1
|
Boonjindasup W, Thomas RJ, Yuen W, McElrea MS. Role of Spirometry, Radiology, and Flexible Bronchoscopy in Assessing Chronic Cough in Children. J Clin Med 2024; 13:5720. [PMID: 39407780 PMCID: PMC11476545 DOI: 10.3390/jcm13195720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic cough in children is a common and multifaceted symptom, often requiring a comprehensive approach for accurate diagnosis and effective management. This review explores the use of spirometry, radiology (chest X-rays and computed tomography (CT) scans), and flexible bronchoscopy in the assessment of chronic cough in children through current guidelines and studies. The strengths, clinical indications, and limitations of each modality are examined. Spirometry, radiology, and in some cases flexible bronchoscopy are integral to the assessment of chronic cough in children; however, a tailored approach, leveraging the strengths of each modality and guided by clinical indications, enhances diagnostic accuracy and therapeutic outcomes of pediatric chronic cough.
Collapse
Affiliation(s)
- Wicharn Boonjindasup
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Rahul J. Thomas
- Department Respiratory and Sleep Medicine, Queensland Children’s Hospital, South Brisbane 4101, Australia;
- Australian Centre for Health Services Innovation, Queensland University of Technology, South Brisbane 4101, Australia
| | - William Yuen
- Faculty of Medicine, University of Queensland, Herston 4006, Australia
| | - Margaret S. McElrea
- Department Respiratory and Sleep Medicine, Queensland Children’s Hospital, South Brisbane 4101, Australia;
- Australian Centre for Health Services Innovation, Queensland University of Technology, South Brisbane 4101, Australia
| |
Collapse
|
2
|
Alexopoulou E, Prountzos S, Raissaki M, Mazioti A, Caro-Dominguez P, Hirsch FW, Lovrenski J, Ciet P. Imaging of Acute Complications of Community-Acquired Pneumonia in the Paediatric Population-From Chest Radiography to MRI. CHILDREN (BASEL, SWITZERLAND) 2024; 11:122. [PMID: 38255434 PMCID: PMC10814200 DOI: 10.3390/children11010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The most common acute infection and leading cause of death in children worldwide is pneumonia. Clinical and laboratory tests essentially diagnose community-acquired pneumonia (CAP). CAP can be caused by bacteria, viruses, or atypical microorganisms. Imaging is usually reserved for children who do not respond to treatment, need hospitalisation, or have hospital-acquired pneumonia. This review discusses the imaging findings for acute CAP complications and the diagnostic role of each imaging modality. Pleural effusion, empyema, necrotizing pneumonia, abscess, pneumatocele, pleural fistulas, and paediatric acute respiratory distress syndrome (PARDS) are acute CAP complications. When evaluating complicated CAP patients, chest radiography, lung ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI) can be used, with each having their own pros and cons. Imaging is usually not needed for CAP diagnosis, but it is essential for complicated cases and follow-ups. Lung ultrasound can supplement chest radiography (CR), which starts the diagnostic algorithm. Contrast-enhanced computed tomography (CECT) is used for complex cases. Advances in MRI protocols make it a viable alternative for diagnosing CAP and its complications.
Collapse
Affiliation(s)
- Efthymia Alexopoulou
- 2nd Department of Radiology, University General Hospital “Attikon”, National and Kapodistrian University of Athens, 12462 Athens, Greece; (E.A.); (A.M.)
| | - Spyridon Prountzos
- 2nd Department of Radiology, University General Hospital “Attikon”, National and Kapodistrian University of Athens, 12462 Athens, Greece; (E.A.); (A.M.)
| | - Maria Raissaki
- University Hospital of Heraklion, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - Argyro Mazioti
- 2nd Department of Radiology, University General Hospital “Attikon”, National and Kapodistrian University of Athens, 12462 Athens, Greece; (E.A.); (A.M.)
| | - Pablo Caro-Dominguez
- Pediatric Radiology Unit, Radiology Department, Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot s/n, 41013 Seville, Spain;
| | - Franz Wolfgang Hirsch
- Department of Pediatric Radiology, University Hospital, Liebigstraße 20a, 04107 Leipzig, Germany;
| | - Jovan Lovrenski
- Radiology Department, Faculty of Medicine, Institute for Children and Adolescents Health Care of Vojvodina, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Pierluigi Ciet
- Department of Radiology and Nuclear Medicine, Erasmus MC—Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands;
- Department of Radiology, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
3
|
Sodhi KS, Kritsaneepaiboon S, Jana M, Bhatia A. Ultrasound and magnetic resonance imaging in thoracic tuberculosis in the pediatric population: moving beyond conventional radiology. Pediatr Radiol 2023; 53:2552-2567. [PMID: 37864712 DOI: 10.1007/s00247-023-05787-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/23/2023]
Abstract
Imaging is crucial in the diagnostic work-up and follow-up after treatment in children with thoracic tuberculosis (TB). Despite various technological advances in imaging modalities, chest radiography is the primary imaging modality for initial care and in emergency settings, especially in rural areas and where resources are limited. Ultrasonography (US) of the thorax in TB is one of the emerging applications of US as a radiation-free modality in children. Magnetic resonance imaging (MRI) is the ideal radiation-free, emerging imaging modality for thoracic TB in children. However, only limited published data is available regarding the utility of MRI in thoracic TB. In this pictorial review, we demonstrate the use of US and rapid lung MRI in evaluating children with thoracic TB, specifically for mediastinal lymphadenopathy and pulmonary complications of TB.
Collapse
Affiliation(s)
- Kushaljit Singh Sodhi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Radiodiagnosis and Imaging, Post Graduate Institute of Medical Education and Research, Sector-12, Chandigarh, 160012, India.
| | - Supika Kritsaneepaiboon
- Section of Pediatric Imaging, Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Manisha Jana
- Department of Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Anmol Bhatia
- Department of Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
4
|
Szczyrek M, Bitkowska P, Jutrzenka M, Szudy-Szczyrek A, Drelich-Zbroja A, Milanowski J. Pleural Neoplasms-What Could MRI Change? Cancers (Basel) 2023; 15:3261. [PMID: 37370871 PMCID: PMC10296582 DOI: 10.3390/cancers15123261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The primary pleural neoplasms constitute around 10% of the pleural tumors. The currently recommended method for their imaging is CT which has been shown to have certain limitations. Strong development of the MRI within the last two decades has provided us with a number of sequences that could potentially be superior to CT when it comes to the pleural malignancies' detection and characterization. This literature review discusses the possible applications of the MRI as a diagnostic tool in patients with pleural neoplasms. Although selected MRI techniques have been shown to have a number of advantages over CT, further research is required in order to confirm the obtained results, broaden our knowledge on the topic, and pinpoint the sequences most optimal for pleural imaging, as well as the best methods for reading and analysis of the obtained data.
Collapse
Affiliation(s)
- Michał Szczyrek
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Paulina Bitkowska
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Marta Jutrzenka
- Collegium Medicum, University of Warmia and Mazury in Olsztyn, Aleja Warszawska 30, 11-041 Olsztyn, Poland
| | - Aneta Szudy-Szczyrek
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Anna Drelich-Zbroja
- Department of Radiology and Neuroradiology, Medical University of Lublin, 20-954 Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
5
|
Çinar HG, Gulmez AO, Üner Ç, Aydin S. Mediastinal lesions in children. World J Clin Cases 2023; 11:2637-2656. [PMID: 37214576 PMCID: PMC10198114 DOI: 10.12998/wjcc.v11.i12.2637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
The mediastinum is where thoracic lesions most frequently occur in young patients. The histological spectrum of diseases caused by the presence of several organs in the mediastinum is broad. Congenital lesions, infections, benign and malignant lesions, and vascular diseases are examples of lesions. Care should be taken to make the proper diagnosis at the time of diagnosis in order to initiate therapy promptly. Our task is currently made simpler by radiological imaging techniques.
Collapse
Affiliation(s)
- Hasibe Gökçe Çinar
- Department of Pediatric Radiology, Ankara Etlik City Hospital, Ankara 06000, Turkey
| | - Ali Osman Gulmez
- Department of Radiology, Erzincan Binali Yıldırım University Faculty of Medicine, Erzincan 24100, Turkey
| | - Çiğdem Üner
- Department of Pediatric Radiology, Ankara Etlik City Hospital, Ankara 06000, Turkey
| | - Sonay Aydin
- Department of Radiology, Erzincan Binali Yıldırım University Faculty of Medicine, Erzincan 24100, Turkey
| |
Collapse
|
6
|
Ibrahim RSM, Hafez MAF. Chronic lung disease in paediatric patients: Does magnetic resonance imaging has a role? THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Pediatric chronic lung disease (CLD) refers to a range of distinct clinical and pathological disorders that affect children. High-resolution CT (HRCT) is critical for detecting and characterizing parenchymal abnormalities as well as determining their nature and distribution. Although magnetic resonance imaging (MRI) shows promising results, however, due to its poor spatial resolution and signal-to-noise ratio, imaging of the lung parenchyma remains a challenge. As a result, in addition to the initial CT, a follow-up MRI is required. The goal of this paper is to highlight the main imaging features of children with CLD and to evaluate the efficacy of MRI lungs in the diagnosis and monitoring of pediatric CLD.
Results
There was a strong positive correlation between CT and MRI, with a significant P-value. Findings of HRCT and MRI showed a qualitative agreement of 78% complete agreement. MRI helped primary diagnosis in 54% of cases compared to CT in 91% of cases.
Conclusion
MRI lungs are an equivalent technique to HRCT in assessing pediatric CLD; using the modified Helbich–Bhalla score, a strong correlation is obvious between both in the overall assessment. MRI is beneficial for case surveillance rather than primary diagnosis.
Collapse
|
7
|
Violon F, Burns R, Mihoubi F, Audard V, Biau D, Feydy A, Larousserie F. Intramedullary, periosteal, and extraskeletal Ewing sarcomas: retrospective study of a series of 126 cases in a reference center. Skeletal Radiol 2022; 51:1659-1670. [PMID: 35179621 DOI: 10.1007/s00256-021-03983-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/25/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the proportion of extraskeletal, periosteal, and intramedullary Ewing sarcomas among musculoskeletal Ewing sarcomas. MATERIAL AND METHOD Our single-center retrospective study included patients with musculoskeletal Ewing sarcoma diagnosed between 2005 and 2019 in our pathology center (cases from our adult bone tumor referral center and adult and pediatric cases referred for review). Recurrences, metastases, and visceral Ewing sarcomas were excluded. Intramedullary Ewing sarcomas were defined by involvement of the medullary cavity. Periosteal cases were defined by involvement of the subperiosteal area without extension to the medullary cavity. Extraskeletal cases were defined by the absence of involvement of the bone tissue and the subperiosteal area. RESULTS Our series included 126 patients with musculoskeletal Ewing sarcoma, including 118 skeletal Ewing sarcomas (93.7%) and 8 extraskeletal Ewing sarcomas (6.3%). Of the 118 skeletal Ewing sarcomas 112 were intramedullary (88.9%) and 6 were periosteal (4.8%). Extraskeletal Ewing sarcomas were more common in women and in patients older than 40 (p < 0.05). DISCUSSION The 6.3% proportion of extraskeletal Ewing sarcoma is lower than the median of 30% estimated from the literature. This difference could be explained by an overestimation of extraskeletal Ewing sarcomas of the chest wall (Askin tumors), an underestimation of periosteal cases confused with extraskeletal cases, and the presence of "Ewing-like" soft tissue sarcomas in previous series. Because of its prognostic and therapeutic impact, the distinction of morphologic subtypes requires the cooperation of experienced radiologists and pathologists.
Collapse
Affiliation(s)
- F Violon
- Service de Pathologie, Hôpital Cochin, AP‑HP, Paris, France.,Faculté de Médecine de Nancy, Université de Lorraine, Nancy, France
| | - R Burns
- Service de Radiologie, Hôpital Cochin, AP-HP, Paris, France.,Université de Paris, Paris, France
| | - F Mihoubi
- Service de Radiologie, Hôpital Cochin, AP-HP, Paris, France
| | - V Audard
- Service de Pathologie, Hôpital Cochin, AP‑HP, Paris, France
| | - D Biau
- Université de Paris, Paris, France.,Service de Chirurgie Orthopédique, Hôpital Cochin, AP-HP, Paris, France
| | - A Feydy
- Service de Radiologie, Hôpital Cochin, AP-HP, Paris, France.,Université de Paris, Paris, France
| | - F Larousserie
- Service de Pathologie, Hôpital Cochin, AP‑HP, Paris, France. .,Université de Paris, Paris, France.
| |
Collapse
|
8
|
Nel M, Franckling-Smith Z, Pillay T, Andronikou S, Zar HJ. Chest Imaging for Pulmonary TB—An Update. Pathogens 2022; 11:pathogens11020161. [PMID: 35215104 PMCID: PMC8878790 DOI: 10.3390/pathogens11020161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
The diagnosis of pulmonary tuberculosis (PTB) in children is challenging. Difficulties in acquiring suitable specimens, pauci-bacillary load, and limitations of current diagnostic methods often make microbiological confirmation difficult. Chest imaging provides an additional diagnostic modality that is frequently used in clinical practice. Chest imaging can also provide insight into treatment response and identify development of disease complications. Despite widespread use, chest radiographs are usually non-specific and have high inter- and intra-observer variability. Other diagnostic imaging modalities such as ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) can provide additional information to substantiate diagnosis. In this review, we discuss the radiological features of PTB in each modality, highlighting the advantages and limitations of each. We also address newer imaging technologies and potential use.
Collapse
Affiliation(s)
- Michael Nel
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, and The SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town 8001, South Africa; (M.N.); (Z.F.-S.)
| | - Zoe Franckling-Smith
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, and The SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town 8001, South Africa; (M.N.); (Z.F.-S.)
| | - Tanyia Pillay
- Department of Radiology, Chris Hani Baragwanath Academic Hospital, Johannesburg 1864, South Africa;
| | - Savvas Andronikou
- Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, and The SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town 8001, South Africa; (M.N.); (Z.F.-S.)
- Correspondence:
| |
Collapse
|
9
|
Das KM, Singh R, Subramanya S, Ojha SK, Almansoori T, Gokhale D, Alkoteesh JA. Serum biochemical parameters as a surrogate marker for chest computed tomography in children with COVID-19. Future Virol 2021; 16:601-609. [PMID: 34539810 PMCID: PMC8439343 DOI: 10.2217/fvl-2021-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022]
Abstract
Aim: This study aimed to investigate whether serum biochemical parameters can be used as a surrogate for chest computed tomography (CT) in the diagnosis of COVID-19 in pediatric patients. Materials & methods: We evaluated potential associations between various serum biochemical markers and the COVID-reporting and data system (RADS) pneumonia grading system in 53 individuals with confirmed COVID-19. Results: A total of 28 chest CT scans (52.8%) were abnormal. Patients with confirmed COVID-19 on CT showed a statistically significant increase in lactate dehydrogenase (186.4 ± 56.5 vs 228.4 ± 60.6; p = 0.01), which was significantly correlated with the COVID-RADS pneumonia grading system. Conclusion: Lactate dehydrogenase can be used as a surrogate marker for chest CT in children with COVID-19. This can reduce exposure to ionizing radiation during initial diagnostic procedures in children with suspected COVID-19 pneumonia.
Collapse
Affiliation(s)
- Karuna M Das
- Department of Radiology, CMHS, UAEU, Al Ain, UAE
| | - Rajvir Singh
- Department of Biostatistics, AIIMS, New Delhi, India
| | | | | | | | - Dilip Gokhale
- Department of Radiology, Tawam Hospital, Al Ain, UAE
| | | |
Collapse
|
10
|
Xiang Y, Huang C, He Y, Zhang Q. Cancer or Tuberculosis: A Comprehensive Review of the Clinical and Imaging Features in Diagnosis of the Confusing Mass. Front Oncol 2021; 11:644150. [PMID: 33996560 PMCID: PMC8113854 DOI: 10.3389/fonc.2021.644150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Confusing masses constitute a challenging clinical problem for differentiating between cancer and tuberculosis diagnoses. This review summarizes the major theories designed to identify factors associated with misdiagnosis, such as imaging features, laboratory tests, and clinical characteristics. Then, the clinical experiences regarding the misdiagnosis of cancer and tuberculosis are summarized. Finally, the main diagnostic points and differential diagnostic criteria are explored, and the characteristics of multimodal imaging and radiomics are summarized.
Collapse
Affiliation(s)
- Yufan Xiang
- Department of Neurosurgery, Department of Oncology, Department of Postgraduate Students, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chen Huang
- Department of Neurosurgery, Department of Oncology, Department of Postgraduate Students, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yan He
- Department of Neurosurgery, Department of Oncology, Department of Postgraduate Students, West China School of Medicine, Sichuan University, Chengdu, China
| | - Qin Zhang
- Department of Neurosurgery, Department of Oncology, Department of Postgraduate Students, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Abstract
Magnetic resonance imaging (MRI) of the lungs is one of the most underutilized imaging modality when it comes to imaging of thoracic diseases in children. This is largely due to less-than-optimal image quality and multiple technical challenges involved with MRI of the lungs. Advances in MRI technology along with increased awareness about optimization of MR protocol have led to it being viewed as a feasible option for evaluation of various chest diseases in children. This short review article takes the reader to the road less travelled to explore newer horizons for applications of this rapidly evolving magnetic resonance technique in the field of thoracic diseases in children.
Collapse
Affiliation(s)
- Kushaljit Singh Sodhi
- Department of Radio-diagnosis, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
12
|
Dournes G, Walkup LL, Benlala I, Willmering MM, Macey J, Bui S, Laurent F, Woods JC. The Clinical Use of Lung MRI in Cystic Fibrosis: What, Now, How? Chest 2020; 159:2205-2217. [PMID: 33345950 PMCID: PMC8579315 DOI: 10.1016/j.chest.2020.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
To assess airway and lung parenchymal damage noninvasively in cystic fibrosis (CF), chest MRI has been historically out of the scope of routine clinical imaging because of technical difficulties such as low proton density and respiratory and cardiac motion. However, technological breakthroughs have emerged that dramatically improve lung MRI quality (including signal-to-noise ratio, resolution, speed, and contrast). At the same time, novel treatments have changed the landscape of CF clinical care. In this contemporary context, there is now consensus that lung MRI can be used clinically to assess CF in a radiation-free manner and to enable quantification of lung disease severity. MRI can now achieve three-dimensional, high-resolution morphologic imaging, and beyond this morphologic information, MRI may offer the ability to sensitively differentiate active inflammation vs scarring tissue. MRI could also characterize various forms of inflammation for early guidance of treatment. Moreover, functional information from MRI can be used to assess regional, small-airway disease with sensitivity to detect small changes even in patients with mild CF. Finally, automated quantification methods have emerged to support conventional visual analyses for more objective and reproducible assessment of disease severity. This article aims to review the most recent developments of lung MRI, with a focus on practical application and clinical value in CF, and the perspectives on how these modern techniques may converge and impact patient care soon.
Collapse
Affiliation(s)
- Gaël Dournes
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Pessac, France; Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Ilyes Benlala
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Pessac, France
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Julie Macey
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Pessac, France
| | - Stephanie Bui
- CHU Bordeaux, Hôpital Pellegrin-Enfants, Pediatric Cystic Fibrosis Reference Center (CRCM), Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
| | - François Laurent
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France; CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Pessac, France
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
13
|
Voskrebenzev A, Vogel-Claussen J. Proton MRI of the Lung: How to Tame Scarce Protons and Fast Signal Decay. J Magn Reson Imaging 2020; 53:1344-1357. [PMID: 32166832 DOI: 10.1002/jmri.27122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary proton MRI techniques offer the unique possibility of assessing lung function and structure without the requirement for hyperpolarization or dedicated hardware, which is mandatory for multinuclear acquisition. Five popular approaches are presented and discussed in this review: 1) oxygen enhanced (OE)-MRI; 2) arterial spin labeling (ASL); 3) Fourier decomposition (FD) MRI and other related methods including self-gated noncontrast-enhanced functional lung (SENCEFUL) MR and phase-resolved functional lung (PREFUL) imaging; 4) dynamic contrast-enhanced (DCE) MRI; and 5) ultrashort TE (UTE) MRI. While DCE MRI is the most established and well-studied perfusion measurement, FD MRI offers a free-breathing test without any contrast agent and is predestined for application in patients with renal failure or with low compliance. Additionally, FD MRI and related methods like PREFUL and SENCEFUL can act as an ionizing radiation-free V/Q scan, since ventilation and perfusion information is acquired simultaneously during one scan. For OE-MRI, different concentrations of oxygen are applied via a facemask to assess the regional change in T1 , which is caused by the paramagnetic property of oxygen. Since this change is governed by a combination of ventilation, diffusion, and perfusion, a compound functional measurement can be achieved with OE-MRI. The known problem of fast T2 * decay of the lung parenchyma leading to a low signal-to-noise ratio is bypassed by the UTE acquisition strategy. Computed tomography (CT)-like images allow the assessment of lung structure with high spatial resolution without ionizing radiation. Despite these different branches of proton MRI, common trends are evident among pulmonary proton MRI: 1) free-breathing acquisition with self-gating; 2) application of UTE to preserve a stronger parenchymal signal; and 3) transition from 2D to 3D acquisition. On that note, there is a visible convergence of the different methods and it is not difficult to imagine that future methods will combine different aspects of the presented methods.
Collapse
Affiliation(s)
- Andreas Voskrebenzev
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL), Hannover, Germany
| |
Collapse
|
14
|
Beel E, Aukland SM, Boon M, Vermeulen F, Debeer A, Proesmans M. Chest CT scoring for evaluation of lung sequelae in congenital diaphragmatic hernia survivors. Pediatr Pulmonol 2020; 55:740-746. [PMID: 31945271 DOI: 10.1002/ppul.24645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Data on long-term structural lung abnormalities in survivors of congenital diaphragmatic hernia (CDH) is scarce. The purpose of this study was to develop a chest computed tomography (CT) score to assess the structural lung sequelae in CDH survivors and to study the correlation between the CT scoring and clinical parameters in the neonatal period and at 1 year of follow-up. METHODS A prospective, clinical follow-up program is organised for CDH survivors at the University Hospital of Leuven including a chest CT at the age of 1 year. The CT scoring used and evaluated, named CDH-CT score, was adapted from the revised Aukland score for chronic lung disease of prematurity. RESULTS Thirty-five patients were included. All CT scans showed some pulmonary abnormalities, ranging from very mild to severe. The mean total CT score was 16 (IQR: 9-23), with the greatest contribution from the subscores for decreased attenuation (5; IQR: 2-8), subpleural linear and triangular opacities (4; IQR: 3-5), and atelectasis/consolidation (2; IQR: 1-3). Interobserver and intraobserver agreement was very good for the total score (ICC coefficient > 0.9). Total CT score correlated with number of neonatal days ventilated/on oxygen as well as with respiratory symptoms and feeding problems at 1 year of age. CONCLUSION The CDH-CT scoring tool has a good intraobserver and interobserver repeatability and correlates with relevant clinical parameters. This holds promise for its use in clinical follow-up and as outcome parameter in clinical interventional studies.
Collapse
Affiliation(s)
- Emma Beel
- Department of Paediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Stein M Aukland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Mieke Boon
- Department of Pediatrics, UZ Leuven, University Hospital Leuven, Leuven, Herestraat, Belgium
| | - François Vermeulen
- Department of Pediatrics, UZ Leuven, University Hospital Leuven, Leuven, Herestraat, Belgium
| | - Anne Debeer
- Department of Neonatal Intensive Care, UZ Leuven, University Hospital Leuven, Leuven, Herestraat, Belgium
| | - Marijke Proesmans
- Department of Pediatrics, UZ Leuven, University Hospital Leuven, Leuven, Herestraat, Belgium
| |
Collapse
|
15
|
Giraudo C, Evangelista L, Fraia AS, Lupi A, Quaia E, Cecchin D, Casali M. Molecular Imaging of Pulmonary Inflammation and Infection. Int J Mol Sci 2020; 21:ijms21030894. [PMID: 32019142 PMCID: PMC7037834 DOI: 10.3390/ijms21030894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Infectious and inflammatory pulmonary diseases are a leading cause of morbidity and mortality worldwide. Although infrequently used in this setting, molecular imaging may significantly contribute to their diagnosis using techniques like single photon emission tomography (SPET), positron emission tomography (PET) with computed tomography (CT) or magnetic resonance imaging (MRI) with the support of specific or unspecific radiopharmaceutical agents. 18F-Fluorodeoxyglucose (18F-FDG), mostly applied in oncological imaging, can also detect cells actively involved in infectious and inflammatory conditions, even if with a low specificity. SPET with nonspecific (e.g., 67Gallium-citrate (67Ga citrate)) and specific tracers (e.g., white blood cells radiolabeled with 111Indium-oxine (111In) or 99mTechnetium (99mTc)) showed interesting results for many inflammatory lung diseases. However, 67Ga citrate is unfavorable by a radioprotection point of view while radiolabeled white blood cells scan implies complex laboratory settings and labeling procedures. Radiolabeled antibiotics (e.g., ciprofloxacin) have been recently tested, although they seem to be quite unspecific and cause antibiotic resistance. New radiolabeled agents like antimicrobic peptides, binding to bacterial cell membranes, seem very promising. Thus, the aim of this narrative review is to provide a comprehensive overview about techniques, including PET/MRI, and tracers that can guide the clinicians in the appropriate diagnostic pathway of infectious and inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Chiara Giraudo
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
- Correspondence: ; Tel.: +39-049-821-2357; Fax: +39-049-821-1878
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (L.E.); (D.C.)
| | - Anna Sara Fraia
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
| | - Amalia Lupi
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
| | - Emilio Quaia
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (L.E.); (D.C.)
- Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy
| | - Massimiliano Casali
- Azienda Unità Sanitaria Locale–IRCCS di Reggio Emilia, 42121 Reggio Emilia, Italy;
| |
Collapse
|
16
|
Gupta AK, Shroff M. Pediatric Radiology: Why the Pediatricians Need it? Indian J Pediatr 2019; 86:803-804. [PMID: 30997649 DOI: 10.1007/s12098-019-02940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Arun Kumar Gupta
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Manohar Shroff
- Department of Diagnostic Imaging, Hospital for Sick Children/Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|