1
|
Pusztai L, Sondak VK, Aguiar-Ibáñez R, Cappuzzo F, Chouaid C, Elder C, Hirasawa Y, Ishida M, Jones R, Lee SH, Mizuno R, Nagata M, Okonji D, Parente P, Shah B, Sun A, Ferreira D, Spiteri C, Lauer A, Kaliasethi A, Kao C, Kothari S, McKendrick J. Clinical factors influencing retreatment with anti-PD-(L)1 therapies after treatment in early-stage cancers: a modified Delphi consensus study. J Immunother Cancer 2025; 13:e011184. [PMID: 40425232 PMCID: PMC12107590 DOI: 10.1136/jitc-2024-011184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Anti-programmed death (ligand) 1 (anti-PD-(L)1) therapies were first introduced in the metastatic setting and have since been approved and reimbursed for treating early-stage cancers in the adjuvant, perioperative, and neoadjuvant settings in many cancer types. Current evidence supporting anti-PD(L)-1 retreatment after relapse with prior neoadjuvant and/or adjuvant anti-PD(L)1 therapy is limited and inconclusive. There is no guidance for clinicians on how and when to retreat with anti-PD-(L)1 therapies when anti-PD-(L)1 therapy was administered in the neoadjuvant and/or adjuvant setting. This study aimed to reach consensus on factors to guide decision-making regarding retreatment with anti-PD-(L)1 therapies after prior therapy with an anti-PD-(L)1 agent. This modified Delphi study consisted of a clinician survey across 10 countries followed by three real-time virtual Delphi panels involving clinical experts who had completed the survey. Clinical experts were experienced in using anti-PD-(L)1 treatments in early-stage cancers and/or as retreatment of patients with recurrences following early-stage treatment with anti-PD-(L)1 therapies. Of 28 clinicians providing survey responses, 20 participated in one of three Delphi panels. There was consensus that retreatment can be defined as 'repeated treatment with the same therapeutic class following relapse after or during neoadjuvant and/or adjuvant treatment.' All three panels agreed that decisions around retreatment should consider 'prior immune-related adverse events/toxicity,' 'time-related factors' (eg, time since completion of full treatment course and since discontinuation) and 'previous patient response' (often referred to by clinicians as tumor response, which may have reflected their experience with metastatic disease). Other factors identified as important included country-specific practices, treatment availability, and reimbursement. Generally, the clinical experts considered that retreatment could be considered from ≥3 to 6 months after stopping initial anti-PD-(L)1 treatment, or from ≥6 months after relapse/recurrence. In conclusion, clinicians across different regions recognized a role for retreating patients with anti-PD-(L)1 therapies after initial anti-PD-(L)1 treatment for early-stage cancers. Consensus was reached on some factors to consider regarding whether and when to retreat, although differences in clinical practice between countries/geographical regions made it difficult to achieve consensus for some more nuanced elements of retreatment. Further evidence could help better inform retreatment decisions.
Collapse
Affiliation(s)
- Lajos Pusztai
- Yale University Yale Cancer Center, New Haven, Connecticut, USA
| | | | | | | | | | - Chris Elder
- Florida Cancer Specialists and Research Institute, Tampa, Florida, USA
| | | | - Masaru Ishida
- Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | | | - Seung Hyeun Lee
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul, Korea (the Republic of)
| | | | - Masayoshi Nagata
- Department of Urology, Juntendo University Hospital, Tokyo, Japan
| | - David Okonji
- Bowen Icon Cancer Centre and Wellington Regional Hospital, Wellington, New Zealand
| | - Phillip Parente
- Monash University Eastern Health Clinical School, Melbourne, Victoria, Australia
| | - Bhavesh Shah
- Boston Medical Center, Boston, Massachusetts, USA
| | - Alexander Sun
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | - Carmel Spiteri
- MSD Australia, Macquarie Park, New South Wales, Australia
| | - Andrea Lauer
- MSD International GmBH (Singapore branch), Singapore
| | | | | | | | | |
Collapse
|
2
|
Smolarz B, Łukasiewicz H, Samulak D, Piekarska E, Kołaciński R, Romanowicz H. Lung Cancer-Epidemiology, Pathogenesis, Treatment and Molecular Aspect (Review of Literature). Int J Mol Sci 2025; 26:2049. [PMID: 40076671 PMCID: PMC11900952 DOI: 10.3390/ijms26052049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Lung cancer is one of the most common malignant cancers in most countries and is the leading cause of death among cancer diseases worldwide. Despite constant progress in diagnosis and therapy, survival rates of patients diagnosed with lung cancer remain unsatisfactory. Numerous epidemiological and experimental studies conducted as early as the 1970s confirm that the most important risk factor for the development of lung cancer is long-term smoking, which remains valid to this day. In the paper, the authors present the latest data on the epidemiology, pathogenesis, treatment and molecular aspects of this cancer. In the last decade, many molecular alterations that are effective in the development of lung cancer have been discovered. In adenocarcinoma, tyrosine kinase inhibitors were developed for EGFR mutations and ALK and ROS1 translocations and were approved for use in the treatment of advanced stage adenocarcinomas. In the case of squamous cell carcinoma, the evaluation of these mutations is not yet being used in clinical practice. In addition, there are ongoing studies concerning many potential therapeutic molecular targets, such as ROS, MET, FGFR, DDR-2 and RET. Constant progress in diagnostic and therapeutic methods gives rise to hopes for an improved prognosis in patients with lung cancer.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Honorata Łukasiewicz
- Faculty of Medicine and Health Sciences, Department of Nursing, The President Stanisław Wojciechowski Calisia University, 62-800 Kalisz, Poland;
| | - Dariusz Samulak
- Department of Obstetrics and Gynecology and Gynecological Oncology, Regional Hospital in Kalisz, 62-800 Kalisz, Poland;
- Department of Obstetrics, The President Stanisław Wojciechowski Calisia University, 62-800 Kalisz, Poland
| | - Ewa Piekarska
- Regional Hospital in Kalisz, 62-800 Kalisz, Poland; (E.P.); (R.K.)
| | | | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| |
Collapse
|
3
|
Dong S, Li X, Huang Q, Li Y, Li J, Zhu X, Xue C, Chen R, Zeng Y, Wu J, Zhong Y, Hu S. Resistance to immunotherapy in non-small cell lung cancer: Unraveling causes, developing effective strategies, and exploring potential breakthroughs. Drug Resist Updat 2025; 81:101215. [PMID: 40081220 DOI: 10.1016/j.drup.2025.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 03/15/2025]
Abstract
Over the last two decades, advancements in deciphering the intricate interactions between oncology and immunity have fueled a meteoric rise in immunotherapy for non-small cell lung cancer, typified by an explosive growth of immune checkpoint inhibitors. However, resistance to immunotherapy remains inevitable. Herein we unravel the labyrinthine mechanisms of resistance to immunotherapy, characterized by their involvement of nearly all types of cells within the body, beyond the extrinsic cancer cells, and importantly, such cells are not only (inhibitory or excitatory, or both) signal recipients but also producers, acting in a context-dependent manner. At the molecular level, these mechanisms underlie genetic and epigenetic aberrations, which are regulated by or regulate various protein kinases, growth factors, and cytokines with inherently dynamic and spatially heterogeneous properties. Additionally, macroscopic factors such as nutrition, comorbidities, and the microbiome within and around organs or tumor cells are involved. Therefore, developing therapeutic strategies combined with distinct action informed by preclinical, clinical, and real-world evidence, such as radiotherapy, chemotherapy, targeted therapy, antibody-drug conjugates, oncolytic viruses, and cell-based therapies, may stand as a judicious reality, although the ideality is to overcome resistance point-by-point through a novel drug. Notably, we highlight a realignment of treatment aims, moving the primary focus from eliminating cancer cells -- such as through chemotherapy and radiotherapy -- to promoting immune modulation and underscore the value of regulating various components within the host macro- or micro-environment, as their effects, even if seemingly minimal, can cumulatively contribute to visible clinical benefit when applied in combination with ICIs. Lastly, this review also emphasizes the current hurdles scattered throughout preclinical and clinical studies, and explores evolving directions in the landscape of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Xiaoyu Li
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Qing Huang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Yuanxiang Li
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | | | - Xianmin Zhu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Chang Xue
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Runzhi Chen
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Yuan Zeng
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Jingyi Wu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Yi Zhong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China.
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China.
| |
Collapse
|
4
|
Gao M, Zhang X, Yan H, Zhao Y, Yuan F, Sun D, Yang X, Ju Y, Wang L, Tao H, Tian L, Zhao C, Ma J, Hu Y, Liu Z. Efficacy and safety of camrelizumab plus famitinib in patients with previously treated non-small-cell lung cancer: a single-arm, phase II trial. Ther Adv Med Oncol 2025; 17:17588359241311058. [PMID: 39759826 PMCID: PMC11694305 DOI: 10.1177/17588359241311058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025] Open
Abstract
Background For non-small-cell lung cancer (NSCLC) patients who progressed after first-line chemotherapy, immunotherapy targeting programmed cell death (ligand) 1 has shown promising activity. However, the activity is relatively limited in patients harboring epidermal growth factor receptor (EGFR) mutations. Objectives This study aimed to evaluate the efficacy and safety of camrelizumab plus famitinib in previously treated patients with locally advanced and metastatic NSCLC. Design A single-center, single-arm, phase II study. Methods Previously treated patients with locally advanced and metastatic NSCLC were enrolled to receive camrelizumab (200 mg, administered intravenously every 3 weeks) and famitinib (20 mg, administered orally once daily). Patients harboring EGFR mutation genes had received at least one EGFR tyrosine kinase inhibitor and no more than two lines of chemotherapy regimen before the enrollment. The other patients had progressed on first-line chemotherapy with or without immunotherapy before the enrollment. The primary endpoint was the objective response rate (ORR) per RECIST v1.1 by the investigator. Results Our study encompassed 23 NSCLC patients between October 2019 and October 2022. For all patients, the confirmed ORR was 30.4%, and the disease control rate was 95.7%. The median progression-free survival (PFS) was 6.9 months (95% CI: 4.9 months-not reached). The median overall survival (OS) was not reached. 1- and 2-year OS rates were 85.6% (95% CI: 71.8%-100.0%) and 56.8% (95% CI: 37.7%-85.7%). Especially, for the 6 patients with EGFR genetic aberrations, the confirmed ORR was 33.3%, the median PFS was 10.3 months (95% CI: 1.8-18.8 months), and the median OS was 20.3 months (95% CI: 0.8-39.8 months). The most common grade 3 and above treatment-related adverse events were platelet count decreased, white blood cell count decreased, and hypertension. No unexpected adverse events were reported. Conclusion Camrelizumab plus famitinib demonstrated encouraging clinical activity with a manageable safety profile in previously treated patients with locally advanced and metastatic NSCLC. The results warranted further validation. Trial registration Chinese Clinical Trial Registry identifier: ChiCTR1900026641.
Collapse
Affiliation(s)
- Ming Gao
- Medical School of Chinese PLA, Beijing, China
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xia Zhang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Huan Yan
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Zhao
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Fang Yuan
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Decong Sun
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xuejiao Yang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanfang Ju
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lijie Wang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Haitao Tao
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Luyuan Tian
- Department of Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Changhong Zhao
- Department of Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Junxun Ma
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, China
| | - Yi Hu
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, China
| | - Zhefeng Liu
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, China
| |
Collapse
|
5
|
Kang DH, Lee J, Im S, Chung C. Navigating the Complexity of Resistance in Lung Cancer Therapy: Mechanisms, Organoid Models, and Strategies for Overcoming Treatment Failure. Cancers (Basel) 2024; 16:3996. [PMID: 39682183 DOI: 10.3390/cancers16233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The persistence of chemotherapy-resistant and dormant cancer cells remains a critical challenge in the treatment of lung cancer. Objectives: This review focuses on non-small cell lung cancer and small cell lung cancer, examining the complex mechanisms that drive treatment resistance. Methods: This review analyzed current studies on chemotherapy resistance in NSCLC and SCLC, focusing on tumor microenvironment, genetic mutations, cancer cell heterogeneity, and emerging therapies. Results: Conventional chemotherapy and targeted therapies, such as tyrosine kinase inhibitors, often fail due to factors including the tumor microenvironment, genetic mutations, and cancer cell heterogeneity. Dormant cancer cells, which can remain undetected in a quiescent state for extended periods, pose a significant risk of recurrence upon reactivation. These cells, along with intrinsic resistance mechanisms, greatly complicate treatment efforts. Understanding these pathways is crucial for the development of more effective therapies. Emerging strategies, including combination therapies that target multiple pathways, are under investigation to improve treatment outcomes. Innovative approaches, such as antibody-drug conjugates and targeted protein degradation, offer promising solutions by directly delivering cytotoxic agents to cancer cells or degrading proteins that are essential for cancer survival. The lung cancer organoid model shows substantial promise to advance both research and clinical applications in this field, enhancing the ability to study resistance mechanisms and develop personalized treatments. The integration of current research underscores the need for continuous innovation in treatment modalities. Conclusions: Personalized strategies that combine novel therapies with an in-depth understanding of tumor biology are essential to overcome the challenges posed by treatment-resistant and dormant cancer cells in lung cancer. A multifaceted approach has the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Da Hyun Kang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jisoo Lee
- College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Subin Im
- College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Nardone V, Reginelli A, Patanè V, Sangiovanni A, Grassi R, Russo A, Correale P, Giordano DS, Zaccaria C, Belfiore MP, Cappabianca S. Prognostic Value of Sarcopenia in Elderly Patients with Metastatic Non-Small-Cell Lung Cancer Undergoing Radiotherapy. Curr Oncol 2024; 31:6673-6685. [PMID: 39590123 PMCID: PMC11592436 DOI: 10.3390/curroncol31110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Sarcopenia, a syndrome characterized by age-related loss of muscle mass and function, lacks universally accepted diagnostic criteria, particularly for its role as a prognostic factor in elderly patients with non-small-cell lung cancer (NSCLC). This study aimed to evaluate the prognostic significance of sarcopenia, assessed by psoas muscle size on baseline CT scans, in patients over 70 years of age with metastatic NSCLC. Methods: We retrospectively analyzed 85 elderly patients undergoing palliative radiation therapy between August 2022 and July 2024. Using morphometric analysis of psoas size, we investigated its correlation with overall survival (OS) and progression-free survival (PFS). Results: Our results showed that decreased psoas size was significantly associated with shorter OS and PFS, with median OS of 10 months and PFS of 4 months in sarcopenic patients compared to longer survival times in non-sarcopenic patients. Median survival of non-sarcopenic vs. sarcopenic patients was 21 ± 7 months (muscle area > median) versus 5 ± 2.3 months (muscle area < median). Multivariate analysis confirmed that psoas size, along with ECOG performance status and treatment of primary NSCLC, was a significant predictor of survival. Discussion: These findings suggest that psoas muscle size is a valuable prognostic marker for elderly NSCLC patients, potentially guiding treatment decisions and patient management. Further research is needed to validate these results and refine prognostic models for this population.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Vittorio Patanè
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Angelo Sangiovanni
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Anna Russo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Pierpaolo Correale
- Unit of Medical Oncology, Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89128 Reggio Calabria, Italy;
| | - Diego Sandro Giordano
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Carmine Zaccaria
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| |
Collapse
|
7
|
Paz-Ares LG, Juan-Vidal O, Mountzios GS, Felip E, Reinmuth N, de Marinis F, Girard N, Patel VM, Takahama T, Owen SP, Reznick DM, Badin FB, Cicin I, Mekan S, Patel R, Zhang E, Karumanchi D, Garassino MC. Sacituzumab Govitecan Versus Docetaxel for Previously Treated Advanced or Metastatic Non-Small Cell Lung Cancer: The Randomized, Open-Label Phase III EVOKE-01 Study. J Clin Oncol 2024; 42:2860-2872. [PMID: 38843511 PMCID: PMC11328920 DOI: 10.1200/jco.24.00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 08/18/2024] Open
Abstract
PURPOSE The open-label, phase III EVOKE-01 study evaluated sacituzumab govitecan (SG) versus standard-of-care docetaxel in metastatic non-small cell lung cancer (mNSCLC) with progression on/after platinum-based chemotherapy, anti-PD-(L)1, and targeted treatment for actionable genomic alterations (AGAs). Primary analysis is reported. METHODS Patients were randomly assigned 1:1 (stratified by histology, best response to last anti-PD-(L)1-containing regimen, and AGA treatment received or not) to SG (one 10 mg/kg intravenous infusion on days 1 and 8) or docetaxel (one 75 mg/m2 intravenous infusion on day 1) in 21-day cycles. Primary end point was overall survival (OS). Key secondary end points were investigator-assessed progression-free survival (PFS), objective response rate, patient-reported symptom assessment, and safety. RESULTS In the intention-to-treat population (SG, n = 299; docetaxel, n = 304), 55.4% had one previous line of therapy. Median follow-up was 12.7 months (range, 6.0-24.0). The primary end point was not met. There was a numerical OS improvement for SG versus docetaxel (median, 11.1 v 9.8 months; hazard ratio [HR], 0.84 [95% CI, 0.68 to 1.04]; one-sided P = .0534), consistent across squamous and nonsquamous histologies. Median PFS was 4.1 versus 3.9 months (HR, 0.92 [95% CI, 0.77 to 1.11]). An OS benefit was observed for SG (n = 192) versus docetaxel (n = 191) in mNSCLC nonresponsive to last anti-PD-(L)1-containing regimen (3.5-month median OS increase; HR, 0.75 [95% CI, 0.58 to 0.97]); this was consistent across histologies. Among patients receiving SG and docetaxel, 6.8% and 14.2% discontinued because of treatment-related adverse events (TRAEs), respectively; 1.4% and 1.0%, respectively, had TRAEs leading to death. CONCLUSION Although statistical significance was not met, OS numerically improved with SG versus docetaxel, which was consistent across histologies. Clinically meaningful improvement in OS was noted in mNSCLC nonresponsive to last anti-PD-(L)1-containing regimen. SG was better tolerated than docetaxel and consistent with its known safety profile, with no new safety signals.
Collapse
MESH Headings
- Humans
- Docetaxel/therapeutic use
- Docetaxel/administration & dosage
- Docetaxel/adverse effects
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/mortality
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/mortality
- Male
- Female
- Middle Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Aged
- Camptothecin/analogs & derivatives
- Camptothecin/therapeutic use
- Camptothecin/adverse effects
- Camptothecin/administration & dosage
- Adult
- Progression-Free Survival
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Immunoconjugates
Collapse
Affiliation(s)
- Luis G. Paz-Ares
- Hospital Universitario 12 de Octubre, H12O-CNIO Lung Cancer Unit, Complutense University and Ciberonc, Madrid, Spain
| | - Oscar Juan-Vidal
- Hospital Universitari i Politécnic La Fe de Valencia, Valencia, Spain
| | | | - Enriqueta Felip
- Vall d'Hebron University Hospital and Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Niels Reinmuth
- Asklepios Lung Clinic, German Center for Lung Research (DZL), Munich-Gauting, Germany
| | | | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
| | - Vipul M. Patel
- Florida Cancer Specialists and Research Institute, Ocala, FL
| | | | - Scott P. Owen
- McGill University Health Centre, Montreal, QC, Canada
| | | | | | - Irfan Cicin
- Istinye University, Medical Center, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
8
|
Yaghoubi Naei V, Monkman J, Sadeghirad H, Mehdi A, Blick T, Mullally W, O'Byrne K, Warkiani ME, Kulasinghe A. Spatial proteomic profiling of tumor and stromal compartments in non-small-cell lung cancer identifies signatures associated with overall survival. Clin Transl Immunology 2024; 13:e1522. [PMID: 39026528 PMCID: PMC11257771 DOI: 10.1002/cti2.1522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives Non-small-cell lung carcinoma (NSCLC) is the most prevalent and lethal form of lung cancer. The need for biomarker-informed stratification of targeted therapies has underpinned the need to uncover the underlying properties of the tumor microenvironment (TME) through high-plex quantitative assays. Methods In this study, we profiled resected NSCLC tissues from 102 patients by targeted spatial proteomics of 78 proteins across tumor, immune activation, immune cell typing, immune-oncology, drug targets, cell death and PI3K/AKT modules to identify the tumor and stromal signatures associated with overall survival (OS). Results Survival analysis revealed that stromal CD56 (HR = 0.384, P = 0.06) and tumoral TIM3 (HR = 0.703, P = 0.05) were associated with better survival in univariate Cox models. In contrast, after adjusting for stage, BCLXL (HR = 2.093, P = 0.02) and cleaved caspase 9 (HR = 1.575, P = 0.1) negatively influenced survival. Delta testing indicated the protective effect of TIM-3 (HR = 0.614, P = 0.04) on OS. In multivariate analysis, CD56 (HR = 0.172, P = 0.001) was associated with better survival in the stroma, while B7.H3 (HR = 1.72, P = 0.008) was linked to poorer survival in the tumor. Conclusions Deciphering the TME using high-plex spatially resolved methods is giving us new insights into compartmentalised tumor and stromal protein signatures associated with clinical endpoints in NSCLC.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - James Monkman
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Ahmed Mehdi
- Queensland Cyber Infrastructure Foundation (QCIF) LtdThe University of QueenslandBrisbaneQLDAustralia
| | - Tony Blick
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | | | - Ken O'Byrne
- The Princess Alexandra HospitalBrisbaneQLDAustralia
| | | | - Arutha Kulasinghe
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
9
|
Lim RJ, Salehi-Rad R, Tran LM, Oh MS, Dumitras C, Crosson WP, Li R, Patel TS, Man S, Yean CE, Abascal J, Huang Z, Ong SL, Krysan K, Dubinett SM, Liu B. CXCL9/10-engineered dendritic cells promote T cell activation and enhance immune checkpoint blockade for lung cancer. Cell Rep Med 2024; 5:101479. [PMID: 38518770 PMCID: PMC11031384 DOI: 10.1016/j.xcrm.2024.101479] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Immune checkpoint blockade (ICB) with PD-1/PD-L1 inhibition has revolutionized the treatment of non-small cell lung cancer (NSCLC). Durable responses, however, are observed only in a subpopulation of patients. Defective antigen presentation and an immunosuppressive tumor microenvironment (TME) can lead to deficient T cell recruitment and ICB resistance. We evaluate intratumoral (IT) vaccination with CXCL9- and CXCL10-engineered dendritic cells (CXCL9/10-DC) as a strategy to overcome resistance. IT CXCL9/10-DC leads to enhanced T cell infiltration and activation in the TME and tumor inhibition in murine NSCLC models. The antitumor efficacy of IT CXCL9/10-DC is dependent on CD4+ and CD8+ T cells, as well as CXCR3-dependent T cell trafficking from the lymph node. IT CXCL9/10-DC, in combination with ICB, overcomes resistance and establishes systemic tumor-specific immunity in murine models. These studies provide a mechanistic understanding of CXCL9/10-DC-mediated host immune activation and support clinical translation of IT CXCL9/10-DC to augment ICB efficacy in NSCLC.
Collapse
Affiliation(s)
- Raymond J Lim
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ramin Salehi-Rad
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Linh M Tran
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Michael S Oh
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Camelia Dumitras
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William P Crosson
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rui Li
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tejas S Patel
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samantha Man
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cara E Yean
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jensen Abascal
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - ZiLing Huang
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie L Ong
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kostyantyn Krysan
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Bin Liu
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Lee K, Choi YJ, Lim HI, Cho KJ, Kang N, Ko SG. Network pharmacology study to explore the multiple molecular mechanism of SH003 in the treatment of non-small cell lung cancer. BMC Complement Med Ther 2024; 24:70. [PMID: 38303001 PMCID: PMC10832243 DOI: 10.1186/s12906-024-04347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is one of the leading causes of human death worldwide. Herbal prescription SH003 has been developed to treat several cancers including NSCLC. Due to the multi-component nature of SH003 with multiple targets and pathways, a network pharmacology study was conducted to analyze its active compounds, potential targets, and pathways for the treatment of NSCLC. METHODS We systematically identified oral active compounds within SH003, employing ADME criteria-based screening from TM-MC, OASIS, and TCMSP databases. Concurrently, SH003-related and NSCLC-associated targets were amalgamated from various databases. Overlapping targets were deemed anti-NSCLC entities of SH003. Protein-protein interaction networks were constructed using the STRING database, allowing the identification of pivotal proteins through node centrality measures. Empirical validation was pursued through LC-MS analysis of active compounds. Additionally, in vitro experiments, such as MTT cell viability assays and western blot analyses, were conducted to corroborate network pharmacology findings. RESULTS We discerned 20 oral active compounds within SH003 and identified 239 core targets shared between SH003 and NSCLC-related genes. Network analyses spotlighted 79 hub genes, including TP53, JUN, AKT1, STAT3, and MAPK3, crucial in NSCLC treatment. GO and KEGG analyses underscored SH003's multifaceted anti-NSCLC effects from a genetic perspective. Experimental validations verified SH003's impact on NSCLC cell viability and the downregulation of hub genes. LC-MS analysis confirmed the presence of four active compounds, namely hispidulin, luteolin, baicalein, and chrysoeriol, among the eight compounds with a median of > 10 degrees in the herb-compounds-targets network in SH003. Previously unidentified targets like CASP9, MAPK9, and MCL1 were unveiled, supported by existing NSCLC literature, enhancing the pivotal role of empirical validation in network pharmacology. CONCLUSION Our study pioneers the harmonization of theoretical predictions with practical validations. Empirical validation illuminates specific SH003 compounds within NSCLC, simultaneously uncovering novel targets for NSCLC treatment. This integrated strategy, accentuating empirical validation, establishes a paradigm for in-depth herbal medicine exploration. Furthermore, our network pharmacology study unveils fresh insights into SH003's multifaceted molecular mechanisms combating NSCLC. Through this approach, we delineate active compounds of SH003 and target pathways, reshaping our understanding of its therapeutic mechanisms in NSCLC treatment.
Collapse
Affiliation(s)
- Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, 30019, South Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hae-In Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Kwang Jin Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Nuri Kang
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
11
|
Zhai WY, Duan FF, Lin YB, Lin YB, Zhao ZR, Wang JY, Rao BY, Zheng L, Long H. Pan-Immune-Inflammatory Value in Patients with Non-Small-Cell Lung Cancer Undergoing Neoadjuvant Immunochemotherapy. J Inflamm Res 2023; 16:3329-3339. [PMID: 37576157 PMCID: PMC10422963 DOI: 10.2147/jir.s418276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
Background We aimed to investigate the predictive value of a systematic serum inflammation index, pan-immune-inflammatory value (PIV), in pathological complete response (pCR) of patients treated with neoadjuvant immunotherapy to further promote ideal patients' selection. Methods The clinicopathological and baseline laboratory information of 128 NSCLC patients receiving neoadjuvant immunochemotherapy between October 2019 and April 2022 were retrospectively reviewed. We performed least absolute shrinkage and selection operator (LASSO) algorithm to screen candidate serum biomarkers for predicting pCR, which further entered the multivariate logistic regression model to determine final biomarkers. Accordingly, a diagnostic model for predicting individual pCR was established. Kaplan-Meier method was utilized to estimate curves of disease-free survival (DFS), and the Log rank test was analyzed to compare DFS differences between patients with and without pCR. Results Patients with NSCLC heterogeneously responded to neoadjuvant immunotherapy, and those with pCR had a significant longer DFS than patients without pCR. Through LASSO and the multivariate logistic regression model, PIV was identified as a predictor for predicting pCR of patients. Subsequently, a diagnostic model integrating with PIV, differentiated degree and histological type was constructed to predict pCR, which presented a satisfactory predictive power (AUC, 0.736), significant agreement between actual and our nomogram-predicted pathological response. Conclusion Baseline PIV was an independent predictor of pCR for NSCLC patients receiving neoadjuvant immunochemotherapy. A significantly longer DFS was achieved in patients with pCR rather than those without pCR; thus, the PIV-based diagnostic model might serve as a practical tool to identify ideal patients for neoadjuvant immunotherapeutic guidance.
Collapse
Affiliation(s)
- Wen-Yu Zhai
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Fang-Fang Duan
- Department of Medical oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Yao-Bin Lin
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yong-Bin Lin
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ze-Rui Zhao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jun-Ye Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Bing-Yu Rao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Lie Zheng
- Medical Imaging Division, Department of Medical Imaging and Interventional Radiology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Hao Long
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
12
|
Zhou F, Sun J, Ye L, Jiang T, Li W, Su C, Ren S, Wu F, Zhou C, Gao G. Fibronectin promotes tumor angiogenesis and progression of non-small-cell lung cancer by elevating WISP3 expression via FAK/MAPK/ HIF-1α axis and activating wnt signaling pathway. Exp Hematol Oncol 2023; 12:61. [PMID: 37468964 DOI: 10.1186/s40164-023-00419-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/02/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Fibronectin, an extracellular matrix protein, has been reported to be associated with heterogeneous cancer stemness, angiogenesis and progression in multiple cancer types. However, the roles and the underlying mechanism of fibronectin on the progression NSCLC need to be further elucidated. METHODS Public dataset such as Kaplan-Meier Plotter was used to determine the prognostic significance of genes. The correlation of different protein expression in clinical and xenograft tissues was tested by immunohistochemistry experiment. Both in vitro and in vivo experiments were performed to determine the role of fibronectin on the tumor growth, metastasis, and angiogenesis in NSCLC. The activation of key signaling pathway under fibronectin was examined by WB assay. RNA-seq was applicated to screening the target gene of fibronectin. Rescue experiment was performed to confirm the role of target gene in fibronectin-mediated function in NSCLC. Finally, luciferase and CHIP assays were used to elucidate the mechanism by which fibronectin regulated the target gene. RESULTS Our results revealed that fibronectin was up-regulated in cancer tissues compared with the normal ones in NSCLC patients. Dish- coated fibronectin enhanced the tumor growth, metastasis, and angiogenesis of NSCLC in vitro and in vivo by promoting EMT and maintaining stemness of NSCLC cells. As expected, fibronectin activated FAK and its downstream MAPK/ERK signaling pathway. WISP3 was screened as a potential target gene of fibronectin. Interestingly, WISP3 effectively activated Wnt signaling pathway, and knockdown of WISP3 effectively blocked the influence of fibronectin on the migration, invasion and vascular structure formation potential of NSCLC cells. Our data also manifested that fibronectin elevated the transcription of WISP3 gene by promoting the binding of HIF-1α to the promoter region of WISP3 in NSCLC cells. CONCLUSIONS Our findings sketched the outline of the route for fibronectin exert its role in NSCLC, in which fibronectin activated downstream FAK and MAPK/ERK signaling pathways, and mediated the accumulation of HIF-1α. Then, HIF-1α enabled the transcription of WISP3, and subsequently promoted the activation of Wnt signaling pathway, and finally enhanced the tumor growth, metastasis, and angiogenesis in NSCLC.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jianguo Sun
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P R China
| | - Lingyun Ye
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shengxiang Ren
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Fengying Wu
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Guanghui Gao
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Chen H, Xu S, Zhang Y, Chen P. Systematic analysis of lncRNA gene characteristics based on PD-1 immune related pathway for the prediction of non-small cell lung cancer prognosis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:9818-9838. [PMID: 37322912 DOI: 10.3934/mbe.2023430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is heterogeneous. Molecular subtyping based on the gene expression profiles is an effective technique for diagnosing and determining the prognosis of NSCLC patients. METHODS Here, we downloaded the NSCLC expression profiles from The Cancer Genome Atlas and the Gene Expression Omnibus databases. ConsensusClusterPlus was used to derive the molecular subtypes based on long-chain noncoding RNA (lncRNA) associated with the PD-1-related pathway. The LIMMA package and least absolute shrinkage and selection operator (LASSO)-Cox analysis were used to construct the prognostic risk model. The nomogram was constructed to predict the clinical outcomes, followed by decision curve analysis (DCA) to validate the reliability of this nomogram. RESULTS We discovered that PD-1 was strongly and positively linked to the T-cell receptor signaling pathway. Furthermore, we identified two NSCLC molecular subtypes yielding a significantly distinctive prognosis. Subsequently, we developed and validated the 13-lncRNA-based prognostic risk model in the four datasets with high AUC values. Patients with low-risk showed a better survival rate and were more sensitive to PD-1 treatment. Nomogram construction combined with DCA revealed that the risk score model could accurately predict the prognosis of NSCLC patients. CONCLUSIONS This study demonstrated that lncRNAs engaged in the T-cell receptor signaling pathway played a significant role in the onset and development of NSCLC, and that they could influence the sensitivity to PD-1 treatment. In addition, the 13 lncRNA model was effective in assisting clinical treatment decision-making and prognosis evaluation.
Collapse
Affiliation(s)
- Hejian Chen
- Department of Respiratory and Critical Care Medicine, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, China
| | - Shuiyu Xu
- Department of Oncology, HaploX Biotechnology, Shenzhen 518035, China
| | - Yuhong Zhang
- Department of Oncology, HaploX Biotechnology, Shenzhen 518035, China
| | - Peifeng Chen
- Department of Respiratory and Critical Care Medicine, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, China
| |
Collapse
|
14
|
Reck M, Popat S, Grohé C, Corral J, Novello S, Gottfried M, Brueckl W, Radonjic D, Kaiser R, Heymach J. Anti-angiogenic agents for NSCLC following first-line immunotherapy: Rationale, recent updates, and future perspectives. Lung Cancer 2023; 179:107173. [PMID: 36940614 DOI: 10.1016/j.lungcan.2023.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The implementation of immune checkpoint inhibitors (ICIs), with or without chemotherapy, as first-line treatment for patients who do not have actionable mutations has proved to be a major paradigm shift in the management of advanced non-small cell lung cancer (NSCLC). However, the transition of ICIs, such as pembrolizumab and nivolumab, to a first-line setting has left an unmet need for effective second-line treatment options, which is an area of intense research. In 2020, we reviewed the biological and mechanistic rationale for anti-angiogenic agents in combination with, or following, immunotherapy with the aim of eliciting a so called 'angio-immunogenic' switch in the tumor microenvironment. Here, we review the latest clinical evidence of the benefits of incorporating anti-angiogenic agents into treatment regimens. While there is a paucity of prospective data, several recent observational studies indicate that the marketed anti-angiogenic drugs, nintedanib or ramucirumab, are effective in combination with docetaxel following immuno-chemotherapy. Addition of anti-angiogenics, like bevacizumab, have also demonstrated clinical benefit when combined with first-line immuno-chemotherapy regimens. Ongoing clinical trials are assessing these agents in combination with ICIs, with encouraging early results (e.g., ramucirumab plus pembrolizumab in LUNG-MAP S1800A). Also, several emerging anti-angiogenic agents combined with ICIs are currently being assessed in phase III trials following immunotherapy, including lenvatinib (LEAP-008), and sitravatinib (SAPPHIRE) It is hoped that these trials will help expand second-line treatment options in patients with NSCLC. Areas of focus in the future will include further molecular dissection of the mechanisms of resistance to immunotherapy and the various response-progression profiles to immunotherapy observed in the clinic and the monitoring of the dynamics of immunomodulation over the course of treatment. Improved understanding of these phenomena may help identify clinical biomarkers and inform the optimal use of anti-angiogenics in the treatment of individual patients.
Collapse
Affiliation(s)
- Martin Reck
- Department of Thoracic Oncology, Airway Research Center North (ARCN) Member of the German Center for Lung Research (DZL), LungenClinic, Großhansdorf, Germany.
| | - Sanjay Popat
- Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | | | - Jesus Corral
- Clínica Universidad de Navarra en Madrid, Madrid, Spain
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | | | - Wolfgang Brueckl
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Nuremberg Lung Cancer Center, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Dejan Radonjic
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Rolf Kaiser
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany; Institute of Pharmacology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - John Heymach
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Zhao J, Yu X, Huang D, Ma Z, Gao B, Cui J, Chu Q, Zhou Q, Sun M, Day D, Wu J, Pan H, Wang L, Voskoboynik M, Wang Z, Liu Y, Li H, Zhang J, Peng Y, Wu YL. SAFFRON-103: a phase 1b study of the safety and efficacy of sitravatinib combined with tislelizumab in patients with locally advanced or metastatic non-small cell lung cancer. J Immunother Cancer 2023; 11:jitc-2022-006055. [PMID: 36808075 PMCID: PMC9944269 DOI: 10.1136/jitc-2022-006055] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Some patients with locally advanced/metastatic non-small cell lung cancer (NSCLC) respond poorly to anti-programmed cell death protein 1 (PD-1)/anti-programmed death-ligand 1 (PD-L1) treatments. Combination with other agents may improve the outcomes. This open-label, multicenter, phase 1b trial investigated the combination of sitravatinib, a spectrum-selective tyrosine kinase inhibitor, plus anti-PD-1 antibody tislelizumab. METHODS Patients with locally advanced/metastatic NSCLC were enrolled (Cohorts A, B, F, H, and I; N=22-24 per cohort). Cohorts A and F included patients previously treated with systemic therapy, with anti-PD-(L)1-resistant/refractory non-squamous (cohort A) or squamous (cohort F) disease. Cohort B included patients previously treated with systemic therapy, with anti-PD-(L)1-naïve non-squamous disease. Cohorts H and I included patients without prior systemic therapy for metastatic disease, no prior anti-PD-(L)1/immunotherapy, with PD-L1-positive non-squamous (cohort H) or squamous (cohort I) histology. Patients received sitravatinib 120 mg orally one time per day plus tislelizumab 200 mg intravenously every 3 weeks, until study withdrawal, disease progression, unacceptable toxicity, or death. The primary endpoint was safety/tolerability among all treated patients (N=122). Secondary endpoints included investigator-assessed tumor responses and progression-free survival (PFS). RESULTS Median follow-up was 10.9 months (range: 0.4-30.6). Treatment-related adverse events (TRAEs) occurred in 98.4% of the patients, with ≥Grade 3 TRAEs in 51.6%. TRAEs led to discontinuation of either drug in 23.0% of the patients. Overall response rate was 8.7% (n/N: 2/23; 95% CI: 1.1% to 28.0%), 18.2% (4/22; 95% CI: 5.2% to 40.3%), 23.8% (5/21; 95% CI: 8.2% to 47.2%), 57.1% (12/21; 95% CI: 34.0% to 78.2%), and 30.4% (7/23; 95% CI: 13.2% to 52.9%) in cohorts A, F, B, H, and I, respectively. Median duration of response was not reached in cohort A and ranged from 6.9 to 17.9 months across other cohorts. Disease control was achieved in 78.3-90.9% of the patients. Median PFS ranged from 4.2 (cohort A) to 11.1 months (cohort H). CONCLUSIONS In patients with locally advanced/metastatic NSCLC, sitravatinib plus tislelizumab was tolerable for most patients, with no new safety signals and overall safety profiles consistent with known profiles of these agents. Objective responses were observed in all cohorts, including in patients naïve to systemic and anti-PD-(L)1 treatments, or with anti-PD-(L)1 resistant/refractory disease. Results support further investigation in selected NSCLC populations. TRIAL REGISTRATION NUMBER NCT03666143.
Collapse
Affiliation(s)
- Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xinmin Yu
- Department of Medical Oncology, Cancer Hospital of University of Chinese Academy of Sciences & Zhejiang Cancer Hospital, Hangzhou, China
| | - Dingzhi Huang
- Department of Thoracic Medical Oncology, Tianjin Cancer Hospital, Tianjin, China
| | - Zhiyong Ma
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University; Henan Cancer Hospital, Zhengzhou, China
| | - Bo Gao
- Blacktown Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Wuhan, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Daphne Day
- Medical Oncology, Monash Health and Monash University, Melbourne, Victoria, Australia
| | - Jingxun Wu
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | | | - Mark Voskoboynik
- Medical Oncology, Nucleus Network, Melbourne, VIC, Australia and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Zhehai Wang
- Department of Internal Medicine - Oncology, Shandong Cancer Hospital & Institute, Jinan, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Hui Li
- BeiGene (Shanghai) Co., Ltd, Shanghai, China
| | - Juan Zhang
- BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Yanyan Peng
- BeiGene (Shanghai) Co., Ltd, Shanghai, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
16
|
Guo X, Chen S, Wang X, Liu X. Immune-related pulmonary toxicities of checkpoint inhibitors in non-small cell lung cancer: Diagnosis, mechanism, and treatment strategies. Front Immunol 2023; 14:1138483. [PMID: 37081866 PMCID: PMC10110908 DOI: 10.3389/fimmu.2023.1138483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) therapy based on programmed cell death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) has changed the treatment paradigm of advanced non-small cell lung cancer (NSCLC) and improved the survival expectancy of patients. However, it also leads to immune-related adverse events (iRAEs), which result in multiple organ damage. Among them, the most common one with the highest mortality in NSCLC patients treated with ICI is checkpoint inhibitor pneumonitis (CIP). The respiratory signs of CIP are highly coincident and overlap with those in primary lung cancer, which causes difficulties in detecting, diagnosing, managing, and treating. In clinical management, patients with serious CIP should receive immunosuppressive treatment and even discontinue immunotherapy, which impairs the clinical benefits of ICIs and potentially results in tumor recrudesce. Therefore, accurate diagnosis, detailedly dissecting the pathogenesis, and developing reasonable treatment strategies for CIP are essential to prolong patient survival and expand the application of ICI. Herein, we first summarized the diagnosis strategies of CIP in NSCLC, including the classical radiology examination and the rising serological test, pathology test, and artificial intelligence aids. Then, we dissected the potential pathogenic mechanisms of CIP, including disordered T cell subsets, the increase of autoantibodies, cross-antigens reactivity, and the potential role of other immune cells. Moreover, we explored therapeutic approaches beyond first-line steroid therapy and future direction based on targeted signaling pathways. Finally, we discussed the current impediments, future trends, and challenges in fighting ICI-related pneumonitis.
Collapse
|
17
|
Samarth N, Gulhane P, Singh S. Immunoregulatory framework and the role of miRNA in the pathogenesis of NSCLC - A systematic review. Front Oncol 2022; 12:1089320. [PMID: 36620544 PMCID: PMC9811680 DOI: 10.3389/fonc.2022.1089320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
With a 5-year survival rate of only 15%, non-small cell lung cancer (NSCLC), the most common kind of lung carcinoma and the cause of millions of deaths annually, has drawn attention. Numerous variables, such as disrupted signaling caused by somatic mutations in the EGFR-mediated RAS/RAF/MAPK, PI3K/AKT, JAK/STAT signaling cascade, supports tumour survival in one way or another. Here, the tumour microenvironment significantly contributes to the development of cancer by thwarting the immune response. MicroRNAs (miRNAs) are critical regulators of gene expression that can function as oncogenes or oncosuppressors. They have a major influence on the occurrence and prognosis of NSCLC. Though, a myriad number of therapies are available and many are being clinically tested, still the drug resistance, its adverse effect and toxicity leading towards fatality cannot be ruled out. In this review, we tried to ascertain the missing links in between perturbed EGFR signaling, miRNAs favouring tumorigenesis and the autophagy mechanism. While connecting all the aforementioned points multiple associations were set, which can be targeted in order to combat NSCLC. Here, we tried illuminating designing synthetically engineered circuits with the toggle switches that might lay a prototype for better therapeutic paradigm.
Collapse
Affiliation(s)
| | | | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, India
| |
Collapse
|
18
|
Della Corte CM, Fasano M, Ciaramella V, Cimmino F, Cardnell R, Gay CM, Ramkumar K, Diao L, Di Liello R, Viscardi G, Famiglietti V, Ciardiello D, Martini G, Napolitano S, Tuccillo C, Troiani T, Martinelli E, Wang J, Byers L, Morgillo F, Ciardiello F. Anti-tumor activity of cetuximab plus avelumab in non-small cell lung cancer patients involves innate immunity activation: findings from the CAVE-Lung trial. J Exp Clin Cancer Res 2022; 41:109. [PMID: 35346313 PMCID: PMC8962159 DOI: 10.1186/s13046-022-02332-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background We recently conducted Cetuximab-AVElumab-Lung (CAVE-Lung), a proof-of-concept, translational and clinical trial, to evaluate the combination of two IgG1 monoclonal antibodies (mAb): avelumab, an anti-PD-L1 drug, and cetuximab, an anti-epidermal growth factor receptor (EGFR) drug, as second- or third-line treatment in non-small cell lung cancer (NSCLC) patients. We have reported clinically relevant anti-tumor activity in 6/16 patients. Clinical benefit was accompanied by Natural Killer (NK) cell-mediated antibody-dependent cell cytotoxicity (ADCC). Among the 6 responding patients, 3 had progressed after initial response to a previous treatment with single agent anti-PD-1, nivolumab or pembrolizumab. Methods We report long-term clinical follow-up and additional findings on the anti-tumor activity and on the immune effects of cetuximab plus avelumab treatment for these 3 patients. Results As of November 30, 2021, 2/3 patients were alive. One patient was still on treatment from 34 months, while the other two patients had progression free survival (PFS) of 15 and 19 months, respectively. Analysis of serially collected peripheral blood mononuclear cells (PBMC) revealed long-term activation of NK cell-mediated ADCC. Comprehensive genomic profile analysis found somatic mutations and germline rare variants in DNA damage response (DDR) genes. Furthermore, by transcriptomic analysis of The Cancer Genome Atlas (TCGA) dataset we found that DDR mutant NSCLC displayed high STING pathway gene expression. In NSCLC patient-derived three-dimensional in vitro spheroid cultures, cetuximab plus avelumab treatment induced additive cancer cell growth inhibition as compared to single agent treatment. This effect was partially blocked by treatment with an anti-CD16 mAb, suggesting a direct involvement of NK cell activation. Furthermore, cetuximab plus avelumab treatment induced 10-, 20-, and 20-fold increase, respectively, in the gene expression of CCL5 and CXCL10, two STING downstream effector cytokines, and of interferon β, as compared to untreated control samples. Conclusions DDR mutations may contribute to DDR-induced STING pathway with sustained innate immunity activation following cetuximab plus avelumab combination in previously treated, PD-1 inhibitor responsive NSCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02332-2.
Collapse
|
19
|
Ghazi B, El Ghanmi A, Kandoussi S, Ghouzlani A, Badou A. CAR T-cells for colorectal cancer immunotherapy: Ready to go? Front Immunol 2022; 13:978195. [PMID: 36458008 PMCID: PMC9705989 DOI: 10.3389/fimmu.2022.978195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/14/2022] [Indexed: 08/12/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cells represent a new genetically engineered cell-based immunotherapy tool against cancer. The use of CAR T-cells has revolutionized the therapeutic approach for hematological malignancies. Unfortunately, there is a long way to go before this treatment can be developed for solid tumors, including colorectal cancer. CAR T-cell therapy for colorectal cancer is still in its early stages, and clinical data are scarce. Major limitations of this therapy include high toxicity, relapses, and an impermeable tumor microenvironment for CAR T-cell therapy in colorectal cancer. In this review, we summarize current knowledge, highlight challenges, and discuss perspectives regarding CAR T-cell therapy in colorectal cancer.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Adil El Ghanmi
- Mohammed VI International University Hospital, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
20
|
Zhai WY, Duan FF, Wang YZ, Wang JY, Zhao ZR, Lin YB, Rao BY, Chen S, Zheng L, Long H. Integrative Analysis of Bioinformatics and Machine Learning Algorithms Identifies a Novel Diagnostic Model Based on Costimulatory Molecule for Predicting Immune Microenvironment Status in Lung Adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1433-1447. [PMID: 35948079 DOI: 10.1016/j.ajpath.2022.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Costimulatory molecules are an indispensable signal for activating immune cells. However, the features of many costimulatory molecule genes (CMGs) in lung adenocarcinoma (LUAD) are poorly understood. This study systematically explored expression patterns of CMGs in the tumor immune microenvironment (TIME) status of patients with LUAD. Their expression profiles were downloaded from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Two robust TIME subtypes ("hot" and "cold") were classified by K-means clustering and estimation of stromal and immune cells in malignant tumor tissues using expression data. The "hot" subtype presented higher infiltration in activated immune cells and enrichments in the immune cell receptor signaling pathway and adaptive immune response. Three CMGs (CD80, LTB, and TNFSF8) were screened as final diagnostic markers by means of Least Absolute Shrinkage Selection Operator and Support Vector Machine-Recursive Feature Elimination algorithms. Accordingly, the diagnostic nomogram for predicting individualized TIME status showed satisfactory diagnostic accuracy in The Cancer Genome Atlas training cohort as well as GSE31210 and GSE180347 validation cohorts. Immunohistochemistry staining of 16 specimens revealed an apparently positive correlation between the expression of CMG biomarkers and pathologic response to immunotherapy. Thus, this diagnostic nomogram provided individualized predictions in TIME status of LUAD patients with good predictive accuracy, which could serve as a potential tool for identifying ideal candidates for immunotherapy.
Collapse
Affiliation(s)
- Wen-Yu Zhai
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Fang-Fang Duan
- Department of Medical Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi-Zhi Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Ye Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Ze-Rui Zhao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yao-Bin Lin
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Bing-Yu Rao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Si Chen
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Lie Zheng
- Medical Imaging Division, Department of Medical Imaging and Interventional Radiology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Hao Long
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
21
|
Duan F, Wang W, Zhai W, Wang J, Zhao Z, Zheng L, Rao B, Zhou Y, Long H, Lin Y. A novel diagnostic model for predicting immune microenvironment subclass based on costimulatory molecules in lung squamous carcinoma. Front Genet 2022; 13:1078790. [PMID: 36588791 PMCID: PMC9795004 DOI: 10.3389/fgene.2022.1078790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
There is still no ideal predictive biomarker for immunotherapy response among patients with non-small cell lung cancer. Costimulatory molecules play a role in anti-tumor immune response. Hence, they can be a potential biomarker for immunotherapy response. The current study comprehensively investigated the expression of costimulatory molecules in lung squamous carcinoma (LUSC) and identified diagnostic biomarkers for immunotherapy response. The costimulatory molecule gene expression profiles of 627 patients were obtained from the The Cancer Genome Atlas, GSE73403, and GSE37745 datasets. Patients were divided into different clusters using the k-means clustering method and were further classified into two discrepant tumor microenvironment (TIME) subclasses (hot and cold tumors) according to the immune score of the ESTIMATE algorithm. A high proportion of activated immune cells, including activated memory CD4 T cells, CD8 T cells, and M1 macrophages. Five CMGs (FAS, TNFRSF14, TNFRSF17, TNFRSF1B, and TNFSF13B) were considered as diagnostic markers using the Least Absolute Shrinkage and Selection Operator and the Support Vector Machine-Recursive Feature Elimination machine learning algorithms. Based on the five CMGs, a diagnostic nomogram for predicting individual tumor immune microenvironment subclasses in the TCGA dataset was developed, and its predictive performance was validated using GSE73403 and GSE37745 datasets. The predictive accuracy of the diagnostic nomogram was satisfactory in all three datasets. Therefore, it can be used to identify patients who may benefit more from immunotherapy.
Collapse
Affiliation(s)
- Fangfang Duan
- Department of Medical Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Weisen Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wenyu Zhai
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Junye Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Zerui Zhao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Lie Zheng
- Medical Imaging Division, Department of Medical Imaging and Interventional Radiology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bingyu Rao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yuheng Zhou
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Hao Long
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yaobin Lin, ; Hao Long,
| | - Yaobin Lin
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yaobin Lin, ; Hao Long,
| |
Collapse
|