1
|
Zuo CJ, Tian J. Advancing the understanding of the role of apoptosis in lung cancer immunotherapy: Global research trends, key themes, and emerging frontiers. Hum Vaccin Immunother 2025; 21:2488074. [PMID: 40186454 PMCID: PMC11980473 DOI: 10.1080/21645515.2025.2488074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/12/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025] Open
Abstract
Apoptosis is vital for improving the efficacy of lung cancer (LC) immunotherapy by targeting cancer cell elimination. Despite its importance, there is a lack of comprehensive bibliometric studies analyzing global research on apoptosis in LC immunotherapy. This analysis aims to address this gap by highlighting key trends, contributors, and future directions. A total of 969 publications from 1996 to 2024 were extracted from the Web of Science Core Collection. Analysis was conducted using VOSviewer, CiteSpace, and the R package 'bibliometrix.' The study included contributions from 6,894 researchers across 1,469 institutions in 61 countries, with research published in 356 journals. The volume of publications has steadily increased, led by China and the United States, with Sichuan University as the top contributor. The journal Cancers published the most articles, while Cancer Research had the highest co-citations. Yu-Quan Wei was the leading author, and Jemal, A. was the most frequently co-cited. Key research themes include "cell death mechanisms," "immune regulation," "combination therapies," "gene and nanomedicine applications," and "traditional Chinese medicine (TCM)." Future research is likely to focus on "coordinated regulation of multiple cell death pathways," "modulation of the tumor immune microenvironment," "optimization of combination therapies," "novel strategies in gene regulation," and the "integration of TCM" for personalized treatment. This is the first bibliometric analysis on the role of apoptosis in LC immunotherapy, providing an landscape of global research patterns and emerging therapeutic strategies. The findings offer insights to guide future research and optimize treatment approaches.
Collapse
Affiliation(s)
- Chun-Jian Zuo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhang S, Wang YF, Lu HR, Yang XQ, Zhang Y, Ma XL, Huang RZ. Discovery of Novel Imidazothiazole-Based Hydroxamic Acid Derivatives as Potent Indoleamine 2,3-Dioxygenase 1 and Histone Deacetylase 6 Dual Inhibitors. Molecules 2025; 30:2508. [PMID: 40572474 PMCID: PMC12195740 DOI: 10.3390/molecules30122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2025] [Revised: 06/04/2025] [Accepted: 06/05/2025] [Indexed: 06/29/2025] Open
Abstract
In order to take advantage of both immunotherapeutic and epigenetic antitumor agents, a series of imidazothiazole-based hydroxamic acid derivatives were designed based on the pharmacophore fusion strategy and evaluated as potent IDO1 and HDAC6 dual inhibitors. Among these inhibitors, the most potent compound 3-(4-Bromophenyl)-N-{4-[(7-(hydroxyamino)-7-oxoheptyl)amino]phenyl}imidazo[2,1-b]thiazole-5-carboxamide (10e) showed considerable IDO1 inhibitory activity and a good selectivity profile for HDAC6 over the other HDAC isoforms. The intracellular inhibition of HDAC6 by 10e was validated by Western blot analysis. Docking studies illustrated that the possible binding modes of compound 10e interacted with IDO1 and HDAC6. Moreover, compound 10e was found to arrest the cell cycle at the G2/M phase in HCT-116 cells. In particular, compound 10e also exhibited potent in vivo antitumor efficacy in CT26 tumor-bearing BALB/c mice models, with no significant toxicity. Collectively, this work provides a promising lead compound that serves as IDO1/HDAC6 dual inhibitor for the development of novel antitumor agents.
Collapse
Affiliation(s)
- Shi Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yan-Fei Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Hai-Rui Lu
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xue-Qin Yang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
- Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
- Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Ri-Zhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
3
|
Wu Y, Tao Q, Xie J, Liu X, Zhou Y, Wei C, Zhang C, Wang J, Jin Y. Indole-3-carbinol inhibits PD-L1-mediated immune evasion in hepatocellular carcinoma via suppressing NF-κB p105 Ubiquitination. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156692. [PMID: 40215823 DOI: 10.1016/j.phymed.2025.156692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, and immunotherapy has demonstrated significant therapeutic benefit in HCC. Indole-3-carbinol (I3C), a naturally occurring ingredient of cruciferous vegetables, significantly inhibits the growth of a wide range of tumors. However, its mechanism of action has not been fully elucidated. PURPOSE This study aims to verify and explore the immunomodulatory effect of I3C in HCC models, and to investigate the specific role and mechanism by which I3C affects PD-L1 expression through the ubiquitination of NF-κB p105. METHODS In vitro, I3C was treated with HepG2 cells and relevant indicators were analyzed. In vivo, the mouse HCC model was established and the effect of I3C on tumors and immune function was evaluated. Subsequently, the downstream target of I3C was found through target prediction, molecular docking, and molecular dynamics simulation. Finally, combined therapy was used to further investigate the effect of I3C on mouse HCC tumors. RESULTS We observed that I3C resulted in decreased programmed cell death ligand 1 (PD-L1) expression in HepG2 cells and increased CD8 T cell infiltration in tissues. Subsequently, target prediction and molecular docking demonstrated that I3C was able to efficiently bind to NF-κB p105. In addition, overexpression of NF-κB p105 upregulated PD-L1 expression and almost completely eliminated the inhibitory effect of I3C. Notably, the combination of I3C and PD-L1 monoclonal antibodies showed synergistic anti-tumor effects in the mouse HCC model. CONCLUSION This study demonstrated that I3C inhibits PD-L1-mediated immune evasion in HCC via suppressing NF-κB p105 ubiquitination. The role of I3C in tumors deserves further investigation and provides the foundation for the future development of novel immunotherapeutic drugs.
Collapse
Affiliation(s)
- Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Xiao Liu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Yuanzhi Zhou
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Chengyan Wei
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Chunwei Zhang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Jingjing Wang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China.
| |
Collapse
|
4
|
Fu L, Zhang J, Lin Z, Meng X. Uhrf1 downregulation promotes β-cell dedifferentiation by decreasing Foxo1 expression in type 2 diabetes. J Diabetes Investig 2025. [PMID: 40405579 DOI: 10.1111/jdi.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/25/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Islet β-cell dedifferentiation is a major pathological mechanism of type 2 diabetes (T2D). Forkhead box o1 (Foxo1) is a master regulator of β-cell dedifferentiation. The mechanisms by which Foxo1 expression is regulated remain unexplored. Epigenetic modification is involved in the occurrence and development of T2D. Ubiquitin-like with PDH and ring finger domains 1 (Uhrf1), as an important epigenetic regulator, is associated with the maintenance of DNA methylation and histone modification. PURPOSE This study aimed to discover whether Uhrf1 regulates Foxo1 expression and β-cell dedifferentiation of rat insulinoma (INS-1) cells. METHODS RT-qPCR and Western blot were performed to detect the levels of Uhrf1, Foxo1, β-cell dedifferentiation, and proliferation and apoptosis related indicators. ChIP-qPCR was used to analyze the relative lysine trimethylation at positions 4, 9, and 27 on histone H3 (H3K4/9/27me3) enrichment on the Foxo1 promoter. Dual-luciferase reporter assay was performed to assess the interaction between Uhrf1 and Foxo1. Finally, a diabetic rat model was established and the rat islet β-cells were isolated. RESULTS Glucolipotoxicity-induced β-cell dedifferentiation of INS-1 cells, which was restored after Uhrf1 overexpression. Mechanistically, Uhrf1 regulated the H3K4/9/27me3 of the Foxo1 promoter region. Besides, Foxo1 overexpression suppressed β-cell dedifferentiation of INS-1 cells. Moreover, islet β-cells isolated from diabetic model rats showed increased dedifferentiation. CONCLUSION Uhrf1 knockdown promoted H3K27me3 and H3K9me3 and reduced H3K4me3 level in INS-1 cells, resulting in the downregulation of Foxo1 expression, thus promoting β-cell dedifferentiation.
Collapse
Affiliation(s)
- Lanfang Fu
- Department of Endocrinology, Haikou People's Hospital, Haikou, China
| | - Juyun Zhang
- Department of Endocrinology, Haikou People's Hospital, Haikou, China
| | - Zhu Lin
- Department of Endocrinology, Haikou People's Hospital, Haikou, China
| | - Xubiao Meng
- Department of Endocrinology, Haikou People's Hospital, Haikou, China
| |
Collapse
|
5
|
Gao S, Liu T, Liu Q. DNMT1 promotes bladder cancer progression and immune escape by inhibiting MYH11 expression by methylating its promoter. Int Urol Nephrol 2025:10.1007/s11255-025-04527-w. [PMID: 40314887 DOI: 10.1007/s11255-025-04527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Bladder cancer (BC) is a fatal malignancy of the urinary tract with limited effective biomarkers and therapeutic targets. This paper delved into the mechanism of MYH11 and DNMT1 in BC progression. METHODS Differential genes obtained from the GSE3167 dataset were analyzed by the R language limma package. RT-qPCR, Western blot, and immunohistochemistry were carried out to assess MYH11 and DNMT1 expression in BC cell lines and BC tissues. Cell migration, invasion, proliferation, and apoptosis were detected by Transwell assay, CCK-8, and TUNEL after different lentiviral vector treatments. MB49 cells with different infections were administered into mice to monitor tumor growth and immune escape. Flow cytometry detected the rate of CD45+CD4+-positive cells in the tumor tissues and PD-1 and TIM-3 expression in CD4+ T cells. MYH11 methylation was analyzed using the qMSP assay. ChIP and dual-luciferase assay were used for regulatory assays. RESULTS MYH11 was lowly expressed in BC. Overexpression of MYH11 inhibited the malignant progression of BC cells, promoted anti-tumor immune responses of CD4+ T cells, and inhibited immune escape and tumor development in mice. DNMT1 inhibited MYH11 expression by elevating MYH11 promoter methylation. DNMT1 inhibition impeded the immune escape of BC cells, which was reversed by silencing MYH11. DNMT1 silencing prevented immune escape via transcriptional activation of MYH11 and hindered tumor growth in mice. CONCLUSION DNMT1 promotes immune escape and malignant progression of BC by methylating the promoter of MYH11.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Tianyi Liu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Qing Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
6
|
Harada J, Kawashima K, Matsubara Y, Oshi M, Sasamoto M, Yamada A, Suganuma N, Fujii S. H3K27me3-mediated regulation of PD-L1 expression in triple-negative breast cancer (TNBC). Pathol Res Pract 2025; 269:155872. [PMID: 40023141 DOI: 10.1016/j.prp.2025.155872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/31/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE Enhancer of zeste homolog 2 (EZH2) is highly expressed in triple-negative breast cancer (TNBC) and induces massive histone modification via trimethylation at lysine 27 of histone H3 (H3K27me3). The expression level of programmed death ligand 1 (PD-L1) is crucial for determining the indications for immune checkpoint inhibitors in patients with TNBC. This study aimed to clarify the regulatory roles of EZH2 and H3K27me3 in the PD-L1 expression in TNBC cells. METHODS The change in the expression of PD-L1 at mRNA and protein levels was investigated by establishing an EZH2-knockdown MDA-MB-231 cell line using siRNA followed by RT-qPCR and western blotting analyses. Localization of the PD-L1 protein was assessed using immunofluorescence. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the histone methylation status of PD-L1 promoter regions. The correlation among PD-L1, EZH2, and H3K27me3 protein expressions was explored in 57 patients with TNBC through immunohistochemistry. RESULTS Knockdown of EZH2 restored the PD-L1 expression and localization of PD-L1 protein in the cellular membrane. ChIP assay revealed that the knockdown of EZH2 diminished H3K27 trimethylation and enhanced H3K4 trimethylation in the promoter region of PD-L1. Immunohistochemical analysis of TNBC specimens reflected an inverse correlation between PD-L1 expression and H3K27me3 nuclear positivity; however, no correlation between H3K27me3 status and EZH2 expression was observed. CONCLUSIONS The downregulation of EZH2 can potentially enhance the efficacy of immune checkpoint inhibitors in patients with TNBC and may provide a new therapeutic strategy.
Collapse
Affiliation(s)
- Jotaro Harada
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Kei Kawashima
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuka Matsubara
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masanori Oshi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mahato Sasamoto
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyasu Suganuma
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of pathology, Yokohama City University Hospital, Yokohama, Japan.
| |
Collapse
|
7
|
Yu J, Kong X, Feng Y. Tumor microenvironment-driven resistance to immunotherapy in non-small cell lung cancer: strategies for Cold-to-Hot tumor transformation. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:21. [PMID: 40342732 PMCID: PMC12059482 DOI: 10.20517/cdr.2025.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/19/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Non-small cell lung cancer (NSCLC) represents a formidable challenge in oncology due to its molecular heterogeneity and the dynamic suppressive nature of its tumor microenvironment (TME). Despite the transformative impact of immune checkpoint inhibitors (ICIs) on cancer therapy, the majority of NSCLC patients experience resistance, necessitating novel approaches to overcome immune evasion. This review highlights shared and subtype-specific mechanisms of immune resistance within the TME, including metabolic reprogramming, immune cell dysfunction, and physical barriers. Beyond well-characterized components such as regulatory T cells, tumor-associated macrophages, and myeloid-derived suppressor cells, emerging players - neutrophil extracellular traps, tertiary lymphoid structures, and exosomal signaling networks - underscore the TME's complexity and adaptability. A multi-dimensional framework is proposed to transform cold, immune-excluded tumors into hot, immune-reactive ones. Key strategies include enhancing immune infiltration, modulating immunosuppressive networks, and activating dormant immune pathways. Cutting-edge technologies, such as single-cell sequencing, spatial transcriptomics, and nanomedicine, are identified as pivotal tools for decoding TME heterogeneity and personalizing therapeutic interventions. By bridging mechanistic insights with translational innovations, this review advocates for integrative approaches that combine ICIs with metabolic modulators, vascular normalizers, and emerging therapies such as STING agonists and tumor vaccines. The synergistic potential of these strategies is poised to overcome resistance and achieve durable antitumor immunity. Ultimately, this vision underscores the importance of interdisciplinary collaboration and real-time TME profiling in refining precision oncology for NSCLC, offering a blueprint for extending these advances to other malignancies.
Collapse
Affiliation(s)
- Jinglu Yu
- Institute of Integrated Chinese and Western Medicine, PuDong Traditional Chinese Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201200, China
- Institute of Respiratory Medicine, PuDong Traditional Chinese Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201200, China
| | - Xiaoni Kong
- Institute of Integrated Chinese and Western Medicine, PuDong Traditional Chinese Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201200, China
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Feng
- Institute of Integrated Chinese and Western Medicine, PuDong Traditional Chinese Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201200, China
| |
Collapse
|
8
|
Oka T, Smith SS, Oliver-Garcia VS, Lee T, Son HG, Mortaja M, Azin M, Garza-Mayers AC, Huang JT, Nazarian RM, Horn TD, Demehri S. Epigenomic regulation of stemness contributes to the low immunogenicity of the most mutated human cancer. Cell Rep 2025:115561. [PMID: 40250424 DOI: 10.1016/j.celrep.2025.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/02/2024] [Accepted: 03/24/2025] [Indexed: 04/20/2025] Open
Abstract
Despite harboring the highest tumor mutational burden of all cancers, basal cell carcinoma (BCC) has low immunogenicity. Here, we demonstrate that BCC's low immunogenicity is associated with epigenomic suppression of antigen presentation machinery reminiscent of its cell of origin. Primary BCC had low T cell infiltrates and low human leukocyte antigen class I (HLA-I) expression compared with cutaneous squamous cell carcinoma (SCC) and normal keratinocytes. Forkhead box C1 (Foxc1), a regulator of quiescence in hair follicle stem cells, was expressed in BCC. Foxc1 bound to promoter of interferon regulatory factor 1 and HLA-I genes, leading to their deacetylation and reduced expression. A histone deacetylase inhibitor, entinostat, overcame Foxc1's effect and upregulated HLA-I in BCC. Topical entinostat plus imiquimod immunotherapy blocked BCC development in mice. Collectively, our findings demonstrate that low BCC immunogenicity is associated with a stem-like quiescent program preserved in the tumor cells, which can be blocked to enable BCC immunotherapy.
Collapse
Affiliation(s)
- Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sabrina S Smith
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Valeria S Oliver-Garcia
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Truelian Lee
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heehwa G Son
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mahsa Mortaja
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anna C Garza-Mayers
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer T Huang
- Dermatology Section, Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rosalynn M Nazarian
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas D Horn
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Zhang W, Wang J, Liang J, He Z, Wang K, Lin H. RNA methylation of CD47 mediates tumor immunosuppression in EGFR-TKI resistant NSCLC. Br J Cancer 2025; 132:569-579. [PMID: 39900985 PMCID: PMC11920402 DOI: 10.1038/s41416-025-02945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs) have been successfully utilized in patients with non-small cell lung cancer (NSCLC), EGFR-mutated patients didn't benefit from ICIs. The underlying mechanisms for the poor efficacy of this subgroup remain unclear. METHODS CD8+T cells cytotoxicity, DCs phagocytosis and immunofluorescence assay were applied to examine the immunosuppressive microenvironment of NSCLC. m6A RNA immunoprecipitation, luciferase assay and immunohistochemistry were used to explore the relationship between CD47 and ALKBH5 in EGFR-TKI resistant NSCLC. Autochthonous EGFR-driven lung tumor mouse model and PDXs were performed to explore the therapeutic potential of CD47 antibody and EGFR-TKI combination. RESULTS We found that EGFR-TKI resistance promoted a more immunosuppressive tumor microenvironment and inhibited anti-tumor functions of CD8+ T cells. Mechanistically, the m6A eraser ALKBH5 was inhibited in EGFR-TKI resistant NSCLC, which subsequently upregulates CD47 by catalyzing m6A demethylation and causes immunosuppression. Combined treatment with EGFR-TKI and inhibitors of CD47 enhances antitumor immunity and EGFR-TKI efficacy in vivo. CONCLUSIONS Collectively, our findings reveal the possible underlying mechanism for poor immune response of ICIs in EGFR-TKI resistant NSCLC and provide preclinical evidence that targeted therapy combined with innate immune checkpoint blockade may provide synergistic effects in NSCLC treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jialu Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhanghai He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kefeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Zhang H, Pang Y, Yi L, Wang X, Wei P, Wang H, Lin S. Epigenetic regulators combined with tumour immunotherapy: current status and perspectives. Clin Epigenetics 2025; 17:51. [PMID: 40119465 PMCID: PMC11929245 DOI: 10.1186/s13148-025-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitor therapy, has demonstrated clinical benefits in solid tumours. Despite its satisfactory clinical efficacy, it still faces several issues, such as limited eligibility, low response rates and cytotoxicity. Cancer epigenetics implies that tumour cells exhibit unique phenotypes because of their unique characteristics, thus reprogramming of the epigenome holds promise for cancer therapy. Epigenetic regulation plays an important role in regulating gene expression during tumour development and maintenance. Epigenetic regulators induce cancer cell cycle arrest, apoptosis and differentiation of cancer cells, thereby exerting anti-tumour effects. Recent studies have revealed a significant correlation between epigenetic regulatory factors and immune checkpoint therapy. Epigenetics can modulate various aspects of the tumour immune microenvironment and immune response to enhance the sensitivity of immunotherapy, such as lowering the concentration required and mitigating cytotoxicity. This review primarily discusses DNA methyltransferase inhibitors, histone deacetylase inhibitors, enhancer of zeste homolog 2 inhibitors and lysine-specific demethylase 1 inhibitors, which are associated with transcriptional repression. This repression alters the expression of genes involved in the immune checkpoint, thereby enhancing the effectiveness of immunotherapy. We also discuss the potential and challenges of tumour immunotherapy and highlight its advantages, application challenges and clinical research on integrating epigenetic regulatory factors with tumour immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Yutong Pang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ling Yi
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Shuye Lin
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
11
|
Ji Y, Xiao C, Fan T, Deng Z, Wang D, Cai W, Li J, Liao T, Li C, He J. The epigenetic hallmarks of immune cells in cancer. Mol Cancer 2025; 24:66. [PMID: 40038722 PMCID: PMC11881328 DOI: 10.1186/s12943-025-02255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Targeting the dysregulation of epigenetic mechanisms in cancer has emerged as a promising therapeutic strategy. Although the significant rationale progress of epigenetic therapies in blocking cancer cells, how epigenetic regulation shapes tumor microenvironment (TME) and establishes antitumor immunity remains less understood. Recent study focus has been put on the epigenetic-mediated changes in the fate of immune cells, including the differentiation, expansion, recruitment, functionalization, and exhaustion of T cells, natural killer (NK) cells, tumor-associated macrophages (TAMs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), and B cells within the TME. Here, we review the latest molecular and clinical insights into how DNA modifications, histone modification, and epitranscriptome-related regulations shape immune cells of various cancers. We also discuss opportunities for leveraging epigenetic therapies to improve cancer immunotherapies. This review provides the epigenetic foundations of cancer immunity and proposes the future direction of combination therapies.
Collapse
Affiliation(s)
- Yu Ji
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianle Liao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
12
|
Hou H, Liu X, Liu J, Wang Y. Carbohydrate polymer-based nanoparticles with cell membrane camouflage for cancer therapy: A review. Int J Biol Macromol 2025; 289:138620. [PMID: 39674458 DOI: 10.1016/j.ijbiomac.2024.138620] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Recent developments in biomimetic nanoparticles, specifically carbohydrate polymer-coated cell membrane nanoparticles, have demonstrated considerable promise in treating cancer. These systems improve drug delivery by imitating natural cell actions, enhancing biocompatibility, and decreasing immune clearance. Conventional drug delivery methods frequently face challenges with non-specific dispersal and immune detection, which can hinder their efficiency and safety. These biomimetic nanoparticles improve target specificity, retention times, and therapeutic efficiency by using biological components like chitosan, hyaluronic acid, and alginate. Chitosan-based nanoparticles, which come from polysaccharides found in nature, have self-assembly abilities that make them better drug carriers. Hyaluronic acid helps target tissues more effectively, especially in cancer environments where there are high levels of hyaluronic acid receptors. Alginate-based systems also enhance drug delivery by being biocompatible and degradable, making them ideal choices for advanced therapeutic uses. Moreover, these particles hold potential for overcoming resistance to multiple drugs and boosting the body's immune reaction to tumors through precise delivery and decreased side effects of chemotherapy drugs. This review delves into the possibilities of using carbohydrate polymer-functionalized nanoparticles and their impact on enhancing the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Haijia Hou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejian Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yudong Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Zhang X, Sun K, Zhong B, Yan L, Cheng P, Wang Q. PMN-MDSCs are responsible for immune suppression in anti-PD-1 treated TAP1 defective melanoma. Clin Transl Oncol 2025:10.1007/s12094-024-03840-7. [PMID: 39825997 DOI: 10.1007/s12094-024-03840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/24/2024] [Indexed: 01/20/2025]
Abstract
INTRODUCTION The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1. In this study, we established mouse models of tumors with TAP1 deficiency, and we employed PMN-MDSC depletion to investigate their impact on the immune microenvironment within the tumors. We found that MDSC depletion significantly altered the immune-suppressive effects of TAP1-deficient tumor when anti-PD-1 treatment was administered. Targeting PMN-MDSC may be a promising therapeutic strategy for the treatment of tumors with TAP1 deficiency during ICB treatment. METHODS Immunohistochemistry (IHC) was conducted to assess TAP1 expression in mouse melanoma tissues. Ly6G, F4/80, and NKp46 markers were detected in B16 parental and TAP1 knockout tissues, respectively. To enhance anti-tumor immunity, hyperthermia-treated B16F10 WT cell suspension was injected prior to tumor cell introduction. Subsequently, we established B16F10 TAP1 knockout and WT melanoma mouse models. Tumors were collected, and the immune microenvironment was monitored accordingly. Anti-Ly6G antibody was administered to deplete polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Finally, flow cytometry analysis for immune infiltration, quantitative PCR for cytokine levels, and immunofluorescence assays were performed to analyze the immune response. RESULTS The level of Ly6G+ cell infiltration was significantly higher in samples exhibiting low TAP1 expression, while no differences were observed in the infiltration of F4/80+ cells or NKp46+ cells. Furthermore, the immune-suppressive effects associated with PMN-MDSCs were reversed following their elimination; this resulted in an increase in CD8+ T cells and a higher ratio of CD8+ T cells to Tregs, while the infiltration of innate immune cells remained unaffected. Functional markers of these immune cells indicated an active anti-tumoral immune response following the removal of PMN-MDSCs. Quantitative PCR analysis indicated elevated levels of TNF-α and IL-6, accompanied by decreased levels of TGF-β in the tumor microenvironment of TAP1. CONCLUSIONS Our data indicate that myeloid-derived suppressor cells (PMN-MDSCs) play an essential role in creating a tumorigenic immune microenvironment in TAP1 knockout tumors. Therefore, targeting PMN-MDSCs may become a promising therapeutic strategy for the treatment of tumors with TAP1 deficiency during ICB treatment.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China
| | - Kaijun Sun
- Weifang People's Hospital, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, Shandong, China
| | - Bingzheng Zhong
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China
| | - Likun Yan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Pengrui Cheng
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China
| | - Qiang Wang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.
| |
Collapse
|
14
|
Li L, Jiang R, Yu JF, Li M. A Near-Infrared II Photo-Triggered Multifunctional Plasmonic Hyperthermia Immunomodulator for SERS-Guided Combination Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409154. [PMID: 39564687 DOI: 10.1002/smll.202409154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 11/21/2024]
Abstract
Immunotherapy represents a promising therapeutic strategy for cancer treatment, but its clinical applications are currently hindered by insufficient therapeutic potency, nonspecific delivery, and adverse side effects. Herein, a novel near-infrared II (NIR-II) photo-triggered plasmonic hyperthermia immunomodulator (RP@IR-pcNS@HA nanoparticles (NPs)) for anticancer treatment of both primary and distant cancers is reported. This immunomodulator comprises an IR-1061 dye-encoded NIR-II porous cubic AuAg nanoshell (pcNS) loaded with a Toll-like receptor 7 agonist - R837 in phase change materials (PCMs), further modified with hyaluronic acid (HA). In response to NIR-II photoirradiation, the RP@IR-pcNS@HA NPs controllably deliver and release R837 to tumor sites, subsequently perform plasmonic hyperthermia therapy for direct ablation of primary tumors, and elicit robust anticancer immune responses. It is demonstrated that upon NIR-II irradiation, such a plasmonic hyperthermia immunomodulator combined with anti-programmed death 1 antibody (αPD-1) completely eradicates both primary and distant cancers. In addition, this combination treatment successfully elicits robust immune memory responses for effective suppression of recurrence and distant metastasis of cancer. With the excellent NIR-II surface-enhanced Raman scattering (SERS) detection ability, the RP@IR-pcNS@HA NPs combined with αPD-1 represent an efficient way to develop high-performance theranostic agents for SERS-guided combination cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Linhu Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Renting Jiang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jin-Feng Yu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
15
|
Sun Y, Wang M, Ling J, Wu Q, Han G, Zhou J. Curzerenone inactivates the nuclear factor-kappa B signaling to suppress malignancy and immune evasion in cervical cancer by targeting CSNK2B. Hum Cell 2024; 38:35. [PMID: 39718697 DOI: 10.1007/s13577-024-01164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Curzerenone is a major component of the traditional herbal medicine Curcumae Rhizoma with potential cancer-suppressing effects. This study aims to investigate the treatment effect of Curzerenone on cervical cancer cells and the underpinning mechanism. HeLa and SiHa cells were treated with Curzerenone. The 100 μM Curzerenone treatment repressed proliferation, migration, and invasion of the cells. The Curzerenone treatment also reduced cellular expression of programmed death ligand 1, which increased the proliferation and activity of CD8+ T cells in a co-culture system with cancer cells. Casein kinase 2 beta (CSNK2B), a predicted physiological target of Curzerenone, was found to be suppressed by Curzerenone. Further overexpression of CSNK2B blocked the treatment effects of Curzerenone. Curzerenone inhibited while CSNK2B triggered activation of the nuclear factor-kappa B (NF-κB) pathway. The oncogenic and immunosuppressive effects of CSNK2B were blocked by an NF-κB-specific inhibitor. In vivo, Curzerenone treatment inhibited the tumorigenic activity of cancer cells, and it increased the proportion of CD8+ T cells in the xenograft tumor tissues. However, these anti-tumor effects were diminished by the CSNK2B overexpression as well. In conclusion, this research suggests that Curzerenone targets CSNK2B and inactivates the NF-κB signaling to suppress malignancy and immune evasion in cervical cancer.
Collapse
Affiliation(s)
- Yangyan Sun
- Department of Gynecology, Jiangyin Hospital Affiliated to Nantong University, Wuxi, 214400, Jiangsu, People's Republic of China
| | - Min Wang
- Department of Gynecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, People's Republic of China
| | - Jing Ling
- Department of Gynecology, Jiangyin Hospital Affiliated to Nantong University, Wuxi, 214400, Jiangsu, People's Republic of China
| | - Qunying Wu
- Department of Gynecology, Jiangyin Hospital Affiliated to Nantong University, Wuxi, 214400, Jiangsu, People's Republic of China
| | - Guorong Han
- Department of Gynecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, No.1-1, Zhongfu Road, Gulou District, Nanjing, 210003, Jiangsu, People's Republic of China.
| | - Junxu Zhou
- Department of Gynecology, Jiangyin Hospital Affiliated to Nantong University, Wuxi, 214400, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Narukawa T, Yasuda S, Horinaka M, Taniguchi K, Tsujikawa T, Morita M, Ukimura O, Sakai T. The Novel HDAC Inhibitor OBP-801 Promotes MHC Class I Presentation Through LMP2 Upregulation, Enhancing the PD-1-Targeting Therapy in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2024; 16:4058. [PMID: 39682244 DOI: 10.3390/cancers16234058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors have been reported to exhibit immunomodulatory activities, including the upregulation of major histocompatibility complex class I (MHC class I). Although the immunoproteasome plays a pivotal role in MHC class I antigen presentation, its effect on immunotherapy for clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS This study assessed whether OBP-801, a novel HDAC inhibitor, affects the expression of immunoproteasome subunits and subsequently the MHC class-I-mediated anti-cancer immunity in ccRCC. We analyzed the data of 531 patients with ccRCC from the Cancer Genome Atlas Kidney Clear Cell Carcinoma database. We further evaluated the treatment efficacy of the combination of OBP-801 and anti-PD-1 in a ccRCC mouse model. RESULTS Low molecular mass polypeptide (LMP) 2 was correlated most positively with CD3E, CD8A, and CD8B expression and estimated CD8+ T cell number. In vitro studies showed that OBP-801 upregulated MHC class I presentation by inducing LMP2 expression in the ccRCC cell lines RENCA, 786-O, and Caki-1. In vivo studies in a syngeneic mouse model with subcutaneous implantation of RENCA cells showed that OBP-801 treatment increased the percentage of CD45+CD3e+ T cells in tumor-infiltrating lymphocytes. The combination of anti-PD-1 antibody and OBP-801 enhanced the anti-tumor effect, LMP2 protein expression, and MHC class I presentation in tumor cells. MHC class I presentation in the tumors of each mouse was positively correlated with the percentage of CD45+CD3e+ T cells. CONCLUSIONS Our results demonstrate that OBP-801 promotes MHC class I presentation through LMP2 upregulation in tumor cells and thereby potentiates PD-1-targeting therapy. These data suggest that the combination of OBP-801 and anti-PD-1 treatment is a promising therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- Tsukasa Narukawa
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Urology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shusuke Yasuda
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Keiko Taniguchi
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takahiro Tsujikawa
- Department of Otolaryngology-Head & Neck Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mie Morita
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
17
|
Yang MQ, Zhang SL, Sun L, Huang LT, Yu J, Zhang JH, Tian Y, Han CB, Ma JT. Targeting mitochondria: restoring the antitumor efficacy of exhausted T cells. Mol Cancer 2024; 23:260. [PMID: 39563438 PMCID: PMC11575104 DOI: 10.1186/s12943-024-02175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024] Open
Abstract
Immune checkpoint blockade therapy has revolutionized cancer treatment, but resistance remains prevalent, often due to dysfunctional tumor-infiltrating lymphocytes. A key contributor to this dysfunction is mitochondrial dysfunction, characterized by defective oxidative phosphorylation, impaired adaptation, and depolarization, which promotes T cell exhaustion and severely compromises antitumor efficacy. This review summarizes recent advances in restoring the function of exhausted T cells through mitochondria-targeted strategies, such as metabolic remodeling, enhanced biogenesis, and regulation of antioxidant and reactive oxygen species, with the aim of reversing the state of T cell exhaustion and improving the response to immunotherapy. A deeper understanding of the role of mitochondria in T cell exhaustion lays the foundation for the development of novel mitochondria-targeted therapies and opens a new chapter in cancer immunotherapy.
Collapse
Affiliation(s)
- Mei-Qi Yang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shu-Ling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jing Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jie-Hui Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Cheng-Bo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
18
|
Hontecillas-Prieto L, García-Domínguez DJ, Flores-Campos R, Flores JA, Pérez-Pérez A, de la Cruz-Merino L, Sánchez-Margalet V, Hajji N. Simplified acid extraction and quantification of histones in human tumor cells. Methods Cell Biol 2024; 191:1-14. [PMID: 39824551 DOI: 10.1016/bs.mcb.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Histones are essential nuclear proteins that package eukaryotic DNA into chromosomes, play a vital role in gene regulation, DNA replication, DNA repair and chromosome condensation. Understanding histone modifications is crucial for grasping biological and disease-related processes. Specific alterations in histone modifications serve as sensitive and selective biomarkers for conditions like cancer, impacting both tumor and immune cells and affecting their interactions. Indeed, the interest in histone modifications is growing in the field of tumor immunology and immunotherapy. Different techniques have been developed to characterize histone proteins and their modifications. Here, we present a simple acid extraction protocol to identify and quantify histones. The workflow described here can be used to detect and measure histone proteins or specific residues of histone, even capturing changes resulting from treatment with epigenetic drugs (Epi-drugs) or other drugs in in different human cancer cell line models.
Collapse
Affiliation(s)
- Lourdes Hontecillas-Prieto
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain; Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Department of Clinical Oncology, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain.
| | - Daniel J García-Domínguez
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Rocío Flores-Campos
- Department of Clinical Oncology, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Juan Antonio Flores
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain; Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Department of Clinical Oncology, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain; Department of Medicine, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain; Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Nabil Hajji
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain; Cancer Division, Faculty of medicine, Imperial college London, United Kingdom
| |
Collapse
|
19
|
Lin Q, Wang H, Chen W, Wei X, Chen J, Deng Y, Wei C, Lai H, Mo X, Tang W, Luo T. Isobutyric Acid Promotes Immune Evasion in Colorectal Cancer via Increased PD-L1 Expression. Cancer Med 2024; 13:e70397. [PMID: 39503247 PMCID: PMC11538990 DOI: 10.1002/cam4.70397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/04/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION Isobutyric acid (IBA), a short-chain fatty acid, has been unequivocally demonstrated to exert significant influence on the progression of colorectal cancer (CRC). Nevertheless, a comprehensive understanding of its intricate regulatory mechanisms remains elusive. METHODS Employing advanced techniques such as western blot, RT-qPCR, and flow cytometry, we systematically investigated the impact of IBA on the expression of PD-L1 in CRC cells. Concurrently, employing RNA silencing technology and small-molecule inhibitors, we delved into the molecular intricacies underlying the regulatory axis of IBA involving ROCK1/c-Myc/PD-L1. Furthermore, through flow cytometry analysis, we examined the alterations in the tumor immune microenvironment following anti-PD-L1 antibody therapy in a murine tumor model treated with IBA. RESULTS Elevated levels of IBA were found to robustly activate PD-L1 expression in CRC cells both in vitro and in vivo, concomitantly reshaping the tumor immune microenvironment. Subsequent mechanistic investigations unveiled that IBA, through its interaction and activation of ROCK1, promotes the activation of c-Myc, thereby enhancing the transcription of PD-L1. Silencing of ROCK1 and application of ROCK1 inhibitors effectively reversed the regulatory effects of IBA on PD-L1. Additionally, IBA inhibited the activity of infiltrating CD8+ T cells, resulting in diminished antitumor immunity and attenuating the sensitivity to anti-PD-L1 therapy. CONCLUSION Our study elucidates a novel mechanism by which IBA inhibits the sensitivity of CRC to anti-PD-L1 antibody therapy. Emphasizing IBA and its downstream pathways as potential therapeutic targets for immune therapy resistance mechanisms, our findings provide a novel theoretical foundation for overcoming immune therapy resistance.
Collapse
Affiliation(s)
- Qiuhua Lin
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer Hospital, Guangxi Medical UniversityNanningGuangxiP.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal CancerNanningGuangxiP.R. China
| | - Han Wang
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer Hospital, Guangxi Medical UniversityNanningGuangxiP.R. China
| | - Wenbo Chen
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer Hospital, Guangxi Medical UniversityNanningGuangxiP.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal CancerNanningGuangxiP.R. China
| | - Xinjie Wei
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer Hospital, Guangxi Medical UniversityNanningGuangxiP.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal CancerNanningGuangxiP.R. China
| | - Jinglian Chen
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer Hospital, Guangxi Medical UniversityNanningGuangxiP.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal CancerNanningGuangxiP.R. China
| | - Ying Deng
- Department of UltrasoundGuangxi Medical University Cancer Hospital, Guangxi Medical UniversityNanningGuangxiP.R. China
| | - Chunyin Wei
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer Hospital, Guangxi Medical UniversityNanningGuangxiP.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal CancerNanningGuangxiP.R. China
| | - Hao Lai
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer Hospital, Guangxi Medical UniversityNanningGuangxiP.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal CancerNanningGuangxiP.R. China
| | - Xianwei Mo
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer Hospital, Guangxi Medical UniversityNanningGuangxiP.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal CancerNanningGuangxiP.R. China
| | - Weizhong Tang
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer Hospital, Guangxi Medical UniversityNanningGuangxiP.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal CancerNanningGuangxiP.R. China
| | - Tao Luo
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer Hospital, Guangxi Medical UniversityNanningGuangxiP.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal CancerNanningGuangxiP.R. China
| |
Collapse
|
20
|
Tian H, Zhu N, Wang H, Li Y, Yang Q, Chen H, Zhou Z, Tan J, Zheng H, Xie J, Li W, Liang M, Guo Z, Li Z. Self-Oxygenated Hydrogel Enhances Immune Cell Response and Infiltration Via Triggering Dual DNA Damage to Activate cGAS-STING and Inhibiting CAFs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403428. [PMID: 39051518 DOI: 10.1002/smll.202403428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Immune checkpoint inhibitors (ICIs) offer promise in breaking through the treatment and survival dilemma of triple-negative breast cancer (TNBC), yet only immunomodulatory subtype and ≈5% TNBC patients respond as monotherapy due to lack of effector immune cells (internal problem) and physical barrier (external limitation) formed by cancer-associated fibroblasts (CAFs). A hydrogel drug-delivery platform, ALG@TBP-2/Pt(0)/nintedanib (ALG@TPN), is designed to induce strong immune functions and the dual elimination of the internal and external tumor microenvironment (TME). Activated by white light, through type I and II photodynamic therapy (PDT), TBP-2 generates large amounts of reactive oxygen species (ROS) intracellularly, oxidizing mitochondrial DNA (mtDNA). The unique catalase activity of Pt(0) converts endogenous H2O2 to O2, reducing the anoxia-limiting PDT and enhancing ROS generation efficacy. Abundant ROS can oxidize Pt(0) to cytotoxic Pt(II), damaging the nuclear DNA (nDNA). Dual damage to mtDNA and nDNA might bi-directionally activate the cGAS/STING pathway and enhance the immune cell response. Besides, nintedanib demonstrates a significant inhibitory effect on CAFs, weakening the immune barrier and deepening immune cell infiltration. Overall, the study provides a self-oxygenating hydrogel with the "PDT/chemotherapy/anti-CAFs" effect, triggering the cGAS/STING pathway to reshape the TME. Both internal and external interventions increase anti-TNBC immune responses.
Collapse
Affiliation(s)
- Huiting Tian
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Nan Zhu
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haiting Wang
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Yanpo Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Qiuping Yang
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Haolin Chen
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Zhongming Zhou
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Jianhui Tan
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Huihui Zheng
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Jiayi Xie
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Wei Li
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421008, China
| | - Min Liang
- Department of Oncology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhaoze Guo
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| |
Collapse
|
21
|
Hosseini MS, Sanaat Z, Akbarzadeh MA, Vaez-Gharamaleki Y, Akbarzadeh M. Histone deacetylase inhibitors for leukemia treatment: current status and future directions. Eur J Med Res 2024; 29:514. [PMID: 39456044 PMCID: PMC11515273 DOI: 10.1186/s40001-024-02108-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Leukemia remains a major therapeutic challenge in clinical oncology. Despite significant advancements in treatment modalities, leukemia remains a significant cause of morbidity and mortality worldwide, as the current conventional therapies are accompanied by life-limiting adverse effects and a high risk of disease relapse. Histone deacetylase inhibitors have emerged as a promising group of antineoplastic agents due to their ability to modulate gene expression epigenetically. In this review, we explore these agents, their mechanisms of action, pharmacokinetics, safety and clinical efficacy, monotherapy and combination therapy strategies, and clinical challenges associated with histone deacetylase inhibitors in leukemia treatment, along with the latest evidence and ongoing studies in the field. In addition, we discuss future directions to optimize the therapeutic potential of these agents.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Akbarzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosra Vaez-Gharamaleki
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbarzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Hou X, Kong X, Yao Y, Liu S, Ren Y, Hu M, Wang Z, Zhu H, Yang Z. Next Generation of Solid Target Radionuclide Antibody Conjugates for Tumor Immuno-Therapy. J Labelled Comp Radiopharm 2024; 67:396-409. [PMID: 39480113 DOI: 10.1002/jlcr.4124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
Immune checkpoint therapy has emerged as an effective treatment option for various types of cancers. Key immune checkpoint molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and lymphocyte activation gene 3 (LAG-3), have become pivotal targets in cancer immunotherapy. Antibodies designed to inhibit these molecules have demonstrated significant clinical efficacy. Nevertheless, the ability to monitor changes in the immune status of tumors and predict treatment response remains limited. Conventional methods, such as assessing lymphocytes in peripheral blood or conducting tumor biopsies, are inadequate for providing real-time, spatial information about T-cell distributions within heterogeneous tumors. Positron emission tomography (PET) using T-cell specific probes represents a promising and noninvasive approach to monitor both systemic and intratumoral immune changes during treatment. This technique holds substantial clinical significance and potential utility. In this paper, we review the applications of PET probes that target immune cells in molecular imaging.
Collapse
Affiliation(s)
- Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Xiangxing Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuan Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ya'nan Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Guizhou University School of Medicine, Guiyang, Guizhou, China
| | - Muye Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| |
Collapse
|
23
|
Liu Q, Guan Y, Li S. Programmed death receptor (PD-)1/PD-ligand (L)1 in urological cancers : the "all-around warrior" in immunotherapy. Mol Cancer 2024; 23:183. [PMID: 39223527 PMCID: PMC11367915 DOI: 10.1186/s12943-024-02095-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Programmed death receptor-1 (PD-1) and its ligand, programmed death ligand-1 (PD-L1) are essential molecules that are key in modulating immune responses. PD-L1 is constitutively expressed on various immune cells, epithelial cells, and cancer cells, where it functions as a co-stimulatory molecule capable of impairing T-cell mediated immune responses. Upon binding to PD-1 on activated T-cells, the PD-1/PD-L1 interaction triggers signaling pathways that can induce T-cell apoptosis or anergy, thereby facilitating the immune escape of tumors. In urological cancers, including bladder cancer (BCa), renal cell carcinoma (RCC), and prostate cancer (PCa), the upregulation of PD-L1 has been demonstrated. It is linked to poor prognosis and enhanced tumor immune evasion. Recent studies have highlighted the significant role of the PD-1/PD-L1 axis in the immune escape mechanisms of urological cancers. The interaction between PD-L1 and PD-1 on T-cells further contributes to immunosuppression by inhibiting T-cell activation and proliferation. Clinical applications of PD-1/PD-L1 checkpoint inhibitors have shown promising efficacy in treating advanced urological cancers, significantly improving patient outcomes. However, resistance to these therapies, either intrinsic or acquired, remains a significant challenge. This review aims to provide a comprehensive overview of the role of the PD-1/PD-L1 signaling pathway in urological cancers. We summarize the regulatory mechanism underlying PD-1 and PD-L1 expression and activity, including genetic, epigenetic, post-transcriptional, and post-translational modifications. Additionally, we discuss current clinical research on PD-1/PD-L1 inhibitors, their therapeutic potential, and the challenges associated with resistance. Understanding these mechanisms is crucial for developing new strategies to overcome therapeutic limitations and enhance the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
| | - Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province, 116024, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province, 116024, China.
| |
Collapse
|
24
|
Zhang X, Wu Y, Lin J, Lu S, Lu X, Cheng A, Chen H, Zhang W, Luan X. Insights into therapeutic peptides in the cancer-immunity cycle: Update and challenges. Acta Pharm Sin B 2024; 14:3818-3833. [PMID: 39309492 PMCID: PMC11413705 DOI: 10.1016/j.apsb.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapies hold immense potential for achieving durable potency and long-term survival opportunities in cancer therapy. As vital biological mediators, peptides with high tissue penetration and superior selectivity offer significant promise for enhancing cancer immunotherapies (CITs). However, physicochemical peptide features such as conformation and stability pose challenges to their on-target efficacy. This review provides a comprehensive overview of recent advancements in therapeutic peptides targeting key steps of the cancer-immunity cycle (CIC), including tumor antigen presentation, immune cell regulation, and immune checkpoint signaling. Particular attention is given to the opportunities and challenges associated with these peptides in boosting CIC within the context of clinical progress. Furthermore, possible future developments in this field are also discussed to provide insights into emerging CITs with robust efficacy and safety profiles.
Collapse
Affiliation(s)
- Xiaokun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinchen Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Aoyu Cheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science &, Peking Union Medical College, Beijing 100193, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
25
|
Lou Y, Chen Y, Guo K, Li B, Zheng S. Emerging biomarkers for immunotherapy response in biliary tract cancers: a comprehensive review of immune checkpoint inhibitor strategies. Biomark Med 2024; 18:703-715. [PMID: 39143949 PMCID: PMC11441040 DOI: 10.1080/17520363.2024.2385297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/14/2024] [Indexed: 08/16/2024] Open
Abstract
Biliary tract cancers (BTCs) have rising incidence and mortality rates. Chemotherapy's limited efficacy has led to exploring new treatments like immunotherapy. which offers modest benefits. Moreover, the identification of reliable predictive biomarkers for immune checkpoint therapy in BTCs remains elusive, hindering personalized treatment strategies. This review provides an overview of the current landscape of emerging biomarkers for immunotherapy response in BTCs. We discuss the incremental benefits of combination therapy and the evolving role of immunotherapy in managing advanced BTC. Additionally, we highlight the need for robust predictive biomarkers to optimize treatment outcomes and foster a more individualized approach to patient care. We aim to identify promising research avenues and strategies to enhance therapeutic efficacy and patient survival in BTCs.
Collapse
Affiliation(s)
- Yidan Lou
- Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Yijing Chen
- Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Kaibo Guo
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Key Laboratory of Clinical Cancer Pharmacology & Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, China
| | - Binbin Li
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Department of Oncology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Song Zheng
- Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Key Laboratory of Clinical Cancer Pharmacology & Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, China
- Department of Oncology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| |
Collapse
|
26
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
27
|
Fei X, Xue JW, Wu JZ, Yang CY, Wang KJ, Ma Q. Promising therapy for neuroendocrine prostate cancer: current status and future directions. Ther Adv Med Oncol 2024; 16:17588359241269676. [PMID: 39131727 PMCID: PMC11311189 DOI: 10.1177/17588359241269676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive variant of castration-resistant prostate cancer. It is characterized by low or no expression of the androgen receptor (AR), activation of AR-independent signaling, and increased neuroendocrine phenotype. Most of NEPC is induced by treatment of androgen deprivation therapy and androgen receptor pathway inhibitors (ARPIs). Currently, the treatment of NEPC follows the treatment strategy for small-cell lung cancer, lacking effective drugs and specific treatment options. This review summarizes potential novel targets and therapies for NEPC treatment, including epigenetic regulators (zeste homolog 2 inhibitors, lysine-specific demethylase 1 inhibitors), aurora kinase A inhibitors, poly-ADP-ribose polymerase inhibitors, delta-like ligand 3 targeted therapies, a combination of immunotherapies, etc. Other promising targets and future directions are also discussed in this review. These novel targets and therapies may provide new opportunities for the treatment of NEPC.
Collapse
Affiliation(s)
- Xin Fei
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jia-Wei Xue
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Urology, The First Hospital of Ninghai, Ningbo, China
| | - Ji-zhongrong Wu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Urology, Shengzhou People’s Hospital, Shaoxing, China
| | - Chong-Yi Yang
- Department of Urology, The First Hospital of Ninghai, 142 Taoyuan Middle Road, Yuelong Street, Ninghai county, Ningbo, Zhejiang 315699, China
| | - Ke-Jie Wang
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, 52, Liuting Street, Haishu District, Ningbo, Zhejiang 315010, China
| | - Qi Ma
- Department of Urology, the First Affiliated Hospital of Ningbo University, 52, Liuting Street, Haishu District,Ningbo, Zhejiang 315010, China
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, 52, Liuting Street, Haishu District, Ningbo, Zhejiang 315010, China
- Yi-Huan Genitourinary Cancer Group, 52, Liuting Street, Haishu District, Ningbo,Zhejiang 315010, China
| |
Collapse
|
28
|
Yue Y, Ren Y, Lu C, Li P, Zhang G. Epigenetic regulation of human FOXP3+ Tregs: from homeostasis maintenance to pathogen defense. Front Immunol 2024; 15:1444533. [PMID: 39144146 PMCID: PMC11323565 DOI: 10.3389/fimmu.2024.1444533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
29
|
Luo Y, Lu J, Lei Z, Zhu H, Rao D, Wang T, Fu C, Zhang Z, Xia L, Huang W. Lysine methylation modifications in tumor immunomodulation and immunotherapy: regulatory mechanisms and perspectives. Biomark Res 2024; 12:74. [PMID: 39080807 PMCID: PMC11289998 DOI: 10.1186/s40364-024-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Lysine methylation is a crucial post-translational modification (PTM) that significantly impacts gene expression regulation. This modification not only influences cancer development directly but also has significant implications for the immune system. Lysine methylation modulates immune cell functions and shapes the anti-tumor immune response, highlighting its dual role in both tumor progression and immune regulation. In this review, we provide a comprehensive overview of the intrinsic role of lysine methylation in the activation and function of immune cells, detailing how these modifications affect cellular processes and signaling pathways. We delve into the mechanisms by which lysine methylation contributes to tumor immune evasion, allowing cancer cells to escape immune surveillance and thrive. Furthermore, we discuss the therapeutic potential of targeting lysine methylation in cancer immunotherapy. Emerging strategies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapy, are being explored for their efficacy in modulating lysine methylation to enhance anti-tumor immune responses. By targeting these modifications, we can potentially improve the effectiveness of existing treatments and develop novel therapeutic approaches to combat cancer more effectively.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chenan Fu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiwei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
30
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
31
|
Biondi A, Vacante M, Catania R, Sangiorgio G. Extracellular Vesicles and Immune System Function: Exploring Novel Approaches to Colorectal Cancer Immunotherapy. Biomedicines 2024; 12:1473. [PMID: 39062046 PMCID: PMC11275211 DOI: 10.3390/biomedicines12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the emerging role of extracellular vesicles (EVs) in modulating immune system function and their application in novel cancer immunotherapy strategies, with a focus on colorectal cancer (CRC). EVs, as carriers of bioactive molecules, have shown potential in enhancing immune responses and overcoming the limitations of traditional therapies. We discuss the biogenesis, types, and functional roles of immune cell-derived EVs, their interactions with cancer cells, and their implications in antitumor immunity. Challenges such as tumor heterogeneity and immune evasion are addressed, alongside the promising therapeutic prospects of EV-based strategies. This comprehensive analysis underscores the transformative potential of EVs in cancer treatment paradigms.
Collapse
Affiliation(s)
- Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
| | - Marco Vacante
- Unit of Internal Medicine Critical Area—ARNAS Garibaldi, Piazza Santa Maria di Gesù, 5, 95124 Catania, Italy;
| | - Roberta Catania
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
| | - Giuseppe Sangiorgio
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
32
|
Xia J, Xu M, Hu H, Zhang Q, Yu D, Cai M, Geng X, Zhang H, Zhang Y, Guo M, Lu D, Xu H, Li L, Zhang X, Wang Q, Liu S, Zhang W. 5,7,4'-Trimethoxyflavone triggers cancer cell PD-L1 ubiquitin-proteasome degradation and facilitates antitumor immunity by targeting HRD1. MedComm (Beijing) 2024; 5:e611. [PMID: 38938284 PMCID: PMC11208742 DOI: 10.1002/mco2.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Targeting the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway has been identified as a successful approach for tumor immunotherapy. Here, we identified that the small molecule 5,7,4'-trimethoxyflavone (TF) from Kaempferia parviflora Wall reduces PD-L1 expression in colorectal cancer cells and enhances the killing of tumor cells by T cells. Mechanistically, TF targets and stabilizes the ubiquitin ligase HMG-CoA reductase degradation protein 1 (HRD1), thereby increasing the ubiquitination of PD-L1 and promoting its degradation through the proteasome pathway. In mouse MC38 xenograft tumors, TF can activate tumor-infiltrating T-cell immunity and reduce the immunosuppressive infiltration of myeloid-derived suppressor cells and regulatory T cells, thus exerting antitumor effects. Moreover, TF synergistically exerts antitumor immunity with CTLA-4 antibody. This study provides new insights into the antitumor mechanism of TF and suggests that it may be a promising small molecule immune checkpoint modulator for cancer therapy.
Collapse
Affiliation(s)
- Jianhua Xia
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mengting Xu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongmei Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qing Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dianping Yu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Minchen Cai
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiangxin Geng
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongwei Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yanyan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mengmeng Guo
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dong Lu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hanchi Xu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Linyang Li
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xing Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosafetyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
33
|
Wu Y, Chen D, Gao Y, Xu Q, Zhou Y, Ni Z, Na M. Immunosuppressive regulatory cells in cancer immunotherapy: restrain or modulate? Hum Cell 2024; 37:931-943. [PMID: 38814516 DOI: 10.1007/s13577-024-01083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Immunosuppressive regulatory cells (IRCs) play important roles in negatively regulating immune response, and are mainly divided into myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Large numbers of preclinical and clinical studies have shown that inhibition or reduction of IRCs could effectively elevate antitumor immune responses. However, several studies also reported that excessive inhibition of IRCs function is one of the main reasons causing the side effects of cancer immunotherapy. Therefore, the reasonable regulation of IRCs is crucial for improving the safety and efficiency of cancer immunotherapy. In this review, we summarised the recent research advances in the cancer immunotherapy by regulating the proportion of IRCs, and discussed the roles of IRCs in regulating tumour immune evasion and drug resistance to immunotherapies. Furthermore, we also discussed how to balance the potential opportunities and challenges of using IRCs to improve the safety of cancer immunotherapies.
Collapse
Affiliation(s)
- Yan Wu
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, Jiangsu, People's Republic of China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yang Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Manli Na
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, Jiangsu, People's Republic of China.
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Yildiz SN, Entezari M, Paskeh MDA, Mirzaei S, Kalbasi A, Zabolian A, Hashemi F, Hushmandi K, Hashemi M, Raei M, Goharrizi MASB, Aref AR, Zarrabi A, Ren J, Orive G, Rabiee N, Ertas YN. Nanoliposomes as nonviral vectors in cancer gene therapy. MedComm (Beijing) 2024; 5:e583. [PMID: 38919334 PMCID: PMC11199024 DOI: 10.1002/mco2.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024] Open
Abstract
Nonviral vectors, such as liposomes, offer potential for targeted gene delivery in cancer therapy. Liposomes, composed of phospholipid vesicles, have demonstrated efficacy as nanocarriers for genetic tools, addressing the limitations of off-targeting and degradation commonly associated with traditional gene therapy approaches. Due to their biocompatibility, stability, and tunable physicochemical properties, they offer potential in overcoming the challenges associated with gene therapy, such as low transfection efficiency and poor stability in biological fluids. Despite these advancements, there remains a gap in understanding the optimal utilization of nanoliposomes for enhanced gene delivery in cancer treatment. This review delves into the present state of nanoliposomes as carriers for genetic tools in cancer therapy, sheds light on their potential to safeguard genetic payloads and facilitate cell internalization alongside the evolution of smart nanocarriers for targeted delivery. The challenges linked to their biocompatibility and the factors that restrict their effectiveness in gene delivery are also discussed along with exploring the potential of nanoliposomes in cancer gene therapy strategies by analyzing recent advancements and offering future directions.
Collapse
Affiliation(s)
| | - Maliheh Entezari
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mahshid Deldar Abad Paskeh
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of BiologyFaculty of ScienceIslamic Azad UniversityScience and Research BranchTehranIran
| | - Alireza Kalbasi
- Department of PharmacyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Amirhossein Zabolian
- Department of OrthopedicsShahid Beheshti University of Medical SciencesTehranIran
| | - Farid Hashemi
- Department of Comparative BiosciencesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Kiavash Hushmandi
- Department of Clinical Sciences InstituteNephrology and Urology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mehrdad Hashemi
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehdi Raei
- Department of Epidemiology and BiostatisticsSchool of HealthBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer ScienceDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
- Department of Translational SciencesXsphera Biosciences Inc.BostonMassachusettsUSA
| | - Ali Zarrabi
- Department of Biomedical EngineeringFaculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular DiseasesDepartment of CardiologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Gorka Orive
- NanoBioCel Research GroupSchool of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology ‐ UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- The AcademiaSingapore Eye Research InstituteSingaporeSingapore
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityPerthWestern AustraliaAustralia
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM−National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
35
|
Salamanca-Ortiz H, Domínguez-Gomez G, Chávez-Blanco A, Ortega-Bernal D, Díaz-Chávez J, González-Fierro A, Candelaria-Hernández M, Dueñas-González A. The inhibitory and transcriptional effects of the epigenetic repurposed drugs hydralazine and valproate in lymphoma cells. Am J Cancer Res 2024; 14:3068-3082. [PMID: 39005694 PMCID: PMC11236763 DOI: 10.62347/idkg8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/27/2024] [Indexed: 07/16/2024] Open
Abstract
Lymphoma is a disease that affects countless lives each year. In order to combat this disease, researchers have been exploring the potential of DNMTi and HDACi drugs. These drugs target the cellular processes that contribute to lymphomagenesis and treatment resistance. Our research evaluated the effectiveness of a combination of two such drugs, hydralazine (DNMTi) and valproate (HDACi), in B-cell and T-cell lymphoma cell lines. Here we show that the combination of hydralazine and valproate decreased the viability of cells over time, leading to the arrest of cell-cycle and apoptosis in both B and T-cells. This combination of drugs proved to be synergistic, with each drug showing significant growth inhibition individually. Microarray analyses of HuT 78 and Raji cells showed that the combination of hydralazine and valproate resulted in the up-regulation of 562 and 850 genes, respectively, while down-regulating 152 and 650 genes. Several proapoptotic and cell cycle-related genes were found to be up-regulated. Notably, three and five of the ten most up-regulated genes in HuT 78 and Raji cells, respectively, were related to immune function. In summary, our study suggests that the combination of hydralazine and valproate is an effective treatment option for both B- and T-lymphomas. These findings are highly encouraging, and we urge further clinical evaluation to validate our research and potentially improve lymphoma treatment.
Collapse
Affiliation(s)
- Harold Salamanca-Ortiz
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Guadalupe Domínguez-Gomez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Alma Chávez-Blanco
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Daniel Ortega-Bernal
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma MetropolitanaCoyoacan, Mexico City 05348, Mexico
- Department of Sciences, Universidad Autónoma MetropolitanaCoyoacan, Mexico City 04960, Mexico
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana XochimilcoCoyoacan, Mexico City 04960, Mexico
| | - José Díaz-Chávez
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Aurora González-Fierro
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Myrna Candelaria-Hernández
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Alfonso Dueñas-González
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
- Department of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, Universidad Nacional Autónoma de Mexico (UNAM), Av. Universidad 3004, Copilco UniversidadCoyoacan, Mexico City 04510, Mexico
| |
Collapse
|
36
|
Hou X, Liu S, Zeng Z, Wang Z, Ding J, Chen Y, Gao X, Wang J, Xiao G, Li B, Zhu H, Yang Z. Preclinical imaging evaluation of a bispecific antibody targeting hPD1/CTLA4 using humanized mice. Biomed Pharmacother 2024; 175:116669. [PMID: 38677243 DOI: 10.1016/j.biopha.2024.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The lack of an efficient way to screen patients who are responsive to immunotherapy challenges PD1/CTLA4-targeting cancer treatment. Immunotherapeutic efficacy cannot be clearly determined by peripheral blood analyses, tissue gene markers or CT/MR value. Here, we used a radionuclide and imaging techniques to investigate the novel dual targeted antibody cadonilimab (AK104) in PD1/CTLA4-positive cells in vivo. METHODS First, humanized PD1/CTLA4 mice were purchased from Biocytogen Pharmaceuticals (Beijing) Co., Ltd. to express hPD1/CTLA4 in T-cells. Then, mouse colon cancer MC38-hPD-L1 cell xenografts were established in humanized mice. A bispecific antibody targeting PD1/CTLA4 (AK104) was labeled with radio-nuclide iodine isotopes. Immuno-PET/CT imaging was performed using a bispecific monoclonal antibody (mAb) probe 124I-AK104, developed in-house, to locate PD1+/CTLA4+ tumor-infiltrating T cells and monitor their distribution in mice to evaluate the therapeutic effect. RESULTS The 124I-AK104 dual-antibody was successfully constructed with ideal radiochemical characteristics, in vitro stability and specificity. The results of immuno-PET showed that 124I-AK104 revealed strong hPD1/CTLA4-positive responses with high specificity in humanized mice. High uptake of 124I-AK104 was observed not only at the tumor site but also in the spleen. Compared with PD1- or CTLA4-targeting mAb imaging, 124I-AK104 imaging had excellent standard uptake values at the tumor site and higher tumor to nontumor (T/NT) ratios. CONCLUSIONS The results demonstrated the potential of translating 124I-AK104 into a method for screening patients who benefit from immunotherapy and the efficacy, as well as the feasibility, of this method was verified by immuno-PET imaging of humanized mice.
Collapse
Affiliation(s)
- Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ziqing Zeng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; Guizhou University School of Medicine, Guiyang, Guizhou 550025, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianghua Wang
- Research and Development Department, Akeso Biopharma Inc., Zhongshan, Guangdong 528437, China
| | - Guanxi Xiao
- Research and Development Department, Akeso Biopharma Inc., Zhongshan, Guangdong 528437, China
| | - Baiyong Li
- Research and Development Department, Akeso Biopharma Inc., Zhongshan, Guangdong 528437, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
37
|
Zhuang S, Yang Z, Cui Z, Zhang Y, Che F. Epigenetic alterations and advancement of lymphoma treatment. Ann Hematol 2024; 103:1435-1454. [PMID: 37581713 DOI: 10.1007/s00277-023-05395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023]
Abstract
Lymphomas, complex and heterogeneous malignant tumors, originate from the lymphopoietic system. These tumors are notorious for their high recurrence rates and resistance to treatment, which leads to poor prognoses. As ongoing research has shown, epigenetic modifications like DNA methylation, histone modifications, non-coding RNA regulation, and RNA modifications play crucial roles in lymphoma pathogenesis. Epigenetic modification-targeting drugs have exhibited therapeutic efficacy and tolerability in both monotherapy and combination lymphoma therapy. This review discusses pathogenic mechanisms and potential epigenetic therapeutic targets in common lymphomas, offering new avenues for lymphoma diagnosis and treatment. We also discuss the shortcomings of current lymphoma treatments, while suggesting potential areas for future research, in order to improve the prediction and prognosis of lymphoma.
Collapse
Affiliation(s)
- Shuhui Zhuang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhaobo Yang
- Spine Surgery, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhuangzhuang Cui
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China.
- Department of Hematology, Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Fengyuan Che
- Department of Neurology, Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, 276000, China.
| |
Collapse
|
38
|
Li NN, Lun DX, Gong N, Meng G, Du XY, Wang H, Bao X, Li XY, Song JW, Hu K, Li L, Li SY, Liu W, Zhu W, Zhang Y, Li J, Yao T, Mou L, Han X, Hao F, Hu Y, Liu L, Zhu H, Wu Y, Liu B. Targeting the chromatin structural changes of antitumor immunity. J Pharm Anal 2024; 14:100905. [PMID: 38665224 PMCID: PMC11043877 DOI: 10.1016/j.jpha.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 04/28/2024] Open
Abstract
Epigenomic imbalance drives abnormal transcriptional processes, promoting the onset and progression of cancer. Although defective gene regulation generally affects carcinogenesis and tumor suppression networks, tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes, which may have significant implications for the development and application of epigenetic therapy, cancer immunotherapy, and their combinations. Herein, we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes, DNA methylation, histone post-translational modification, and chromatin structure in tumor immunogenicity, and introduce these epigenetic research methods. We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immunotherapy through the complex interaction between cancer epigenetics and cancer immunology.
Collapse
Affiliation(s)
- Nian-nian Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deng-xing Lun
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Ningning Gong
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Gang Meng
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, Shaanxi, 725000, China
| | - Xin-ying Du
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - He Wang
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiangxiang Bao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xin-yang Li
- Guizhou Education University, Guiyang, 550018, China
| | - Ji-wu Song
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Kewei Hu
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Lala Li
- Guizhou Normal University, Guiyang, 550025, China
| | - Si-ying Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wenbo Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wanping Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yunlong Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jikai Li
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, Tianjin, 300299, China
| | - Ting Yao
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| | - Leming Mou
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiaoqing Han
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Furong Hao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yongcheng Hu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Lin Liu
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongguang Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yuyun Wu
- Xinqiao Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Bin Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| |
Collapse
|
39
|
Ramoni D, Coco S, Rossi G, Dellepiane C, Bennicelli E, Santamaria S, Zinoli L, Tagliafico AS, Tagliamento M, Barletta G, Liberale L, Tirandi A, Minetti S, Bertolotto M, Montecucco F, Genova C, Carbone F. Circulating Osteopontin Predicts Clinical and Radiological Response in First-Line Treatment of Advanced Non-Small Cell Lung Cancer. Lung 2024; 202:197-210. [PMID: 38480620 PMCID: PMC11009777 DOI: 10.1007/s00408-024-00675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/26/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE Pembrolizumab-based regimens are conditioned by the expression of PD-L1, but durable response rate is limited by innate and acquired resistance mechanisms. Here, we focus on osteopontin (OPN), an upfront biomarker of senescence, which closely associated with natural history of non-small cell lung cancer (NSCLC). METHODS Seventy-nine patients eligible to pembrolizumab regimens-alone or in combination with chemotherapy-as first-line treatment of advanced NSCLC were enrolled. Predictive value of OPN toward iRECIST progression disease (PD) was set as first outcome. Secondary ones included performance status (ECOG) at baseline, early (first and best) responses, and overall survival (OS). RESULTS High Serum OPN characterized patients with worse ECOG-PS (p = 0.015) at baseline and subjects experienced PD/death at first (OR 1.17 [1.02 to 1.35]; p = 0.030) and best responses (0.04 [0.00 to 0.81]; p = 0.035). OPN was associated with time-to-progression (B -2.74 [-4.46 to -1.01]) and time-to death (-0.13 [-0.20 to -0.05]). Cox regression models unveil a predictive value for iRECIST-PD (HR 1.01 [1.00 to 1.02]; p = -0.005), RECIST-PD (HR 1.01 [1.00 to 1.02]; p = 0.017), and OS (HR 1.02 [1.01 to 1.03]; p = 0.001). These models were internally validated through bootstrap resampling and characterized by relevant discrimination ability at ROC curve analyses. CONCLUSION Baseline levels of serum OPN is closely associated with performance status and short/long term outcomes in patients with advanced NSCLC, which are candidate to pembrolizumab-based regimens. As upfront biomarker of senescence, OPN may pave the way for future studies focusing on senescence patterns in NSCLC.
Collapse
Affiliation(s)
- Davide Ramoni
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Simona Coco
- U.O.S. Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Giovanni Rossi
- IRCCS Ospedale Policlinico San Martino, U.O.C. Oncologia Medica 2, 16132, Genoa, Italy
- Dipartimento di Medicina, Chirurgia e Scienze Sperimentali, Università di Sassari, 07100, Sassari, Italy
| | - Chiara Dellepiane
- IRCCS Ospedale Policlinico San Martino, U.O.C. Oncologia Medica 2, 16132, Genoa, Italy
| | - Elisa Bennicelli
- IRCCS Ospedale Policlinico San Martino, U.O.C. Oncologia Medica 2, 16132, Genoa, Italy
| | - Sara Santamaria
- UOC Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Linda Zinoli
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Alberto Stefano Tagliafico
- Dipartimento di Radiodiagnostica, IRCCS-Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Marco Tagliamento
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Giulia Barletta
- IRCCS Ospedale Policlinico San Martino, U.O.C. Oncologia Medica 2, 16132, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Amedeo Tirandi
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Silvia Minetti
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Maria Bertolotto
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Carlo Genova
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- UOC Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy.
| |
Collapse
|
40
|
Sun J, Ye T, Chen X, Li B, Wei Y, Zheng H, Piao JG, Li F. A self-assembly active nanomodulator based on berberine for photothermal immunotherapy of breast cancer via dual regulation of immune suppression. Int J Pharm 2024; 653:123898. [PMID: 38346604 DOI: 10.1016/j.ijpharm.2024.123898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
Breast cancer (BC) remains a significant global health concern, especially affecting women, necessitating the development of effective treatment strategies. Photothermal immunotherapy has holds promise for addressing BC by eradicating tumors, preventing metastasis, and reducing recurrence rates. However, the dynamic amplification of indoleamine 2,3-dioxygenase 1 (IDO-1) and programmed cell death-ligand 1 (PD-L1) triggered by photothermal therapy (PTT) poses presents a significant barrier to immune cell infiltration, thus promoting immune evasion. To enhance overall efficiency, a hyaluronic acid (HA)-coated berberine (BBR)-indocyanine green self-assembly active nano modulator (HBI NDs) was successfully developed. This nano modulator aims to reverse immune resistance and further contribute to the synergistic anti-tumor effects. The prepared HBI NDs demonstrated a uniform spherical morphology, high drug loading, and favorable optical properties. The results based on in vitro cell experiments and tumor animal models confirmed that HBI NDs selectively accumulated in tumor tissues, downregulated PD-L1 and IDO-1 protein expression, and induced elevated cell apoptosis. Consequently, these effects result in efficient immune infiltration and positive anti-tumor outcomes. In conclusion, the HBI NDs nanodrug exhibits considerable potential as a novel agent for enhancing anticancer efficacy and promoting immune infiltration.
Collapse
Affiliation(s)
- Jiang Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tingxian Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - XinXin Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
41
|
Wang H, Zhou Q, Xie DF, Xu Q, Yang T, Wang W. LAPTM4B-mediated hepatocellular carcinoma stem cell proliferation and MDSC migration: implications for HCC progression and sensitivity to PD-L1 monoclonal antibody therapy. Cell Death Dis 2024; 15:165. [PMID: 38388484 PMCID: PMC10884007 DOI: 10.1038/s41419-024-06542-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
In hepatocellular carcinoma (HCC), immunotherapy is vital for advanced-stage patients. However, diverse individual responses and tumor heterogeneity have resulted in heterogenous treatment outcomes. Our mechanistic investigations identified LAPTM4B as a crucial gene regulated by ETV1 (a transcription factor), especially in liver cancer stem cells (LCSCs). The influence of LAPTM4B on LCSCs is mediated via the Wnt1/c-Myc/β-catenin pathway. CXCL8 secretion by LAPTM4B drove myeloid-derived suppressor cell (MDSC) migration, inducing unfavorable patient prognosis. LAPTM4B affected PD-L1 receptor expression in tumor microenvironment and enhanced tumor suppression induced by PD-L1 monoclonal antibodies in HCC patients. LAPTM4B up-regulation is correlated with adverse outcomes in HCC patients, sensitizing them to PD-L1 monoclonal antibody therapy.
Collapse
Affiliation(s)
- Haojun Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, China
- Capital Medical University, 100071, Beijing, China
| | - Quanwei Zhou
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ding Fang Xie
- The Second Department of Medical Oncology, Xiangtan Central Hospital, Xiangtan, China
| | - Qingguo Xu
- Department of Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tongwang Yang
- The Hunan Provincial University Key Laboratory of the Fundamentaland Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China.
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, China.
- Capital Medical University, 100071, Beijing, China.
| |
Collapse
|
42
|
Zhang Y, Zhang G, Wang Y, Ye L, Peng L, Shi R, Guo S, He J, Yang H, Dai Q. Current treatment strategies targeting histone deacetylase inhibitors in acute lymphocytic leukemia: a systematic review. Front Oncol 2024; 14:1324859. [PMID: 38450195 PMCID: PMC10915758 DOI: 10.3389/fonc.2024.1324859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Acute lymphocytic leukemia is a hematological malignancy that primarily affects children. Long-term chemotherapy is effective, but always causes different toxic side effects. With the application of a chemotherapy-free treatment strategy, we intend to demonstrate the most recent results of using one type of epigenetic drug, histone deacetylase inhibitors, in ALL and to provide preclinical evidence for further clinical trials. In this review, we found that panobinostat (LBH589) showed positive outcomes as a monotherapy, whereas vorinostat (SAHA) was a better choice for combinatorial use. Preclinical research has identified chidamide as a potential agent for investigation in more clinical trials in the future. In conclusion, histone deacetylase inhibitors play a significant role in the chemotherapy-free landscape in cancer treatment, particularly in acute lymphocytic leukemia.
Collapse
Affiliation(s)
- Yingjun Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Ge Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Yuefang Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Lei Ye
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Luyun Peng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Rui Shi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Siqi Guo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Jiajing He
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Hao Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Qingkai Dai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
43
|
Du X, Yang D, Yu X, Wei Y, Chen W, Zhai Y, Ma F, Zhang M, Wan S, Li Y, Yang X, Aierken A, Zhang N, Xu W, Meng Y, Li N, Liao M, Yuan X, Zhu H, Qu L, Zhou N, Bai X, Peng S, Yang F, Hua J. PLZF protein forms a complex with protein TET1 to target TCF7L2 in undifferentiated spermatogonia. Theriogenology 2024; 215:321-333. [PMID: 38128225 DOI: 10.1016/j.theriogenology.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/18/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The transcription factor promyelocytic leukemia zinc finger (PLZF, also known as ZBTB16) is critical for the self-renewal of spermatogonial stem cells (SSCs). However, the function of PLZF in SSCs is not clear. Here, we found that PLZF acted as an epigenetic regulator of stem cell maintenance and self-renewal of germ cells. The PLZF protein interacts with the ten-eleven translocation 1 (TET1) protein and subsequently acts as a modulator to regulate the expression of self-renewal-related genes. Furthermore, Transcription Factor 7-like 2 (TCF7L2) is promoted by the coordination of PLZF and Tri-methylation of lysine 4 on histone H3 (H3K4me3). In addition, testicular single-cell sequencing indicated that TCF7L2 is commonly expressed in the PLZF cluster. We demonstrated that PLZF directly targets TCF7L2 and alters the landscape of histone methylation in the SSCs nucleus. Meanwhile, the RD domain and Zn finger domain of PLZF synergize with H3K4me3 and directly upregulate TCF7L2 expression at the transcriptional level. Additionally, we identified a new association between PLZF and the histone methyltransferase EZH2 at the genomic level. Our study identified a new association between PLZF and H3K4me3, established the novel PLZF&TET1-H3K4me3-TCF7L2 axis at the genomic level which regulates undifferentiated spermatogonia, and provided a platform for studying germ cell development in male domestic animals.
Collapse
Affiliation(s)
- Xiaomin Du
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China; Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, Shaanxi, 719000, China
| | - Donghui Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Xiuwei Yu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China; Department of Histo-embryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yudong Wei
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Wenbo Chen
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Yuanxin Zhai
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Fanglin Ma
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Shicheng Wan
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Yunxiang Li
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Xinchun Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Aili Aierken
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Ning Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenjing Xu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Yuan Meng
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Na Li
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaole Yuan
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, Shaanxi, 719000, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, Shaanxi, 719000, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, Shaanxi, 719000, China
| | - Na Zhou
- People's Hospital of Jingbian County, Ningxia Medical University, Yuling, Shaanxi, 718500, China
| | - Xue Bai
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PL, UK
| | - Sha Peng
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China.
| | - Fan Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China.
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, 712100, China.
| |
Collapse
|
44
|
Xuan L, Bai C, Ju Z, Luo J, Guan H, Zhou PK, Huang R. Radiation-targeted immunotherapy: A new perspective in cancer radiotherapy. Cytokine Growth Factor Rev 2024; 75:1-11. [PMID: 38061920 DOI: 10.1016/j.cytogfr.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 02/16/2024]
Abstract
In contemporary oncology, radiation therapy and immunotherapy stand as critical treatments, each with distinct mechanisms and outcomes. Radiation therapy, a key player in cancer management, targets cancer cells by damaging their DNA with ionizing radiation. Its effectiveness is heightened when used alongside other treatments like surgery and chemotherapy. Employing varied radiation types like X-rays, gamma rays, and proton beams, this approach aims to minimize damage to healthy tissue. However, it is not without risks, including potential damage to surrounding normal cells and side effects ranging from skin inflammation to serious long-term complications. Conversely, immunotherapy marks a revolutionary step in cancer treatment, leveraging the body's immune system to target and destroy cancer cells. It manipulates the immune system's specificity and memory, offering a versatile approach either alone or in combination with other treatments. Immunotherapy is known for its targeted action, long-lasting responses, and fewer side effects compared to traditional therapies. The interaction between radiation therapy and immunotherapy is intricate, with potential for both synergistic and antagonistic effects. Their combined use can be more effective than either treatment alone, but careful consideration of timing and sequence is essential. This review explores the impact of various radiation therapy regimens on immunotherapy, focusing on changes in the immune microenvironment, immune protein expression, and epigenetic factors, emphasizing the need for personalized treatment strategies and ongoing research to enhance the efficacy of these combined therapies in cancer care.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|
45
|
Sacdalan DB, Ul Haq S, Lok BH. Plasma Cell-Free Tumor Methylome as a Biomarker in Solid Tumors: Biology and Applications. Curr Oncol 2024; 31:482-500. [PMID: 38248118 PMCID: PMC10814449 DOI: 10.3390/curroncol31010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
DNA methylation is a fundamental mechanism of epigenetic control in cells and its dysregulation is strongly implicated in cancer development. Cancers possess an extensively hypomethylated genome with focal regions of hypermethylation at CPG islands. Due to the highly conserved nature of cancer-specific methylation, its detection in cell-free DNA in plasma using liquid biopsies constitutes an area of interest in biomarker research. The advent of next-generation sequencing and newer computational technologies have allowed for the development of diagnostic and prognostic biomarkers that utilize methylation profiling to diagnose disease and stratify risk. Methylome-based predictive biomarkers can determine the response to anti-cancer therapy. An additional emerging application of these biomarkers is in minimal residual disease monitoring. Several key challenges need to be addressed before cfDNA-based methylation biomarkers become fully integrated into practice. The first relates to the biology and stability of cfDNA. The second concerns the clinical validity and generalizability of methylation-based assays, many of which are cancer type-specific. The third involves their practicability, which is a stumbling block for translating technologies from bench to clinic. Future work on developing pan-cancer assays with their respective validities confirmed using well-designed, prospective clinical trials is crucial in pushing for the greater use of these tools in oncology.
Collapse
Affiliation(s)
- Danielle Benedict Sacdalan
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Sami Ul Haq
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
- Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - Benjamin H. Lok
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Room 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
46
|
Ren X, Wang X, Zheng G, Wang S, Wang Q, Yuan M, Xu T, Xu J, Huang P, Ge M. Targeting one-carbon metabolism for cancer immunotherapy. Clin Transl Med 2024; 14:e1521. [PMID: 38279895 PMCID: PMC10819114 DOI: 10.1002/ctm2.1521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND One-carbon (1C) metabolism is a metabolic network that plays essential roles in biological reactions. In 1C metabolism, a series of nutrients are used to fuel metabolic pathways, including nucleotide metabolism, amino acid metabolism, cellular redox defence and epigenetic maintenance. At present, 1C metabolism is considered the hallmark of cancer. The 1C units obtained from the metabolic pathways increase the proliferation rate of cancer cells. In addition, anticancer drugs, such as methotrexate, which target 1C metabolism, have long been used in the clinic. In terms of immunotherapy, 1C metabolism has been used to explore biomarkers connected with immunotherapy response and immune-related adverse events in patients. METHODS We collected numerous literatures to explain the roles of one-carbon metabolism in cancer immunotherapy. RESULTS In this review, we focus on the important pathways in 1C metabolism and the function of 1C metabolism enzymes in cancer immunotherapy. Then, we summarise the inhibitors acting on 1C metabolism and their potential application on cancer immunotherapy. Finally, we provide a viewpoint and conclusion regarding the opportunities and challenges of targeting 1C metabolism for cancer immunotherapy in clinical practicability in the future. CONCLUSION Targeting one-carbon metabolism is useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinxin Ren
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
- Department of PathologyCancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiang Wang
- Department of PharmacyAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Guowan Zheng
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Shanshan Wang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Qiyue Wang
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Mengnan Yuan
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Tong Xu
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Jiajie Xu
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Ping Huang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Minghua Ge
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| |
Collapse
|
47
|
Huang H, Deng X, Yu L, Huang H, Wang Z, Hong H, Lin T. EZH1/2 alteration as a potential biomarker for immune checkpoint inhibitors across multiple cancer types. J Transl Med 2023; 21:913. [PMID: 38102713 PMCID: PMC10724995 DOI: 10.1186/s12967-023-04759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Huageng Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Xinyi Deng
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Le Yu
- Department of Medical Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, People's Republic of China
| | - He Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Zhao Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Huangming Hong
- Department of Medical Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, People's Republic of China.
| | - Tongyu Lin
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
- Department of Medical Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, People's Republic of China.
| |
Collapse
|
48
|
Pan X, Zhang W, Wang L, Guo H, Zheng M, Wu H, Weng Q, He Q, Ding L, Yang B. KLF12 transcriptionally regulates PD-L1 expression in non-small cell lung cancer. Mol Oncol 2023; 17:2659-2674. [PMID: 37606530 DOI: 10.1002/1878-0261.13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Recent studies have pointed to the role of Krüpple-like factor 12 (KLF12) in cancer-associated processes, including cancer proliferation, apoptosis, and metastasis. However, the role of KLF12 in tumor immunity remains obscure. Here, we found that KLF12 expression was significantly higher in non-small cell lung cancer (NSCLC) cells with higher programmed death-ligand 1 (PD-L1) expression. Additionally, a positive correlation between KLF12 and PD-L1 was observed in clinical patient tumor tissues. By chromatin immunoprecipitation (ChIP) analysis, KLF12 was identified to bind to the CACCC motif of the PD-L1 promoter. Overexpression of KLF12 promoted PD-L1 transcription, whereas silencing of KLF12 inhibited PD-L1 transcription. Furthermore, signal transducer and activator of transcription 1 (STAT1)- and STAT3-triggered PD-L1 transcription was abolished in the absence of KLF12, and KLF12 knockdown weakened the binding of STAT1 and STAT3 to the PD-L1 promoter. Mechanistically, KLF12 physically interacted with P300, a histone acetyltransferase. In addition, KLF12 silencing reduced P300 binding to the PD-L1 promoter, which subsequently caused decreased acetylation of histone H3. PD-L1 transcription driven by KLF12 overexpression was eliminated by EP300 silencing. In immunocompetent mice, KLF12 knockout inhibited tumor growth and promoted infiltration of CD8+ T cells. However, this phenomenon was not observed in immunodeficient mice. Overall, this study reveals KLF12-mediated transcriptional regulation of PD-L1 in NSCLC; targeting KLF12 may be a potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Yan L, Geng Q, Cao Z, Liu B, Li L, Lu P, Lin L, Wei L, Tan Y, He X, Li L, Zhao N, Lu C. Insights into DNMT1 and programmed cell death in diseases. Biomed Pharmacother 2023; 168:115753. [PMID: 37871559 DOI: 10.1016/j.biopha.2023.115753] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
DNMT1 (DNA methyltransferase 1) is the predominant member of the DNMT family and the most abundant DNMT in various cell types. It functions as a maintenance DNMT and is involved in various diseases, including cancer and nervous system diseases. Programmed cell death (PCD) is a fundamental mechanism that regulates cell proliferation and maintains the development and homeostasis of multicellular organisms. DNMT1 plays a regulatory role in various types of PCD, including apoptosis, autophagy, necroptosis, ferroptosis, and others. DNMT1 is closely associated with the development of various diseases by regulating key genes and pathways involved in PCD, including caspase 3/7 activities in apoptosis, Beclin 1, LC3, and some autophagy-related proteins in autophagy, glutathione peroxidase 4 (GPX4) and nuclear receptor coactivator 4 (NCOA4) in ferroptosis, and receptor-interacting protein kinase 1-receptor-interacting protein kinase 3-mixed lineage kinase domain-like protein (RIPK1-RIPK3-MLKL) in necroptosis. Our study summarizes the regulatory relationship between DNMT1 and different types of PCD in various diseases and discusses the potential of DNMT1 as a common regulatory hub in multiple types of PCD, offering a perspective for therapeutic approaches in disease.
Collapse
Affiliation(s)
- Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lini Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
50
|
Liang Y, Wang L, Ma P, Ju D, Zhao M, Shi Y. Enhancing anti-tumor immune responses through combination therapies: epigenetic drugs and immune checkpoint inhibitors. Front Immunol 2023; 14:1308264. [PMID: 38077327 PMCID: PMC10704038 DOI: 10.3389/fimmu.2023.1308264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Epigenetic mechanisms are processes that affect gene expression and cellular functions without involving changes in the DNA sequence. This abnormal or unstable expression of genes regulated by epigenetics can trigger cancer and other various diseases. The immune cells involved in anti-tumor responses and the immunogenicity of tumors may also be affected by epigenomic changes. This holds significant implications for the development and application of cancer immunotherapy, epigenetic therapy, and their combined treatments in the fight against cancer. We provide an overview of recent research literature focusing on how epigenomic changes in immune cells influence immune cell behavior and function, as well as the immunogenicity of cancer cells. And the combined utilization of epigenetic medications with immune checkpoint inhibitors that focus on immune checkpoint molecules [e.g., Programmed Death 1 (PD-1), Cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA-4), T cell Immunoglobulin and Mucin Domain (TIM-3), Lymphocyte Activation Gene-3 (LAG-3)] present in immune cells and stromal cells associated with tumors. We highlight the potential of small-molecule inhibitors targeting epigenetic regulators to amplify anti-tumor immune responses. Moreover, we discuss how to leverage the intricate relationship between cancer epigenetics and cancer immunology to create treatment regimens that integrate epigenetic therapies with immunotherapies.
Collapse
Affiliation(s)
- Ying Liang
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lingling Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuhan, China
| | - Peijun Ma
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Minggao Zhao
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yun Shi
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| |
Collapse
|