsumran
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Li Q, Abdulla R, Xin X, Xue G, Kang X, Zhao F, Asia HA. Profiling of chemical constituents of Matricarla chamomilla L. by UHPLC-Q-Orbitrap-HRMS and in vivo evaluation its anti-asthmatic activity. Heliyon 2023; 9:e15470. [PMID: 37153405 PMCID: PMC10160356 DOI: 10.1016/j.heliyon.2023.e15470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Matricarla chamomilla L. is native to European countries and widely cultivated in China, especially in Xinjiang. It has been used in Uygur medicine for the treatment of cough caused by asthma. In this study, UHPLC-Q-Orbitrap-MS was used to detect and identify the components from the active fraction of M. Chamomile, 64 compounds were identified by combining the standards, related literatures and mass spectrometry fragments, including 10 caffeoyl quinic acids, 38 flavonoids, 8 coumarins, 5 alkaloids and 3 other compounds. Furtherly, the anti-asthma activity of active fraction of M. Chamomile was investigated in OVA-induced allergic asthma rat model. The results showed that the number of EOS in Penh and bronchoalveolar lavage fluid (BALF) in the group of the active fraction of M. Chamomile was significantly lower than that in the model group. Besides, the active fraction of M. Chamomile can significantly reduce the IgE level and increased glutathione peroxidase (GSH-Px) in the serum of OVA-induced rats, and ameliorated OVA-induced lung injury. Hence, M. Chamomile could be used to treat asthma through their in vivo antioxidant and anti-inflammatory effects. This study explored the potential material basis of M. Chamomile for the treatment of asthma.
Collapse
Affiliation(s)
- Qian Li
- Department of Medicine Research, Hospital of Chinese Medicine Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
- Xinjiang Key Laboratory of Processing and Research of Traditional Chinese Medicine, Urumqi, 830000, People's Republic of China
- CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1, Beijing Road, Urumqi, 830011, Xinjiang, China
- Corresponding author. Department of Medicine Research, Hospital of Chinese Medicine Affiliated to Xinjiang Medical University Urumqi, 830000, People's Republic of China.
| | - Rahima Abdulla
- CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1, Beijing Road, Urumqi, 830011, Xinjiang, China
| | - Xuelei Xin
- CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1, Beijing Road, Urumqi, 830011, Xinjiang, China
| | - Guipeng Xue
- Xinjiang Uygur Autonomous Region Evaluation and Inspection Center for Drug, Urumqi, 830000, People's Republic of China
| | - Xiaolong Kang
- Department of Medicine Research, Hospital of Chinese Medicine Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
- Xinjiang Key Laboratory of Processing and Research of Traditional Chinese Medicine, Urumqi, 830000, People's Republic of China
| | - Feicui Zhao
- Department of Medicine Research, Hospital of Chinese Medicine Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
- Xinjiang Key Laboratory of Processing and Research of Traditional Chinese Medicine, Urumqi, 830000, People's Republic of China
| | - Haji Akber Asia
- CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1, Beijing Road, Urumqi, 830011, Xinjiang, China
- Corresponding author.
| |
Collapse
|
7
|
Ekanayake S, Egodawatta C, Attanayake RN, Perera D. From salt pan to saucepan:
Salicornia
, a halophytic vegetable with an array of potential health benefits. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Sadini Ekanayake
- Department of Bioprocess Technology, Faculty of Technology Rajarata University of Sri Lanka Mihinthale Sri Lanka
| | - Chaminda Egodawatta
- Department of Plant Sciences, Faculty of Agriculture Rajarata University of Sri Lanka Anuradhapura Sri Lanka
| | - Renuka N. Attanayake
- Department of Plant and Molecular Biology, Faculty of Science University of Kelaniya Kelaniya Sri Lanka
| | - Dinum Perera
- Department of Bioprocess Technology, Faculty of Technology Rajarata University of Sri Lanka Mihinthale Sri Lanka
| |
Collapse
|
8
|
Guzmán-Gutiérrez SL, Reyes-Chilpa R, González-Diego LR, Silva-Miranda M, López-Caamal A, García-Cruz KP, Jiménez-Mendoza MS, Arciniegas A, Espitia C. Five centuries of Cirsium ehrenbergii Sch. Bip. (Asteraceae) in Mexico, from Huitzquilitl to Cardo Santo: History, ethnomedicine, pharmacology and chemistry. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115778. [PMID: 36202165 DOI: 10.1016/j.jep.2022.115778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Several medicinal plants, including the endemic herb Cirsum ehrenbergii (Asteraceae), have been documented in manuscripts, medical and botanical books written in Mexico since the XVI century until the present. This unique circumstance is a real window in the time that allows to investigate historical and contemporary ethnopharmacological knowledge. AIM OF THE STUDY To examine the persistence, disappearance, and transformation of ethnomedicinal knowledge of C. ehrenbergii along time. Also, to investigate the chemistry and pharmacology of this species in relation to its historical and present day main ethnomedical applications related to Central Nervous System and inflammation. MATERIALS AND METHODS A thorough review was performed of written sources of medicinal plants from XVI and onwards. For the pharmacological studies, the organic extracts were tested in mice models to assess its antidepressant and anti-inflammatory properties. The active extracts were studied chemically. The isolated compounds were identified by 1H, 13C NMR, or characterized by GC-MS. RESULTS Cirsum ehrenbergii was illustrated for the first time (1552) in the Libellus de Medicinalibus Indorum Herbis (Booklet of Medicinal Plants of the Indians) and named in the Nahuatl native language as huitzquilitl (edible thistle). It was there recommended as nigris sanguinis remedium (remedy for black blood), and for the treatment of illnesses with an inflammatory component. Nigris sanguinis was well known in the European medicine of that time and currently it has been interpreted as "depression". At the present time, peasants and native population in Mexico mainly name C. ehrenbergii in Spanish as cardo Santo (holy thistle). Its original Nahuatl name has been almost forgotten. However, these communities use this species, among other maladies, to heal "nervios" (anxiety and/or depression) and for anti-inflammatory purposes. These ailments and treatments resemble those recorded in the Libellus and in several medicinal plant books along centuries. The ethanol extract of C. ehrenbergii roots showed antidepressant-like activity in mice administered at 300 mg/kg, as indicated by the forced swim test (FST). The glycosylated flavonoid linarin was identified as antidepressant principle and was active at the doses of 30 and 60 mg/kg in the FST. Regarding to anti-inflammatory activity, the most active was the methylene chloride extract of the aerial parts, which contains taraxasterol, pseudotaraxasterol, β-sitosterol and stigmasterol. CONCLUSIONS Cirsium ehrenbergii extracts possess antidepressant-like (roots, EtOH) and anti-inflammatory (aerial parts, CH2Cl2) properties, containing active compounds. Our results sustain historical and present day ethnomedical applications of this species documented along five centuries.
Collapse
Affiliation(s)
- Silvia Laura Guzmán-Gutiérrez
- CONACyT - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Escolar S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Ricardo Reyes-Chilpa
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico.
| | - Laura Rigel González-Diego
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Mayra Silva-Miranda
- CONACyT - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Escolar S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Alfredo López-Caamal
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Karla Paola García-Cruz
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - María Sofía Jiménez-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Amira Arciniegas
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Clara Espitia
- Instituto de Investigaciones Biomédicas. Departamento de Inmunología. Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| |
Collapse
|
9
|
Oh KK, Adnan M, Cho DH. Network Pharmacology-Based Study to Uncover Potential Pharmacological Mechanisms of Korean Thistle ( Cirsium japonicum var. maackii (Maxim.) Matsum.) Flower against Cancer. Molecules 2021; 26:5904. [PMID: 34641448 PMCID: PMC8513069 DOI: 10.3390/molecules26195904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Cirsium japonicum var. maackii (Maxim.) Matsum. or Korean thistle flower is a herbal plant used to treat tumors in Korean folk remedies, but its essential bioactives and pharmacological mechanisms against cancer have remained unexplored. This study identified the main compounds(s) and mechanism(s) of the C. maackii flower against cancer via network pharmacology. The bioactives from the C. maackii flower were revealed by gas chromatography-mass spectrum (GC-MS), and SwissADME evaluated their physicochemical properties. Next, target(s) associated with the obtained bioactives or cancer-related targets were retrieved by public databases, and the Venn diagram selected the overlapping targets. The networks between overlapping targets and bioactives were visualized, constructed, and analyzed by RPackage. Finally, we implemented a molecular docking test (MDT) to explore key target(s) and compound(s) on AutoDockVina and LigPlot+. GC-MS detected a total of 34 bioactives and all were accepted by Lipinski's rules and therefore classified as drug-like compounds (DLCs). A total of 597 bioactive-related targets and 4245 cancer-related targets were identified from public databases. The final 51 overlapping targets were selected between the bioactive targets network and cancer-related targets. With Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, a total of 20 signaling pathways were manifested, and a hub signaling pathway (PI3K-Akt signaling pathway), a key target (Akt1), and a key compound (Urs-12-en-24-oic acid, 3-oxo, methyl ester) were selected among the 20 signaling pathways via MDT. Overall, Urs-12-en-24-oic acid, 3-oxo, methyl ester from the C. maackii flower has potent anti-cancer efficacy by inactivating Akt1 on the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
| | | | - Dong-Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (K.-K.O.); (M.A.)
| |
Collapse
|
10
|
Duangsodsri T, Villain L, Vestalys IR, Michalet S, Abdallah C, Breitler JC, Bordeaux M, Villegas AM, Raherimandimby M, Legendre L, Etienne H, Bertrand B, Campa C. 5-CQA and Mangiferin, Two Leaf Biomarkers of Adaptation to Full Sun or Shade Conditions in Coffea arabica L. Metabolites 2020; 10:E383. [PMID: 32993190 PMCID: PMC7599603 DOI: 10.3390/metabo10100383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022] Open
Abstract
Phenolic compounds are involved in plant response to environmental conditions and are highly present in leaves of Coffea arabica L., originally an understory shrub. To increase knowledge of C. arabica leaf phenolic compounds and their patterns in adaptation to light intensity, mature leaves of Ethiopian wild accessions, American pure lines and their relative F1 hybrids were sampled in full sun or under 50% shade field plots in Mexico and at two contrasting elevations in Nicaragua and Colombia. Twenty-one phenolic compounds were identified by LC-DAD-MS2 and sixteen were quantified by HPLC-DAD. Four of them appeared to be involved in C. arabica response to light intensity. They were consistently more accumulated in full sun, presenting a stable ratio of leaf content in the sun vs. shade for all the studied genotypes: 1.6 for 5-CQA, F-dihex and mangiferin and 2.8 for rutin. Moreover, 5-CQA and mangiferin contents, in full sun and shade, allowed for differentiating the two genetic groups of Ethiopian wild accessions (higher contents) vs. cultivated American pure lines. They appear, therefore, to be potential biomarkers of adaptation of C. arabica to light intensity for breeding programs. We hypothesize that low 5-CQA and mangiferin leaf contents should be searched for adaptation to full-sun cropping systems and high contents used for agroforestry systems.
Collapse
Affiliation(s)
- Teerarat Duangsodsri
- IRD, CIRAD, Univ. Montpellier, IPME, F-34394 Montpellier, France; (T.D.); (I.R.V.); (C.A.)
- IPME, Univ. Montpellier, IRD, CIRAD, F-34394 Montpellier, France; (L.V.); (J.-C.B.); (H.E.); (B.B.)
| | - Luc Villain
- IPME, Univ. Montpellier, IRD, CIRAD, F-34394 Montpellier, France; (L.V.); (J.-C.B.); (H.E.); (B.B.)
- CIRAD, UMR IPME, F-34398 Montpellier, France
| | - Ialy Rojo Vestalys
- IRD, CIRAD, Univ. Montpellier, IPME, F-34394 Montpellier, France; (T.D.); (I.R.V.); (C.A.)
- Faculté des Sciences, Université d’Antananarivo, BP-566, Antananarivo 101, Madagascar;
| | - Serge Michalet
- CNRS UMR 5557, Univ. Lyon 1 & INRA UMR 1418, Université de Lyon, F-69622 Villeurbanne, France; (S.M.); (L.L.)
| | - Cécile Abdallah
- IRD, CIRAD, Univ. Montpellier, IPME, F-34394 Montpellier, France; (T.D.); (I.R.V.); (C.A.)
- IPME, Univ. Montpellier, IRD, CIRAD, F-34394 Montpellier, France; (L.V.); (J.-C.B.); (H.E.); (B.B.)
| | - Jean-Christophe Breitler
- IPME, Univ. Montpellier, IRD, CIRAD, F-34394 Montpellier, France; (L.V.); (J.-C.B.); (H.E.); (B.B.)
- CIRAD, INECOL, Clúster BioMimic, Xalapa 91073, Veracruz, Mexico
| | | | | | - Marson Raherimandimby
- Faculté des Sciences, Université d’Antananarivo, BP-566, Antananarivo 101, Madagascar;
| | - Laurent Legendre
- CNRS UMR 5557, Univ. Lyon 1 & INRA UMR 1418, Université de Lyon, F-69622 Villeurbanne, France; (S.M.); (L.L.)
| | - Hervé Etienne
- IPME, Univ. Montpellier, IRD, CIRAD, F-34394 Montpellier, France; (L.V.); (J.-C.B.); (H.E.); (B.B.)
- CIRAD, UMR IPME, F-34398 Montpellier, France
| | - Benoît Bertrand
- IPME, Univ. Montpellier, IRD, CIRAD, F-34394 Montpellier, France; (L.V.); (J.-C.B.); (H.E.); (B.B.)
- CIRAD, UMR IPME, F-34398 Montpellier, France
| | - Claudine Campa
- IRD, CIRAD, Univ. Montpellier, IPME, F-34394 Montpellier, France; (T.D.); (I.R.V.); (C.A.)
- IPME, Univ. Montpellier, IRD, CIRAD, F-34394 Montpellier, France; (L.V.); (J.-C.B.); (H.E.); (B.B.)
| |
Collapse
|
11
|
Jackson Seukep A, Zhang YL, Xu YB, Guo MQ. In Vitro Antibacterial and Antiproliferative Potential of Echinops lanceolatus Mattf. (Asteraceae) and Identification of Potential Bioactive Compounds. Pharmaceuticals (Basel) 2020; 13:E59. [PMID: 32235626 PMCID: PMC7243112 DOI: 10.3390/ph13040059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Many species belonging to the genus Echinops are widely used in traditional medicine to treat infectious diseases and cancers. The present study aimed to evaluate the antibacterial and antiproliferative properties of Echinops lanceolatus Mattf. (Asteraceae). The activity of the methanolic extract and subsequent partition fractions was investigated against drug-resistant bacteria (Gram-negative and Gram-positive) and human tumor cell lines using broth microdilution and sulforhodamine B (SRB) assay, respectively. Our findings revealed weak to moderate antibacterial activities of tested extracts, with the recorded minimal inhibitory concentrations ranging from 256 to 1024 µg/mL. The ethyl acetate fraction (EL-EA) was found to be the most effective. Likewise, that fraction displayed strong antiproliferative potential with recorded IC50 of 8.27 µg/mL and 28.27 µg/mL on A549 and HeLa cells, respectively. An analysis based on the ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) of the EL-EA fraction allowed the identification of 32 compounds, of which quinic acid and derivatives, cinnamic acid derivatives, dihydrokaempferol, naringenin-7-O-glucoside, apigenin-7-O-d-glucoside, naringin, apigenin, rhoifolin, coniferyl aldehyde, and secoisolariciresinol are well-known compounds of biological importance. This study is first to report on the biological activity and phytochemical profile of E. lanceolatus. We provide a baseline to consider E. lanceolatus as a valuable source of anti-infective and antiproliferative agents.
Collapse
Affiliation(s)
- Armel Jackson Seukep
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (A.J.S.); (Y.-L.Z.); (Y.-B.X.)
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, P.O. Box 63, Buea, Cameroon
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong-Li Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (A.J.S.); (Y.-L.Z.); (Y.-B.X.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong-Bing Xu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (A.J.S.); (Y.-L.Z.); (Y.-B.X.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Quan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (A.J.S.); (Y.-L.Z.); (Y.-B.X.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
12
|
Huang W, Wen Z, Wang Q, Chen R, Li Z, Feng Y, Yang S. The chemical profile of active fraction of Kalimeris indica and its quantitative analysis. Biomed Chromatogr 2020; 34:e4828. [PMID: 32166820 DOI: 10.1002/bmc.4828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/05/2022]
Abstract
Kalimeris indica (L) Sch-Bip is a medicinal plant used by the Miao ethnic group in the Guizhou province of China. It is widely used as a fresh vegetable to treat colds, diarrhea and gastric ulcers. However, few studies have been conducted on the mechanism of its effect on colds, and its quality control. The anticomplement and antitussive activities of different polar extracts of K. indica were evaluated. Fifty-nine compounds, mainly including phenols and flavonoids, were identified in K. indica extract by ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry. A method was established through ultra-high-performance liquid chromatography with a photodiode array to simultaneously determine the anticomplement and antitussive activity of five compounds in K. indica combining chemical identification with chemometrics for discrimination and quality assessment. Also, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid exhibited significantly higher anticomplementary activity than the other three compounds. The quantitative data were further analyzed by principal component analysis and orthogonal partial least-squares discriminant analysis. Heatmap visualization was conducted to clarify the distribution of the major compounds in different geographical origins. Screening pharmacological activities by a combination of chemometrics and chemical identification might be an effective method for the quality control of K. indica.
Collapse
Affiliation(s)
- Wenping Huang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China.,State Key Laboratory of Innovative Drug and Efficient Energy-saving Pharmaceutical Equipment, Nanchang, Jiangxi, China
| | - Zhiqi Wen
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Qi Wang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China.,State Key Laboratory of Innovative Drug and Efficient Energy-saving Pharmaceutical Equipment, Nanchang, Jiangxi, China
| | - Renhao Chen
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhifeng Li
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-saving Pharmaceutical Equipment, Nanchang, Jiangxi, China
| | - Shilin Yang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China.,State Key Laboratory of Innovative Drug and Efficient Energy-saving Pharmaceutical Equipment, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Wang L, Shen J, Xu L, Gao J, Zhang C, Wang Y, Chen F. A metabolite of endophytic fungus Cadophora orchidicola from Kalimeris indica serves as a potential fungicide and TLR4 agonist. J Appl Microbiol 2019; 126:1383-1390. [PMID: 30811736 DOI: 10.1111/jam.14239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 01/29/2023]
Abstract
AIM To investigate the bioactive metabolite of endophytic fungus from Kalimeris indica. METHODS AND RESULTS A strain ZJLQ336 was separated from the leaves of K. indica. It was identified as Cadophora orchidicola based on the phylogenetic analysis of ITS-rDNA sequences. From the fermentation broth a metabolite cercosporamide (compound 1) was isolated, and its structure was determined by spectroscopic analysis. Additionally, this compound was subjected to bioactivity assays, including antifungal activity against seven plant pathogenic fungi, as well as its potential immunoregulatory effects on HEK-BLUE™-hTLR4 cells, splenocytes and macrophages. The results showed that cercosporamide had strong growth inhibition against five common plant pathogenic fungi, including Pestalotia diospyri, Botrytis cinerea, Fusarium oxysporum, Sclerotium rolfsii and Penicillum digitatum with EC50 values of 5·29 × 10-3 , 0·61, 0·93, 2·89 and 6·7 μg ml-1 respectively. Among which S. rolfsii was one of the main pathogens in K. indica. Moreover, cercosporamide not only significantly stimulated TLR4 activation, splenocyte proliferation and production of cytokines, IFN-γ and TNF-α, but also up-regulated the production of TNF-α and NO in RAW264.7 macrophages clearly. CONCLUSIONS This is the first report of endophytic C. orchidicola from K. indica and its metabolite cercosporamide. The results of pharmacological tests highlight the potential fungicide and TLR4 agonist of cercosporamide. SIGNIFICANCE AND IMPACT OF THE STUDY This study indicates endophytic fungi are good resources for natural bioactive metabolites. It also suggests that cercosporamide is a potential fungicide and TLR4 agonist.
Collapse
Affiliation(s)
- L Wang
- Department of Pharmaceutical Science, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - J Shen
- Department of Pharmaceutical Science, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - L Xu
- Department of Pharmaceutical Science, School of Medicine, Hangzhou Normal University, Hangzhou, China.,Ningbo Women and Children's Hospital, Ningbo, China
| | - J Gao
- Department of Pharmaceutical Science, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - C Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Y Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - F Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
14
|
Liu X, Zhou B, Yang H, Li Y, Yang Q, Lu Y, Gao Y. Sequencing and Analysis of Chrysanthemum carinatum Schousb and Kalimeris indica. The Complete Chloroplast Genomes Reveal Two Inversions and rbcL as Barcoding of the Vegetable. Molecules 2018; 23:E1358. [PMID: 29874832 PMCID: PMC6099409 DOI: 10.3390/molecules23061358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 01/28/2023] Open
Abstract
Chrysanthemum carinatum Schousb and Kalimeris indica are widely distributed edible vegetables and the sources of the Chinese medicine Asteraceae. The complete chloroplast (cp) genome of Asteraceae usually occurs in the inversions of two regions. Hence, the cp genome sequences and structures of Asteraceae species are crucial for the cp genome genetic diversity and evolutionary studies. Hence, in this paper, we have sequenced and analyzed for the first time the cp genome size of C. carinatum Schousb and K. indica, which are 149,752 bp and 152,885 bp, with a pair of inverted repeats (IRs) (24,523 bp and 25,003) separated by a large single copy (LSC) region (82,290 bp and 84,610) and a small single copy (SSC) region (18,416 bp and 18,269), respectively. In total, 79 protein-coding genes, 30 distinct transfer RNA (tRNA) genes, four distinct rRNA genes and two pseudogenes were found not only in C. carinatum Schousb but also in the K. indica cp genome. Fifty-two (52) and fifty-nine (59) repeats, and seventy (70) and ninety (90) simple sequence repeats (SSRs) were found in the C. carinatum Schousb and K. indica cp genomes, respectively. Codon usage analysis showed that leucine, isoleucine, and serine are the most frequent amino acids and that the UAA stop codon was the significantly favorite stop codon in both cp genomes. The two inversions, the LSC region ranging from trnC-GCA to trnG-UCC and the whole SSC region were found in both of them. The complete cp genome comparison with other Asteraceae species showed that the coding area is more conservative than the non-coding area. The phylogenetic analysis revealed that the rbcL gene is a good barcoding marker for identifying different vegetables. These results give an insight into the identification, the barcoding, and the understanding of the evolutionary model of the Asteraceae cp genome.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Boyang Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Hongyuan Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Yuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Qian Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Yuzhuo Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Yu Gao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| |
Collapse
|
15
|
Xie J, Zhang AH, Sun H, Yan GL, Wang XJ. Recent advances and effective strategies in the discovery and applications of natural products. RSC Adv 2018; 8:812-824. [PMID: 35538992 PMCID: PMC9077099 DOI: 10.1039/c7ra09475b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023] Open
Abstract
Natural products are the most representative form of conventional therapy as compared to any other traditional or alternative medicine systems.
Collapse
Affiliation(s)
- Jing Xie
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| | - Ai-hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| | - Guang-li Yan
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| | - Xi-jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| |
Collapse
|
16
|
Kohoude MJ, Gbaguidi F, Agbani P, Ayedoun MA, Cazaux S, Bouajila J. Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves. PHARMACEUTICAL BIOLOGY 2017; 55:33-42. [PMID: 27650786 PMCID: PMC7011857 DOI: 10.1080/13880209.2016.1226356] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/18/2016] [Accepted: 08/16/2016] [Indexed: 05/24/2023]
Abstract
CONTEXT Boswellia dalzielii Hutch. (Burseraceae) is an aromatic plant. The leaves are used for beverage flavouring. OBJECTIVE This study investigates the chemical composition and biological activities of various extracts. MATERIALS AND METHODS The essential oil was prepared via hydrodistillation. Identification and quantification were realized via GC-MS and GC-FID. Consecutive extractions (cyclohexane, dichloromethane, ethyl acetate and methanol) were carried out and various chemical groups (phenolics, flavonoids, tannins, antocyanins and sugar) were quantified. The volatile compounds of organic extracts were identified before and after derivatization. Antioxidant, antihyperuricemia, anti-Alzheimer, anti-inflammatory and anticancer activities were evaluated. RESULTS In the essential oil, 50 compounds were identified, including 3-carene (27.72%) and α-pinene (15.18%). 2,5-Dihydroxy acetophenone and β-d-xylopyranose were identified in the methanol extract. Higher phenolic (315.97 g GAE/kg dry mass) and flavonoid (37.19 g QE/kg dry mass) contents were observed in the methanol extract. The methanol extract has presented remarkable IC50 = 6.10 mg/L for antiDPPH, 35.10 mg/L for antixanthine oxidase and 28.01 mg/L for anti-5-lipoxygenase. For acetylcholinesterase inhibition, the best IC50 (76.20 and 67.10 mg/L) were observed, respectively, with an ethyl acetate extract and the essential oil. At 50 mg/L, the dichloromethane extract inhibited OVCAR-3 cell lines by 65.10%, while cyclohexane extract inhibited IGROV-1 cell lines by 92.60%. DISCUSSION AND CONCLUSION Biological activities were fully correlated with the chemical groups of the extracts. The ethyl acetate and methanol extracts could be considered as potential alternatives for use in dietary supplements for the prevention or treatment of diseases because of these extracts natural antioxidant, antihyperuricemic and anti-inflammatory activities.
Collapse
Affiliation(s)
- Midéko Justin Kohoude
- Laboratoire des IMRCP UMR CNRS 5623, Faculté de pharmacie de Toulouse, Université de Toulouse, Toulouse, France
- Laboratoire de Pharmacognosie, Center Béninois de la Recherche Scientifique et Technique (CBRST), Université Paul-Sabatier, Porto-Novo, Benin
- Laboratory of Physical Organic Chemistry and Synthesis (LaCOPS), Faculty of Technical Sciences, University of Abomey Calavi, Contonou, Benin
| | - Fernand Gbaguidi
- Laboratoire de Pharmacognosie, Center Béninois de la Recherche Scientifique et Technique (CBRST), Université Paul-Sabatier, Porto-Novo, Benin
- Laboratory of Physical Organic Chemistry and Synthesis (LaCOPS), Faculty of Technical Sciences, University of Abomey Calavi, Contonou, Benin
| | - Pierre Agbani
- Laboratoire de Pharmacognosie, Center Béninois de la Recherche Scientifique et Technique (CBRST), Université Paul-Sabatier, Porto-Novo, Benin
- Laboratory of Physical Organic Chemistry and Synthesis (LaCOPS), Faculty of Technical Sciences, University of Abomey Calavi, Contonou, Benin
| | - Marc-Abel Ayedoun
- Laboratoire de Pharmacognosie, Center Béninois de la Recherche Scientifique et Technique (CBRST), Université Paul-Sabatier, Porto-Novo, Benin
| | - Sylvie Cazaux
- Laboratoire des IMRCP UMR CNRS 5623, Faculté de pharmacie de Toulouse, Université de Toulouse, Toulouse, France
| | - Jalloul Bouajila
- Laboratoire des IMRCP UMR CNRS 5623, Faculté de pharmacie de Toulouse, Université de Toulouse, Toulouse, France
| |
Collapse
|
17
|
Ibeyaima A, Dwivedi AK, Saini N, Gupta S, Sarethy IP. Saccharothrix sp. TD-093 from the Thar Desert, India: Metabolite Fingerprinting of Antimicrobial Compounds and in silico Analysis. Curr Microbiol 2017; 74:334-343. [PMID: 28120024 DOI: 10.1007/s00284-016-1183-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023]
Abstract
During a screening program for actinomycetes from underexplored and arid Thar Desert (India), TD-093 was isolated. The isolate was characterized based on 16S rDNA sequencing. Aqueous and organic solvent extracts of culture supernatant were investigated for antimicrobial activity. Bioactive fractions, after column chromatography separation, were subjected to GC-MS analysis. Based on 16S rDNA sequence result, isolate TD-093 showed nearest match to Saccharothrix (96%) and is a potential new species. Aqueous and organic solvent extracts showed antimicrobial activity against Staphylococcus epidermidis, Micrococcus luteus, Pseudomonas fluorescens, and Escherichia coli as well as clinical isolates (Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii). GC-MS metabolite fingerprinting resulted in 32 compounds belonging to fatty acid, hydrocarbon, alcohol, aldehyde, amide, ester, ketone, disulfide, and nitrile chemical groups. Combination analyses of the compounds based on retention time, similarity index, mass ion spectra, and retention indices-observed and calculated, showed that many of the compounds could be presumed to be novel. Further, four compounds showed retention indices that have not been documented in databases. In silico analysis (using software Prediction of Activity of Spectra for Substances) of compounds predicted by GC-MS data showed that 21 compounds had potential antibacterial activity.
Collapse
Affiliation(s)
- Ahongshangbam Ibeyaima
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, India
| | - Anuj Kumar Dwivedi
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, India
| | - Narendra Saini
- Department of Microbiology, Max Super Speciality Hospital, Vaishali, 201012, India
| | - Sanjay Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, India
| | - Indira P Sarethy
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, India.
| |
Collapse
|
18
|
Ren Q, Ding L, Sun SS, Wang HY, Qu L. Chemical identification and quality evaluation of Lycopus lucidus
Turcz by UHPLC-Q-TOF-MS and HPLC-MS/MS and hierarchical clustering analysis. Biomed Chromatogr 2016; 31. [DOI: 10.1002/bmc.3867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/24/2016] [Accepted: 10/11/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Qiang Ren
- Department of Pharmacy; Jining Medical University; Rizhao Shandong China
| | - Lin Ding
- Department of Pharmacy; Jining Medical University; Rizhao Shandong China
| | - Shan-shan Sun
- Department of Pharmacy; Jining Medical University; Rizhao Shandong China
| | - Hui-yun Wang
- Department of Pharmacy; Jining Medical University; Rizhao Shandong China
| | - Liang Qu
- Pharmaron Beijing Co. Ltd; Beijing China
| |
Collapse
|
19
|
Chen X, Miao J, Wang H, Zhao F, Hu J, Gao P, Wang Y, Zhang L, Yan M. The anti-inflammatory activities of Ainsliaea fragrans Champ. extract and its components in lipopolysaccharide-stimulated RAW264.7 macrophages through inhibition of NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2015; 170:72-80. [PMID: 25975516 DOI: 10.1016/j.jep.2015.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/06/2015] [Accepted: 05/03/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ainsliaea fragrans Champ. (A. fragrans) is a traditional Chinese herbal that contains components like 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid. It exhibits anti-inflammatory activities which has been used for the treatment of gynecological diseases for many years in China. The aims of the present study were to investigate the anti-inflammatory activities of A. fragrans and elucidate the underlying mechanisms with regard to its molecular basis of action for the best component. MATERIALS AND METHODS The anti-inflammatory effects of A. fragrans were studied by using lipopolysaccharide (LPS)-stimulated activation of nitric oxide (NO) in mouse RAW264.7 macrophages. Expression of inducible NO synthase (iNOS) and pro-inflammatory cytokines, inhibitory κBα (IκBα) degradation and nuclear translocation of NF-κB p65 were further investigated. RESULTS The present study demonstrated that A. fragrans could suppress the production of NO in LPS-stimulated RAW264.7 macrophages. Further investigations showed A. fragrans could suppress iNOS expression. A. fragrans also inhibited the expression of tumor necrosis factor-alpha and interleukin-6. A. fragrans significantly decreased the degradation of IκBα, reduced the level of nuclear translocation of p65. All these results suggested the inhibitory effects of A. fragrans on the production of inflammatory mediators through the inhibition of the NF-κB activation pathway. CONCLUSION Our results indicated that A. fragrans inhibited inflammatory events and iNOS expression in LPS-stimulated RAW264.7 cells through the inactivation of NF-κB pathway. This study gives scientific evidence that validate the use of A. fragrans in treatment of patients with gynecological diseases in clinical practice in traditional Chinese medicine.
Collapse
Affiliation(s)
- Xin Chen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jingshan Miao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, PR China
| | - Hao Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Fang Zhao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jie Hu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Peng Gao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yue Wang
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China.
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|