1
|
Bhattacharya R, Avdieiev SS, Bukkuri A, Whelan CJ, Gatenby RA, Tsai KY, Brown JS. The Hallmarks of Cancer as Eco-Evolutionary Processes. Cancer Discov 2025; 15:685-701. [PMID: 40170539 DOI: 10.1158/2159-8290.cd-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/03/2025]
Abstract
SIGNIFICANCE Viewing the hallmarks as a sequence of adaptations captures the "why" behind the "how" of the molecular changes driving cancer. This eco-evolutionary view distils the complexity of cancer progression into logical steps, providing a framework for understanding all existing and emerging hallmarks of cancer and developing therapeutic interventions.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cancer Biology, University of South Florida, Tampa, Florida
| | - Stanislav S Avdieiev
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anuraag Bukkuri
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher J Whelan
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Esentürk E, Sahli A, Haberland V, Ziuboniewicz A, Wirth C, Bova GS, Bristow RG, Brook MN, Brors B, Butler A, Cancel-Tassin G, Cheng KC, Cooper CS, Corcoran NM, Cussenot O, Eeles RA, Favero F, Gerhauser C, Gihawi A, Girma EG, Gnanapragasam VJ, Gruber AJ, Hamid A, Hayes VM, He HH, Hovens CM, Imada EL, Jakobsdottir GM, Jung CH, Khani F, Kote-Jarai Z, Lamy P, Leeman G, Loda M, Lutsik P, Marchionni L, Molania R, Papenfuss AT, Pellegrina D, Pope B, Queiroz LR, Rausch T, Reimand J, Robinson B, Schlomm T, Sørensen KD, Uhrig S, Weischenfeldt J, Xu Y, Yamaguchi TN, Zanettini C, Lynch AG, Wedge DC, Brewer DS, Woodcock DJ. Causes of evolutionary divergence in prostate cancer. ARXIV 2025:arXiv:2503.13189v1. [PMID: 40166741 PMCID: PMC11957227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cancer progression involves the sequential accumulation of genetic alterations that cumulatively shape the tumour phenotype. In prostate cancer, tumours can follow divergent evolutionary trajectories that lead to distinct subtypes, but the causes of this divergence remain unclear. While causal inference could elucidate the factors involved, conventional methods are unsuitable due to the possibility of unobserved confounders and ambiguity in the direction of causality. Here, we propose a method that circumvents these issues and apply it to genomic data from 829 prostate cancer patients. We identify several genetic alterations that drive divergence as well as others that prevent this transition, locking tumours into one trajectory. Further analysis reveals that these genetic alterations may cause each other, implying a positive-feedback loop that accelerates divergence. Our findings provide insights into how cancer subtypes emerge and offer a foundation for genomic surveillance strategies aimed at monitoring the progression of prostate cancer.
Collapse
Affiliation(s)
- Emre Esentürk
- Nuffield Department of Medicine, University of Oxford, UK
| | - Atef Sahli
- Manchester Cancer Research Centre, The University of Manchester, UK
| | | | | | | | - G Steven Bova
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Robert G Bristow
- Manchester Cancer Research Centre and Cancer Research UK Manchester Institute, The University of Manchester, UK
- Christie NHS Foundation Trust, UK
- Div Cancer Sciences, Faculty of Biology, Medicine & Health, University of Manchester, UK
| | | | - Benedikt Brors
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, and National Center for Tumor Diseases (NCT), Germany
- Medical Faculty Heidelberg and Faculty of Biosciences, Heidelberg University, Germany
| | | | - Géraldine Cancel-Tassin
- CeRePP (Centre de Recherche sur les Pathologies Prostatiques et Urologiques), France
- Sorbonne Université, GRC n°5 Predictive Onco-Urology, APHP, Tenon Hospital, France
| | - Kevin Cl Cheng
- Computational Biology Program, Ontario Institute for Cancer Research, Canada
- Department of Medical Biophysics, University of Toronto, Canada
| | | | - Niall M Corcoran
- Department of Urology, Royal Melbourne Hospital, Australia
- Department of Surgery, The University of Melbourne, Australia
- Department of Urology, Western Health, Australia
| | - Olivier Cussenot
- CeRePP (Centre de Recherche sur les Pathologies Prostatiques et Urologiques), France
| | - Ros A Eeles
- The Institute of Cancer Research, UK
- The Royal Marsden NHS Foundation Trust, London & Sutton
| | - Francesco Favero
- Biotech Research & Innovation Centre (BRIC) - University of Copenhagen, Denmark
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Clarissa Gerhauser
- Division Cancer Epigenomics, German Cancer Research Center (DKFZ), Germany
| | | | - Etsehiwot G Girma
- Biotech Research & Innovation Centre (BRIC) - University of Copenhagen, Denmark
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Vincent J Gnanapragasam
- Department of Surgery, Urology, University of Cambridge & Cambridge University Hospitals NHS Trust, Cambridge Urology Translational Research and Clinical Trials (Office), Cambridge Biomedical Campus, Addenbrooke's Hospital Site, S Wards Building, UK
| | | | - Anis Hamid
- Department of Surgery, The University of Melbourne, Australia
| | - Vanessa M Hayes
- School of Medical Sciences, University of Sydney, Faculty of Medicine & Health, Australia
- School of Health Systems & Public Health, University of Pretoria, South Africa
- Manchester Cancer Research Centre, University of Manchester, UK
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network; Department of Medical Biophysics, University of Toronto, Canada
| | - Christopher M Hovens
- Department of Surgery, The Collaborative Centre for Genomic Cancer Medicine, The University of Melbourne, Australia
| | - Eddie Luidy Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
| | - G Maria Jakobsdottir
- Division of Cancer Sciences, The University of Manchester, UK
- Christie Hospital, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Australia
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, UK
- The Royal Marsden NHS Foundation Trust, London & Sutton
| | - Philippe Lamy
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
- Nuffield Department of Surgical Sciences, University of Oxford, UK
| | - Pavlo Lutsik
- Division Cancer Epigenomics, German Cancer Research Center (DKFZ), Germany
- Department of Oncology, KU Leuven, Belgium
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
| | - Ramyar Molania
- Walter and Eliza Hall Institute of Medical Research, Australia
- Department of Medical Biology, The University of Melbourne, Australia
| | - Anthony T Papenfuss
- Walter and Eliza Hall Institute of Medical Research, Australia
- Department of Medical Biology, The University of Melbourne, Australia
| | - Diogo Pellegrina
- Computational Biology Program, Ontario Institute for Cancer Research, Canada
| | - Bernard Pope
- Melbourne Bioinformatics, The University of Melbourne, Australia
- Australian BioCommons, The University of Melbourne, Australia
- Department of Surgery, The University of Melbourne, Australia
| | - Lucio R Queiroz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
| | - Tobias Rausch
- Genome Biology, European Molecular Biology Laboratory (EMBL), Germany
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Canada
- Department of Molecular Genetics, University of Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Canada
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Germany
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| | - Sebastian Uhrig
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Germany
| | - Joachim Weischenfeldt
- Biotech Research & Innovation Centre (BRIC) - University of Copenhagen, Denmark
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Denmark
- Department of Urology, Charité - Universitätsmedizin Berlin, Germany
| | | | - Takafumi N Yamaguchi
- Jonsson Comprehensive Cancer Center, University of California - Los Angeles, USA
| | - Claudio Zanettini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
| | - Andy G Lynch
- School of Medicine, School of Mathematics & Statistics, University of St Andrews, UK
| | - David C Wedge
- Manchester Cancer Research Centre, The University of Manchester, UK
| | - Daniel S Brewer
- Metabolic Health research centre, Norwich Medical School, University of East Anglia, UK
- The Earlham Institute, UK
| | - Dan J Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, UK
| |
Collapse
|
3
|
Thomas F, Asselin K, MacDonald N, Brazier L, Meliani J, Ujvari B, Dujon AM. Oncogenic processes: a neglected parameter in the evolutionary ecology of animals. C R Biol 2024; 347:137-157. [PMID: 39508584 DOI: 10.5802/crbiol.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 11/15/2024]
Abstract
Cancer is a biological process that emerged at the end of the Precambrian era with the rise of multicellular organisms. Traditionally, cancer has been viewed primarily as a disease relevant to human and domesticated animal health, attracting attention mainly from oncologists. In recent years, however, the community of ecologists and evolutionary biologists has recognized the pivotal role of cancer-related issues in the evolutionary paths of various species, influencing multiple facets of their biology. It has become evident that overlooking these issues is untenable for a comprehensive understanding of species evolution and ecosystem functioning. In this article, we highlight some significant advancements in this field, also underscoring the pressing need to consider reciprocal interactions not only between cancer cells and their hosts but also with all entities comprising the holobiont. This reflection gains particular relevance as ecosystems face increasing pollution from mutagenic substances, resulting in a resurgence of cancer cases in wildlife.
Collapse
|
4
|
Gorlov IP, Gorlova OY, Tsavachidis S, Amos CI. Strength of selection in lung tumors correlates with clinical features better than tumor mutation burden. Sci Rep 2024; 14:12732. [PMID: 38831004 PMCID: PMC11148192 DOI: 10.1038/s41598-024-63468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
Single nucleotide substitutions are the most common type of somatic mutations in cancer genome. The goal of this study was to use publicly available somatic mutation data to quantify negative and positive selection in individual lung tumors and test how strength of directional and absolute selection is associated with clinical features. The analysis found a significant variation in strength of selection (both negative and positive) among tumors, with median selection tending to be negative even though tumors with strong positive selection also exist. Strength of selection estimated as the density of missense mutations relative to the density of silent mutations showed only a weak correlation with tumor mutation burden. In the "all histology together" analysis we found that absolute strength of selection was strongly correlated with all clinically relevant features analyzed. In histology-stratified analysis selection was strongest in small cell lung cancer. Selection in adenocarcinoma was somewhat higher compared to squamous cell carcinoma. The study suggests that somatic mutation- based quantifying of directional and absolute selection in individual tumors can be a useful biomarker of tumor aggressiveness.
Collapse
Affiliation(s)
- Ivan P Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA.
| | - Olga Y Gorlova
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| | - Spyridon Tsavachidis
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Colyer B, Bak M, Basanta D, Noble R. A seven-step guide to spatial, agent-based modelling of tumour evolution. Evol Appl 2024; 17:e13687. [PMID: 38707992 PMCID: PMC11064804 DOI: 10.1111/eva.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
Spatial agent-based models are frequently used to investigate the evolution of solid tumours subject to localized cell-cell interactions and microenvironmental heterogeneity. As spatial genomic, transcriptomic and proteomic technologies gain traction, spatial computational models are predicted to become ever more necessary for making sense of complex clinical and experimental data sets, for predicting clinical outcomes, and for optimizing treatment strategies. Here we present a non-technical step by step guide to developing such a model from first principles. Stressing the importance of tailoring the model structure to that of the biological system, we describe methods of increasing complexity, from the basic Eden growth model up to off-lattice simulations with diffusible factors. We examine choices that unavoidably arise in model design, such as implementation, parameterization, visualization and reproducibility. Each topic is illustrated with examples drawn from recent research studies and state of the art modelling platforms. We emphasize the benefits of simpler models that aim to match the complexity of the phenomena of interest, rather than that of the entire biological system. Our guide is aimed at both aspiring modellers and other biologists and oncologists who wish to understand the assumptions and limitations of the models on which major cancer studies now so often depend.
Collapse
Affiliation(s)
- Blair Colyer
- Department of MathematicsCity, University of LondonLondonUK
| | - Maciej Bak
- Department of MathematicsCity, University of LondonLondonUK
| | - David Basanta
- Department of Integrated Mathematical OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Robert Noble
- Department of MathematicsCity, University of LondonLondonUK
| |
Collapse
|
6
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
7
|
Chen H, Shu J, Maley CC, Liu L. A Mouse-Specific Model to Detect Genes under Selection in Tumors. Cancers (Basel) 2023; 15:5156. [PMID: 37958330 PMCID: PMC10647215 DOI: 10.3390/cancers15215156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
The mouse is a widely used model organism in cancer research. However, no computational methods exist to identify cancer driver genes in mice due to a lack of labeled training data. To address this knowledge gap, we adapted the GUST (Genes Under Selection in Tumors) model, originally trained on human exomes, to mouse exomes via transfer learning. The resulting tool, called GUST-mouse, can estimate long-term and short-term evolutionary selection in mouse tumors, and distinguish between oncogenes, tumor suppressor genes, and passenger genes using high-throughput sequencing data. We applied GUST-mouse to analyze 65 exomes of mouse primary breast cancer models and 17 exomes of mouse leukemia models. Comparing the predictions between cancer types and between human and mouse tumors revealed common and unique driver genes. The GUST-mouse method is available as an open-source R package on github.
Collapse
Affiliation(s)
- Hai Chen
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.C.); (J.S.)
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
| | - Jingmin Shu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.C.); (J.S.)
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
| | - Carlo C. Maley
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.C.); (J.S.)
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
8
|
Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer 2023; 23:710-724. [PMID: 37488363 DOI: 10.1038/s41568-023-00602-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cancer has been a leading cause of death for decades. This dismal statistic has increased efforts to prevent the disease or to detect it early, when treatment is less invasive, relatively inexpensive and more likely to cure. But precisely how tissues are transformed continues to provoke controversy and debate, hindering cancer prevention and early intervention strategies. Various theories of cancer origins have emerged, including the suggestion that it is 'bad luck': the inevitable consequence of random mutations in proliferating stem cells. In this Review, we discuss the principal theories of cancer origins and the relative importance of the factors that underpin them. The body of available evidence suggests that developing and ageing tissues 'walk a tightrope', retaining adequate levels of cell plasticity to generate and maintain tissues while avoiding overstepping into transformation. Rather than viewing cancer as 'bad luck', understanding the complex choreography of cell intrinsic and extrinsic factors that characterize transformation holds promise to discover effective new ways to prevent, detect and stop cancer before it becomes incurable.
Collapse
Affiliation(s)
- Amir Jassim
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric P Rahrmann
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ben D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Mukherjee S, Mukherjee SB, Frenkel-Morgenstern M. Functional and regulatory impact of chimeric RNAs in human normal and cancer cells. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1777. [PMID: 36633099 DOI: 10.1002/wrna.1777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Fusions of two genes can lead to the generation of chimeric RNAs, which may have a distinct functional role from their original molecules. Chimeric RNAs could encode novel functional proteins or serve as novel long noncoding RNAs (lncRNAs). The appearance of chimeric RNAs in a cell could help to generate new functionality and phenotypic diversity that might facilitate this cell to survive against new environmental stress. Several recent studies have demonstrated the functional roles of various chimeric RNAs in cancer progression and are considered as biomarkers for cancer diagnosis and sometimes even drug targets. Further, the growing evidence demonstrated the potential functional association of chimeric RNAs with cancer heterogeneity and drug resistance cancer evolution. Recent studies highlighted that chimeric RNAs also have functional potentiality in normal physiological processes. Several functionally potential chimeric RNAs were discovered in human cancer and normal cells in the last two decades. This could indicate that chimeric RNAs are the hidden layer of the human transcriptome that should be explored from the functional insights to better understand the functional evolution of the genome and disease development that could facilitate clinical practice improvements. This review summarizes the current knowledge of chimeric RNAs and highlights their functional, regulatory, and evolutionary impact on different cancers and normal physiological processes. Further, we will discuss the potential functional roles of a recently discovered novel class of chimeric RNAs named sense-antisense/cross-strand chimeric RNAs generated by the fusion of the bi-directional transcripts of the same gene. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sunanda Biswas Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
10
|
Zhu X, Zhao W, Zhou Z, Gu X. Unraveling the Drivers of Tumorigenesis in the Context of Evolution: Theoretical Models and Bioinformatics Tools. J Mol Evol 2023:10.1007/s00239-023-10117-0. [PMID: 37246992 DOI: 10.1007/s00239-023-10117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
Cancer originates from somatic cells that have accumulated mutations. These mutations alter the phenotype of the cells, allowing them to escape homeostatic regulation that maintains normal cell numbers. The emergence of malignancies is an evolutionary process in which the random accumulation of somatic mutations and sequential selection of dominant clones cause cancer cells to proliferate. The development of technologies such as high-throughput sequencing has provided a powerful means to measure subclonal evolutionary dynamics across space and time. Here, we review the patterns that may be observed in cancer evolution and the methods available for quantifying the evolutionary dynamics of cancer. An improved understanding of the evolutionary trajectories of cancer will enable us to explore the molecular mechanism of tumorigenesis and to design tailored treatment strategies.
Collapse
Affiliation(s)
- Xunuo Zhu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenyi Zhao
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 310058, China.
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
11
|
Casotti MC, Meira DD, Zetum ASS, de Araújo BC, da Silva DRC, dos Santos EDVW, Garcia FM, de Paula F, Santana GM, Louro LS, Alves LNR, Braga RFR, Trabach RSDR, Bernardes SS, Louro TES, Chiela ECF, Lenz G, de Carvalho EF, Louro ID. Computational Biology Helps Understand How Polyploid Giant Cancer Cells Drive Tumor Success. Genes (Basel) 2023; 14:801. [PMID: 37107559 PMCID: PMC10137723 DOI: 10.3390/genes14040801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Precision and organization govern the cell cycle, ensuring normal proliferation. However, some cells may undergo abnormal cell divisions (neosis) or variations of mitotic cycles (endopolyploidy). Consequently, the formation of polyploid giant cancer cells (PGCCs), critical for tumor survival, resistance, and immortalization, can occur. Newly formed cells end up accessing numerous multicellular and unicellular programs that enable metastasis, drug resistance, tumor recurrence, and self-renewal or diverse clone formation. An integrative literature review was carried out, searching articles in several sites, including: PUBMED, NCBI-PMC, and Google Academic, published in English, indexed in referenced databases and without a publication time filter, but prioritizing articles from the last 3 years, to answer the following questions: (i) "What is the current knowledge about polyploidy in tumors?"; (ii) "What are the applications of computational studies for the understanding of cancer polyploidy?"; and (iii) "How do PGCCs contribute to tumorigenesis?"
Collapse
Affiliation(s)
- Matheus Correia Casotti
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Débora Dummer Meira
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Aléxia Stefani Siqueira Zetum
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Bruno Cancian de Araújo
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Danielle Ribeiro Campos da Silva
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | | | - Fernanda Mariano Garcia
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Flávia de Paula
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Lyvia Neves Rebello Alves
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Raquel Furlani Rocon Braga
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Raquel Silva dos Reis Trabach
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Sara Santos Bernardes
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória 29027-502, Brazil
| | - Eduardo Cremonese Filippi Chiela
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
- Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Guido Lenz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Iúri Drumond Louro
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| |
Collapse
|
12
|
Li K, Huo Q, Li BY, Yokota H. The Double-Edged Proteins in Cancer Proteomes and the Generation of Induced Tumor-Suppressing Cells (iTSCs). Proteomes 2023; 11:5. [PMID: 36810561 PMCID: PMC9944087 DOI: 10.3390/proteomes11010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Unlike a prevalent expectation that tumor cells secrete tumor-promoting proteins and stimulate the progression of neighboring tumor cells, accumulating evidence indicates that the role of tumor-secreted proteins is double-edged and context-dependent. Some of the oncogenic proteins in the cytoplasm and cell membranes, which are considered to promote the proliferation and migration of tumor cells, may inversely act as tumor-suppressing proteins in the extracellular domain. Furthermore, the action of tumor-secreted proteins by aggressive "super-fit" tumor cells can be different from those derived from "less-fit" tumor cells. Tumor cells that are exposed to chemotherapeutic agents could alter their secretory proteomes. Super-fit tumor cells tend to secrete tumor-suppressing proteins, while less-fit or chemotherapeutic agent-treated tumor cells may secrete tumor-promotive proteomes. Interestingly, proteomes derived from nontumor cells such as mesenchymal stem cells and peripheral blood mononuclear cells mostly share common features with tumor cell-derived proteomes in response to certain signals. This review introduces the double-sided functions of tumor-secreted proteins and describes the proposed underlying mechanism, which would possibly be based on cell competition.
Collapse
Affiliation(s)
- Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Evo-devo perspectives on cancer. Essays Biochem 2022; 66:797-815. [PMID: 36250956 DOI: 10.1042/ebc20220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
The integration of evolutionary and developmental approaches into the field of evolutionary developmental biology has opened new areas of inquiry- from understanding the evolution of development and its underlying genetic and molecular mechanisms to addressing the role of development in evolution. For the last several decades, the terms 'evolution' and 'development' have been increasingly linked to cancer, in many different frameworks and contexts. This mini-review, as part of a special issue on Evolutionary Developmental Biology, discusses the main areas in cancer research that have been addressed through the lenses of both evolutionary and developmental biology, though not always fully or explicitly integrated in an evo-devo framework. First, it briefly introduces the current views on carcinogenesis that invoke evolutionary and/or developmental perspectives. Then, it discusses the main mechanisms proposed to have specifically evolved to suppress cancer during the evolution of multicellularity. Lastly, it considers whether the evolution of multicellularity and development was shaped by the threat of cancer (a cancer-evo-devo perspective), and/or whether the evolution of developmental programs and life history traits can shape cancer resistance/risk in various lineages (an evo-devo-cancer perspective). A proper evolutionary developmental framework for cancer, both as a disease and in terms of its natural history (in the context of the evolution of multicellularity and development as well as life history traits), could bridge the currently disparate evolutionary and developmental perspectives and uncover aspects that will provide new insights for cancer prevention and treatment.
Collapse
|
14
|
Christenson JL, Williams MM, Richer JK. The underappreciated role of resident epithelial cell populations in metastatic progression: contributions of the lung alveolar epithelium. Am J Physiol Cell Physiol 2022; 323:C1777-C1790. [PMID: 36252127 PMCID: PMC9744653 DOI: 10.1152/ajpcell.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Metastatic cancer is difficult to treat and is responsible for the majority of cancer-related deaths. After cancer cells initiate metastasis and successfully seed a distant site, resident cells in the tissue play a key role in determining how metastatic progression develops. The lung is the second most frequent site of metastatic spread, and the primary site of metastasis within the lung is alveoli. The most abundant cell type in the alveolar niche is the epithelium. This review will examine the potential contributions of the alveolar epithelium to metastatic progression. It will also provide insight into other ways in which alveolar epithelial cells, acting as immune sentinels within the lung, may influence metastatic progression through their various interactions with cells in the surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
15
|
Bukkuri A, Pienta KJ, Austin RH, Hammarlund EU, Amend SR, Brown JS. A life history model of the ecological and evolutionary dynamics of polyaneuploid cancer cells. Sci Rep 2022; 12:13713. [PMID: 35962062 PMCID: PMC9374668 DOI: 10.1038/s41598-022-18137-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Therapeutic resistance is one of the main reasons for treatment failure in cancer patients. The polyaneuploid cancer cell (PACC) state has been shown to promote resistance by providing a refuge for cancer cells from the effects of therapy and by helping them adapt to a variety of environmental stressors. This state is the result of aneuploid cancer cells undergoing whole genome doubling and skipping mitosis, cytokinesis, or both. In this paper, we create a novel mathematical framework for modeling the eco-evolutionary dynamics of state-structured populations and use this framework to construct a model of cancer populations with an aneuploid and a PACC state. Using in silico simulations, we explore how the PACC state allows cancer cells to (1) survive extreme environmental conditions by exiting the cell cycle after S phase and protecting genomic material and (2) aid in adaptation to environmental stressors by increasing the cancer cell's ability to generate heritable variation (evolvability) through the increase in genomic content that accompanies polyploidization. In doing so, we demonstrate the ability of the PACC state to allow cancer cells to persist under therapy and evolve therapeutic resistance. By eliminating cells in the PACC state through appropriately-timed PACC-targeted therapies, we show how we can prevent the emergence of resistance and promote cancer eradication.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program, Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Emma U Hammarlund
- Nordic Center for Earth Evolution, University of Southern Denmark and Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program, Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
16
|
Rashed WM, Marcotte EL, Spector LG. Germline De Novo Mutations as a Cause of Childhood Cancer. JCO Precis Oncol 2022; 6:e2100505. [PMID: 35820085 DOI: 10.1200/po.21.00505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Germline de novo mutations (DNMs) represent one of the important topics that need extensive attention from epidemiologists, geneticists, and other relevant stakeholders. Advances in next-generation sequencing technologies allowed examination of parent-offspring trios to ascertain the frequency of germline DNMs. Many epidemiological risk factors for childhood cancer are indicative of DNMs as a mechanism. The aim of this review was to give an overview of germline DNMs, their causes in general, and to discuss their relation to childhood cancer risk. In addition, we highlighted existing gaps in knowledge in many topics of germline DNMs in childhood cancer that need exploration and collaborative efforts.
Collapse
Affiliation(s)
- Wafaa M Rashed
- Research Department, Children's Cancer Hospital-Egypt 57357 (CCHE-57357), Cairo, Egypt
| | - Erin L Marcotte
- Division of Epidemiology/Clinical, Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Logan G Spector
- Division of Epidemiology/Clinical, Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
17
|
Mori K, Hamada T, Beppu M, Tsuchihashi H, Goto Y, Kume K, Hijioka H, Nishi K, Mishima Y, Sugiura T. Detecting Early-Stage Oral Cancer from Clinically Diagnosed Oral Potentially Malignant Disorders by DNA Methylation Profile. Cancers (Basel) 2022; 14:cancers14112646. [PMID: 35681626 PMCID: PMC9179386 DOI: 10.3390/cancers14112646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Clinically, early-stage oral cancers are difficult to distinguish from oral potentially malignant disorders (OPMDs) because they show a variety of mucosal pathologies. Therefore, invasive tissue biopsies should be performed to determine the treatment strategy. Previously, we focused on gargle fluid as a noninvasive testing method and reported aberrant methylation in gargle fluid in patients with oral cancer. In this study, we successfully identified aberrantly methylated genes in early-stage oral cancer and reported that a combination of methylation of six genes could distinguish early-stage oral cancer from OPMDs, with high diagnostic performance. In addition, the methylation panel more accurately reflected the presence of early-stage oral cancer than cytology testing. Our results suggest that the methylation panel using gargle fluid has the potential to be used as a noninvasive screening tool to diagnose early-stage cancer. Abstract Clinically, early-stage oral cancers are difficult to distinguish from oral potentially malignant disorders (OPMDs), and invasive tissue biopsy should be performed to determine a treatment strategy. Previously, we focused on gargle fluid as a noninvasive testing method and reported aberrant methylation in gargle fluid in patients with oral cancer. This study aimed to distinguish early-stage oral cancer from clinically diagnosed OPMDs using gargle fluid samples. We collected gargle fluid samples from 40 patients who were clinically diagnosed with OPMDs in the training set; among them, 9 patients were pathologically diagnosed with oral cancer. Methylation levels of 25 tumor suppressor genes were analyzed using the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) method. We found that a combination of six genes (TP73, CASP8, RARB, KLLN, GSTP1, and CHFR) could distinguish oral cancer from clinically diagnosed OPMDs with high diagnostic performance (area under the curve [AUC], 0.885; sensitivity, 77.8%; and specificity, 87.1%). Additionally, the panel comprised of the six methylated genes was validated in the test set. Furthermore, when compared with cytology testing, the panel could accurately detect oral cancer. The present methylated gene panel may serve as a novel biomarker for oral cancer.
Collapse
Affiliation(s)
- Kazuki Mori
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (K.M.); (M.B.); (H.T.); (Y.G.); (K.K.); (H.H.); (K.N.); (Y.M.)
| | - Tomofumi Hamada
- Department of Oral & Maxillofacial Surgery, Hakuaikai Social Medical Corporation, Sagara Hospital, Kagoshima 892-0833, Japan
- Correspondence: (T.H.); (T.S.); Tel.: +81-99-224-1800 (T.H.); +81-99-275-6232 (T.S.)
| | - Mahiro Beppu
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (K.M.); (M.B.); (H.T.); (Y.G.); (K.K.); (H.H.); (K.N.); (Y.M.)
| | - Hiroki Tsuchihashi
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (K.M.); (M.B.); (H.T.); (Y.G.); (K.K.); (H.H.); (K.N.); (Y.M.)
| | - Yuichi Goto
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (K.M.); (M.B.); (H.T.); (Y.G.); (K.K.); (H.H.); (K.N.); (Y.M.)
| | - Kenichi Kume
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (K.M.); (M.B.); (H.T.); (Y.G.); (K.K.); (H.H.); (K.N.); (Y.M.)
| | - Hiroshi Hijioka
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (K.M.); (M.B.); (H.T.); (Y.G.); (K.K.); (H.H.); (K.N.); (Y.M.)
| | - Keitaro Nishi
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (K.M.); (M.B.); (H.T.); (Y.G.); (K.K.); (H.H.); (K.N.); (Y.M.)
| | - Yumiko Mishima
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (K.M.); (M.B.); (H.T.); (Y.G.); (K.K.); (H.H.); (K.N.); (Y.M.)
| | - Tsuyoshi Sugiura
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (K.M.); (M.B.); (H.T.); (Y.G.); (K.K.); (H.H.); (K.N.); (Y.M.)
- Correspondence: (T.H.); (T.S.); Tel.: +81-99-224-1800 (T.H.); +81-99-275-6232 (T.S.)
| |
Collapse
|
18
|
Simulating the Dynamic Intra-Tumor Heterogeneity and Therapeutic Responses. Cancers (Basel) 2022; 14:cancers14071645. [PMID: 35406417 PMCID: PMC8996855 DOI: 10.3390/cancers14071645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
A tumor is a complex tissue comprised of heterogeneous cell subpopulations which exhibit substantial diversity at morphological, genetic and epigenetic levels. Under the selective pressure of cancer therapies, a minor treatment-resistant subpopulation could survive and repopulate. Therefore, the intra-tumor heterogeneity is recognized as a major obstacle to effective treatment. In this paper, we propose a stochastic clonal expansion model to simulate the dynamic evolution of tumor subpopulations and the therapeutic effect at different times during tumor progression. The model is incorporated in the CES webserver, for the convenience of simulation according to initial user input. Based on this model, we investigate the influence of various factors on tumor progression and treatment consequences and present conclusions drawn from observations, highlighting the importance of treatment timing. The model provides an intuitive illustration to deepen the understanding of temporal intra-tumor heterogeneity dynamics and treatment responses, thus helping the improvement of personalized diagnostic and therapeutic strategies.
Collapse
|
19
|
Proteomic dataset: Profiling of glioma C6 and astrocytes rat cell lines before and after co-cultivation. Data Brief 2021; 39:107658. [PMID: 34917708 PMCID: PMC8666335 DOI: 10.1016/j.dib.2021.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
Human multiforme glioblastoma is characterized by an unfavorable prognosis, low survival rate and extremely limited possibilities for therapy. Rat C6 glioma is an experimental model for the study of glioblastoma growth and invasion. It has been shown that the growth and development of the tumor is accompanied by changes in the surrounding normotypic tissues [1]. These changes create a favorable environment for the development of the tumor and give it an evolutionary advantage [2]. Description of changes occurring in normotypic cells of the body upon their contact with tumor cells is of great interest. We have grown C6 glioma cells and rat astrocytes, as well as astrocyte cells co-cultured together with C6 glioma. We performed proteome-wide LC-MS analysis of these experimental groups. The data includes LC-MS/MS raw files and exported MaxQuant and ProteinPilot search results with fasta. Dataset published in the PRIDE repository project accession PXD026776.
Collapse
|
20
|
Determinants of renal cell carcinoma invasion and metastatic competence. Nat Commun 2021; 12:5760. [PMID: 34608135 PMCID: PMC8490399 DOI: 10.1038/s41467-021-25918-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Metastasis is the principal cause of cancer related deaths. Tumor invasion is essential for metastatic spread. However, determinants of invasion are poorly understood. We addressed this knowledge gap by leveraging a unique attribute of kidney cancer. Renal tumors invade into large vessels forming tumor thrombi (TT) that migrate extending sometimes into the heart. Over a decade, we prospectively enrolled 83 ethnically-diverse patients undergoing surgical resection for grossly invasive tumors at UT Southwestern Kidney Cancer Program. In this study, we perform comprehensive histological analyses, integrate multi-region genomic studies, generate in vivo models, and execute functional studies to define tumor invasion and metastatic competence. We find that invasion is not always associated with the most aggressive clone. Driven by immediate early genes, invasion appears to be an opportunistic trait attained by subclones with diverse oncogenomic status in geospatial proximity to vasculature. We show that not all invasive tumors metastasize and identify determinants of metastatic competency. TT associated with metastases are characterized by higher grade, mTOR activation and a particular immune contexture. Moreover, TT grade is a better predictor of metastasis than overall tumor grade, which may have implications for clinical practice.
Collapse
|
21
|
Bruckner TA, Catalano R, Das A, Lu Y. Cohort Selection In Utero against Male Twins and Childhood Cancers: A Population-Based Register Study. Cancer Epidemiol Biomarkers Prev 2021; 30:1834-1840. [PMID: 34272267 PMCID: PMC8974355 DOI: 10.1158/1055-9965.epi-21-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/28/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cancer ranks as the second leading cause of death among children ages 1 to 14 years in the United States. Previous research finds that strong cohort selection in utero against males precedes a reduction in live-born males considered frail. We examine whether such cohort selection in utero may similarly affect the frequency of childhood cancers among male live births. METHODS We examined 1,368 childhood cancers among males born in Sweden over 144 months, from January 1990 to December 2001, and followed to age 15 in the Swedish Cancer Registry. We retrieved the count of male twins by birth month from the Swedish Birth Registry. We applied autoregressive, integrated, moving average time-series methods to identify and control for temporal patterns in monthly childhood cancers and to evaluate robustness of results. RESULTS Fewer childhood cancers occur among monthly male birth cohorts with elevated selection in utero (i.e., a low count of live-born male twins). This association appears in the concurrent month (coef = 0.04; 95% CI, 0.001-0.079) as well as in the following month in which most births from the twin's conception cohort are "scheduled" to be born (coef = 0.055; 95% CI, 0.017-0.094). CONCLUSIONS Elevated cohort selection in utero may reduce the number of frail male gestations that would otherwise have survived to birth and received a cancer diagnosis during childhood. IMPACT This novel result warrants further investigation of prenatal exposures, including those at the population level, that may induce cohort selection in utero for some cancer types but not others.
Collapse
Affiliation(s)
- Tim A Bruckner
- Program in Public Health, University of California, Irvine, Irvine, California.
- Center for Population, Inequality, and Policy, University of California, Irvine, Irvine, California
| | - Ralph Catalano
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Abhery Das
- Program in Public Health, University of California, Irvine, Irvine, California
| | - Yunxia Lu
- Program in Public Health, University of California, Irvine, Irvine, California
| |
Collapse
|
22
|
Catania F, Ujvari B, Roche B, Capp JP, Thomas F. Bridging Tumorigenesis and Therapy Resistance With a Non-Darwinian and Non-Lamarckian Mechanism of Adaptive Evolution. Front Oncol 2021; 11:732081. [PMID: 34568068 PMCID: PMC8462274 DOI: 10.3389/fonc.2021.732081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Although neo-Darwinian (and less often Lamarckian) dynamics are regularly invoked to interpret cancer's multifarious molecular profiles, they shine little light on how tumorigenesis unfolds and often fail to fully capture the frequency and breadth of resistance mechanisms. This uncertainty frames one of the most problematic gaps between science and practice in modern times. Here, we offer a theory of adaptive cancer evolution, which builds on a molecular mechanism that lies outside neo-Darwinian and Lamarckian schemes. This mechanism coherently integrates non-genetic and genetic changes, ecological and evolutionary time scales, and shifts the spotlight away from positive selection towards purifying selection, genetic drift, and the creative-disruptive power of environmental change. The surprisingly simple use-it or lose-it rationale of the proposed theory can help predict molecular dynamics during tumorigenesis. It also provides simple rules of thumb that should help improve therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Deakin, VIC, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
23
|
Pich O, Cortes-Bullich A, Muiños F, Pratcorona M, Gonzalez-Perez A, Lopez-Bigas N. The evolution of hematopoietic cells under cancer therapy. Nat Commun 2021; 12:4803. [PMID: 34376657 PMCID: PMC8355079 DOI: 10.1038/s41467-021-24858-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023] Open
Abstract
Chemotherapies may increase mutagenesis of healthy cells and change the selective pressures in tissues, thus influencing their evolution. However, their contributions to the mutation burden and clonal expansions of healthy somatic tissues are not clear. Here, exploiting the mutational footprint of some chemotherapies, we explore their influence on the evolution of hematopoietic cells. Cells of Acute Myeloid Leukemia (AML) secondary to treatment with platinum-based drugs show the mutational footprint of these drugs, indicating that non-malignant blood cells receive chemotherapy mutations. No trace of the 5-fluorouracil (5FU) mutational signature is found in AMLs secondary to exposure to 5FU, suggesting that cells establishing the leukemia could be quiescent during treatment. Using the platinum-based mutational signature as a barcode, we determine that the clonal expansion originating the secondary AMLs begins after the start of the cytotoxic treatment. Its absence in clonal hematopoiesis cases is consistent with the start of the clonal expansion predating the exposure to platinum-based drugs.
Collapse
Affiliation(s)
- Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Albert Cortes-Bullich
- Hematology and Hemotherapy Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Pratcorona
- Hematology and Hemotherapy Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
24
|
One of Nature’s Basic Laws: Combination-Sharing. HUMAN ARENAS 2021. [DOI: 10.1007/s42087-021-00215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Zubair M, Wang S, Ali N. Advanced Approaches to Breast Cancer Classification and Diagnosis. Front Pharmacol 2021; 11:632079. [PMID: 33716731 PMCID: PMC7952319 DOI: 10.3389/fphar.2020.632079] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The International Agency for Research on Cancer (IARC) has recently reported a 66% increase in the global number of cancer deaths since 1960. In the US alone, about one in eight women is expected to develop invasive breast cancer(s) (breast cancer) at some point in their lifetime. Traditionally, a BC diagnosis includes mammography, ultrasound, and some high-end molecular bioimaging. Unfortunately, these techniques detect BC at a later stage. So early and advanced molecular diagnostic tools are still in demand. In the past decade, various histological and immuno-molecular studies have demonstrated that BC is highly heterogeneous in nature. Its growth pattern, cytological features, and expression of key biomarkers in BC cells including hormonal receptor markers can be utilized to develop advanced diagnostic and therapeutic tools. A cancer cell's progression to malignancy exhibits various vital biomarkers, many of which are still underrepresented in BC diagnosis and treatment. Advances in genetics have also enabled the development of multigene assays to detect genetic heterogeneity in BC. However, thus far, the FDA has approved only four such biomarkers-cancer antigens (CA); CA 15-3, CA 27-29, Human epidermal growth factor receptor 2 (HER2), and circulating tumor cells (CTC) in assessing BC in body fluids. An adequately structured portable-biosensor with its non-invasive and inexpensive point-of-care analysis can quickly detect such biomarkers without significantly compromising its specificity and selectivity. Such advanced techniques are likely to discriminate between BC and a healthy patient by accurately measuring the cell shape, structure, depth, intracellular and extracellular environment, and lipid membrane compositions. Presently, BC treatments include surgery and systemic chemo- and targeted radiation therapy. A biopsied sample is then subjected to various multigene assays to predict the heterogeneity and recurrence score, thus guiding a specific treatment by providing complete information on the BC subtype involved. Thus far, we have seven prognostic multigene signature tests for BC providing a risk profile that can avoid unnecessary treatments in low-risk patients. Many comparative studies on multigene analysis projected the importance of integrating clinicopathological information with genomic-imprint analysis. Current cohort studies such as MINDACT, TAILORx, Trans-aTTOM, and many more, are likely to provide positive impact on long-term patient outcome. This review offers consolidated information on currently available BC diagnosis and treatment options. It further describes advanced biomarkers for the development of state-of-the-art early screening and diagnostic technologies.
Collapse
Affiliation(s)
- M. Zubair
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - S. Wang
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - N. Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States
| |
Collapse
|
26
|
Boutry J, Dujon AM, Gerard AL, Tissot S, Macdonald N, Schultz A, Biro PA, Beckmann C, Hamede R, Hamilton DG, Giraudeau M, Ujvari B, Thomas F. Ecological and Evolutionary Consequences of Anticancer Adaptations. iScience 2020; 23:101716. [PMID: 33241195 PMCID: PMC7674277 DOI: 10.1016/j.isci.2020.101716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cellular cheating leading to cancers exists in all branches of multicellular life, favoring the evolution of adaptations to avoid or suppress malignant progression, and/or to alleviate its fitness consequences. Ecologists have until recently largely neglected the importance of cancer cells for animal ecology, presumably because they did not consider either the potential ecological or evolutionary consequences of anticancer adaptations. Here, we review the diverse ways in which the evolution of anticancer adaptations has significantly constrained several aspects of the evolutionary ecology of multicellular organisms at the cell, individual, population, species, and ecosystem levels and suggest some avenues for future research.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Antoine M. Dujon
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
| | - Anne-Lise Gerard
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Nick Macdonald
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
| | - Aaron Schultz
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
| | - Peter A. Biro
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
| | - Christa Beckmann
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
- School of Science, Western Sydney University, Parramatta, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - David G. Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| |
Collapse
|
27
|
Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. J Clin Med 2020; 9:E2967. [PMID: 32937961 PMCID: PMC7564553 DOI: 10.3390/jcm9092967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still under development and being tested in numerous clinical trials. A detailed understanding of the interactions between cancer and the immune system is vital for optimisation of immunotherapies either alone or when combined with chemotherapy and other therapies. This article, in two main parts, provides an overview of: (1) components of the normal immune system and current knowledge regarding tumour immunology, biology and their interactions; (2) strategies, and targets, together with challenges and potential innovative approaches for cancer immunotherapy, with attention given to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Anne M. Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia;
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
28
|
Yu X, Cao S, Zhou Y, Yu Z, Xu Y. Co-expression based cancer staging and application. Sci Rep 2020; 10:10624. [PMID: 32606385 PMCID: PMC7327081 DOI: 10.1038/s41598-020-67476-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/01/2020] [Indexed: 11/09/2022] Open
Abstract
A novel method is developed for predicting the stage of a cancer tissue based on the consistency level between the co-expression patterns in the given sample and samples in a specific stage. The basis for the prediction method is that cancer samples of the same stage share common functionalities as reflected by the co-expression patterns, which are distinct from samples in the other stages. Test results reveal that our prediction results are as good or potentially better than manually annotated stages by cancer pathologists. This new co-expression-based capability enables us to study how functionalities of cancer samples change as they evolve from early to the advanced stage. New and exciting results are discovered through such functional analyses, which offer new insights about what functions tend to be lost at what stage compared to the control tissues and similarly what new functions emerge as a cancer advances. To the best of our knowledge, this new capability represents the first computational method for accurately staging a cancer sample. The R source code used in this study is available at GitHub (https://github.com/yxchspring/CECS).
Collapse
Affiliation(s)
- Xiangchun Yu
- College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, USA
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - Sha Cao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, USA
| | - Yi Zhou
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, USA
| | - Zhezhou Yu
- College of Computer Science and Technology, Jilin University, Changchun, China.
| | - Ying Xu
- Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, China.
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, USA.
| |
Collapse
|
29
|
Kitsoulis CV, Baxevanis AD, Abatzopoulos TJ. The occurrence of cancer in vertebrates: a mini review. ACTA ACUST UNITED AC 2020; 27:9. [PMID: 32528906 PMCID: PMC7282124 DOI: 10.1186/s40709-020-00119-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/01/2020] [Indexed: 12/26/2022]
Abstract
Neoplasia is a multilevel condition caused by irregularities over the genome, which can lead to a fatal result. To fully understand this phenomenon, an evolutionary challenge has risen during the last decades, away from human limits, driving the scientific quest into the wild life. The study of wild vertebrate populations in their natural habitats has shown that cancer is rather prominent. Thus, the diversity of vertebrates reported with some form of neoplasia is quite scattered through a variety of habitats. However, some species constitute exceptions by exhibiting cancer-protective features, driven by certain loci in their DNA. It is obvious that from an evolutionary standpoint, the incidence of cancer in different taxa is nowadays studied by seeking for patterns and their roots. The main purpose of the evolutionary approach is no other than to answer a fundamental question: Could cancer be ultimately regarded as another evolutionary force conducive to the formation or shaping-up of species?
Collapse
Affiliation(s)
- Christos V Kitsoulis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D Baxevanis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodore J Abatzopoulos
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
30
|
Chen Y, Han H, Seo G, Vargas RE, Yang B, Chuc K, Zhao H, Wang W. Systematic analysis of the Hippo pathway organization and oncogenic alteration in evolution. Sci Rep 2020; 10:3173. [PMID: 32081887 PMCID: PMC7035326 DOI: 10.1038/s41598-020-60120-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
The Hippo pathway is a central regulator of organ size and a key tumor suppressor via coordinating cell proliferation and death. Initially discovered in Drosophila, the Hippo pathway has been implicated as an evolutionarily conserved pathway in mammals; however, how this pathway was evolved to be functional from its origin is still largely unknown. In this study, we traced the Hippo pathway in premetazoan species, characterized the intrinsic functions of its ancestor components, and unveiled the evolutionary history of this key signaling pathway from its unicellular origin. In addition, we elucidated the paralogous gene history for the mammalian Hippo pathway components and characterized their cancer-derived somatic mutations from an evolutionary perspective. Taken together, our findings not only traced the conserved function of the Hippo pathway to its unicellular ancestor components, but also provided novel evolutionary insights into the Hippo pathway organization and oncogenic alteration.
Collapse
Affiliation(s)
- Yuxuan Chen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Gayoung Seo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Rebecca Elizabeth Vargas
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Kimberly Chuc
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Huabin Zhao
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
31
|
Barsoum I, Tawedrous E, Faragalla H, Yousef GM. Histo-genomics: digital pathology at the forefront of precision medicine. ACTA ACUST UNITED AC 2020; 6:203-212. [PMID: 30827078 DOI: 10.1515/dx-2018-0064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/28/2018] [Indexed: 12/26/2022]
Abstract
The toughest challenge OMICs face is that they provide extremely high molecular resolution but poor spatial information. Understanding the cellular/histological context of the overwhelming genetic data is critical for a full understanding of the clinical behavior of a malignant tumor. Digital pathology can add an extra layer of information to help visualize in a spatial and microenvironmental context the molecular information of cancer. Thus, histo-genomics provide a unique chance for data integration. In the era of a precision medicine, a four-dimensional (4D) (temporal/spatial) analysis of cancer aided by digital pathology can be a critical step to understand the evolution/progression of different cancers and consequently tailor individual treatment plans. For instance, the integration of molecular biomarkers expression into a three-dimensional (3D) image of a digitally scanned tumor can offer a better understanding of its subtype, behavior, host immune response and prognosis. Using advanced digital image analysis, a larger spectrum of parameters can be analyzed as potential predictors of clinical behavior. Correlation between morphological features and host immune response can be also performed with therapeutic implications. Radio-histomics, or the interface of radiological images and histology is another emerging exciting field which encompasses the integration of radiological imaging with digital pathological images, genomics, and clinical data to portray a more holistic approach to understating and treating disease. These advances in digital slide scanning are not without technical challenges, which will be addressed carefully in this review with quick peek at its future.
Collapse
Affiliation(s)
- Ivraym Barsoum
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Eriny Tawedrous
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Hala Faragalla
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - George M Yousef
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
32
|
Karakostis K, Fåhraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer 2019; 19:915. [PMID: 31519161 PMCID: PMC6743176 DOI: 10.1186/s12885-019-6118-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Structured RNA regulatory motifs exist from the prebiotic stages of the RNA world to the more complex eukaryotic systems. In cases where a functional RNA structure is within the coding sequence a selective pressure drives a parallel co-evolution of the RNA structure and the encoded peptide domain. The p53-MDM2 axis, describing the interactions between the p53 tumor suppressor and the MDM2 E3 ubiquitin ligase, serves as particularly useful model revealing how secondary RNA structures have co-evolved along with corresponding interacting protein motifs, thus having an impact on protein - RNA and protein - protein interactions; and how such structures developed signal-dependent regulation in mammalian systems. The p53(BOX-I) RNA sequence binds the C-terminus of MDM2 and controls p53 synthesis while the encoded peptide domain binds MDM2 and controls p53 degradation. The BOX-I peptide domain is also located within p53 transcription activation domain. The folding of the p53 mRNA structure has evolved from temperature-regulated in pre-vertebrates to an ATM kinase signal-dependent pathway in mammalian cells. The protein - protein interaction evolved in vertebrates and became regulated by the same signaling pathway. At the same time the protein - RNA and protein - protein interactions evolved, the p53 trans-activation domain progressed to become integrated into a range of cellular pathways. We discuss how a single synonymous mutation in the BOX-1, the p53(L22 L), observed in a chronic lymphocyte leukaemia patient, prevents the activation of p53 following DNA damage. The concepts analysed and discussed in this review may serve as a conceptual mechanistic paradigm of the co-evolution and function of molecules having roles in cellular regulation, or the aetiology of genetic diseases and how synonymous mutations can affect the encoded protein.
Collapse
Affiliation(s)
| | - Robin Fåhraeus
- Université Paris 7, INSERM UMR 1131, 27 Rue Juliette Dodu, 75010 Paris, France
- Department of Medical Biosciences, Umea University, SE-90185 Umea, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
33
|
Singh B, Sarli VN, Kinne HE, Shamsnia A, Lucci A. Evaluation of 6-mercaptopurine in a cell culture model of adaptable triple-negative breast cancer with metastatic potential. Oncotarget 2019; 10:3681-3693. [PMID: 31217902 PMCID: PMC6557209 DOI: 10.18632/oncotarget.26978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Progenitor-like cancer cells that can survive in reversible quiescence when faced with various challenges in the body are often behind disease progression. A lack of glutamine in culture medium, which eliminates >99.9% of proliferating SUM149 triple-negative breast cancer cells, selects such adaptable, pan-resistant cells. Our data support the hypothesis that a lack of glutamine forces the selection of an epigenetic state that does not require a high level of TET2, thus selecting an “undifferentiated” therapy-resistant phenotype as seen in TET2-mutant cancers. Our data suggesting that highly adaptable cells are generated through reprograming of the epigenome and transcriptome led us to evaluate low-dose 6-mercaptopurine as a potential therapy in our model. We found that a long treatment with low-dose 6-mercaptopurine inhibited the proliferation of these adaptable cells to a greater extent than it inhibited parental cells. Importantly, a small percentage of adaptable cells survived a low-dose 6-mercaptopurine treatment in a reversible quiescence, analogous to the persistence of abnormal progenitor-like cells in inflammatory bowel disease, which stays in a durable remission with a 6-mercaptopurine treatment. Based on a biomarkers analysis, a long treatment with 6-mercaptopurine or aspirin partially reversed epithelial to mesenchymal transition in adaptable cancer cells. A cell culture model of adaptable cancer cells that persist in the body will help in discovering superior therapies that can be offered before the disease advances to metastasis.
Collapse
Affiliation(s)
- Balraj Singh
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vanessa N Sarli
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah E Kinne
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Shamsnia
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony Lucci
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Luo G, Liu N. An integrative theory for cancer (Review). Int J Mol Med 2018; 43:647-656. [PMID: 30483756 PMCID: PMC6317675 DOI: 10.3892/ijmm.2018.4004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
In the integrative theory, chronic irritations induce tumors with genetic alterations and rapid proliferative ability. Tumor cells reprogram the metabolism and employ aerobic glycolysis to sustain rapid growth. The host provides both the nutrients and exhaust system to support tumor growth via the tumor microenvironment. Under certain conditions, such as aging, diabetes, obesity and a high‑fat diet, the exhaust system is impaired, triggering a metabolic imbalance between the tumor and host. This is similar to a problematic car with an advanced motor with an out‑of‑date exhaust system. The metabolic imbalance causes a metabolic catastrophe, making tumor cells reside in a dismal environment and forcing them to invade, metastasize and undergo necrosis. Tumor necrosis, particularly in metastases, leads to non‑specific systemic inflammation, which is the major cause of cancer‑related mortality. On the whole, the integrative theory views cancer in an integrative manner and proposes that both genetic alterations and tumor‑host interaction as regards metabolism and immunology determine the destiny of the tumor and host. Although cancer is a genetic disease, tumor biology is basically the nature of the host.
Collapse
Affiliation(s)
- Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Na Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| |
Collapse
|
35
|
Yadav M, Chatterjee P, Tolani S, Kulkarni J, Mulye M, Chauhan N, Sakhi A, Gorey S. A Nexus model of cellular transition in cancer. Biol Res 2018; 51:23. [PMID: 30086794 PMCID: PMC6080350 DOI: 10.1186/s40659-018-0173-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022] Open
Abstract
The exact cause of cancer is one of the most immutable medical questions of the century. Cancer as an evolutionary disease must have a purpose and understanding the purpose is more important than decoding the cause. The model of cancer proposed herein, provides a link between the cellular biochemistry and cellular genetics of cancer evolution. We thus call this model as the “Nexus model” of cancer. The Nexus model is an effort to identify the most apparent route to the disease. We have tried to utilize existing cancer literature to identify the most plausible causes of cellular transition in cancer, where the primary cancer-causing agents (physical, chemical or biological) act as inducing factors to produce cellular impeders. These cellular impeders are further linked to the Nexus. The Nexus then generates codes for epigenetics and genetics in cancer development.
Collapse
Affiliation(s)
- Mukesh Yadav
- Department of Pharmaceutical Sciences, Softvision College and Research Institute, Vijaynagar, Indore, MP, 452010, India.
| | - Payal Chatterjee
- Department of Pharmaceutical Sciences, Softvision College and Research Institute, Vijaynagar, Indore, MP, 452010, India.,Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Simran Tolani
- Department of Pharmaceutical Sciences, Softvision College and Research Institute, Vijaynagar, Indore, MP, 452010, India
| | - Jaya Kulkarni
- Department of Pharmaceutical Sciences, Softvision College and Research Institute, Vijaynagar, Indore, MP, 452010, India
| | - Meenakshi Mulye
- Department of Pharmaceutical Sciences, Softvision College and Research Institute, Vijaynagar, Indore, MP, 452010, India
| | - Namrata Chauhan
- Department of Pharmaceutical Sciences, Softvision College and Research Institute, Vijaynagar, Indore, MP, 452010, India
| | - Aditi Sakhi
- Department of Pharmaceutical Sciences, Softvision College and Research Institute, Vijaynagar, Indore, MP, 452010, India
| | - Sakshi Gorey
- Department of Pharmaceutical Sciences, Softvision College and Research Institute, Vijaynagar, Indore, MP, 452010, India
| |
Collapse
|
36
|
Zhou JX, Cisneros L, Knijnenburg T, Trachana K, Davies P, Huang S. Phylostratigraphic analysis of tumor and developmental transcriptomes reveals relationship between oncogenesis, phylogenesis and ontogenesis. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2018. [DOI: 10.1088/2057-1739/aab1b0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Abunimer AN, Mohammed H, Cook KL, Soto-Pantoja DR, Campos MM, Abu-Asab MS. Mitochondrial autophagosomes as a mechanism of drug resistance in breast carcinoma. Ultrastruct Pathol 2018; 42:170-180. [PMID: 29419344 PMCID: PMC6060621 DOI: 10.1080/01913123.2017.1419328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have previously described the process by which mitochondria donate their membranes for the formation of autophagosomes, and in this study we show that the same process could be involved in drug sequestration and exocytosis resulting in multidrug-resistant cancerous cells. We examine the implications of mitochondrial vesicle formation of mitoautophagosomes (MAPS) in response to the cytotoxic drug MKT-077, which targets mortalin, in a drug-resistant breast carcinoma cell line overexpressing P-glycoprotein (P-gp). The breast cancer cell line MCF-7Adr is derived from MCF-7, but differs from its ancestral line in tolerance of MKT-077-induced mitochondrial toxicity. Our ultrastructural observations suggest that autophagy in the MCF-7Adr cells entails regional sequestration of MKT077 in multilamellar LC3-labeled MAPS, which then separate from their mitochondria, and fuse with or engulf each other. MAPS appeared to be migrating through the cytoplasm and fusing with the plasma membrane, thus carrying out exocytotic secretion. This mechanism, which seems ineffective in the ancestral cell line, provides a resistance mechanism for MKT-077 by enhancing the efflux process of the cells. After 8 hr of MKT-077 exposure, a fraction of the resistant cells appeared viable and contained larger number of smaller sized mitochondria. Mitoautophagosomes, therefore, provide a potentially novel model for multidrug resistance in cancerous cells and may contribute to the P-gp efflux process.
Collapse
Affiliation(s)
- Ayman N. Abunimer
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA
| | - Heba Mohammed
- Section of Histopathology, National Eye Institute, NIH, Bethesda, MD, USA
| | - Katherine L. Cook
- Department of Surgery and Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - David R. Soto-Pantoja
- Department of Surgery and Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Mones S. Abu-Asab
- Section of Histopathology, National Eye Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
38
|
Amizadeh M, Safari-Kamalabadi M, Askari-Saryazdi G, Amizadeh M, Reihani-Kermani H. Pesticide Exposure and Head and Neck Cancers: A Case-Control Study in an Agricultural Region. IRANIAN JOURNAL OF OTORHINOLARYNGOLOGY 2017; 29:275-285. [PMID: 28955675 PMCID: PMC5610376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/31/2017] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Causes of head and neck cancers (HNCs) are multifactorial, and few studies have investigated the association between chemical exposure and HNCs. The objective of this study was to investigate associations between HNCs, agricultural occupations, and pesticide exposure. The potential for the accumulation of pesticides in the adipose tissue of patients was also investigated. MATERIALS AND METHODS A structured questionnaire was used to collect information on demographics, occupation, and exposure to pesticides in a hospital-based case-control study. Pesticide residue in the adipose tissue of the neck in both cases and controls was also monitored via gas chromatography-mass spectroscopy. RESULTS Thirty-one HNC cases were included in this study as well as 32 gender-, age-, and smoking-matched controls. An agricultural occupation was associated with HNC (odds ratio [OR], 3.26; 95% confidence interval [CI], 1.13-9.43) after controlling for age, sex, and smoking. Pesticide exposure was associated with total HNC cases (OR, 7.45; 95% CI, 1.78-3.07) and larynx cancer (OR, 9.33; 95% CI, 1.65-52.68). A dose-response pattern was observed for HNC cases (P=0.06) and larynx cancer (P=0.01). In tracing the pesticide residue, five chlorinated pesticides, namely dichlorodiphenyltrichloroethane (DDT), dichlorodipheny-ldichloroethane (DDD), dichlorodiphenyldichloroethylene (DDE), dieldrin, and lindane, were identified in the adipose tissue. Chlorinated pesticide detection was significantly associated with HNC (OR, 3.91; 95% CI 0.9-0.16.9). CONCLUSION HNCs were found to be associated with pesticide exposure after controlling for confounders. A high education level was identified as a modifying factor decreasing the risk of HNCs. Further studies with larger number of subjects are recommended to assess these relationships in greater detail.
Collapse
Affiliation(s)
- Maryam Amizadeh
- Department of Otorhinolaryngology, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Ghasem Askari-Saryazdi
- Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Center, AREEO, Yazd, Iran.
| | - Marzieh Amizadeh
- Department of Plant Protection, University of Tabriz, Tabriz, Iran.
| | | |
Collapse
|
39
|
Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Adv 2017; 1:1312-1323. [PMID: 29296774 DOI: 10.1182/bloodadvances.2017008227] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/14/2017] [Indexed: 12/20/2022] Open
Abstract
Secondary acute myeloid leukemia (s-AML) includes therapy-related AML and AML evolving from antecedent hematological disorder (AHD). s-AML arising after treating AHD likely represents a prognostically distinct, high-risk disease category. In this study, treated s-AML (ts-AML) was defined by: (1) prior diagnosis of myelodysplasia, myeloproliferative neoplasm, or aplastic anemia and (2) at least 1 therapy for that diagnosis. ts-AML was categorized by age (< or ≥60 years), and each cohort assessed for response rates and overall survival (OS) on various treatment regimens. Survival outcomes were compared against other high-risk prognostic subsets. Results showed that complete response and 8-week mortality rates were 32% and 27% in the younger, and 24% and 19% in the older age groups, respectively. There was a significant OS difference within s-AML based on prior treatment of AHD (ie, ts-AML vs s-AML with untreated AHD, 4.2 vs 9.2 months; P < .001). Survival in ts-AML was poor across both cohorts (younger and older, 5 and 4.7 months, respectively). In younger AML, survival was significantly inferior in ts-AML when compared with deletion 5/7, TP53, 3q abnormality, and therapy-related AML groups (median, 5 vs 7.9, 7.8, 7.9, and 11.2 months, respectively; P < .01). Additional adverse karyotype within ts-AML was associated with even worse outcomes (OS range, 1.6-2.8 months). ts-AML represents a very high-risk category, even in younger AML patients. s-AML should be further classified to describe ts-AML, an entity less responsive to currently applied treatment approaches. Future AML trial designs should accommodate ts-AML as a distinct subgroup.
Collapse
|
40
|
Raimondi C, Carpino G, Nicolazzo C, Gradilone A, Gianni W, Gelibter A, Gaudio E, Cortesi E, Gazzaniga P. PD-L1 and epithelial-mesenchymal transition in circulating tumor cells from non-small cell lung cancer patients: A molecular shield to evade immune system ?. Oncoimmunology 2017; 6:e1315488. [PMID: 29209560 DOI: 10.1080/2162402x.2017.1315488] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/10/2017] [Accepted: 03/30/2017] [Indexed: 12/12/2022] Open
Abstract
The programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) pathway has emerged as a critical inhibitory pathway regulating T-cell response in non-small-cell lung cancer (NSCLC), and the development of PD-1/PD-L1 inhibitors has changed the landscape of NSCLC therapy. Nevertheless, the high degree of non-responders demonstrates that we are still far from completely understanding the events underlying tumor immune resistance. Although the expression of PD-L1 in tumor tissue has been correlated with clinical response to anti PD-1 inhibitors, the ability of this marker to discriminate the subgroup of patients who derive benefit from immunotherapy is suboptimal. Circulating tumor cells (CTCs), as an accessible source of tumor for biologic characterization that can be serially obtained with minimally invasive procedure, hold significant promise to facilitate treatment-specific biomarkers discovery. We recently demonstrated that the presence of PD-L1 on CTCs apparently predicts resistance to the anti-PD-1 Nivolumab in metastatic NSCLC patients and that PD-L1 positive CTCs usually have an elongated morphology that can be ascribed to epithelial-mesenchymal transition (EMT). We here demonstrate for the first time that PD-L1 positive CTCs isolated from NSCLC patients are characterized by partial EMT phenotype, and hypothesize that the co-expression of PD-L1 and EMT markers might represent for these cells a possible molecular background for immune escape.
Collapse
Affiliation(s)
- Cristina Raimondi
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma Roma, Italia
| | - Guido Carpino
- Dipartimento di Anatomia, Istologia, Medicina Forense e Scienze Ortopediche, Sapienza Università di Roma, Roma, Italia
| | - Chiara Nicolazzo
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma Roma, Italia
| | - Angela Gradilone
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma Roma, Italia
| | - Walter Gianni
- Policlinico Umberto I, II Clinica Medica, Sapienza Università di Roma, Roma, Italia
| | - Alain Gelibter
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomopatologiche, Sapienza Università di Roma, Roma, Italia
| | - Eugenio Gaudio
- Dipartimento di Anatomia, Istologia, Medicina Forense e Scienze Ortopediche, Sapienza Università di Roma, Roma, Italia
| | - Enrico Cortesi
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomopatologiche, Sapienza Università di Roma, Roma, Italia
| | - Paola Gazzaniga
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma Roma, Italia
| |
Collapse
|
41
|
Gül OT, Pugliese KM, Choi Y, Sims PC, Pan D, Rajapakse AJ, Weiss GA, Collins PG. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths. BIOSENSORS-BASEL 2016; 6:bios6030029. [PMID: 27348011 PMCID: PMC5039648 DOI: 10.3390/bios6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 01/17/2023]
Abstract
As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.
Collapse
Affiliation(s)
- O Tolga Gül
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physics, Polatlı Faculty of Science and Arts, Gazi University, Polatlı 06900, Turkey
| | - Kaitlin M Pugliese
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697, USA
| | - Yongki Choi
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physics, North Dakota State University, Fargo, ND 58108, USA
| | - Patrick C Sims
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Deng Pan
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Arith J Rajapakse
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Gregory A Weiss
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697, USA.
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA 92697, USA.
| | - Philip G Collins
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
42
|
Puliafito A, De Simone A, Seano G, Gagliardi PA, Di Blasio L, Chianale F, Gamba A, Primo L, Celani A. Three-dimensional chemotaxis-driven aggregation of tumor cells. Sci Rep 2015; 5:15205. [PMID: 26471876 PMCID: PMC4607978 DOI: 10.1038/srep15205] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022] Open
Abstract
One of the most important steps in tumor progression involves the transformation from a differentiated epithelial phenotype to an aggressive, highly motile phenotype, where tumor cells invade neighboring tissues. Invasion can occur either by isolated mesenchymal cells or by aggregates that migrate collectively and do not lose completely the epithelial phenotype. Here, we show that, in a three-dimensional cancer cell culture, collective migration of cells eventually leads to aggregation in large clusters. We present quantitative measurements of cluster velocity, coalescence rates, and proliferation rates. These results cannot be explained in terms of random aggregation. Instead, a model of chemotaxis-driven aggregation - mediated by a diffusible attractant - is able to capture several quantitative aspects of our results. Experimental assays of chemotaxis towards culture conditioned media confirm this hypothesis. Theoretical and numerical results further suggest an important role for chemotactic-driven aggregation in spreading and survival of tumor cells.
Collapse
Affiliation(s)
| | - Alessandro De Simone
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Giorgio Seano
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy.,Edwin L. Steele Laboratory for Tumor Biology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Armando Gagliardi
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin 10060, Italy
| | - Laura Di Blasio
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin 10060, Italy
| | | | - Andrea Gamba
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Polytechnic University of Turin, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.,Human Genetics Foundation (HuGeF), Via Nizza 52, Torino, Italy.,Istituto Nazionale di Fisica Nucleare (INFN), Torino, Via Giuria 1, 10125 Torino, Italy
| | - Luca Primo
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin 10060, Italy
| | - Antonio Celani
- Quantitative Life Sciences Unit, The Abdus Salam Center for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy
| |
Collapse
|
43
|
Ducasse H, Arnal A, Vittecoq M, Daoust SP, Ujvari B, Jacqueline C, Tissot T, Ewald P, Gatenby RA, King KC, Bonhomme F, Brodeur J, Renaud F, Solary E, Roche B, Thomas F. Cancer: an emergent property of disturbed resource-rich environments? Ecology meets personalized medicine. Evol Appl 2015; 8:527-40. [PMID: 26136819 PMCID: PMC4479509 DOI: 10.1111/eva.12232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/17/2015] [Indexed: 12/13/2022] Open
Abstract
For an increasing number of biologists, cancer is viewed as a dynamic system governed by evolutionary and ecological principles. Throughout most of human history, cancer was an uncommon cause of death and it is generally accepted that common components of modern culture, including increased physiological stresses and caloric intake, favor cancer development. However, the precise mechanisms for this linkage are not well understood. Here, we examine the roles of ecological and physiological disturbances and resource availability on the emergence of cancer in multicellular organisms. We argue that proliferation of 'profiteering phenotypes' is often an emergent property of disturbed, resource-rich environments at all scales of biological organization. We review the evidence for this phenomenon, explore it within the context of malignancy, and discuss how this ecological framework may offer a theoretical background for novel strategies of cancer prevention. This work provides a compelling argument that the traditional separation between medicine and evolutionary ecology remains a fundamental limitation that needs to be overcome if complex processes, such as oncogenesis, are to be completely understood.
Collapse
Affiliation(s)
- Hugo Ducasse
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Audrey Arnal
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Marion Vittecoq
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
- Centre de Recherche de la Tour du ValatArles, France
| | - Simon P Daoust
- Department of Biology, John Abbott CollegeSainte-Anne-de-Bellevue, QC, Canada
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin UniversityWaurn Ponds, Vic., Australia
| | - Camille Jacqueline
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Tazzio Tissot
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Paul Ewald
- Department of Biology and the Program on Disease Evolution, University of LouisvilleLouisville, KY, USA
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center & Research InstituteTampa, FL, USA
| | - Kayla C King
- Department of Zoology, University of OxfordOxford, UK
| | - François Bonhomme
- ISEM Institut des sciences de l'évolution, Université Montpellier 2, CNRS/IRD/UM2 UMR 5554Montpellier Cedex, France
| | - Jacques Brodeur
- Institut de Recherche en Biologie Végétale, Université de MontréalMontréal, QC, Canada
| | - François Renaud
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Eric Solary
- INSERM U1009, Université Paris-Sud, Gustave RoussyVillejuif, France
| | - Benjamin Roche
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
- Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes (UMI IRD/UPMC UMMISCO)BondyCedex, France
| | - Frédéric Thomas
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| |
Collapse
|
44
|
Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes. PLoS Genet 2015; 11:e1005217. [PMID: 25941824 PMCID: PMC4420506 DOI: 10.1371/journal.pgen.1005217] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells. Genomes of tumors are heavily enriched with mutations. Some of these mutations are distributed non-randomly, forming mutational clusters. Editing cytosine deaminases from APOBEC superfamily are responsible for the formation of many of these clusters. We have expressed APOBEC enzyme in diploid yeast cells and found that most of the mutations occur in the beginning of the active genes, where transcription starts. Clusters of mutations overlapped with promoters/transcription start sites. This is likely due to the weaker protection of ssDNA, an ultimate APOBEC deaminase enzyme target, in the beginning of the genes. This hypothesis was reinforced by the finding that inactivation of Sub1 transcription initiation factor, which is found predominantly in the regions of transcription initiation, leads to further increase in mutagenesis in the beginning of the genes. Interestingly, the total number of mutations in the genomes of Sub1-deficient clones did not change, despite the 100-fold decrease in frequency of mutants in a reporter gene. Thus, the drastic change in genome-wide distribution of mutations can be caused by inactivation of a single gene. We propose that the loss of ssDNA protection factors causes formation of mutation clusters in human cancer.
Collapse
|
45
|
Networks and Hierarchies: Approaching Complexity in Evolutionary Theory. INTERDISCIPLINARY EVOLUTION RESEARCH 2015. [DOI: 10.1007/978-3-319-15045-1_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, Lamprecht TL, Shen D, Hundal J, Fulton RS, Heath S, Baty JD, Klco JM, Ding L, Mardis ER, Westervelt P, DiPersio JF, Walter MJ, Graubert TA, Ley TJ, Druley T, Link DC, Wilson RK. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 2014; 518:552-555. [PMID: 25487151 PMCID: PMC4403236 DOI: 10.1038/nature13968] [Citation(s) in RCA: 662] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 10/13/2014] [Indexed: 12/23/2022]
Abstract
Therapy-related acute myeloid leukaemia (t-AML) and therapy-related myelodysplastic syndrome (t-MDS) are well-recognized complications of cytotoxic chemotherapy and/or radiotherapy. There are several features that distinguish t-AML from de novo AML, including a higher incidence of TP53 mutations, abnormalities of chromosomes 5 or 7, complex cytogenetics and a reduced response to chemotherapy. However, it is not clear how prior exposure to cytotoxic therapy influences leukaemogenesis. In particular, the mechanism by which TP53 mutations are selectively enriched in t-AML/t-MDS is unknown. Here, by sequencing the genomes of 22 patients with t-AML, we show that the total number of somatic single-nucleotide variants and the percentage of chemotherapy-related transversions are similar in t-AML and de novo AML, indicating that previous chemotherapy does not induce genome-wide DNA damage. We identified four cases of t-AML/t-MDS in which the exact TP53 mutation found at diagnosis was also present at low frequencies (0.003-0.7%) in mobilized blood leukocytes or bone marrow 3-6 years before the development of t-AML/t-MDS, including two cases in which the relevant TP53 mutation was detected before any chemotherapy. Moreover, functional TP53 mutations were identified in small populations of peripheral blood cells of healthy chemotherapy-naive elderly individuals. Finally, in mouse bone marrow chimaeras containing both wild-type and Tp53(+/-) haematopoietic stem/progenitor cells (HSPCs), the Tp53(+/-) HSPCs preferentially expanded after exposure to chemotherapy. These data suggest that cytotoxic therapy does not directly induce TP53 mutations. Rather, they support a model in which rare HSPCs carrying age-related TP53 mutations are resistant to chemotherapy and expand preferentially after treatment. The early acquisition of TP53 mutations in the founding HSPC clone probably contributes to the frequent cytogenetic abnormalities and poor responses to chemotherapy that are typical of patients with t-AML/t-MDS.
Collapse
Affiliation(s)
- Terrence N Wong
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO
| | - Giridharan Ramsingh
- Department of Medicine, Jane Anne Nohl Division of Hematology, University of Southern California, Los Angeles, CA
| | - Andrew L Young
- Department of Pediatrics, Division of Hematology/Oncology, Washington University in St. Louis, St. Louis, MO
| | | | - Waseem Touma
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO
| | - John S Welch
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Tamara L Lamprecht
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO
| | | | - Jasreet Hundal
- The Genome Institute, Washington University in St. Louis, St. Louis, MO
| | - Robert S Fulton
- The Genome Institute, Washington University in St. Louis, St. Louis, MO
| | - Sharon Heath
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO
| | - Jack D Baty
- Division of Biostatistics, Washington University, St. Louis, MO
| | - Jeffery M Klco
- Department of Pathology and Immunology, Washington University, St Louis, MO
| | - Li Ding
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Elaine R Mardis
- The Genome Institute, Washington University in St. Louis, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO.,Department of Genetics, Washington University, St. Louis, MO
| | - Peter Westervelt
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - John F DiPersio
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Matthew J Walter
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Timothy A Graubert
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Timothy J Ley
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Todd Druley
- Department of Pediatrics, Division of Hematology/Oncology, Washington University in St. Louis, St. Louis, MO
| | - Daniel C Link
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Richard K Wilson
- The Genome Institute, Washington University in St. Louis, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO.,Department of Genetics, Washington University, St. Louis, MO
| |
Collapse
|
47
|
Antolin MF, Jenkins KP, Bergstrom CT, Crespi BJ, De S, Hancock A, Hanley KA, Meagher TR, Moreno-Estrada A, Nesse RM, Omenn GS, Stearns SC. Evolution and medicine in undergraduate education: a prescription for all biology students. Evolution 2012; 66:1991-2006. [PMID: 22671563 PMCID: PMC7202235 DOI: 10.1111/j.1558-5646.2011.01552.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/06/2011] [Indexed: 01/13/2023]
Abstract
The interface between evolutionary biology and the biomedical sciences promises to advance understanding of the origins of genetic and infectious diseases in humans, potentially leading to improved medical diagnostics, therapies, and public health practices. The biomedical sciences also provide unparalleled examples for evolutionary biologists to explore. However, gaps persist between evolution and medicine, for historical reasons and because they are often perceived as having disparate goals. Evolutionary biologists have a role in building a bridge between the disciplines by presenting evolutionary biology in the context of human health and medical practice to undergraduates, including premedical and preprofessional students. We suggest that students will find medical examples of evolution engaging. By making the connections between evolution and medicine clear at the undergraduate level, the stage is set for future health providers and biomedical scientists to work productively in this synthetic area. Here, we frame key evolutionary concepts in terms of human health, so that biomedical examples may be more easily incorporated into evolution courses or more specialized courses on evolutionary medicine. Our goal is to aid in building the scientific foundation in evolutionary biology for all students, and to encourage evolutionary biologists to join in the integration of evolution and medicine.
Collapse
Affiliation(s)
- Michael F Antolin
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|