1
|
Farhat J, Alzyoud L, AlWahsh M, Acharjee A, Al‐Omari B. Advancing Precision Medicine: The Role of Genetic Testing and Sequencing Technologies in Identifying Biological Markers for Rare Cancers. Cancer Med 2025; 14:e70853. [PMID: 40249565 PMCID: PMC12007469 DOI: 10.1002/cam4.70853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Accepted: 03/26/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Genetic testing and sequencing technologies offer a comprehensive understanding of cancer genetics, providing rapid and cost-effective solutions. In particular, these advanced technologies play an important role in assessing the complexities of the rare cancer types affecting several systems including the bone, endocrine, digestive, vascular, and soft tissue. This review will explore how genetic testing and sequencing technologies have contributed to the identification of biomarkers across several rare cancer types in diagnostic, therapeutic, and prognostic stages, thereby advancing PM. METHODS A comprehensive literature search was conducted across PubMed (MEDLINE), EMBASE, and Web of Science using keywords related to sequencing technologies, genetic testing, and cancer. There were no restrictions on language, methodology, age, or publication date. Both primary and secondary research involving humans or animals were considered. RESULTS In practice, fluorescence in situ hybridization, karyotype, microarrays and other genetic tests are mainly applied to identify specific genetic alterations and mutations associated with cancer progression. Sequencing technologies, such as next generation sequencing, polymerase chain reaction, whole genome or exome sequencing, enable the rapid analysis of millions of DNA fragments. These techniques assess genome structure, genetic changes, gene expression profiles, and epigenetic variations. Consequently, they help detect main intrinsic markers that are crucial for personalizing diagnosis, treatment options, and prognostic assessments, leading to better patient prognosis. This highlights why these methods are now considered as primary tools in rare cancer research. However, these methods still face multiple limitations, including false positive results, limited precision, and high costs. CONCLUSION Genetic testing and sequencing technologies have significantly advanced the field of rare cancer research by enabling the identification of key biomarkers for precision diagnosis, treatment, and prognosis. Despite existing limitations, their integration into clinical and research fields continues to improve the development of personalized medicine strategies for rare and complex cancer types.
Collapse
Affiliation(s)
- Joviana Farhat
- Department of Epidemiology and Population Health, College of Medicine and Health SciencesKhalifa UniversityAbu DhabiUAE
| | - Lara Alzyoud
- College of PharmacyAl Ain UniversityAbu DhabiUAE
- Health and Biomedical Research CenterAl Ain UniversityAbu DhabiUAE
| | - Mohammad AlWahsh
- Leibniz‐Institut Für Analytische Wissenschaften‐ISAS e.V.DortmundGermany
- Institute of Pathology and Medical Research Center (ZMF) University Medical Center MannheimHeid Elberg UniversityMannheimGermany
- Department of Pharmacy, Faculty of PharmacyAlZaytoonah University of JordanAmmanJordan
| | - Animesh Acharjee
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Basem Al‐Omari
- Department of Epidemiology and Population Health, College of Medicine and Health SciencesKhalifa UniversityAbu DhabiUAE
| |
Collapse
|
2
|
Kazansky Y, Mueller HS, Cameron D, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Mundi PS, Kuwahara Y, Somwar R, Qu R, Califano A, de Stanchina E, Dela Cruz FS, Kung AL, Gounder MM, Kentsis A. Epigenetic targeting of PGBD5-dependent DNA damage in SMARCB1-deficient sarcomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.03.592420. [PMID: 38766189 PMCID: PMC11100591 DOI: 10.1101/2024.05.03.592420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Despite the potential of targeted epigenetic therapies, most cancers do not respond to current epigenetic drugs. The Polycomb repressive complex EZH2 inhibitor tazemetostat was recently approved for the treatment of SMARCB1-deficient epithelioid sarcomas, based on the functional antagonism between PRC2 and loss of SMARCB1. Through the analysis of tazemetostat-treated patient tumors, we recently defined key principles of their response and resistance to EZH2 epigenetic therapy. Here, using transcriptomic inference from SMARCB1-deficient tumor cells, we nominate the DNA damage repair kinase ATR as a target for rational combination EZH2 epigenetic therapy. We show that EZH2 inhibition promotes DNA damage in epithelioid and rhabdoid tumor cells, at least in part via its induction of the transposase-derived PGBD5. We leverage this collateral synthetic lethal dependency to target PGBD5-dependent DNA damage by inhibition of ATR but not CHK1 using elimusertib. Consequently, combined EZH2 and ATR inhibition improves therapeutic responses in diverse patient-derived epithelioid and rhabdoid tumors in vivo. This advances a combination epigenetic therapy based on EZH2-PGBD5 synthetic lethal dependency suitable for immediate translation to clinical trials for patients.
Collapse
Affiliation(s)
- Yaniv Kazansky
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen S. Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Prabhjot S. Mundi
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Chan Zuckerberg Biohub, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
3
|
Perotti D, O'Sullivan MJ, Walz AL, Davick J, Al-Saadi R, Benedetti DJ, Brzezinski J, Ciceri S, Cost NG, Dome JS, Drost J, Evageliou N, Furtwängler R, Graf N, Maschietto M, Mullen EA, Murphy AJ, Ortiz MV, van der Beek JN, Verschuur A, Wegert J, Williams R, Spreafico F, Geller JI, van den Heuvel-Eibrink MM, Hong AL. Hallmark discoveries in the biology of non-Wilms tumour childhood kidney cancers. Nat Rev Urol 2025:10.1038/s41585-024-00993-6. [PMID: 39881003 DOI: 10.1038/s41585-024-00993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Approximately 20% of paediatric and adolescent/young adult patients with renal tumours are diagnosed with non-Wilms tumour, a broad heterogeneous group of tumours that includes clear-cell sarcoma of the kidney, congenital mesoblastic nephroma, malignant rhabdoid tumour of the kidney, renal-cell carcinoma, renal medullary carcinoma and other rare histologies. The differential diagnosis of these tumours dates back many decades, when these pathologies were identified initially through clinicopathological observation of entities with outcomes that diverged from Wilms tumour, corroborated with immunohistochemistry and molecular cytogenetics and, subsequently, through next-generation sequencing. These advances enabled near-definitive recognition of different tumours and risk stratification of patients. In parallel, the generation of new renal-tumour models of some of these pathologies including cell lines, organoids, xenografts and genetically engineered mouse models improved our understanding of the development of these tumours and have facilitated the identification of new therapeutic targets. Despite these many achievements, paediatric and adolescent/young adult patients continue to die from such rare cancers at higher rates than patients with Wilms tumour. Thus, international coordinated efforts are needed to answer unresolved questions and improve outcomes.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Histopathology, School of Medicine, Trinity College, Dublin, Ireland
- Departments of Histopathology and Paediatrics, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Amy L Walz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan Davick
- University of Iowa Hospitals and Clinics Stead Family Children's Hospital, Carver College of Medicine, Iowa City, IA, USA
| | - Reem Al-Saadi
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Daniel J Benedetti
- Division of Pediatric Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Nicholas G Cost
- Department of Surgery, Division of Urology, University of Colorado School of Medicine and the Surgical Oncology Program at Children's Hospital Colorado, Denver, CO, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Rhoikos Furtwängler
- Pediatric Hematology and Oncology, Children's Hospital, Inselspital Bern University, Bern, Switzerland
- Childhood Renal Tumour Center Saarland University, Homburg, Germany
| | - Norbert Graf
- Department Paediatric Oncology & Hematology, Saarland University, Homburg, Germany
| | | | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Andrew J Murphy
- St. Jude Children's Research Hospital Memphis, Memphis, TN, USA
| | | | - Justine N van der Beek
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arnauld Verschuur
- Department of Pediatric Hematology and Oncology, Hôpital d'Enfants de la Timone, APHM, Marseille, France
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Richard Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Filippo Spreafico
- Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
4
|
Kes MMG, Morales-Rodriguez F, Zaal EA, de Souza T, Proost N, van de Ven M, van den Heuvel-Eibrink MM, Jansen JWA, Berkers CR, Drost J. Metabolic profiling of patient-derived organoids reveals nucleotide synthesis as a metabolic vulnerability in malignant rhabdoid tumors. Cell Rep Med 2025; 6:101878. [PMID: 39708810 PMCID: PMC11866552 DOI: 10.1016/j.xcrm.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Malignant rhabdoid tumor (MRT) is one of the most aggressive childhood cancers for which no effective treatment options are available. Reprogramming of cellular metabolism is an important hallmark of cancer, with various metabolism-based drugs being approved as a cancer treatment. In this study, we use patient-derived tumor organoids (tumoroids) to map the metabolic landscape of several pediatric cancers. Combining gene expression analyses and metabolite profiling using mass spectrometry, we find nucleotide biosynthesis to be a particular vulnerability of MRT. Treatment of MRT tumoroids with de novo nucleotide synthesis inhibitors methotrexate (MTX) and BAY-2402234 lowers nucleotide levels in MRT tumoroids and induces apoptosis. Lastly, we demonstrate in vivo efficacy of MTX in MRT patient-derived xenograft (PDX) mouse models. Our study reveals nucleotide biosynthesis as an MRT-specific metabolic vulnerability, which can ultimately lead to better treatment options for children suffering from this lethal pediatric malignancy.
Collapse
Affiliation(s)
- Marjolein M G Kes
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Francisco Morales-Rodriguez
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Esther A Zaal
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Terezinha de Souza
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Natalie Proost
- Preclinical Intervention Unit of the Mouse Clinic for Cancer and Ageing (MCCA), Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit of the Mouse Clinic for Cancer and Ageing (MCCA), Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Division of Child Health, Wilhelmina Children's Hospital, Utrecht University, Utrecht, the Netherlands
| | - Jeroen W A Jansen
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Celia R Berkers
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Sasaki M, Kato D, Yoshida H, Shimizu T, Ogiwara H. Efficacy of CBP/p300 Dual Inhibitors against Derepression of KREMEN2 in cBAF-Deficient Cancers. CANCER RESEARCH COMMUNICATIONS 2025; 5:24-38. [PMID: 39625239 PMCID: PMC11701801 DOI: 10.1158/2767-9764.crc-24-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
SIGNIFICANCE In this study, we clarified that the cBAF subcomplex is deficient in the SWI/SNF complex, resulting in dependency on the CBP/p300 paralog pair. Simultaneous inhibitors of the CBP/p300 paralog pair show promise for cBAF-deficient lung cancer, as well as rare cancers such as malignant rhabdoid tumors, epithelioid sarcomas, and synovial sarcomas.
Collapse
Affiliation(s)
- Mariko Sasaki
- Division of Cancer Therapeutics, National Cancer Center Research Institute, Tokyo, Japan
| | - Daiki Kato
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, Osaka, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Hideaki Ogiwara
- Division of Cancer Therapeutics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
6
|
Sasaki M, Ogiwara H. Efficacy of glutathione inhibitor eprenetapopt against the vulnerability of glutathione metabolism in SMARCA4-, SMARCB1- and PBRM1-deficient cancer cells. Sci Rep 2024; 14:31321. [PMID: 39732845 PMCID: PMC11682300 DOI: 10.1038/s41598-024-82753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Mutation of genes related to the SWI/SNF chromatin remodeling complex is detected in 20% of all cancers. The SWI/SNF chromatin remodeling complex comprises about 15 subunits and is classified into three subcomplexes: cBAF, PBAF, and ncBAF. Previously, we showed that ovarian clear cell carcinoma cells deficient in ARID1A, a subunit of the cBAF complex, are synthetic lethal with several genes required for glutathione (GSH) synthesis and are therefore sensitive to the GSH inhibitor eprenetapopt (APR-246). However, we do not know whether cancer cells deficient in SWI/SNF components other than ARID1A are selectively sensitive to treatment with eprenetapopt. Here, we show that SMARCA4-, SMARCB1-, and PBRM1-deficient cells are more sensitive to eprenetapopt than SWI/SNF-proficient cells. We found that deficiency of SMARCA4, SMARCB1, or PBRM1 attenuates transcription of the SLC7A11 gene (which supplies cysteine as a raw metabolic material for GSH synthesis) by the failure of recruitment of cBAF and PBAF to the promotor and enhancer regions of the SLC7A11 locus, thereby reducing basal levels of GSH. In addition, eprenetapopt decreased the amount of intracellular GSH and increased the intracellular amount of reactive oxygen species (ROS), followed by induction of apoptosis. Taken together, eprenetapopt could be a promising selective agent for SWI/SNF-deficient cancer cells derived from SMARCA4-deficient lung cancers, SMARCB1-deficient rhabdoid tumors, and PBRM1-deficient kidney cancers.
Collapse
Affiliation(s)
- Mariko Sasaki
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hideaki Ogiwara
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
7
|
Nguyen LT, Hains AE, Aziz-Zanjani MO, Dalsass M, Farooqee SBUD, Lu Y, Jackson PK, Van Rechem C. Absence of SMARCB1 in rhabdoid tumor cells increases sensitivity to translation inhibition and alters translation efficiency of specific mRNAs. J Biol Chem 2024; 300:107988. [PMID: 39542244 PMCID: PMC11699736 DOI: 10.1016/j.jbc.2024.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Rhabdoid tumors, characterized and driven by the loss of the mammalian SWItch/sucrose nonfermentable subunit SMARCB1, are very aggressive childhood cancers that can arise in the brain, the kidney, or soft tissues. Cell lines derived from these tumors are specifically sensitivity to the translation inhibitor homoharringtonine. Having recently demonstrated mammalian SWItch/sucrose nonfermentable roles in translation, we assessed SMARCB1 potential roles in translation in rhabdoid tumor cells. We first revealed by cell viability assays that rhabdoid tumor cells' sensitivity to homoharringtonine were dependent on the absence of SMARCB1. Polysome profiling and immunoprecipitation experiments demonstrated the interaction of SMARCB1 with translation machinery. Global translation assays and ribosome profiling experiments further revealed that SMARCB1 re-expression increased global translation and altered translation efficiency of specific mRNAs. Most regulated mRNAs presented an increased translation efficiency and were involved in differentiation. In comparison with the entire transcriptome, these mRNAs presented a longer coding sequence and were enriched in GC. Finally, we demonstrated that SMARCB1 re-expression increased cytoplasmic localization of these mRNAs and that gene encoding these transcripts were bound by SMARCA4 and SMARCC1. In conclusion, this study reveals that the loss of SMARCB1 in rhabdoid tumors has specific consequences on mRNAs translation with potential to unveil new dependencies.
Collapse
Affiliation(s)
- Linh T Nguyen
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Anastasia E Hains
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Mohammad O Aziz-Zanjani
- Department of Pathology, Stanford University, Stanford, California, USA; Department of Microbiology & Immunology, Stanford University, Stanford, California, USA; Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, California, USA
| | - Mattia Dalsass
- Immagina Biotechnology S.r.l., Pergine Valsugana, Trento, Italy
| | | | - Yingzhou Lu
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Peter K Jackson
- Department of Pathology, Stanford University, Stanford, California, USA; Department of Microbiology & Immunology, Stanford University, Stanford, California, USA; Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, California, USA
| | | |
Collapse
|
8
|
Golbourn B, Ho B, Bondoc A, Luck A, Fan X, Richardson E, Marcellus R, Prakesch M, Halbert M, Agrawal N, Smith C, Huang A, Rutka JT. A kinome drug screen identifies multi-TKI synergies and ERBB2 signaling as a therapeutic vulnerability in MYC/TYR subgroup atypical teratoid rhabdoid tumors. Neuro Oncol 2024; 26:1895-1911. [PMID: 38981018 PMCID: PMC11448967 DOI: 10.1093/neuonc/noae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor (ATRT) is a rare, devastating, and largely incurable pediatric brain tumor. Although recent studies have uncovered 3 molecular subgroups of ATRTs with distinct disease patterns, and signaling features, the therapeutic profiles of ATRT subgroups remain incompletely elucidated. METHODS We examined the effect of 465 kinase inhibitors on a panel of ATRT subgroup-specific cell lines. We then applied multiomics analyses to investigate the underlying molecular mechanism of kinase inhibitor efficacy in ATRT subgroups. RESULTS We observed that ATRT cell lines are broadly sensitive to inhibitors of the PI3K and MAPK signaling pathways, as well as CDKs, AURKA/B kinases, and polo-like kinase 1. We identified 2 classes of multikinase inhibitors predominantly targeting receptor tyrosine kinases including PDGFR and EGFR/ERBB2 in MYC/TYR ATRT cells. The PDGFRB inhibitor, Dasatinib, synergistically affected MYC/TYR ATRT cell growth when combined with broad-acting PI3K and MAPK pathway inhibitors, including Rapamycin and Trametinib. We observed that MYC/TYR ATRT cells were also distinctly sensitive to various inhibitors of ERBB2 signaling. Transcriptional, H3K27Ac ChIPSeq, ATACSeq, and HiChIP analyses of primary MYC/TYR ATRTs revealed ERBB2 expression, which correlated with differential methylation and activation of a distinct enhancer element by DNA looping. Significantly, we show the brain penetrant EGFR/ERBB2 inhibitor, Afatinib, specifically inhibited in vitro and in vivo growth of MYC/TYR ATRT cells. CONCLUSIONS Taken together, our studies suggest combined treatments with PDGFR and ERBB2-directed TKIs with inhibitors of the PI3K and MAPK pathways as an important new therapeutic strategy for the MYC/TYR subgroup of ATRTs.
Collapse
Affiliation(s)
- Brian Golbourn
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ben Ho
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew Bondoc
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Luck
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaolian Fan
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Richardson
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mathew Halbert
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nishant Agrawal
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian Smith
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - James T Rutka
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Sasaki M, Kato D, Murakami K, Yoshida H, Takase S, Otsubo T, Ogiwara H. Targeting dependency on a paralog pair of CBP/p300 against de-repression of KREMEN2 in SMARCB1-deficient cancers. Nat Commun 2024; 15:4770. [PMID: 38839769 PMCID: PMC11153594 DOI: 10.1038/s41467-024-49063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex, is the causative gene of rhabdoid tumors and epithelioid sarcomas. Here, we identify a paralog pair of CBP and p300 as a synthetic lethal target in SMARCB1-deficient cancers by using a dual siRNA screening method based on the "simultaneous inhibition of a paralog pair" concept. Treatment with CBP/p300 dual inhibitors suppresses growth of cell lines and tumor xenografts derived from SMARCB1-deficient cells but not from SMARCB1-proficient cells. SMARCB1-containing SWI/SNF complexes localize with H3K27me3 and its methyltransferase EZH2 at the promotor region of the KREMEN2 locus, resulting in transcriptional downregulation of KREMEN2. By contrast, SMARCB1 deficiency leads to localization of H3K27ac, and recruitment of its acetyltransferases CBP and p300, at the KREMEN2 locus, resulting in transcriptional upregulation of KREMEN2, which cooperates with the SMARCA1 chromatin remodeling complex. Simultaneous inhibition of CBP/p300 leads to transcriptional downregulation of KREMEN2, followed by apoptosis induction via monomerization of KREMEN1 due to a failure to interact with KREMEN2, which suppresses anti-apoptotic signaling pathways. Taken together, our findings indicate that simultaneous inhibitors of CBP/p300 could be promising therapeutic agents for SMARCB1-deficient cancers.
Collapse
Affiliation(s)
- Mariko Sasaki
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Daiki Kato
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Karin Murakami
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shohei Takase
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tsuguteru Otsubo
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Hideaki Ogiwara
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
10
|
Mironova E, Molinas S, Pozo VD, Bandyopadhyay AM, Lai Z, Kurmashev D, Schneider EL, Santi DV, Chen Y, Kurmasheva RT. Synergistic Antitumor Activity of Talazoparib and Temozolomide in Malignant Rhabdoid Tumors. Cancers (Basel) 2024; 16:2041. [PMID: 38893160 PMCID: PMC11171327 DOI: 10.3390/cancers16112041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Malignant rhabdoid tumors (MRTs) are among the most aggressive and treatment-resistant malignancies affecting infants, originating in the kidney, brain, liver, and soft tissues. The 5-year event-free survival rate for these cancers is a mere 20%. In nearly all cases of MRT, the SMARCB1 gene (occasionally SMARCA4)-a pivotal component of the SWI/SNF chromatin remodeling complex-is homozygously deleted, although the precise etiology of these tumors remains unknown. While young patients with localized MRT generally show improved outcomes, especially those who are older and have early-stage disease, the overall prognosis remains poor despite optimal standard treatments. This highlights the urgent need for more effective treatment strategies. We investigated the antitumor activity of a PARP1 inhibitor (talazoparib, TLZ) combined with a DNA alkylating agent (temozolomide, TMZ) in MRT xenograft models. PARP1 is a widely targeted molecule in cancer treatment and, beyond its role in DNA repair, it participates in transcriptional regulation by recruiting chromatin remodeling complexes to modulate DNA accessibility for RNA polymerases. To widen the therapeutic window of the drug combination, we employed PEGylated TLZ (PEG~TLZ), which has been reported to reduce systemic toxicity through slow drug release. Remarkably, our findings indicate that five out of six MRT xenografts exhibited an objective response to PEG~TLZ+TMZ therapy. Significantly, the loss of SMARCB1 was found to confer a protective effect, correlating with higher expression levels of DNA damage and repair proteins in SMARCB1-deficient MRT cells. Additionally, we identified MGMT as a potential biomarker indicative of in vivo MRT response to PEG~TLZ+TMZ therapy. Moreover, our analysis revealed alterations in signaling pathways associated with the observed antitumor efficacy. This study presents a novel and efficacious therapeutic approach for MRT, along with a promising candidate biomarker for predicting tumor response.
Collapse
Affiliation(s)
- Elena Mironova
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Sebastian Molinas
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Vanessa Del Pozo
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Abhik M. Bandyopadhyay
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Dias Kurmashev
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Raushan T. Kurmasheva
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Hofvander J, Qiu A, Lee K, Bilenky M, Carles A, Cao Q, Moksa M, Steif J, Su E, Sotiriou A, Goytain A, Hill LA, Singer S, Andrulis IL, Wunder JS, Mertens F, Banito A, Jones KB, Underhill TM, Nielsen TO, Hirst M. Synovial Sarcoma Chromatin Dynamics Reveal a Continuum in SS18:SSX Reprograming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594262. [PMID: 38798672 PMCID: PMC11118320 DOI: 10.1101/2024.05.14.594262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Synovial sarcoma (SyS) is an aggressive soft-tissue malignancy characterized by a pathognomonic chromosomal translocation leading to the formation of the SS18::SSX fusion oncoprotein. SS18::SSX associates with mammalian BAF complexes suggesting deregulation of chromatin architecture as the oncogenic driver in this tumour type. To examine the epigenomic state of SyS we performed comprehensive multi-omics analysis on 52 primary pre-treatment human SyS tumours. Our analysis revealed a continuum of epigenomic states across the cohort at fusion target genes independent of rare somatic genetic lesions. We identify cell-of-origin signatures defined by enhancer states and reveal unexpected relationships between H2AK119Ub1 and active marks. The number of bivalent promoters, dually marked by the repressive H3K27me3 and activating H3K4me3 marks, has strong prognostic value and outperforms tumor grade in predicting patient outcome. Finally, we identify SyS defining epigenomic features including H3K4me3 expansion associated with striking promoter DNA hypomethylation in which SyS displays the lowest mean methylation level of any sarcoma subtype. We explore these distinctive features as potential vulnerabilities in SyS and identify H3K4me3 inhibition as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jakob Hofvander
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alvin Qiu
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Kiera Lee
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Jonathan Steif
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Edmund Su
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Afroditi Sotiriou
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, Germany
- Soft-Tissue Sarcoma Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Germany
| | - Angela Goytain
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Lesley A Hill
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sam Singer
- Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irene L Andrulis
- University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Canada
| | - Jay S Wunder
- Lunefeld-Tanenbaum Research Institute, Sinai Health System and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Fredrik Mertens
- Division of Clinical Genetics, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ana Banito
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, Germany
- Soft-Tissue Sarcoma Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, United States of America
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| |
Collapse
|
12
|
Gourisankar S, Krokhotin A, Wenderski W, Crabtree GR. Context-specific functions of chromatin remodellers in development and disease. Nat Rev Genet 2024; 25:340-361. [PMID: 38001317 PMCID: PMC11867214 DOI: 10.1038/s41576-023-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/26/2023]
Abstract
Chromatin remodellers were once thought to be highly redundant and nonspecific in their actions. However, recent human genetic studies demonstrate remarkable biological specificity and dosage sensitivity of the thirty-two adenosine triphosphate (ATP)-dependent chromatin remodellers encoded in the human genome. Mutations in remodellers produce many human developmental disorders and cancers, motivating efforts to investigate their distinct functions in biologically relevant settings. Exquisitely specific biological functions seem to be an emergent property in mammals, and in many cases are based on the combinatorial assembly of subunits and the generation of stable, composite surfaces. Critical interactions between remodelling complex subunits, the nucleosome and other transcriptional regulators are now being defined from structural and biochemical studies. In addition, in vivo analyses of remodellers at relevant genetic loci have provided minute-by-minute insights into their dynamics. These studies are proposing new models for the determinants of remodeller localization and function on chromatin.
Collapse
Affiliation(s)
- Sai Gourisankar
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Ozenberger BB, Li L, Wilson ER, Lazar AJ, Barrott JJ, Jones KB. EWSR1::ATF1 Orchestrates the Clear Cell Sarcoma Transcriptome in Human Tumors and a Mouse Genetic Model. Cancers (Basel) 2023; 15:5750. [PMID: 38136296 PMCID: PMC10742207 DOI: 10.3390/cancers15245750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Clear cell sarcoma (CCS) is a rare, aggressive malignancy that most frequently arises in the soft tissues of the extremities. It is defined and driven by expression of one member of a family of related translocation-generated fusion oncogenes, the most common of which is EWSR1::ATF1. The EWSR1::ATF1 fusion oncoprotein reprograms transcription. However, the binding distribution of EWSR1::ATF1 across the genome and its target genes remain unclear. Here, we interrogated the genomic distribution of V5-tagged EWSR1::ATF1 in tumors it had induced upon expression in mice that also recapitulated the transcriptome of human CCS. ChIP-sequencing of V5-EWSR1::ATF1 identified previously unreported motifs including the AP1 motif and motif comprised of TGA repeats that resemble GGAA-repeating microsatellites bound by EWSR1::FLI1 in Ewing sarcoma. ChIP-sequencing of H3K27ac identified super enhancers in the mouse model and human contexts of CCS, which showed a shared super enhancer structure that associates with activated genes.
Collapse
Affiliation(s)
- Benjamin B. Ozenberger
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (B.B.O.); (L.L.); (E.R.W.)
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Li Li
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (B.B.O.); (L.L.); (E.R.W.)
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Emily R. Wilson
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (B.B.O.); (L.L.); (E.R.W.)
| | - Alexander J. Lazar
- Department of Pathology, Genomic Medicine and Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jared J. Barrott
- Department of Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Kevin B. Jones
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (B.B.O.); (L.L.); (E.R.W.)
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
14
|
Lanzi C, Arrighetti N, Pasquali S, Cassinelli G. Targeting EZH2 in SMARCB1-deficient sarcomas: Advances and opportunities to potentiate the efficacy of EZH2 inhibitors. Biochem Pharmacol 2023; 215:115727. [PMID: 37541451 DOI: 10.1016/j.bcp.2023.115727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Soft tissue sarcomas (STSs) are rare mesechymal malignancies characterized by distintive molecular, histological and clinical features. Many STSs are considered as predominatly epigenetic diseases due to underlying chromatin deregulation. Discovery of deregulated functional antagonism between the chromatin remodeling BRG1/BRM-associated (BAFs) and the histone modifying Polycomb repressor complexes (PRCs) has provided novel actionable targets. In epithelioid sarcoma (ES), extracranial, extrarenal malignant rhabdoid tumors (eMRTs) and synovial sarcoma (SS), the total or partial loss of the BAF core subunit SMARCB1, driven by different alterations, is associated with PRC2 deregulation and dependency on its enzymatic subunit, EZH2. In these SMARCB1-deficient STSs, aberrant EZH2 expression and/or activity emerged as a druggable vulnerability. Although preclinical investigation supported EZH2 targeting as a promising therapeutic option, clinical studies demonstrated a variable response to EZH2 inhibitors. Actually, whereas the clinical benefit recorded in ES patients prompted the FDA approval of the EZH2 inhibitor tazemetostat, the modest and sporadic responses observed in eMRT and SS patients highlighted the need to deepen mechanistic as well as pharmacological investigations to improve drug effectiveness. We summarize the current knowledge of different mechanisms driving SMARCB1 deficiency and EZH2 deregulation in ES, eMRT and SS along with preclinical and clinical studies of EZH2-targeting agents. Possible implication of the PRC2- and enzymatic-independent functions of EZH2 and of its homolog, EZH1, in the response to anti-EZH2 agents will be discussed together with combinatorial strategies under investigation to improve the efficacy of EZH2 targeting in these tumors.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
15
|
Geller JI, Hong AL, Vallance KL, Evageliou N, Aldrink JH, Cost NG, Treece AL, Renfro LA, Mullen EA. Children's Oncology Group's 2023 blueprint for research: Renal tumors. Pediatr Blood Cancer 2023; 70 Suppl 6:e30586. [PMID: 37477907 PMCID: PMC10529605 DOI: 10.1002/pbc.30586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Every year, approximately 600 infants, children, and adolescents are diagnosed with renal cancer in the United States. In addition to Wilms tumor (WT), which accounts for about 80% of all pediatric renal cancers, clear cell sarcoma of the kidney, renal cell carcinoma, malignant rhabdoid tumor, as well as more rare cancers (other sarcomas, rare carcinomas, lymphoma) and benign tumors can originate within the kidney. WT itself can be divided into favorable histology (FHWT), with a 5-year overall survival (OS) exceeding 90%, and anaplastic histology, with 4-year OS of 73.7%. Outcomes of the other pediatric renal cancers include clear cell sarcoma (5-year OS: 90%), malignant rhabdoid tumor (5-year OS: 10% for stages 3 and 4), and renal cell carcinoma (4-year OS: 84.8%). Recent clinical trials have identified novel biological prognostic markers for FHWT, and a series of Children's Oncology Group (COG) trials have demonstrated improving outcomes with therapy modification, and opportunities for further care refinement.
Collapse
Affiliation(s)
- James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kelly L Vallance
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Nick Evageliou
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jennifer H Aldrink
- Division of Pediatric Surgery, Department of Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Nicholas G Cost
- Department of Surgery, Division of Urology and the Surgical Oncology Program at Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Amy L Treece
- Department of Pathology and Laboratory Medicine, Children's of Alabama, Birmingham, Alabama, USA
| | | | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Blood Disorders and Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Abstract
While the neural crest cell population gives rise to an extraordinary array of derivatives, including elements of the craniofacial skeleton, skin pigmentation, and peripheral nervous system, it is today increasingly recognized that Schwann cell precursors are also multipotent. Two mammalian paralogs of the SWI/SNF (switch/sucrose nonfermentable) chromatin-remodeling complexes, BAF (Brg1-associated factors) and PBAF (polybromo-associated BAF), are critical for neural crest specification during normal mammalian development. There is increasing evidence that pathogenic variants in components of the BAF and PBAF complexes play central roles in the pathogenesis of neural crest-derived tumors. Transgenic mouse models demonstrate a temporal window early in development where pathogenic variants in Smarcb1 result in the formation of aggressive, poorly differentiated tumors, such as rhabdoid tumors. By contrast, later in development, homozygous inactivation of Smarcb1 requires additional pathogenic variants in tumor suppressor genes to drive the development of differentiated adult neoplasms derived from the neural crest, which have a comparatively good prognosis in humans.
Collapse
Affiliation(s)
- Daniel M Fountain
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
17
|
Xu J, Pandoh PK, Corbett RD, Smailus D, Bowlby R, Brooks D, McDonald H, Haile S, Chahal S, Bilobram S, Mungall KL, Mungall AJ, Coope R, Moore RA, Zhao Y, Jones SJ, Marra MA. A high-throughput pipeline for DNA/RNA/small RNA purification from tissue samples for sequencing. Biotechniques 2023; 75:47-55. [PMID: 37551834 DOI: 10.2144/btn-2023-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
High-throughput total nucleic acid (TNA) purification methods based on solid-phase reversible immobilization (SPRI) beads produce TNA suitable for both genomic and transcriptomic applications. Even so, small RNA species, including miRNA, bind weakly to SPRI beads under standard TNA purification conditions, necessitating a separate workflow using column-based methods that are difficult to automate. Here, an SPRI-based high-throughput TNA purification protocol that recovers DNA, RNA and small RNA, called GSC-modified RLT+ Aline bead-based protocol (GRAB-ALL), which incorporates modifications to enhance small RNA recovery is presented. GRAB-ALL was benchmarked against existing nucleic acid purification workflows and GRAB-ALL efficiently purifies TNA, including small RNA, for next-generation sequencing applications in a plate-based format suitable for automated high-throughput sample preparation.
Collapse
Affiliation(s)
- Jing Xu
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Pawan K Pandoh
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Richard D Corbett
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Duane Smailus
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Denise Brooks
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Helen McDonald
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Simon Haile
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Sundeep Chahal
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Steve Bilobram
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Robin Coope
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Steven Jm Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, Canada
| |
Collapse
|
18
|
Haefliger S, Chervova O, Davies C, Nottley S, Hargreaves S, Sumathi VP, Amary F, Tirabosco R, Pillay N, Beck S, Flanagan AM, Lyskjær I. Subclassification of epithelioid sarcoma with potential therapeutic impact. J Pathol 2023; 260:368-375. [PMID: 37316954 PMCID: PMC10952852 DOI: 10.1002/path.6135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/15/2023] [Accepted: 05/07/2023] [Indexed: 06/16/2023]
Abstract
Epithelioid sarcoma is a rare and aggressive mesenchymal tumour, the genetic hallmark of which is the loss of expression of SMARCB1, a key member of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodelling complex. Hampered by its rarity, epithelioid sarcoma has received little research attention and therapeutic options for this disease remain limited. SMARCB1-deficient tumours also include malignant rhabdoid tumour, atypical teratoid and rhabdoid tumour, epithelioid malignant peripheral nerve sheath tumour, and poorly differentiated chordoma. Histologically, it can be challenging to distinguish epithelioid sarcoma from malignant rhabdoid tumour and other SMARCB1-deficient tumours, whereas methylation profiling shows that they represent distinct entities and facilitates their classification. Methylation studies on SMARCB1-deficient tumours, although not including epithelioid sarcomas, reported methylation subgroups which resulted in new clinical stratification and therapeutic approaches. In addition, emerging evidence indicates that immunotherapy, including immune checkpoint inhibitors, represents a promising therapeutic strategy for SMARCB1-deficient tumours. Here, we show that some epithelioid sarcomas share methylation patterns of malignant rhabdoid tumours indicating that this could help to distinguish these entities and guide treatment. Using gene expression data, we also showed that the immune environment of epithelioid sarcoma is characterised by a predominance of CD8+ lymphocytes and M2 macrophages. These findings have potential implications for the management of patients with epithelioid sarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Simon Haefliger
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Olga Chervova
- Medical Genomics Research GroupUniversity College London, UCL Cancer InstituteLondonUK
| | - Christopher Davies
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Steven Nottley
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
| | - Steven Hargreaves
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
| | | | - Fernanda Amary
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Roberto Tirabosco
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Nischalan Pillay
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Stephan Beck
- Medical Genomics Research GroupUniversity College London, UCL Cancer InstituteLondonUK
| | - Adrienne M Flanagan
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Iben Lyskjær
- Department of Molecular MedicineAarhus University HospitalAarhusDenmark
| |
Collapse
|
19
|
Reddy D, Bhattacharya S, Workman JL. (mis)-Targeting of SWI/SNF complex(es) in cancer. Cancer Metastasis Rev 2023; 42:455-470. [PMID: 37093326 PMCID: PMC10349013 DOI: 10.1007/s10555-023-10102-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
The ATP-dependent chromatin remodeling complex SWI/SNF (also called BAF) is critical for the regulation of gene expression. During the evolution from yeast to mammals, the BAF complex has evolved an enormous complexity that contains a high number of subunits encoded by various genes. Emerging studies highlight the frequent involvement of altered mammalian SWI/SNF chromatin-remodeling complexes in human cancers. Here, we discuss the recent advances in determining the structure of SWI/SNF complexes, highlight the mechanisms by which mutations affecting these complexes promote cancer, and describe the promising emerging opportunities for targeted therapies.
Collapse
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| |
Collapse
|
20
|
Paassen I, Williams J, Ríos Arceo C, Ringnalda F, Mercer KS, Buhl JL, Moreno N, Federico A, Franke NE, Kranendonk M, Upadhyaya SA, Kerl K, van de Wetering M, Clevers H, Kool M, Hoving EW, Roussel MF, Drost J. Atypical teratoid/rhabdoid tumoroids reveal subgroup-specific drug vulnerabilities. Oncogene 2023; 42:1661-1671. [PMID: 37020038 PMCID: PMC10181938 DOI: 10.1038/s41388-023-02681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023]
Abstract
Atypical teratoid/rhabdoid tumors (ATRTs) represent a rare, but aggressive pediatric brain tumor entity. They are genetically defined by alterations in the SWI/SNF chromatin remodeling complex members SMARCB1 or SMARCA4. ATRTs can be further classified in different molecular subgroups based on their epigenetic profiles. Although recent studies suggest that the different subgroups have distinct clinical features, subgroup-specific treatment regimens have not been developed thus far. This is hampered by the lack of pre-clinical in vitro models representative of the different molecular subgroups. Here, we describe the establishment of ATRT tumoroid models from the ATRT-MYC and ATRT-SHH subgroups. We demonstrate that ATRT tumoroids retain subgroup-specific epigenetic and gene expression profiles. High throughput drug screens on our ATRT tumoroids revealed distinct drug sensitivities between and within ATRT-MYC and ATRT-SHH subgroups. Whereas ATRT-MYC universally displayed high sensitivity to multi-targeted tyrosine kinase inhibitors, ATRT-SHH showed a more heterogeneous response with a subset showing high sensitivity to NOTCH inhibitors, which corresponded to high expression of NOTCH receptors. Our ATRT tumoroids represent the first pediatric brain tumor organoid model, providing a representative pre-clinical model which enables the development of subgroup-specific therapies.
Collapse
Affiliation(s)
- Irene Paassen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Justin Williams
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Carla Ríos Arceo
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Femke Ringnalda
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Kimberly Shea Mercer
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Juliane L Buhl
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Aniello Federico
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany
| | - Niels E Franke
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Mariette Kranendonk
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | | | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584 CT, Utrecht, the Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| |
Collapse
|
21
|
Walhart TA, Vacca B, Hepperla AJ, Hamad SH, Petrongelli J, Wang Y, McKean EL, Moksa M, Cao Q, Yip S, Hirst M, Weissman BE. SMARCB1 Loss in Poorly Differentiated Chordomas Drives Tumor Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:456-473. [PMID: 36657718 PMCID: PMC10123523 DOI: 10.1016/j.ajpath.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
Poorly differentiated (PD) chordoma, a rare, aggressive tumor originating from notochordal tissue, shows loss of SMARCB1 expression, a core component of the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes. To determine the impact of SMARCB1 re-expression on cell growth and gene expression, two SMARCB1-negative PD chordoma cell lines with an inducible SMARCB1 expression system were generated. After 72 hours of induction of SMARCB1, both SMARCB1-negative PD chordoma cell lines continued to proliferate. This result contrasted with those observed with SMARCB1-negative rhabdoid cell lines in which SMARCB1 re-expression caused the rapid inhibition of growth. We found that the lack of growth inhibition may arise from the loss of CDKN2A (p16INK4A) expression in PD chordoma cell lines. RNA-sequencing of cell lines after SMARCB1 re-expression showed a down-regulation for rRNA and RNA processing as well as metabolic processing and increased expression of genes involved in cell adhesion, cell migration, and development. Taken together, these data establish that SMARCB1 re-expression in PD chordomas alters the repertoire of SWI/SNF complexes, perhaps restoring those associated with cellular differentiation. These novel findings support a model in which SMARCB1 inactivation blocks the conversion of growth-promoting SWI/SNF complexes to differentiation-inducing ones, and they implicate SMARCB1 loss as a late event in tumorigenic progression. Importantly, the absence of growth inhibition after SMARCB1 restoration creates a unique opportunity to identify therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Tara A Walhart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Bryanna Vacca
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Austin J Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Samera H Hamad
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - James Petrongelli
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Erin L McKean
- Department of Otolaryngology and Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Michelle Moksa
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Qi Cao
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
22
|
Palshikar MG, Min X, Crystal A, Meng J, Hilchey SP, Zand MS, Thakar J. Executable Network Models of Integrated Multiomics Data. J Proteome Res 2023; 22:1546-1556. [PMID: 37000949 PMCID: PMC10167691 DOI: 10.1021/acs.jproteome.2c00730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Multiomics profiling provides a holistic picture of a condition being examined and captures the complexity of signaling events, beginning from the original cause (environmental or genetic), to downstream functional changes at multiple molecular layers. Pathway enrichment analysis has been used with multiomics data sets to characterize signaling mechanisms. However, technical and biological variability between these layered data limit an integrative computational analyses. We present a Boolean network-based method, multiomics Boolean Omics Network Invariant-Time Analysis (mBONITA), to integrate omics data sets that quantify multiple molecular layers. mBONITA utilizes prior knowledge networks to perform topology-based pathway analysis. In addition, mBONITA identifies genes that are consistently modulated across molecular measurements by combining observed fold-changes and variance, with a measure of node (i.e., gene or protein) influence over signaling, and a measure of the strength of evidence for that gene across data sets. We used mBONITA to integrate multiomics data sets from RAMOS B cells treated with the immunosuppressant drug cyclosporine A under varying O2 tensions to identify pathways involved in hypoxia-mediated chemotaxis. We compare mBONITA's performance with 6 other pathway analysis methods designed for multiomics data and show that mBONITA identifies a set of pathways with evidence of modulation across all omics layers. mBONITA is freely available at https://github.com/Thakar-Lab/mBONITA.
Collapse
|
23
|
Hilton LK, Ngu HS, Collinge B, Dreval K, Ben-Neriah S, Rushton CK, Wong JC, Cruz M, Roth A, Boyle M, Meissner B, Slack GW, Farinha P, Craig JW, Gerrie AS, Freeman CL, Villa D, Crump M, Shepherd L, Hay AE, Kuruvilla J, Savage KJ, Kridel R, Karsan A, Marra MA, Sehn LH, Steidl C, Morin RD, Scott DW. Relapse timing is associated with distinct evolutionary dynamics in DLBCL. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.06.23286584. [PMID: 36945587 PMCID: PMC10029038 DOI: 10.1101/2023.03.06.23286584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is cured in over 60% of patients, but outcomes are poor for patients with relapsed or refractory disease (rrDLBCL). Here, we performed whole genome/exome sequencing (WGS/WES) on tumors from 73 serially-biopsied patients with rrDLBCL. Based on the observation that outcomes to salvage therapy/autologous stem cell transplantation are related to time-to-relapse, we stratified patients into groups according to relapse timing to explore the relationship to genetic divergence and sensitivity to salvage immunochemotherapy. The degree of mutational divergence increased with time between biopsies, yet tumor pairs were mostly concordant for cell-of-origin, oncogene rearrangement status and genetics-based subgroup. In patients with highly divergent tumors, several genes acquired exclusive mutations independently in each tumor, which, along with concordance of genetics-based subgroups, suggests that the earliest mutations in a shared precursor cell constrain tumor evolution. These results suggest that late relapses commonly represent genetically distinct and chemotherapy-naïve disease.
Collapse
Affiliation(s)
- Laura K. Hilton
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Henry S. Ngu
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Brett Collinge
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kostiantyn Dreval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Christopher K. Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Jasper C.H. Wong
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Manuela Cruz
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Andrew Roth
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Barbara Meissner
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey W. Craig
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alina S. Gerrie
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ciara L. Freeman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Diego Villa
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael Crump
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queens University, Kingston, ON, Canada
- Department of Medicine, Queens University, Kingston, ON, Canada
| | - Annette E. Hay
- Canadian Cancer Trials Group, Queens University, Kingston, ON, Canada
- Department of Medicine, Queens University, Kingston, ON, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Aly Karsan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Marco A. Marra
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ryan D. Morin
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Cyrta J, Rosiene J, Bareja R, Kudman S, Al Zoughbi W, Motanagh S, Wilkes DC, Eng K, Zhang T, Sticca E, Mathew S, Rubin MA, Sboner A, Elemento O, Rubin BP, Imielinski M, Mosquera JM. Whole-genome characterization of myoepithelial carcinomas of the soft tissue. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006227. [PMID: 36577525 PMCID: PMC9808553 DOI: 10.1101/mcs.a006227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/28/2022] [Indexed: 12/30/2022] Open
Abstract
Myoepithelial carcinomas (MECs) of soft tissue are rare and aggressive tumors affecting young adults and children, but their molecular landscape has not been comprehensively explored through genome sequencing. Here, we present the whole-exome sequencing (WES), whole-genome sequencing (WGS), and RNA sequencing findings of two MECs. Patients 1 and 2 (P1, P2), both male, were diagnosed at 27 and 37 yr of age, respectively, with shoulder (P1) and inguinal (P2) soft tissue tumors. Both patients developed metastatic disease, and P2 died of disease. P1 tumor showed a rhabdoid cytomorphology and a complete loss of INI1 (SMARCB1) expression, associated with a homozygous SMARCB1 deletion. The tumor from P2 showed a clear cell/small cell morphology, retained INI1 expression and strong S100 positivity. By WES and WGS, tumors from both patients displayed low tumor mutation burdens, and no targetable alterations in cancer genes were detected. P2's tumor harbored an EWSR1::KLF15 rearrangement, whereas the tumor from P1 showed a novel ASCC2::GGNBP2 fusion. WGS evidenced a complex genomic event involving mainly Chromosomes 17 and 22 in the tumor from P1, which was consistent with chromoplexy. These findings are consistent with previous reports of EWSR1 rearrangements (50% of cases) in MECs and provide a genetic basis for the loss of SMARCB1 protein expression observed through immunohistochemistry in 10% of 40% of MEC cases. The lack of additional driver mutations in these tumors supports the hypothesis that these alterations are the key molecular events in MEC evolution. Furthermore, the presence of complex structural variant patterns, invisible to WES, highlights the novel biological insights that can be gained through the application of WGS to rare cancers.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA
| | - Joel Rosiene
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,SUNY Downstate College of Medicine, Brooklyn, New York 11203, USA
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sarah Kudman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA
| | - Wael Al Zoughbi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA
| | - Samaneh Motanagh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA
| | - David C. Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA
| | - Kenneth Eng
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Tuo Zhang
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Evan Sticca
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Susan Mathew
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Mark A. Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Olivier Elemento
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Brian P. Rubin
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,New York Genome Center, New York, New York 10013, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,New York Genome Center, New York, New York 10013, USA
| |
Collapse
|
25
|
Coutinho DF, Mundi PS, Marks LJ, Burke C, Ortiz MV, Diolaiti D, Bird L, Vallance KL, Ibáñez G, You D, Long M, Rosales N, Grunn A, Ndengu A, Siddiquee A, Gaviria ES, Rainey AR, Fazlollahi L, Hosoi H, Califano A, Kung AL, Dela Cruz FS. Validation of a non-oncogene encoded vulnerability to exportin 1 inhibition in pediatric renal tumors. MED 2022; 3:774-791.e7. [PMID: 36195086 PMCID: PMC9669237 DOI: 10.1016/j.medj.2022.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Malignant rhabdoid tumors (MRTs) and Wilms' tumors (WTs) are rare and aggressive renal tumors of infants and young children comprising ∼5% of all pediatric cancers. MRTs are among the most genomically stable cancers, and although WTs are genomically heterogeneous, both generally lack therapeutically targetable genetic mutations. METHODS Comparative protein activity analysis of MRTs (n = 68) and WTs (n = 132) across TCGA and TARGET cohorts, using metaVIPER, revealed elevated exportin 1 (XPO1) inferred activity. In vitro studies were performed on a panel of MRT and WT cell lines to evaluate effects on proliferation and cell-cycle progression following treatment with the selective XPO1 inhibitor selinexor. In vivo anti-tumor activity was assessed in patient-derived xenograft (PDX) models of MRTs and WTs. FINDINGS metaVIPER analysis identified markedly aberrant activation of XPO1 in MRTs and WTs compared with other tumor types. All MRT and most WT cell lines demonstrated baseline, aberrant XPO1 activity with in vitro sensitivity to selinexor via cell-cycle arrest and induction of apoptosis. In vivo, XPO1 inhibitors significantly abrogated tumor growth in PDX models, inducing effective disease control with sustained treatment. Corroborating human relevance, we present a case report of a child with multiply relapsed WTs with prolonged disease control on selinexor. CONCLUSIONS We report on a novel systems-biology-based comparative framework to identify non-genetically encoded vulnerabilities in genomically quiescent pediatric cancers. These results have provided preclinical rationale for investigation of XPO1 inhibitors in an upcoming investigator-initiated clinical trial of selinexor in children with MRTs and WTs and offer opportunities for exploration of inferred XPO1 activity as a potential predictive biomarker for response. FUNDING This work was funded by CureSearch for Children's Cancer, Alan B. Slifka Foundation, NIH (U01 CA217858, S10 OD012351, and S10 OD021764), Michael's Miracle Cure, Hyundai Hope on Wheels, Cannonball Kids Cancer, Conquer Cancer the ASCO Foundation, Cycle for Survival, Paulie Strong Foundation, and the Grayson Fund.
Collapse
Affiliation(s)
- Diego F Coutinho
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Prabhjot S Mundi
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Lianna J Marks
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chelsey Burke
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel Diolaiti
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lauren Bird
- Cook Children's Hematology and Oncology, Fort Worth, TX 76104, USA
| | - Kelly L Vallance
- Cook Children's Hematology and Oncology, Fort Worth, TX 76104, USA
| | - Glorymar Ibáñez
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Long
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nestor Rosales
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adina Grunn
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Andoyo Ndengu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Armaan Siddiquee
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ervin S Gaviria
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Allison R Rainey
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Andrea Califano
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
26
|
Single-cell profiling reveals a memory B cell-like subtype of follicular lymphoma with increased transformation risk. Nat Commun 2022; 13:6772. [PMID: 36351924 PMCID: PMC9646774 DOI: 10.1038/s41467-022-34408-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Follicular lymphoma (FL) is an indolent cancer of mature B-cells but with ongoing risk of transformation to more aggressive histology over time. Recurrent mutations associated with transformation have been identified; however, prognostic features that can be discerned at diagnosis could be clinically useful. We present here comprehensive profiling of both tumor and immune compartments in 155 diagnostic FL biopsies at single-cell resolution by mass cytometry. This revealed a diversity of phenotypes but included two recurrent patterns, one which closely resembles germinal center B-cells (GCB) and another which appears more related to memory B-cells (MB). GCB-type tumors are enriched for EZH2, TNFRSF14, and MEF2B mutations, while MB-type tumors contain increased follicular helper T-cells. MB-type and intratumoral phenotypic diversity are independently associated with increased risk of transformation, supporting biological relevance of these features. Notably, a reduced 26-marker panel retains sufficient information to allow phenotypic profiling of future cohorts by conventional flow cytometry.
Collapse
|
27
|
Patil P, Pencheva BB, Patil VM, Fangusaro J. Nervous system (NS) Tumors in Cancer Predisposition Syndromes. Neurotherapeutics 2022; 19:1752-1771. [PMID: 36056180 PMCID: PMC9723057 DOI: 10.1007/s13311-022-01277-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic syndromes which develop one or more nervous system (NS) tumors as one of the manifestations can be grouped under the umbrella term of NS tumor predisposition syndromes. Understanding the underlying pathological pathways at the molecular level has led us to many radical discoveries, in understanding the mechanisms of tumorigenesis, tumor progression, interactions with the tumor microenvironment, and development of targeted therapies. Currently, at least 7-10% of all pediatric cancers are now recognized to occur in the setting of genetic predisposition to cancer or cancer predisposition syndromes. Specifically, the cancer predisposition rate in pediatric patients with NS tumors has been reported to be as high as 15%, though it can approach 50% in certain tumor types (i.e., choroid plexus carcinoma associated with Li Fraumeni Syndrome). Cancer predisposition syndromes are caused by pathogenic variation in genes that primarily function as tumor suppressors and proto-oncogenes. These variants are found in the germline or constitutional DNA. Mosaicism, however, can affect only certain tissues, resulting in varied manifestations. Increased understanding of the genetic underpinnings of cancer predisposition syndromes and the ability of clinical laboratories to offer molecular genetic testing allows for improvement in the identification of these patients. The identification of a cancer predisposition syndrome in a CNS tumor patient allows for changes to medical management to be made, including the initiation of cancer surveillance protocols. Finally, the identification of at-risk biologic relatives becomes feasible through cascade (genetic) testing. These fundamental discoveries have also broadened the horizon of novel therapeutic possibilities and have helped to be better predictors of prognosis and survival. The treatment paradigm of specific NS tumors may also vary based on the patient's cancer predisposition syndrome and may be used to guide therapy (i.e., immune checkpoint inhibitors in constitutional mismatch repair deficiency [CMMRD] predisposition syndrome) [8]. Early diagnosis of these cancer predisposition syndromes is therefore critical, in both unaffected and affected patients. Genetic counselors are uniquely trained master's level healthcare providers with a focus on the identification of hereditary disorders, including hereditary cancer, or cancer predisposition syndromes. Genetic counseling, defined as "the process of helping people understand and adapt to the medical, psychological and familial implications of genetic contributions to disease" plays a vital role in the adaptation to a genetic diagnosis and the overall management of these diseases. Cancer predisposition syndromes that increase risks for NS tumor development in childhood include classic neurocutaneous disorders like neurofibromatosis type 1 and type 2 (NF1, NF2) and tuberous sclerosis complex (TSC) type 1 and 2 (TSC1, TSC2). Li Fraumeni Syndrome, Constitutional Mismatch Repair Deficiency, Gorlin syndrome (Nevoid Basal Cell Carcinoma), Rhabdoid Tumor Predisposition syndrome, and Von Hippel-Lindau disease. Ataxia Telangiectasia will also be discussed given the profound neurological manifestations of this syndrome. In addition, there are other cancer predisposition syndromes like Cowden/PTEN Hamartoma Tumor Syndrome, DICER1 syndrome, among many others which also increase the risk of NS neoplasia and are briefly described. Herein, we discuss the NS tumor spectrum seen in the abovementioned cancer predisposition syndromes as with their respective germline genetic abnormalities and recommended surveillance guidelines when applicable. We conclude with a discussion of the importance and rationale for genetic counseling in these patients and their families.
Collapse
Affiliation(s)
- Prabhumallikarjun Patil
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Bojana Borislavova Pencheva
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Vinayak Mahesh Patil
- Intensive Care Unit Medical Officer, District Hospital Vijayapura, Karnataka, India
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
28
|
Long AH, Morgenstern DA, Leruste A, Bourdeaut F, Davis KL. Checkpoint Immunotherapy in Pediatrics: Here, Gone, and Back Again. Am Soc Clin Oncol Educ Book 2022; 42:1-14. [PMID: 35580293 DOI: 10.1200/edbk_349799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of immune checkpoint inhibitors (ICIs) in the treatment of pediatric cancers continues to evolve. Such therapies function by augmenting existing antitumor T-cell responses that have been rendered ineffective by inhibitory pathways. Although ICIs have proven highly effective for adult cancers, initial phase I/II clinical trials using single-agent ICIs against unselected pediatric cancers have been overall disappointing. With the exception of pediatric classic Hodgkin lymphoma, responses to ICIs have been infrequent, likely stemming from an inherent difference in the immunogenicity of childhood cancers, which, on average, have far fewer neoantigens than adult cancers. Recently, however, hope has reemerged that certain subsets of children with cancer may benefit from ICI therapies. In preliminary studies, patients with both pediatric hypermutated and SMARCB1-deficient cancers have had impressive responses to ICI therapies, likely as a result of underlying biologies that enhance neoantigen expression and tumoral inflammation. Dedicated trials are ongoing to fully evaluate the efficacy of ICIs for patients with these subsets of pediatric cancer.
Collapse
Affiliation(s)
- Adrienne H Long
- Division of Hematology, Oncology, and Stem Cell Transplant, Department of Pediatrics, Stanford University, Stanford, CA
| | - Daniel A Morgenstern
- Division of Haematology/Oncology, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Amaury Leruste
- SIREDO Oncology Center, Institut Curie, Paris Sciences et Lettres University, Paris, France
| | - Franck Bourdeaut
- SIREDO Oncology Center, Institut Curie, Laboratory of Translational Research in Pediatric Oncology, Paris, France
| | - Kara L Davis
- Division of Hematology, Oncology, and Stem Cell Transplant, Department of Pediatrics, Stanford University, Stanford, CA.,Center for Cancer Cellular Therapy, Stanford University, Stanford, CA
| |
Collapse
|
29
|
Drosos Y, Myers JA, Xu B, Mathias KM, Beane EC, Radko-Juettner S, Mobley RJ, Larsen ME, Piccioni F, Ma X, Low J, Hansen BS, Peters ST, Bhanu NV, Dhanda SK, Chen T, Upadhyaya SA, Pruett-Miller SM, Root DE, Garcia BA, Partridge JF, Roberts CW. NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Mol Cell 2022; 82:2472-2489.e8. [DOI: 10.1016/j.molcel.2022.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
|
30
|
Epigenetic mechanisms in paediatric brain tumours: regulators lose control. Biochem Soc Trans 2022; 50:167-185. [PMID: 35076654 DOI: 10.1042/bst20201227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms are essential to regulate gene expression during normal development. However, they are often disrupted in pathological conditions including tumours, where they contribute to their formation and maintenance through altered gene expression. In recent years, next generation genomic techniques has allowed a remarkable advancement of our knowledge of the genetic and molecular landscape of paediatric brain tumours and have highlighted epigenetic deregulation as a common hallmark in their pathogenesis. This review describes the main epigenetic dysregulations found in paediatric brain tumours, including at DNA methylation and histone modifications level, in the activity of chromatin-modifying enzymes and in the expression of non-coding RNAs. How these altered processes influence tumour biology and how they can be leveraged to dissect the molecular heterogeneity of these tumours and contribute to their classification is also addressed. Finally, the availability and value of preclinical models as well as the current clinical trials exploring targeting key epigenetic mediators in paediatric brain tumours are discussed.
Collapse
|
31
|
Nemes K, Johann PD, Tüchert S, Melchior P, Vokuhl C, Siebert R, Furtwängler R, Frühwald MC. Current and Emerging Therapeutic Approaches for Extracranial Malignant Rhabdoid Tumors. Cancer Manag Res 2022; 14:479-498. [PMID: 35173482 PMCID: PMC8841298 DOI: 10.2147/cmar.s289544] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Extracranial malignant rhabdoid tumors (extracranial MRT) are rare, highly aggressive malignancies affecting mainly infants and children younger than 3 years. Common anatomic sites comprise the kidneys (RTK – rhabdoid tumor of kidney) and other soft tissues (eMRT – extracranial, extrarenal malignant rhabdoid tumor). The genetic origin of these diseases is linked to biallelic pathogenic variants in the genes SMARCB1, or rarely SMARCA4, encoding subunits of the SWI/SNF chromatin-remodeling complex. Even if extracranial MRT seem to be quite homogeneous, recent epigenome analyses reveal a certain degree of epigenetic heterogeneity. Use of intensified therapies has modestly improved survival for extracranial MRT. Patients at standard risk profit from conventional therapies; most high-risk patients still experience a dismal course and often therapy resistance. Discoveries of clinical and molecular hallmarks and the exploration of experimental therapeutic approaches open exciting perspectives for clinical and molecularly stratified experimental treatment approaches. To ultimately improve the outcome of patients with extracranial MRTs, they need to be characterized and stratified clinically and molecularly. High-risk patients need novel therapeutic approaches including selective experimental agents in phase I/II clinical trials.
Collapse
Affiliation(s)
- Karolina Nemes
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany
| | - Pascal D Johann
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Tüchert
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Patrick Melchior
- Department of Radiation Oncology, University of Saarland, Homburg, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Rhoikos Furtwängler
- Department of Pediatric Hematology and Oncology, University of Saarland, Homburg, Germany
| | - Michael C Frühwald
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany
| |
Collapse
|
32
|
La Ferlita A, Alaimo S, Ferro A, Pulvirenti A. Pathway Analysis for Cancer Research and Precision Oncology Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:143-161. [DOI: 10.1007/978-3-030-91836-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Enault M, Minard-Colin V, Corradini N, Leverger G, Thebaud E, Rome A, Proust S, Marie-Cardine A, Defachelles AS, Sarnacki S, Philippe-Chomette P, Delattre O, Masliah-Planchon J, Lacour B, Ferrari A, Brennan B, Orbach D, Bourdeaut F. Extracranial rhabdoid tumours: Results of a SFCE series of patients treated with a dose compression strategy according to European Paediatric Soft tisue sarcoma Study Group recommendations. Eur J Cancer 2022; 161:64-78. [DOI: 10.1016/j.ejca.2021.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
|
34
|
Steinbügl M, Nemes K, Johann P, Kröncke T, Tüchert S, da Costa MJG, Ebinger M, Schüller U, Sehested A, Hauser P, Reinhard H, Sumerauer D, Hettmer S, Jakob M, Hasselblatt M, Siebert R, Witt O, Gerss J, Kerl K, Frühwald MC. Clinical evidence for a biological effect of epigenetically active decitabine in relapsed or progressive rhabdoid tumors. Pediatr Blood Cancer 2021; 68:e29267. [PMID: 34347371 DOI: 10.1002/pbc.29267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/09/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Refined therapy has helped to improve survival rates in rhabdoid tumors (RT). Prognosis for patients with chemoresistant, recurrent, or progressive RT remains dismal. Although decitabine, an epigenetically active agent, has mainly been evaluated in the management of hematologic malignancies in adults, safety in children has also been demonstrated repeatedly. MATERIALS AND METHODS A retrospective series of patients who received decitabine upon relapse or progression following therapy according to the EU-RHAB regimen is presented. Due to the retrospective nature of analyses, response was defined as measurable regression of at least one lesion on imaging. 850k methylation profiling was done whenever tumor tissue was available. RESULTS A total of 22 patients with RT of any anatomical localization were included. Most patients (19/22) presented with metastases. All received low-dose decitabine with or preceding conventional chemotherapy. Patients received a median of two (1-6) courses of decitabine; 27.3% (6/22) demonstrated a radiological response. Molecular analyses revealed increased methylation levels in tumors from responders. No excessive toxicity was observed. Clinical benefits for responders included eligibility for early phase trials or local therapy. Responders showed prolonged time to progression and overall survival. Due to small sample size, statistical correction for survivorship bias demonstrated no significant effect on survival for responders. CONCLUSIONS Patients with RT demonstrate promising signs of antitumor activity after multiagent relapse therapy including decitabine. Analyses of methylation data suggest a specific effect on an epigenetic level. We propose to consider decitabine and other epigenetic drugs as candidates for further clinical investigations in RT.
Collapse
Affiliation(s)
- Mona Steinbügl
- University Medical Center Augsburg, Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, Augsburg, Germany
| | - Karolina Nemes
- University Medical Center Augsburg, Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, Augsburg, Germany
| | - Pascal Johann
- University Medical Center Augsburg, Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, Augsburg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Kröncke
- Department of Diagnostic and Interventional Radiology, University Medical Center, Augsburg, Germany
| | - Stefanie Tüchert
- Department of Diagnostic and Interventional Radiology, University Medical Center, Augsburg, Germany
| | - Maria Joao Gil da Costa
- Pediatric Hematology and Oncology Division, University Hospital S. João Alameda Hernani Monteiro, Porto, Portugal
| | - Martin Ebinger
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital, Tübingen, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid Sehested
- Department of Paediatrics and Adolescent Medicine Rigshospitalet, Copenhagen, Denmark
| | - Peter Hauser
- Department of Pediatric Oncology, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Harald Reinhard
- Department of Pediatrics, Asklepios Kinderklinik Sankt Augustin, Sankt Augustin, Germany
| | - David Sumerauer
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Marcus Jakob
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm and Ulm University Hospital, Ulm, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | - Joachim Gerss
- Institute of Biostatistics and Clinical Research, University of Münster, Muenster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Michael C Frühwald
- University Medical Center Augsburg, Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, Augsburg, Germany
| |
Collapse
|
35
|
Huang X, Huang K, Johnson T, Radovich M, Zhang J, Ma J, Wang Y. ParsVNN: parsimony visible neural networks for uncovering cancer-specific and drug-sensitive genes and pathways. NAR Genom Bioinform 2021; 3:lqab097. [PMID: 34729476 PMCID: PMC8557386 DOI: 10.1093/nargab/lqab097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 11/23/2022] Open
Abstract
Prediction of cancer-specific drug responses as well as identification of the corresponding drug-sensitive genes and pathways remains a major biological and clinical challenge. Deep learning models hold immense promise for better drug response predictions, but most of them cannot provide biological and clinical interpretability. Visible neural network (VNN) models have emerged to solve the problem by giving neurons biological meanings and directly casting biological networks into the models. However, the biological networks used in VNNs are often redundant and contain components that are irrelevant to the downstream predictions. Therefore, the VNNs using these redundant biological networks are overparameterized, which significantly limits VNNs' predictive and explanatory power. To overcome the problem, we treat the edges and nodes in biological networks used in VNNs as features and develop a sparse learning framework ParsVNN to learn parsimony VNNs with only edges and nodes that contribute the most to the prediction task. We applied ParsVNN to build cancer-specific VNN models to predict drug response for five different cancer types. We demonstrated that the parsimony VNNs built by ParsVNN are superior to other state-of-the-art methods in terms of prediction performance and identification of cancer driver genes. Furthermore, we found that the pathways selected by ParsVNN have great potential to predict clinical outcomes as well as recommend synergistic drug combinations.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kun Huang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Travis Johnson
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Milan Radovich
- Division of General Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Jianzhu Ma
- Institute for Artificial Intelligence, Peking University, China
| | - Yijie Wang
- Department of Computer Science, Indiana University, Bloomington, IN 47408, USA
| |
Collapse
|
36
|
Andrianteranagna M, Cyrta J, Masliah-Planchon J, Nemes K, Corsia A, Leruste A, Holdhof D, Kordes U, Orbach D, Corradini N, Entz-Werle N, Pierron G, Castex MP, Brouchet A, Weingertner N, Ranchère D, Fréneaux P, Delattre O, Bush J, Leary A, Frühwald MC, Schüller U, Servant N, Bourdeaut F. SMARCA4-deficient rhabdoid tumours show intermediate molecular features between SMARCB1-deficient rhabdoid tumours and small cell carcinomas of the ovary, hypercalcaemic type. J Pathol 2021; 255:1-15. [PMID: 33999421 DOI: 10.1002/path.5705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 11/11/2022]
Abstract
Extracranial rhabdoid tumours (ECRTs) are an aggressive malignancy of infancy and early childhood. The vast majority of cases demonstrate inactivation of SMARCB1 (ECRTSMARCB1 ) on a background of a remarkably stable genome, a low mutational burden, and no other recurrent mutations. Rarely, ECRTs can harbour the alternative inactivation of SMARCA4 (ECRTSMARCA4 ) instead of SMARCB1. However, very few ECRTSMARCA4 cases have been published to date, and a systematic characterization of ECRTSMARCA4 is missing from the literature. In this study, we report the clinical, pathological, and genomic features of additional cases of ECRTSMARCA4 and show that they are comparable to those of ECRTSMARCB1. We also assess whether ECRTSMARCB1 , ECRTSMARCA4 , and small cell carcinomas of the ovary, hypercalcaemic type (SCCOHT) represent distinct or overlapping entities at a molecular level. Using DNA methylation and transcriptomics-based tumour classification approaches, we demonstrate that ECRTSMARCA4 display molecular features intermediate between SCCOHT and ECRTSMARCB1 ; however, ECRTSMARCA4 appear to be more closely related to SCCOHT by DNA methylation. Conversely, both transcriptomics and DNA methylation show a larger gap between SCCOHT and ECRTSMARCB1 , potentially supporting their continuous separate classification. Lastly, we show that ECRTSMARCA4 display concomitant lack of SMARCA4 (BRG1) and SMARCA2 (BRM) expression at the protein level, similar to what is seen in SCCOHT. Overall, these results expand our knowledge on this rare tumour type and explore the similarities and differences among entities from the 'rhabdoid tumour' spectrum. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mamy Andrianteranagna
- INSERM, U830, Pediatric Translational Research, PSL Research University, Institut Curie, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Joanna Cyrta
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Julien Masliah-Planchon
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
| | - Karolina Nemes
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany
| | - Alice Corsia
- INSERM, U830, Pediatric Translational Research, PSL Research University, Institut Curie, Paris, France
| | - Amaury Leruste
- INSERM, U830, Pediatric Translational Research, PSL Research University, Institut Curie, Paris, France
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), PSL Research University, Institut Curie, Paris, France
| | - Nadège Corradini
- Centre Léon Bérard, Institut d'Hématologie et d'Oncologie pédiatrique, Lyon, France
| | - Natacha Entz-Werle
- Pediatric and Adolescent Oncology, IHOP, Centre Léon Bérard, Lyon, France
| | - Gaëlle Pierron
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
| | - Marie-Pierre Castex
- Department of Pediatric and Adolescent Unity Oncology, Toulouse University Hospital, Toulouse, France
| | - Anne Brouchet
- Department of Pathology, Insititut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Noëlle Weingertner
- Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | | | - Paul Fréneaux
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Olivier Delattre
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
| | - Jonathan Bush
- Division of Anatomical Pathology, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, BC, Canada
| | - Alexandra Leary
- Gynecological Cancer Unit, Department of Medicine, Gustave Roussy, Villejuif, France
- INSERM U981, Gustave Roussy, Villejuif, France
| | - Michael C Frühwald
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolas Servant
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
- Institut Curie, PSL Research University, Paris, France
| | - Franck Bourdeaut
- INSERM, U830, Pediatric Translational Research, PSL Research University, Institut Curie, Paris, France
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), PSL Research University, Institut Curie, Paris, France
| |
Collapse
|
37
|
Calandrini C, van Hooff SR, Paassen I, Ayyildiz D, Derakhshan S, Dolman MEM, Langenberg KPS, van de Ven M, de Heus C, Liv N, Kool M, de Krijger RR, Tytgat GAM, van den Heuvel-Eibrink MM, Molenaar JJ, Drost J. Organoid-based drug screening reveals neddylation as therapeutic target for malignant rhabdoid tumors. Cell Rep 2021; 36:109568. [PMID: 34433038 DOI: 10.1016/j.celrep.2021.109568] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
Malignant rhabdoid tumors (MRTs) represent one of the most aggressive childhood malignancies. No effective treatment options are available, and prognosis is, therefore, dismal. Previous studies have demonstrated that tumor organoids capture the heterogeneity of patient tumors and can be used to predict patient response to therapy. Here, we perform drug screening on patient-derived normal and tumor organoids to identify MRT-specific therapeutic vulnerabilities. We identify neddylation inhibitor MLN4924 as a potential therapeutic agent. Mechanistically, we find increased neddylation in MRT organoids and tissues and show that MLN4924 induces a cytotoxic response via upregulation of the unfolded protein response. Lastly, we demonstrate in vivo efficacy in an MRT PDX mouse model, in which single-agent MLN4924 treatment significantly extends survival. Our study demonstrates that organoids can be used to find drugs selectively targeting tumor cells while leaving healthy cells unharmed and proposes neddylation inhibition as a therapeutic strategy in MRT.
Collapse
Affiliation(s)
- Camilla Calandrini
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Sander R van Hooff
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Irene Paassen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Dilara Ayyildiz
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Sepide Derakhshan
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - M Emmy M Dolman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Karin P S Langenberg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit of the Mouse Clinic for Cancer and Ageing (MCCA), NKI, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Cecilia de Heus
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Nalan Liv
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120 Heidelberg, Germany
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; University Medical Center, Department of Pathology, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | | | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
38
|
Young MD, Mitchell TJ, Custers L, Margaritis T, Morales-Rodriguez F, Kwakwa K, Khabirova E, Kildisiute G, Oliver TRW, de Krijger RR, van den Heuvel-Eibrink MM, Comitani F, Piapi A, Bugallo-Blanco E, Thevanesan C, Burke C, Prigmore E, Ambridge K, Roberts K, Braga FAV, Coorens THH, Del Valle I, Wilbrey-Clark A, Mamanova L, Stewart GD, Gnanapragasam VJ, Rampling D, Sebire N, Coleman N, Hook L, Warren A, Haniffa M, Kool M, Pfister SM, Achermann JC, He X, Barker RA, Shlien A, Bayraktar OA, Teichmann SA, Holstege FC, Meyer KB, Drost J, Straathof K, Behjati S. Single cell derived mRNA signals across human kidney tumors. Nat Commun 2021; 12:3896. [PMID: 34162837 PMCID: PMC8222373 DOI: 10.1038/s41467-021-23949-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/25/2021] [Indexed: 01/16/2023] Open
Abstract
Tumor cells may share some patterns of gene expression with their cell of origin, providing clues into the differentiation state and origin of cancer. Here, we study the differentiation state and cellular origin of 1300 childhood and adult kidney tumors. Using single cell mRNA reference maps of normal tissues, we quantify reference "cellular signals" in each tumor. Quantifying global differentiation, we find that childhood tumors exhibit fetal cellular signals, replacing the presumption of "fetalness" with a quantitative measure of immaturity. By contrast, in adult cancers our assessment refutes the suggestion of dedifferentiation towards a fetal state in most cases. We find an intimate connection between developmental mesenchymal populations and childhood renal tumors. We demonstrate the diagnostic potential of our approach with a case study of a cryptic renal tumor. Our findings provide a cellular definition of human renal tumors through an approach that is broadly applicable to human cancer.
Collapse
Affiliation(s)
- Matthew D Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Thomas J Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Lars Custers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Francisco Morales-Rodriguez
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Kwasi Kwakwa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eleonora Khabirova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Gerda Kildisiute
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Thomas R W Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alice Piapi
- UCL Great Ormond Street Hospital Institute of Child Health, London, UK
| | | | | | - Christina Burke
- UCL Great Ormond Street Hospital Institute of Child Health, London, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kirsty Ambridge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Tim H H Coorens
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ignacio Del Valle
- UCL Great Ormond Street Hospital Institute of Child Health, London, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Grant D Stewart
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Vincent J Gnanapragasam
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials office, Cambridge Biomedical Campus Cambridge CB2 0QQ University of Cambridge, Cambridge, UK
| | - Dyanne Rampling
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Neil Sebire
- NIHR Great Ormond Street Hospital BRC and Institute of Child Health, London, UK
| | - Nicholas Coleman
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Liz Hook
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anne Warren
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Intitute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hopp Children´s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Division of Pediatric Neurooncology, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children´s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Division of Pediatric Neurooncology, Heidelberg, Germany
- Heidelberg University Hospital, Department of Pediatric Hematology and Oncology, Heidelberg, Germany
| | - John C Achermann
- UCL Great Ormond Street Hospital Institute of Child Health, London, UK
| | - Xiaoling He
- MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Omer A Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Frank C Holstege
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Karin Straathof
- UCL Great Ormond Street Hospital Institute of Child Health, London, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Kenny C, O’Meara E, Ulaş M, Hokamp K, O’Sullivan MJ. Global Chromatin Changes Resulting from Single-Gene Inactivation-The Role of SMARCB1 in Malignant Rhabdoid Tumor. Cancers (Basel) 2021; 13:cancers13112561. [PMID: 34071089 PMCID: PMC8197137 DOI: 10.3390/cancers13112561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Malignant rhabdoid tumors (MRT), one of the most lethal, treatment-resistant human cancers, arises in young children within brain, kidney, liver and/or soft tissues. Generally, cancer arises in older adults, and results from multiple significant changes (mutations) accumulating in the genetic blueprint (DNA) of a person’s tissues. This blueprint is composed of a 4-letter alphabet. Together, the multiple significant changes in the blueprint then allow a cell to go “out of control”, becoming a cancer cell. The striking thing about MRT is that it has only a single spelling change, so that mutation must be very powerful to lead to such a lethal cancer. Using a model system that we developed, we show herein how this single mutation alters how the whole of the DNA is arranged, thereby having its profound and lethal effects. We present insights into how this mutation arrests maturation of the cells, keeping them in a cancer “state”. Abstract Human cancer typically results from the stochastic accumulation of multiple oncogene-activating and tumor-suppressor gene-inactivating mutations. However, this process takes time and especially in the context of certain pediatric cancer, fewer but more ‘impactful’ mutations may in short order produce the full-blown cancer phenotype. This is well exemplified by the highly aggressive malignant rhabdoid tumor (MRT), where the only gene classically showing recurrent inactivation is SMARCB1, a subunit member of the BAF chromatin-remodeling complex. This is true of all three presentations of MRT including MRT of kidney (MRTK), MRT of the central nervous system (atypical teratoid rhabdoid tumor—ATRT) and extracranial, extrarenal rhabdoid tumor (EERT). Our reverse modeling of rhabdoid tumors with isogenic cell lines, either induced or not induced, to express SMARCB1 showed widespread differential chromatin remodeling indicative of altered BAF complex activity with ensuant histone modifications when tested by chromatin immunoprecipitation followed by sequencing (ChIP-seq). The changes due to reintroduction of SMARCB1 were preponderantly at typical enhancers with tandem BAF complex occupancy at these sites and related gene activation, as substantiated also by transcriptomic data. Indeed, for both MRTK and ATRT cells, there is evidence of an overlap between SMARCB1-dependent enhancer activation and tissue-specific lineage-determining genes. These genes are inactive in the tumor state, conceivably arresting the cells in a primitive/undifferentiated state. This epigenetic dysregulation from inactivation of a chromatin-remodeling complex subunit contributes to an improved understanding of the complex pathophysiological basis of MRT, one of the most lethal and aggressive human cancers.
Collapse
Affiliation(s)
- Colin Kenny
- School of Medicine, Trinity College, University of Dublin, Dublin 2, Ireland;
| | - Elaine O’Meara
- School of Medicine, Trinity College, University of Dublin, Dublin 2, Ireland;
| | - Mevlüt Ulaş
- The National Children’s Research Centre, O’Sullivan Research Laboratory, Oncology Division, Gate 5, Children’s Health Ireland at Crumlin, D12N512 Dublin, Ireland; (E.O.); (M.U.)
| | - Karsten Hokamp
- School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland;
| | - Maureen J. O’Sullivan
- School of Medicine, Trinity College, University of Dublin, Dublin 2, Ireland;
- The National Children’s Research Centre, O’Sullivan Research Laboratory, Oncology Division, Gate 5, Children’s Health Ireland at Crumlin, D12N512 Dublin, Ireland; (E.O.); (M.U.)
- Histology Laboratory, Pathology Department, Children’s Health Ireland at Crumlin, D12N512 Dublin, Ireland
- Correspondence:
| |
Collapse
|
40
|
Panwalkar P, Pratt D, Chung C, Dang D, Le P, Martinez D, Bayliss JM, Smith KS, Adam M, Potter S, Northcott PA, Mascarenhas L, Shows J, Pawel B, Margol A, Huang A, Judkins AR, Venneti S. SWI/SNF complex heterogeneity is related to polyphenotypic differentiation, prognosis, and immune response in rhabdoid tumors. Neuro Oncol 2021; 22:785-796. [PMID: 31912158 DOI: 10.1093/neuonc/noaa004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rhabdoid tumors (RTs) arise within (atypical teratoid/rhabdoid tumor [AT/RT]) or outside the brain (extra [e]CNS-RT) and are driven mainly by inactivation of the SWItch/sucrose nonfermentable (SWI/SNF) complex subunit SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1). A pathognomonic hallmark of RTs is heterogeneous multilineage differentiation, including anomalous neuronal differentiation in some eCNS-RTs. Because remodeling of the SWI/SNF complex regulates differentiation, we hypothesized that SWI/SNF Brahma-associated factors (BAF) and polybromo-associated BAF (PBAF) complex heterogeneity are related to both multilineage differentiation and clinical outcome. METHODS We performed an integrated analysis of SWI/SNF complex alterations in the developing kidney and cerebellum (most common regions of RT origin) in comparison to eCNS-RT (n = 14) and AT/RT (n = 25) tumors. RT samples were interrogated using immunohistochemistry, DNA methylation, and gene expression analyses. RESULTS The SWI/SNF BAF paralogs actin-like protein (ACTL)6A and ACTL6B were expressed in a mutually exclusive manner in the developing cerebellum and kidney. In contrast, a subset of eCNS-RTs lost mutual exclusivity and coexpressed both subunits. These tumors showed aberrant DNA methylation of genes that regulate neuronal and renal development and demonstrated immunohistochemical evidence of neuronal differentiation. In addition, low expression of the PBAF subunit polybromo-1 (PBRM1) identified a group of AT/RTs in younger children with better overall prognosis. PBRM1-low AT/RT and eCNS-RTs showed altered DNA methylation and gene expression in immune-related genes. PBRM1 knockdown resulted in lowering immunosuppressive cytokines, and PBRM1 levels in tumor samples showed an inverse relationship with cluster of differentiation (CD)8 cytotoxic T-cell infiltration. CONCLUSIONS Heterogeneity in SWI/SNF BAF (ACTL6A/ACTL6B) and PBAF (PBRM1) subunits is related to histogenesis, contributes to the immune microenvironment and prognosis in RTs, and may inform opportunities to develop immunotherapies.
Collapse
Affiliation(s)
- Pooja Panwalkar
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Drew Pratt
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chan Chung
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Derek Dang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul Le
- Department of Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Martinez
- Department of Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jill M Bayliss
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mike Adam
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Steven Potter
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Leo Mascarenhas
- Children's Hospital Los Angeles and The Saban Research Institute, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jared Shows
- Department of Pathology, Long Beach Memorial Medical Center/Miller Children's Hospital, Long Beach, California, USA
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Ashley Margol
- Children's Hospital Los Angeles and The Saban Research Institute, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Annie Huang
- Division of Hematology/Oncology, Department of Pediatrics, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Sriram Venneti
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Dharia NV, Kugener G, Guenther LM, Malone CF, Durbin AD, Hong AL, Howard TP, Bandopadhayay P, Wechsler CS, Fung I, Warren AC, Dempster JM, Krill-Burger JM, Paolella BR, Moh P, Jha N, Tang A, Montgomery P, Boehm JS, Hahn WC, Roberts CWM, McFarland JM, Tsherniak A, Golub TR, Vazquez F, Stegmaier K. A first-generation pediatric cancer dependency map. Nat Genet 2021; 53:529-538. [PMID: 33753930 PMCID: PMC8049517 DOI: 10.1038/s41588-021-00819-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023]
Abstract
Exciting therapeutic targets are emerging from CRISPR-based screens of high mutational-burden adult cancers. A key question, however, is whether functional genomic approaches will yield new targets in pediatric cancers, known for remarkably few mutations, which often encode proteins considered challenging drug targets. To address this, we created a first-generation pediatric cancer dependency map representing 13 pediatric solid and brain tumor types. Eighty-two pediatric cancer cell lines were subjected to genome-scale CRISPR-Cas9 loss-of-function screening to identify genes required for cell survival. In contrast to the finding that pediatric cancers harbor fewer somatic mutations, we found a similar complexity of genetic dependencies in pediatric cancer cell lines compared to that in adult models. Findings from the pediatric cancer dependency map provide preclinical support for ongoing precision medicine clinical trials. The vulnerabilities observed in pediatric cancers were often distinct from those in adult cancer, indicating that repurposing adult oncology drugs will be insufficient to address childhood cancers.
Collapse
Affiliation(s)
- Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Guillaume Kugener
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Lillian M Guenther
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Oncology, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew L Hong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Emory University and Department of Hematology and Oncology, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Thomas P Howard
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Caroline S Wechsler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Iris Fung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Phoebe Moh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- University of Maryland, College Park, MD, USA
| | - Nishant Jha
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew Tang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles W M Roberts
- Department of Oncology, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Todd R Golub
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Francisca Vazquez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Custers L, Khabirova E, Coorens THH, Oliver TRW, Calandrini C, Young MD, Vieira Braga FA, Ellis P, Mamanova L, Segers H, Maat A, Kool M, Hoving EW, van den Heuvel-Eibrink MM, Nicholson J, Straathof K, Hook L, de Krijger RR, Trayers C, Allinson K, Behjati S, Drost J. Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours. Nat Commun 2021; 12:1407. [PMID: 33658498 PMCID: PMC7930245 DOI: 10.1038/s41467-021-21675-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
Malignant rhabdoid tumour (MRT) is an often lethal childhood cancer that, like many paediatric tumours, is thought to arise from aberrant fetal development. The embryonic root and differentiation pathways underpinning MRT are not firmly established. Here, we study the origin of MRT by combining phylogenetic analyses and single-cell mRNA studies in patient-derived organoids. Comparison of somatic mutations shared between cancer and surrounding normal tissues places MRT in a lineage with neural crest-derived Schwann cells. Single-cell mRNA readouts of MRT differentiation, which we examine by reverting the genetic driver mutation underpinning MRT, SMARCB1 loss, suggest that cells are blocked en route to differentiating into mesenchyme. Quantitative transcriptional predictions indicate that combined HDAC and mTOR inhibition mimic MRT differentiation, which we confirm experimentally. Our study defines the developmental block of MRT and reveals potential differentiation therapies.
Collapse
Affiliation(s)
- Lars Custers
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Oncode Institute, 3584CS, Utrecht, the Netherlands
| | | | - Tim H H Coorens
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | - Thomas R W Oliver
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Camilla Calandrini
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Oncode Institute, 3584CS, Utrecht, the Netherlands
| | - Matthew D Young
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | | | - Peter Ellis
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | - Heidi Segers
- Department of Pediatric Hemato-Oncology, University Hospital Leuven, Leuven, Belgium
| | - Arie Maat
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
| | | | - James Nicholson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Karin Straathof
- UCL Great Ormond Street Hospital Institute of Child Health Biomedical Research Centre, London, WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Liz Hook
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Department of Pathology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Claire Trayers
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Kieren Allinson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands.
- Oncode Institute, 3584CS, Utrecht, the Netherlands.
| |
Collapse
|
43
|
Chasse MH, Johnson BK, Boguslawski EA, Sorensen KM, Rosien JE, Kang MH, Reynolds CP, Heo L, Madaj ZB, Beddows I, Foxa GE, Kitchen‐Goosen SM, Williams BO, Triche TJ, Grohar PJ. Mithramycin induces promoter reprogramming and differentiation of rhabdoid tumor. EMBO Mol Med 2021; 13:e12640. [PMID: 33332735 PMCID: PMC7863405 DOI: 10.15252/emmm.202012640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Rhabdoid tumor (RT) is a pediatric cancer characterized by the inactivation of SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex. Although this deletion is the known oncogenic driver, there are limited effective therapeutic options for these patients. Here we use unbiased screening of cell line panels to identify a heightened sensitivity of rhabdoid tumor to mithramycin and the second-generation analogue EC8042. The sensitivity of MMA and EC8042 was superior to traditional DNA damaging agents and linked to the causative mutation of the tumor, SMARCB1 deletion. Mithramycin blocks SMARCB1-deficient SWI/SNF activity and displaces the complex from chromatin to cause an increase in H3K27me3. This triggers chromatin remodeling and enrichment of H3K27ac at chromHMM-defined promoters to restore cellular differentiation. These effects occurred at concentrations not associated with DNA damage and were not due to global chromatin remodeling or widespread gene expression changes. Importantly, a single 3-day infusion of EC8042 caused dramatic regressions of RT xenografts, recapitulated the increase in H3K27me3, and cellular differentiation described in vitro to completely cure three out of eight mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Min H Kang
- Texas Tech University Health Sciences CenterLubbockTXUSA
| | | | - Lyong Heo
- Van Andel Research InstituteGrand RapidsMIUSA
| | | | - Ian Beddows
- Van Andel Research InstituteGrand RapidsMIUSA
| | | | | | | | | | - Patrick J Grohar
- Van Andel Research InstituteGrand RapidsMIUSA
- The Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- University of PennsylvaniaPerelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
44
|
Tsuda M, Fukuda A, Kawai M, Araki O, Seno H. The role of the SWI/SNF chromatin remodeling complex in pancreatic ductal adenocarcinoma. Cancer Sci 2021; 112:490-497. [PMID: 33301642 PMCID: PMC7894000 DOI: 10.1111/cas.14768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes are a group of epigenetic regulators that can alter the assembly of nucleosomes and regulate the accessibility of transcription factors to DNA in order to modulate gene expression. One of these complexes, the SWI/SNF chromatin remodeling complex is mutated in more than 20% of human cancers. We have investigated the roles of the SWI/SNF complex in pancreatic ductal adenocarcinoma (PDA), which is the most lethal type of cancer. Here, we reviewed the recent literature regarding the role of the SWI/SNF complex in pancreatic tumorigenesis and current knowledge about therapeutic strategies targeting the SWI/SNF complex in PDA. The subunits of the SWI/SNF complex are mutated in 14% of human PDA. Recent studies have shown that they have context-dependent oncogenic or tumor-suppressive roles in pancreatic carcinogenesis. To target its tumor-suppressive properties, synthetic lethal strategies have recently been developed. In addition, their oncogenic properties could be novel therapeutic targets. The SWI/SNF subunits are potential therapeutic targets for PDA, and further understanding of the precise role of the SWI/SNF complex subunits in PDA is required for further development of novel strategies targeting SWI/SNF subunits against PDA.
Collapse
Affiliation(s)
- Motoyuki Tsuda
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
- Department of Gastroenterology and HepatologyKindai University Faculty of MedicineOsaka‐sayama CityJapan
| | - Akihisa Fukuda
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Munenori Kawai
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Osamu Araki
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Hiroshi Seno
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
45
|
Holdhof D, Johann PD, Spohn M, Bockmayr M, Safaei S, Joshi P, Masliah-Planchon J, Ho B, Andrianteranagna M, Bourdeaut F, Huang A, Kool M, Upadhyaya SA, Bendel AE, Indenbirken D, Foulkes WD, Bush JW, Creytens D, Kordes U, Frühwald MC, Hasselblatt M, Schüller U. Atypical teratoid/rhabdoid tumors (ATRTs) with SMARCA4 mutation are molecularly distinct from SMARCB1-deficient cases. Acta Neuropathol 2021; 141:291-301. [PMID: 33331994 PMCID: PMC7847432 DOI: 10.1007/s00401-020-02250-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Atypical teratoid/rhabdoid tumors (ATRTs) are very aggressive childhood malignancies of the central nervous system. The underlying genetic cause are inactivating bi-allelic mutations in SMARCB1 or (rarely) in SMARCA4. ATRT-SMARCA4 have been associated with a higher frequency of germline mutations, younger age, and an inferior prognosis in comparison to SMARCB1 mutated cases. Based on their DNA methylation profiles and transcriptomics, SMARCB1 mutated ATRTs have been divided into three distinct molecular subgroups: ATRT-TYR, ATRT-SHH, and ATRT-MYC. These subgroups differ in terms of age at diagnosis, tumor location, type of SMARCB1 alterations, and overall survival. ATRT-SMARCA4 are, however, less well understood, and it remains unknown, whether they belong to one of the described ATRT subgroups. Here, we examined 14 ATRT-SMARCA4 by global DNA methylation analyses. We show that they form a separate group segregating from SMARCB1 mutated ATRTs and from other SMARCA4-deficient tumors like small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) or SMARCA4 mutated extra-cranial malignant rhabdoid tumors. In contrast, medulloblastoma (MB) samples with heterozygous SMARCA4 mutations do not group separately, but with established MB subgroups. RNA sequencing of ATRT-SMARCA4 confirmed the clustering results based on DNA methylation profiling and displayed an absence of typical signature genes upregulated in SMARCB1 deleted ATRT. In summary, our results suggest that, in line with previous clinical observations, ATRT-SMARCA4 should be regarded as a distinct molecular subgroup.
Collapse
Affiliation(s)
- Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Pascal D Johann
- Paediatric and Adolescent Medicine, Swabian Childrens' Cancer Center Augsburg, Augsburg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Michael Bockmayr
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Institute of Pathology, Corporate Member of Freie Universität Berlin, Charité, Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sepehr Safaei
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Piyush Joshi
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Julien Masliah-Planchon
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
| | - Ben Ho
- Division of Hematology and Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Mamy Andrianteranagna
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
- INSERM U900, CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Curie Institute, Paris, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
- Departments of Genetics and of Oncopediatry and Young Adults, Curie Institute, Paris, France
| | - Annie Huang
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Santhosh A Upadhyaya
- Department of Oncology, St Jude Children's Research Hospital, Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Anne E Bendel
- Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Daniela Indenbirken
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jonathan W Bush
- Division of Anatomical Pathology, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, BC, Canada
- University of British Columbia, Vancouver, BC, Canada
| | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael C Frühwald
- Paediatric and Adolescent Medicine, Swabian Childrens' Cancer Center Augsburg, Augsburg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
46
|
Nemes K, Bens S, Kachanov D, Teleshova M, Hauser P, Simon T, Tippelt S, Woessmann W, Beck O, Flotho C, Grigull L, Driever PH, Schlegel PG, Khurana C, Hering K, Kolb R, Leipold A, Abbink F, Gil-Da-Costa MJ, Benesch M, Kerl K, Lowis S, Marques CH, Graf N, Nysom K, Vokuhl C, Melchior P, Kröncke T, Schneppenheim R, Kordes U, Gerss J, Siebert R, Furtwängler R, Frühwald MC. Clinical and genetic risk factors define two risk groups of extracranial malignant rhabdoid tumours (eMRT/RTK). Eur J Cancer 2020; 142:112-122. [PMID: 33249395 DOI: 10.1016/j.ejca.2020.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Extracranial rhabdoid tumours are rare, highly aggressive malignancies primarily affecting young children. The EU-RHAB registry was initiated in 2009 to prospectively collect data of rhabdoid tumour patients treated according to the EU-RHAB therapeutic framework. METHODS We evaluated 100 patients recruited within EU-RHAB (2009-2018). Tumours and matching blood samples were examined for SMARCB1 mutations by sequencing and cytogenetics. RESULTS A total of 70 patients presented with extracranial, extrarenal tumours (eMRT) and 30 with renal rhabdoid tumours (RTK). Nine patients demonstrated synchronous tumours. Distant metastases at diagnosis (M+) were present in 35% (35/100), localised disease (M0) with (LN+) and without (LN-) loco-regional lymph node involvement in 65% (65/100). SMARCB1 germline mutations (GLM) were detected in 21% (17/81 evaluable) of patients. The 5-year overall survival (OS) and event-free survival (EFS) rates were 45.8 ± 5.4% and 35.2 ± 5.1%, respectively. On univariate analyses, age at diagnosis (≥12 months), M0-stage, absence of synchronous tumours, absence of a GLM, gross total resection (GTR), radiotherapy and achieving a CR were significantly associated with favourable outcomes. In an adjusted multivariate model presence of a GLM, M+ and lack of a GTR were the strongest significant negative predictors of outcome. CONCLUSIONS We suggest to stratify patients with localised disease (M0), GTR+ and without proof of a GLM (5-year OS 72.2 ± 9.9%) as 'standard risk'. Patients presenting with one of the features M+ and/or GTR- and/or GLM+ belong to a high risk group (5-year, OS 32.5 ± 6.2%). These patients need novel therapeutic strategies such as combinations of targeted agents with conventional chemotherapy or novel experimental approaches ideally within international phase I/II trials.
Collapse
Affiliation(s)
- Karolina Nemes
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Denis Kachanov
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russian Federation
| | - Margarita Teleshova
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russian Federation
| | - Peter Hauser
- Department of Pediatric Oncology, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Thorsten Simon
- Department of Pediatric Hematology and Oncology, University Children's Hospital of Cologne, Cologne, Germany
| | - Stephan Tippelt
- Department of Pediatric Hematology and Oncology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Wilhelm Woessmann
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Olaf Beck
- Department of Pediatric Hematology, Oncology & Hemostaseology, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium, Heidelberg, Germany
| | - Lorenz Grigull
- Department of Pediatric Hematology and Oncology, Children's Hospital of Hannover, Hannover, Germany
| | - Pablo H Driever
- Department of Pediatric Oncology and Hematology, Charité - University Hospital Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Claudia Khurana
- Department of Pediatric Hematology and Oncology, Children's Hospital of Bielefeld, Germany
| | - Kathrin Hering
- Department of Radiotherapy and Radiation Oncology, Leipzig University, Leipzig, Germany
| | - Reinhard Kolb
- Department of Pediatrics, Children's Center, Hospital of Oldenburg, Oldenburg, Germany
| | | | - Floor Abbink
- Department of Pediatric Hematology and Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Maria J Gil-Da-Costa
- Pediatric Hemathology and Oncology Division, University Hospital S. João Alameda Hernani Monteiro, Porto, Portugal
| | - Martin Benesch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Austria
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Stephen Lowis
- School of Clinical Sciences, University of Bristol, London, UK
| | - Carmen H Marques
- Pediatric Onco-hematology Unit, Niño Jesús Hospital, Madrid, Spain
| | - Norbert Graf
- Department of Pediatric Hematology and Oncology, University of Saarland, Homburg, Germany
| | - Karsten Nysom
- Department of Paediatrics and Adolescent Medicine, Neuroscience Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Vokuhl
- Department of Pathology, Section of Pediatric Pathology, University Hospital Bonn, Bonn, Germany
| | - Patrick Melchior
- Department of Radiation Oncology, University of Saarland, Homburg, Germany
| | - Thomas Kröncke
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Gerss
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Rhoikos Furtwängler
- Department of Pediatric Hematology and Oncology, University of Saarland, Homburg, Germany
| | - Michael C Frühwald
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Germany.
| |
Collapse
|
47
|
Parisian AD, Koga T, Miki S, Johann PD, Kool M, Crawford JR, Furnari FB. SMARCB1 loss interacts with neuronal differentiation state to block maturation and impact cell stability. Genes Dev 2020; 34:1316-1329. [PMID: 32912900 PMCID: PMC7528703 DOI: 10.1101/gad.339978.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/14/2020] [Indexed: 01/23/2023]
Abstract
Atypical teratoid rhabdoid tumors (ATRTs) are challenging pediatric brain cancers that are predominantly associated with inactivation of the gene SMARCB1, a conserved subunit of the chromatin remodeling BAF complex, which has known contributions to developmental processes. To identify potential interactions between SMARCB1 loss and the process of neural development, we introduced an inducible SMARCB1 loss-of-function system into human induced pluripotent stem cells (iPSCs) that were subjected to either directed neuronal differentiation or differentiation into cerebral organoids. Using this system, we identified substantial differences in the downstream effects of SMARCB1 loss depending on differentiation state and identified an interaction between SMARCB1 loss and neural differentiation pressure that causes a resistance to terminal differentiation and a defect in maintenance of a normal cell state. Our results provide insight into how SMARCB1 loss might interact with neural development in the process of ATRT tumorigenesis.
Collapse
Affiliation(s)
- Alison D Parisian
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California 92093, USA
| | - Tomoyuki Koga
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shunichiro Miki
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Pascal D Johann
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - John R Crawford
- Department of Neurosciences and Pediatrics, University of California at San Diego, San Diego, California 92093, USA; Rady Children's Hospital at San Diego, San Diego, California 92123, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
- Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
48
|
Chen G, Zhou H, Liu B, Wang Y, Zhao J, Giancotti FG, Long J. A heterotrimeric SMARCB1-SMARCC2 subcomplex is required for the assembly and tumor suppression function of the BAF chromatin-remodeling complex. Cell Discov 2020; 6:66. [PMID: 33024572 PMCID: PMC7506551 DOI: 10.1038/s41421-020-00196-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guidong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Department of Cancer Biology and David H Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Beibei Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yan Wang
- Department of Cancer Biology and David H Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Jianchun Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Filippo G. Giancotti
- Department of Cancer Biology and David H Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
49
|
Oberlick EM, Rees MG, Seashore-Ludlow B, Vazquez F, Nelson GM, Dharia NV, Weir BA, Tsherniak A, Ghandi M, Krill-Burger JM, Meyers RM, Wang X, Montgomery P, Root DE, Bieber JM, Radko S, Cheah JH, Hon CSY, Shamji AF, Clemons PA, Park PJ, Dyer MA, Golub TR, Stegmaier K, Hahn WC, Stewart EA, Schreiber SL, Roberts CWM. Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors. Cell Rep 2020; 28:2331-2344.e8. [PMID: 31461650 DOI: 10.1016/j.celrep.2019.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/19/2019] [Accepted: 07/08/2019] [Indexed: 02/09/2023] Open
Abstract
Cancer is often seen as a disease of mutations and chromosomal abnormalities. However, some cancers, including pediatric rhabdoid tumors (RTs), lack recurrent alterations targetable by current drugs and need alternative, informed therapeutic options. To nominate potential targets, we performed a high-throughput small-molecule screen complemented by a genome-scale CRISPR-Cas9 gene-knockout screen in a large number of RT and control cell lines. These approaches converged to reveal several receptor tyrosine kinases (RTKs) as therapeutic targets, with RTK inhibition effective in suppressing RT cell growth in vitro and against a xenograft model in vivo. RT cell lines highly express and activate (phosphorylate) different RTKs, creating dependency without mutation or amplification. Downstream of RTK signaling, we identified PTPN11, encoding the pro-growth signaling protein SHP2, as a shared dependency across all RT cell lines. This study demonstrates that large-scale perturbational screening can uncover vulnerabilities in cancers with "quiet" genomes.
Collapse
Affiliation(s)
- Elaine M Oberlick
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | | | - Brinton Seashore-Ludlow
- Broad Institute, Cambridge, MA 02142, USA; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | - Geoffrey M Nelson
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA; Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | - Xiaofeng Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | - Sandi Radko
- Comprehensive Cancer Center and Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Harvard Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Todd R Golub
- Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Boston Children's Hospital, Boston, MA 02115, USA
| | - William C Hahn
- Broad Institute, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stuart L Schreiber
- Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center and Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
50
|
Xue Y, Zhu X, Meehan B, Venneti S, Martinez D, Morin G, Maïga RI, Chen H, Papadakis AI, Johnson RM, O'Sullivan MJ, Erdreich-Epstein A, Gotlieb WH, Park M, Judkins AR, Pelletier J, Foulkes WD, Rak J, Huang S. SMARCB1 loss induces druggable cyclin D1 deficiency via upregulation of MIR17HG in atypical teratoid rhabdoid tumors. J Pathol 2020; 252:77-87. [PMID: 32558936 DOI: 10.1002/path.5493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/27/2020] [Accepted: 06/10/2020] [Indexed: 01/04/2023]
Abstract
Atypical teratoid rhabdoid tumor (ATRT) is a fatal pediatric malignancy of the central neural system lacking effective treatment options. It belongs to the rhabdoid tumor family and is usually caused by biallelic inactivation of SMARCB1, encoding a key subunit of SWI/SNF chromatin remodeling complexes. Previous studies proposed that SMARCB1 loss drives rhabdoid tumor by promoting cell cycle through activating transcription of cyclin D1 while suppressing p16. However, low cyclin D1 protein expression is observed in most ATRT patient tumors. The underlying mechanism and therapeutic implication of this molecular trait remain unknown. Here, we show that SMARCB1 loss in ATRT leads to the reduction of cyclin D1 expression by upregulating MIR17HG, a microRNA (miRNA) cluster known to generate multiple miRNAs targeting CCND1. Furthermore, we find that this cyclin D1 deficiency in ATRT results in marked in vitro and in vivo sensitivity to the CDK4/6 inhibitor palbociclib as a single agent. Our study identifies a novel genetic interaction between SMARCB1 and MIR17HG in regulating cyclin D1 in ATRT and suggests a rationale to treat ATRT patients with FDA-approved CDK4/6 inhibitors. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yibo Xue
- Department of Biochemistry, McGill University, Montreal, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Xianbing Zhu
- Department of Biochemistry, McGill University, Montreal, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Brian Meehan
- Department of Pediatrics, McGill University, and Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montreal, Canada
| | - Sriram Venneti
- Pathology and Neuropathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel Martinez
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Geneviève Morin
- Department of Biochemistry, McGill University, Montreal, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Rayelle I Maïga
- Department of Biochemistry, McGill University, Montreal, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Andreas I Papadakis
- Department of Biochemistry, McGill University, Montreal, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Radia M Johnson
- Department of Biochemistry, McGill University, Montreal, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Maureen J O'Sullivan
- School of Medicine, University of Dublin, Trinity College, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Anat Erdreich-Epstein
- Departments of Pediatrics and Pathology, The Saban Research Institute at Children's Hospital Los Angeles and the Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Canada.,Department of Medical Genetics, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada.,Department of Medical Genetics and Cancer Research Program, McGill University Health Centre, Montreal, Canada
| | - Janusz Rak
- Department of Pediatrics, McGill University, and Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montreal, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Canada
| |
Collapse
|