1
|
Márquez-Mendoza JM, Baranda-Ávila N, Lizano M, Langley E. Micro-RNAs targeting the estrogen receptor alpha involved in endocrine therapy resistance in breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167783. [PMID: 40057206 DOI: 10.1016/j.bbadis.2025.167783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Endocrine therapy resistance (ETR) in breast cancer (BC) is a multicausal phenomenon with diverse alterations in the tumor cell interactome. Within these alterations, non-coding RNAs (ncRNAs) such as micro-RNAs (miRNAs) modulate the expression of tumor suppressor genes and proto-oncogenes, such as the ESR1 gene encoding estrogen receptor alpha (ERα). This work aims to review the effects of miRNAs targeting ERα mRNA and their mechanisms related to ETR in BC. A thorough review of the literature and an in silico study were carried out to elucidate the involvement of each miRNA, thus contributing to the understanding of ETR in BC.
Collapse
Affiliation(s)
- J M Márquez-Mendoza
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - N Baranda-Ávila
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - M Lizano
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - E Langley
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| |
Collapse
|
2
|
Lee SR, Kim NR, Mukae M, Won YS, Hong EJ. Sex hormone-binding globulin dampens growth and metastasis of breast cancer in an estrogen-independent manner. Am J Physiol Cell Physiol 2025; 328:C1685-C1698. [PMID: 40241272 DOI: 10.1152/ajpcell.00747.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Early studies have shown that sex hormone-binding globulin (SHBG) suppresses breast cancer by decreasing estrogen activity. However, the sex hormone-independent role of SHBG in breast cancer has received limited attention. Building on our previous research linking SHBG with tumor-associated macrophage (TYRO3, AXL, and MerTK) receptors, we aimed to explore SHBG's sex hormone-independent involvement in breast cancer progression. Analysis of public datasets and tumor slides from patients with breast cancer revealed that invasive breast cancer was associated with a significant decrease in SHBG, and lower SHBG levels correlated with poor cancer prognosis. In the polyomavirus middle T antigen overexpression mouse model (MMTV-PyMT), SHBG-Tg mice exhibited extended survival both under naïve and ovariectomized conditions. Although SHBG-Tg tumors had an estrogenic environment, their growth was suppressed, which correlated with reduced AXL levels. SHBG plasma treatment inhibited proliferation, tumorsphere growth, and invasion in MDA-MB-231 cells, accompanied by a decrease in AXL levels. In subcutaneous allograft models, SHBG-Tg mice showed reduced tumor growth and metastasis, and intraperitoneal injection of SHBG plasma significantly delayed tumor progression in PyMT mice compared with WT plasma. In summary, our study highlights SHBG's inhibitory role in breast cancer growth and metastasis, which may be particularly relevant for estrogen-independent patients with triple-negative breast cancer.NEW & NOTEWORTHY Our study is the first in vivo experiment using polyomavirus middle T antigen-sex hormone-binding globulin (PyMT-SHBG) mouse model to assess the physiological role of SHBG in breast cancer development. We show that SHBG presence in PyMT model restrains breast cancer development and progression in sex hormone-independent manner.
Collapse
Affiliation(s)
- Sang R Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Na Rim Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Moeka Mukae
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Wang S, Huang J, Zeng T, Chen Y, Xu Y, Zhang B. Parps in immune response: Potential targets for cancer immunotherapy. Biochem Pharmacol 2025; 234:116803. [PMID: 39965743 DOI: 10.1016/j.bcp.2025.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Immunotherapy in clinical application faces numerous challenges pertaining to both effectiveness and safety. Poly(ADP-ribose) polymerases (PARPs) exhibit multifunctional characteristics by transferring ADP-ribose units to target proteins or nucleic acids. In recent years, more and more attention has been paid to the biological function of PARPs in immune response. This article reviews the relationship between PARP family members and immune response. PARP1 and PARP2 inhibit anti-tumor immune activity by regulating immune checkpoint expression and the cGAS/STING signaling pathway. PARP7 and PARP11 play an important role in promoting immunosuppressive tumor microenvironment. PARP9 promotes the production of Type I interferon and the infiltration of macrophages. PARP13 is a key tumor suppressor that promotes anti-tumor immune response. PARP14 plays a crucial role in promoting the differentiation of macrophages towards the M2 pro-tumor phenotype. Summarizing the molecular mechanisms of PARP7, PARP9, PARP11, PARP13 and PARP14 in regulating immune response is helpful to deepen our comprehension of the role of PARPs in immune function regulation. This provides a reference and basis for targeted PARP-based cancer treatment strategies and drug development. PARP1, PARP7 inhibitors or other PARP inhibitors in combination with immune checkpoint inhibitors or other immunotherapy strategies may be a more effective cancer therapy.
Collapse
Affiliation(s)
- Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tingyu Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yali Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of New Drug Design and Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Freeman JQ, Huo D, Shubeck SP, Chen N, Yarlagadda SR, Nanda R, Howard FM. Trends and Disparities in the Use of Immunotherapy for Triple-Negative Breast Cancer in the US. JAMA Netw Open 2025; 8:e2460243. [PMID: 39960669 PMCID: PMC11833518 DOI: 10.1001/jamanetworkopen.2024.60243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/09/2024] [Indexed: 02/20/2025] Open
Abstract
Importance Triple-negative breast cancer (TNBC) disproportionately affects Black women. Immunotherapy improves outcomes in early-stage TNBC (esTNBC) and metastatic TNBC (mTNBC). However, racial and ethnic disparities in immunotherapy receipt and its potential association with oncologic outcomes are unknown. Objective To examine trends and racial and ethnic disparities in immunotherapy receipt and differences in pathologic complete response (pCR) and overall survival (OS) in TNBC. Design, Setting, and Participants This retrospective cohort study analyzed the 2019-2021 National Cancer Database. Data were analyzed from April 1 to August 31, 2024. The esTNBC cohort included patients with stage II to III TNBC treated with neoadjuvant therapy in 2021. The mTNBC cohort included patients with stage IV TNBC treated from 2019 to 2021, with all patients having received chemotherapy with or without immunotherapy. Main Outcomes and Measures Immunotherapy use, pCR, and OS with respect to race and ethnicity. Results A total of 10 724 patients with TNBC were included (mean [SD] age, 56.1 [13.7] years; 473 [4.4%] Asian or Pacific Islander, 2569 [24.0%] Black, 981 [9.1%] Hispanic, 6465 [60.3%] White, and 236 [2.2%] other). Immunotherapy use increased from 5.5% in 2017 to 38.8% in 2021 for mTNBC and from 4.2% in 2017 to 48.0% in 2021 for esTNBC. Of 7655 cases of esTNBC diagnosed in 2021, immunotherapy use was lower in Black patients (788 of 1715 [45.9%]), but this difference was not significant after adjusting for insurance status, treatment facility type, and other key variables. Among patients with esTNBC receiving immunotherapy, pCR was similar by race and ethnicity. Of 3069 cases of mTNBC diagnosed from 2019 to 2021, immunotherapy use was higher in Asian or Pacific Islander patients (36 of 97 [37.1%]) and lower in Black patients (238 of 848 [28.1%]). Black patients had lower odds of immunotherapy receipt than White patients (adjusted odds ratio, 0.63; 95% CI, 0.49-0.80) even after controlling for confounders. Among patients receiving immunotherapy, OS was similar between Black and White patients (adjusted hazard ratio, 0.92; 95% CI, 0.64-1.32). Conclusions and Relevance In this cohort study of TNBC, Black patients with mTNBC were less likely to have received immunotherapy, even after controlling for socioeconomic factors. In both esTNBC and mTNBC cohorts, patients who received immunotherapy attained similar outcomes across racial and ethnic groups; thus, efforts should be made to ensure equal access to immunotherapy.
Collapse
Affiliation(s)
- Jincong Q. Freeman
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
- Cancer Prevention and Control Program, UChicago Medicine Comprehensive Cancer Center, Chicago, Illinois
- Center for Health and the Social Sciences, The University of Chicago, Chicago, Illinois
| | - Dezheng Huo
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
- Center for Clinical Cancer Genetics & Global Health, The University of Chicago, Chicago, Illinois
| | - Sarah P. Shubeck
- Department of Surgery, The University of Chicago Medicine, Chicago, Illinois
| | - Nan Chen
- Section of Hematology & Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Sudha R. Yarlagadda
- Section of Hematology & Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Rita Nanda
- Section of Hematology & Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Frederick M. Howard
- Section of Hematology & Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
5
|
Coory M, Jordan SJ. Statistical noise in PD-(L)1 inhibitor trials: unraveling the durable-responder effect. J Clin Epidemiol 2025; 177:111589. [PMID: 39505054 DOI: 10.1016/j.jclinepi.2024.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND AND OBJECTIVES Programmed-death-1/ligand-1 inhibitors (PD-1/L1is) have emerged as pivotal treatments for many cancers. A notable feature of this class of medicines is the dichotomous response pattern: A small (but clinically relevant) percentage of patients (5%-20%) benefit from deep and durable responses resembling functional cures (durable responders), while most patients experience only a modest or negligible response. Accurately predicting durable responders remains elusive due to the lack of a reliable biomarker. Another notable feature of these medicines is that different PD-1/L1 is have obtained statistically significant results, leading to marketing approval for some cancer indications but not for others, with no discernible pattern. These puzzling inconsistencies have generated extensive discussions among oncologists. Proposed (but not entirely convincing) explanations include true underlying differences in efficacy for some types of cancer but not others; or subtle differences in trial design. To investigate a less-explored hypothesis-the durable-responder effect: An initially unidentified group of durable responders generates more statistical noise than anticipated, leading to low-powered randomized controlled trials (RCTs) that report randomly variable results. STUDY DESIGN Employing simulation, this investigation divides participants in PD-(L)1i RCTs into two groups: durable responders and patients with a more modest response. Drawing on published data for melanoma, lung and urothelial cancers, multiple prespecified scenarios are replicated 50,000 times, systematically varying the durable-responder percentage from 5% to 20% and the modest-response hazard ratio for overall survival [HR(OS)] from 0.8 to 1.0. This allowed evaluation of the effect of durable responders on power, point estimates of the treatment effect for OS, and the probability of a misleading signal for harm. RESULTS When the treatment effect for the modest responders is similar to the comparator arm, statistical power remains below 80%, limiting the ability to reliably detect durable responders. Conversely, there is a material probability of obtaining a statistically significant result that exaggerates the treatment effect by chance. For instance, with an average HR(OS) of 0.93 (corresponding to 5% durable responders), statistically significant trials (7.2%) show an average HR(OS) of 0.77. Additionally, when 5% are durable responders, there is a 20% probability that the HR(OS) will exceed 1.0-suggesting potential harm when none exists. CONCLUSION This article adds to the possible explanations for the puzzlingly inconsistent results from PD-(L)1i RCTs. Initially, unidentified durable responders introduce features typical of imprecise, low-powered studies: a propensity for false-negative results; estimates of benefit that might not replicate; and misleading signals for harm. PLAIN LANGUAGE SUMMARY Programmed-death-1/ligand-1 (PD-1(L)1) inhibitors are crucial cancer treatments, with global spending expected to surpass $75 billion by 2026. Multiple versions of these medicines are available, all designed to boost the immune system to fight cancer. We would expect them all to work similarly, but clinical trials show mixed results-some seem effective for certain cancers but not others, without a clear pattern. This article uses simulations (virtual trials) to suggest that these inconsistent results may be due to chance, caused by a small group of patients who respond very well to the treatment. Larger trials or specific analysis methods could help reduce the chance effects and provide more robust data for clinician and patient decision-making.
Collapse
Affiliation(s)
- Michael Coory
- Mater Research Institute, The University of Queensland, Level 3, Aubigny Place, South Brisbane, Queensland, Australia.
| | - Susan J Jordan
- School of Population Health, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Varshini MS, Krishnamurthy PT, Reddy RA, Wadhwani A, Chandrashekar VM. Insights into the Emerging Therapeutic Targets of Triple-negative Breast Cancer. Curr Cancer Drug Targets 2025; 25:3-25. [PMID: 38385495 DOI: 10.2174/0115680096280750240123054936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Triple-negative Breast Cancer (TNBC), the most aggressive breast cancer subtype, is characterized by the non-appearance of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Clinically, TNBC is marked by its low survival rate, poor therapeutic outcomes, high aggressiveness, and lack of targeted therapies. Over the past few decades, many clinical trials have been ongoing for targeted therapies in TNBC. Although some classes, such as Poly (ADP Ribose) Polymerase (PARP) inhibitors and immunotherapies, have shown positive therapeutic outcomes, however, clinical effects are not much satisfiable. Moreover, the development of drug resistance is the major pattern observed in many targeted monotherapies. The heterogeneity of TNBC might be the cause for limited clinical benefits. Hence,, there is a need for the potential identification of new therapeutic targets to address the above limitations. In this context, some novel targets that can address the above-mentioned concerns are emerging in the era of TNBC therapy, which include Hypoxia Inducible Factor (HIF-1α), Matrix Metalloproteinase 9 (MMP-9), Tumour Necrosis Factor-α (TNF-α), β-Adrenergic Receptor (β-AR), Voltage Gated Sodium Channels (VGSCs), and Cell Cycle Regulators. Currently, we summarize the ongoing clinical trials and discuss the novel therapeutic targets in the management of TNBC.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | | | - Ramakamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
- Faculty of Health Sciences, School of Pharmacy, JSS Academy of Higher Education and Research, Mauritius, Vacoas, 73304, Mauritius
| | - V M Chandrashekar
- Department of Pharmacology, HSK College of Pharmacy, Bagalkot, 587101, Karnataka, India
| |
Collapse
|
7
|
Song B, Singh H. Rare Breast Cancers Review. Healthcare (Basel) 2024; 12:2483. [PMID: 39685105 DOI: 10.3390/healthcare12232483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Breast cancer is one of the most common malignancies in women, with rare subtypes presenting unique clinical challenges. This review provides a comprehensive analysis of rare breast cancers, including both epithelial and non-epithelial subtypes, and explores their epidemiology, pathology, prognosis, and treatment approaches. METHODS A systematic review was conducted focusing on recent advancements in the treatment of rare breast cancer subtypes. Articles were selected based on criteria emphasizing studies from the past five years, with older foundational studies included where necessary. The analysis incorporated molecular profiling, clinical trials, and advancements in targeted and immunotherapies, where possible. RESULTS Rare epithelial subtypes, such as tubular, mucinous, and medullary carcinomas, demonstrate distinct clinical and pathological features, with generally favorable prognoses compared to invasive ductal carcinoma (IDC). Non-epithelial cancers, including sarcomas and primary breast lymphomas, require individualized treatment due to aggressive behavior and poor prognosis in certain cases. Recent advancements in targeted therapies (e.g., HER2 inhibitors, PI3K inhibitors, and PARP inhibitors) and immunotherapies (e.g., PD-1 inhibitors) have shown promise in improving outcomes for specific molecularly characterized subtypes. CONCLUSIONS While the management of common breast cancers has become increasingly sophisticated, rare subtypes continue to pose challenges due to limited research and small patient populations. Advances in molecular profiling and next-generation sequencing are pivotal in identifying actionable mutations and expanding personalized treatment options. Future research should focus on clinical trials and collaborative efforts to refine treatment strategies and improve outcomes for these rare subtypes.
Collapse
Affiliation(s)
- Bowen Song
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Harnoor Singh
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
8
|
Xu Q, Feng X, Qin S, Hong Y, Cui R, Liang J, Xiao Z, Li Y. Research on therapeutic clinical trials including immunotherapy in triple-negative breast cancer: a bibliometric analysis. Front Oncol 2024; 14:1423924. [PMID: 39469651 PMCID: PMC11513593 DOI: 10.3389/fonc.2024.1423924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024] Open
Abstract
Background Breast cancer, particularly triple-negative (TNBC), is a leading malignancy with aggressive traits and high metastasis rates. Clinical trial is an important tool for optimizing therapeutic strategies in the evaluation of the safety and efficacy for TNBC. Our bibliometric study of TNBC clinical trials aims to assess therapeutic strategies, identify trends, and explore advancements in treatment. We focus on mapping knowledge development, including key research entities and topics, and analyzing research trends and emerging methods. This analysis intends to inform future research, especially in personalized and precision medicine for TNBC. Methods We selected publications on clinical trials for the treatment of TNBC from 1997 to 2024 in the Web of Science Core Collection (WoSCC). After an initial screening, we downloaded key data including titles, publication years, authors, countries, institutional affiliations, journals, keywords, and abstracts, and saved them in BibTex format. We then conducted a bibliometric analysis using Bibliometrix in R and VOSviewer to illustrate the prospects, highlights, and trends of TNBC treatment options. Furthermore, to emphasize the hot topics in TNBC treatment strategies, we performed a bibliometric analysis of immunotherapy using the same approach. Results 1907 publications were included, most of which were from China, Italy, and the United States. The number of annual publications has increased dramatically since 2010. The focus of TNBC clinical trial research has shifted from understanding the biology, such as breast cancer subtyping and genotyping, to novel therapeutic approaches. The major advancement in clinical trials is the switch from late-stage palliative treatment to early preoperative neoadjuvant therapy, as more TNBC cases are discovered at an early stage. Immunotherapy is also highlighted with additional alternatives for advanced or metastasized TNBC, such as targeted inhibitors with unusual mutation rates and antibody drug conjugates (ADC). Conclusions This investigation made it apparent how immunotherapy has recently made major advancements in TNBC treatment plans and how ADCs, or targeted therapies, are currently popular for TNBC. By identifying significant papers, comprehending trending topics, and collaborating across multiple disciplines, this study may accelerate research on TNBC therapy options.
Collapse
Affiliation(s)
- Qi Xu
- The First Clinical College and Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaoyu Feng
- The First Clinical College and Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Siyuan Qin
- The First Clinical College and Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Hong
- The First Clinical College and Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Rui Cui
- The First Clinical College and Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jia Liang
- The First Clinical College and Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhuya Xiao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yuan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Padzińska-Pruszyńska I, Kucharzewska P, Matejuk A, Górczak M, Kubiak M, Taciak B, Król M. Macrophages: Key Players in the Battle against Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:10781. [PMID: 39409110 PMCID: PMC11476577 DOI: 10.3390/ijms251910781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a challenging subtype of breast cancer characterized by the absence of estrogen and progesterone receptors and HER2 expression, leading to limited treatment options and a poorer prognosis. TNBC is particularly prevalent in premenopausal African-descent women and is associated with aggressive tumor behavior and higher metastatic potential. Tumor-associated macrophages (TAMs) are abundantly present within the TNBC microenvironment and play pivotal roles in promoting tumor growth, progression, and metastasis through various mechanisms, including immune suppression and enhancement of angiogenesis. This review provides an in-depth overview of TNBC, focusing on its epidemiology, its molecular characteristics, and the critical influence of TAMs. It discusses the pathological and molecular aspects that define TNBC's aggressive nature and reviews current and emerging therapeutic strategies aimed at targeting these dynamics. Special attention is given to the role of TAMs, exploring their potential as therapeutic targets due to their significant impact on tumor behavior and patient outcomes. This review aims to highlight the complexities of the TNBC landscape and to present the innovative approaches that are currently being pursued to improve therapeutic efficacy and patient survival.
Collapse
Affiliation(s)
- Irena Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland;
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| |
Collapse
|
10
|
Dent R, Cortés J, Pusztai L, McArthur H, Kümmel S, Bergh J, Denkert C, Park YH, Hui R, Harbeck N, Takahashi M, Untch M, Fasching PA, Cardoso F, Haiderali A, Jia L, Nguyen AM, Pan W, O’Shaughnessy J, Schmid P. Neoadjuvant pembrolizumab plus chemotherapy/adjuvant pembrolizumab for early-stage triple-negative breast cancer: quality-of-life results from the randomized KEYNOTE-522 study. J Natl Cancer Inst 2024; 116:1654-1663. [PMID: 38913881 PMCID: PMC11461162 DOI: 10.1093/jnci/djae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND In KEYNOTE-522 (NCT03036488), neoadjuvant pembrolizumab plus chemotherapy and then adjuvant pembrolizumab significantly improved pathological complete response and event-free survival vs neoadjuvant chemotherapy in early-stage triple-negative breast cancer (TNBC). We report patient-reported outcomes (PROs) from KEYNOTE-522. METHODS Patients were randomized 2:1 to neoadjuvant pembrolizumab 200 mg or placebo every 3 weeks, plus 4 cycles of paclitaxel plus carboplatin and then 4 cycles of doxorubicin (or epirubicin) plus cyclophosphamide. After surgery, patients received adjuvant pembrolizumab or placebo for up to 9 cycles. European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 (EORTC QLQ-C30) and EORTC Breast Cancer-Specific Quality of Life Questionnaire (EORTC QLQ-BR23) were prespecified secondary objectives. Between-group differences in least squares (LS) mean change from baseline (day 1 of cycle 1 in both neoadjuvant and adjuvant phases) to the prespecified latest time point with at least 60% completion and at least 80% compliance were assessed using a longitudinal model (no alpha error assigned). RESULTS Week 21 (neoadjuvant phase) and week 24 (adjuvant phase) were the latest time points at which completion/compliance rates were ≥60%/80%. In the neoadjuvant phase, between-group differences (pembrolizumab plus chemotherapy [n = 762] vs placebo plus chemotherapy [n = 383]) in LS mean change from baseline to week 21 in QLQ-C30 global health status/quality of life (GHS/QoL), emotional functioning, and physical functioning were -1.04 (95% confidence interval = -3.46 to 1.38), -0.69 (95% CI = -3.13 to 1.75), and -2.85 (95% CI = -5.11 to -0.60), respectively. In the adjuvant phase, between-group differences (pembrolizumab [n = 539] vs placebo [n = 308]) in LS mean change from baseline to week 24 were -0.41 (95% CI = -2.60 to 1.77), -0.60 (95% CI = -2.99 to 1.79), and -1.57 (95% CI = -3.36 to 0.21). CONCLUSIONS No substantial differences in PRO assessments were observed between neoadjuvant pembrolizumab plus chemotherapy followed by adjuvant pembrolizumab vs neoadjuvant placebo plus chemotherapy in early-stage TNBC. TRIAL REGISTRATION ClinicalTrials.gov, NCT03036488.
Collapse
Affiliation(s)
- Rebecca Dent
- National Cancer Center Singapore and Duke-National University of Singapore (NUS) Medical School, Division of Medical Oncology, Singapore, Singapore
| | - Javier Cortés
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
- IOB Madrid, Institute of Oncology, Hospital Beata Maria Ana, Madrid, Spain
| | - Lajos Pusztai
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | | | - Sherko Kümmel
- Breast Unit, Kliniken Essen-Mitte Evang, Huyssens-Stiftung, Essen, Germany
- Department of Gynecology with Breast Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet and Breast Cancer Centre, Cancer theme, Karolinska Comprehensive Cancer & University Hospital, Karolinska CCC and Cancer Core Europe, Solna, Sweden
| | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg, Marburg, Germany
| | - Yeon Hee Park
- Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Rina Hui
- Westmead Breast Cancer Institute, Westmead Hospital and the University of Sydney, Sydney, NSW, Australia
- Centre of Cancer Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong
| | - Nadia Harbeck
- Breast Center, Department of OB&GYN and CCC Munich, LMU University Hospital, Munich, Germany
| | - Masato Takahashi
- Department of Breast Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Michael Untch
- Breast Cancer Center, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Peter A Fasching
- University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center/Champalimaud Foundation, Lisbon, Portugal
| | - Amin Haiderali
- Center for Observational and Real-World Evidence, Merck & Co., Inc., Rahway, NJ, USA
| | - Liyi Jia
- Biostatistics and Research Division Sciences, Merck & Co., Inc., Rahway, NJ, USA
| | - Allison Martin Nguyen
- Biostatistics and Research Decision Sciences—Epidemiology, Patient-Centered Endpoints & Strategy, Merck & Co., Inc., Rahway, NJ, USA
| | - Wilbur Pan
- Global Clinical Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Joyce O’Shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX, USA
| | - Peter Schmid
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Holt AC, Smith CA, Berkowitz MJ, Baker JL, McAndrew NP, Kapoor NS. Surgical outcomes following neoadjuvant chemotherapy with and without immunotherapy in patients with triple-negative breast cancer. Discov Oncol 2024; 15:467. [PMID: 39302495 DOI: 10.1007/s12672-024-01349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE Adding pembrolizumab to neoadjuvant chemotherapy (NAC) for triple-negative breast cancer (TNBC) improves pathologic complete response (pCR) rates and event-free survival. The impact of adding immunotherapy to NAC on surgical outcomes is unknown. This study compares 90-day post-surgical complications (PSCs) and time to adjuvant treatment among patients undergoing NAC for TNBC with and without immunotherapy. METHODS Patients treated with NAC alone or with immunotherapy (NAC-I) for stage I-III TNBC between 2018 and 2022 were retrospectively identified at a single academic institution. Kruskal-Wallis rank sum and Fisher's exact tests compared patient sociodemographic and clinical characteristics. Multivariable logistic regression determined odds ratios (OR) predicting PSCs. RESULTS Of 54 patients, 29 received NAC alone and 25 received NAC-I. Compared to NAC patients, NAC-I patients had more advanced stage tumors (p = 0.038), and had slightly higher rates of mastectomy with reconstruction (p = 0.193). 72.0% of NAC-I patients experienced a pCR, compared with 44.8% of NAC patients (p = 0.193). There were 10 PSCs (34.5%) in NAC patients compared to 9 PSCs (36.0%) in NAC-I patients (p > 0.99). Regression analysis demonstrated no association of PSCs with NAC-I (OR 0.83, 95% CI 0.19-3.60). Time to adjuvant therapy was shorter for NAC-I patients (28 days vs 36 days, p = 0.013). CONCLUSIONS Patients with TNBC receiving NAC-I have higher pCR rates and do not appear to have added 90-day PSCs or delays to adjuvant therapy despite trending toward more extensive surgical procedures compared to NAC alone. Larger studies are needed to further evaluate the surgical safety of immunotherapy.
Collapse
Affiliation(s)
| | - Courtney A Smith
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Maurice J Berkowitz
- Division of Hematology and Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer L Baker
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas P McAndrew
- Division of Hematology and Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nimmi S Kapoor
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Jézéquel P, Lasla H, Gouraud W, Basseville A, Michel B, Frenel JS, Juin PP, Ben Azzouz F, Campone M. Mesenchymal-like immune-altered is the fourth robust triple-negative breast cancer molecular subtype. Breast Cancer 2024; 31:825-840. [PMID: 38777987 DOI: 10.1007/s12282-024-01597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Robust molecular subtyping of triple-negative breast cancer (TNBC) is a prerequisite for the success of precision medicine. Today, there is a clear consensus on three TNBC molecular subtypes: luminal androgen receptor (LAR), basal-like immune-activated (BLIA), and basal-like immune-suppressed (BLIS). However, the debate about the robustness of other subtypes is still open. METHODS An unprecedented number (n = 1942) of TNBC patient data was collected. Microarray- and RNAseq-based cohorts were independently investigated. Unsupervised analyses were conducted using k-means consensus clustering. Clusters of patients were then functionally annotated using different approaches. Prediction of response to chemotherapy and targeted therapies, immune checkpoint blockade, and radiotherapy were also screened for each TNBC subtype. RESULTS Four TNBC subtypes were identified in the cohort: LAR (19.36%); mesenchymal stem-like (MSL/MES) (17.35%); BLIA (31.06%); and BLIS (32.23%). Regarding the MSL/MES subtype, we suggest renaming it to mesenchymal-like immune-altered (MLIA) to emphasize its specific histological background and nature of immune response. Treatment response prediction results show, among other things, that despite immune activation, immune checkpoint blockade is probably less or completely ineffective in MLIA, possibly caused by mesenchymal background and/or an enrichment in dysfunctional cytotoxic T lymphocytes. TNBC subtyping results were included in the bc-GenExMiner v5.0 webtool ( http://bcgenex.ico.unicancer.fr ). CONCLUSION The mesenchymal TNBC subtype is characterized by an exhausted and altered immune response, and resistance to immune checkpoint inhibitors. Consensus for molecular classification of TNBC subtyping and prediction of cancer treatment responses helps usher in the era of precision medicine for TNBC patients.
Collapse
Affiliation(s)
- Pascal Jézéquel
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France.
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France.
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France.
| | - Hamza Lasla
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Wilfried Gouraud
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Agnès Basseville
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Bertrand Michel
- Nantes Université, École Centrale Nantes, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, UMR 6629, 44000, Nantes, France
| | - Jean-Sébastien Frenel
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
| | - Philippe P Juin
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
| | | | - Mario Campone
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
- Université d'Angers, 49000, Angers, France
| |
Collapse
|
13
|
Towner RA, Dissanayake R, Ahmed M. Clinical Advances in Triple Negative Breast Cancer Treatment: Focus on Poly (L-lactide-coglycolide) Nanoparticles. J Pharmacol Exp Ther 2024; 390:53-64. [PMID: 38580448 DOI: 10.1124/jpet.123.002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer and is associated with high probability of metastasis and poor prognosis. Chemotherapeutics and surgery remain the most common options for TNBC patients; however, chemotherapeutic resistance and relapse of tumors limit the progression free survival and patient life span. This review provides an overview of recent chemotherapeutics that are in clinical trial, and the combination of drugs that are being investigated to overcome the drug resistance and to improve patient survival in different molecular subtypes of TNBCs. Nanotherapeutics have emerged as a promising platform for TNBC treatment and aim to improve the selectivity and solubility of drugs, reduce systemic side effects, and overcome multi-drug resistance. The study explores the role of nanoparticles for TNBC treatment and summarizes the types of nanoparticles that are in clinical trials. Poly(L-lactide-co-glycolide) (PLGA) is the most studied polymeric carrier for drug delivery and for TNBC treatment in research and in clinics. This review is about providing recent advancements in PLGA nanotherapeutic formulations and their application to help treat TNBC. Some background on current chemotherapies and pathway inhibitors is provided so that the readers are aware of what is currently considered for TNBC. Some of the pathway inhibitors may also be of importance for nanotherapeutics development. SIGNIFICANCE STATEMENT: This minireview summarizes the progress on chemotherapeutics and nanoparticle delivery for treatment of TNBC and specifically highlights the lead compounds that are in clinical trials.
Collapse
Affiliation(s)
- Rheal A Towner
- Department of Chemistry (R.A.T., R.D., M.A.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - Ranga Dissanayake
- Department of Chemistry (R.A.T., R.D., M.A.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - Marya Ahmed
- Department of Chemistry (R.A.T., R.D., M.A.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
14
|
de Mello RA, Perez KR, Vazquez TP. Current and future trends in neoadjuvant immunotherapy for the treatment of triple-negative breast cancer. Immunotherapy 2024; 16:257-266. [PMID: 38197149 DOI: 10.2217/imt-2022-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Triple-negative breast cancer (TNBC) comprises 15-20% of all breast cancers (BC). Lacking targeted therapy options, TNBC becomes the focal point of clinical investigations aiming not only to identify drugs with enhanced response potential but also to uncover new immunological and/or metabolic pathways conducive to more effective treatments. Currently, neoadjuvant treatment for TNBC relies on standard chemotherapy in conjunction with immunotherapy, given the improved response observed with this drug combination. This review delves into the latest therapeutic updates in TNBC treatment and explores potential advancements shaping the future landscape of this disease in the neoadjuvant setting.
Collapse
Affiliation(s)
- Ramon Andrade de Mello
- Department of Oncology, Oxford Cancer Center, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, OX3 7LE, Oxford, UK
- Department of Oncology, University of Oxford, OX3 7ER, Oxford, UK
- Post Graduation Program in Medicine, Faculty of Medicine, Nine of July University, 015250-000, São Paulo, Brazil
| | - Kátia Roque Perez
- Post Graduation Program in Medicine, Faculty of Medicine, Nine of July University, 015250-000, São Paulo, Brazil
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | - Thais Pérez Vazquez
- São Paulo Cancer Institute, University of São Paulo, São Paulo, 01246-000, Brazil
| |
Collapse
|
15
|
Mei J, Cai Y, Zhu H, Jiang Y, Fu Z, Xu J, Chen L, Yang K, Zhao J, Song C, Zhang Y, Mao W, Yin Y. High B7-H3 expression with low PD-L1 expression identifies armored-cold tumors in triple-negative breast cancer. NPJ Breast Cancer 2024; 10:11. [PMID: 38280882 PMCID: PMC10821876 DOI: 10.1038/s41523-024-00618-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/06/2024] [Indexed: 01/29/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is generally regarded as the most aggressive subtype among breast cancers, but exhibits higher chemotherapeutic and immunotherapeutic responses due to its unique immunogenicity. Thus, appropriate discrimination of subtypes is critical for guiding therapeutic options in clinical practice. In this research, using multiple in-house and public cohorts, we investigated the expression features and immuno-correlations of B7-H3 in breast cancer and checked the anti-tumor effect of the B7-H3 monoclonal antibody in a mouse model. We also developed a novel classifier combining B7-H3 and PD-L1 expression in TNBC. B7-H3 was revealed to be related to immuno-cold features and accumulated collagen in TNBC. In addition, targeting B7-H3 using the monoclonal antibody significantly suppressed mouse TNBC growth, reversed the armored-cold phenotype, and also boosted anti-PD-1 immunotherapy. In addition, patients with B7-H3 high and PD-L1 low expression showed the lowest anti-tumor immune infiltration, the highest collagen level, and the lowest therapeutic responses to multiple therapies, which mostly belong to armored-cold tumors. Overall, this research provides a novel subtyping strategy based on the combination of B7-H3/PD-L1 expression, which leads to a novel approach for the management of TNBC.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
- The First Clinical Medicine College, Nanjing Medical University, Wuxi, 214023, China
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Yun Cai
- Wuxi Maternal and Child Health Care Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, 214023, China
| | - Hongjun Zhu
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, 226006, China
| | - Ying Jiang
- Department of Gynecology, The Obstetrics and Gynecology Hospital Affiliated to Jiangnan University, Wuxi, 214023, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Care Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, 214023, China
| | - Kai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
- The First Clinical Medicine College, Nanjing Medical University, Wuxi, 214023, China
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Jinlu Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Yan Zhang
- Wuxi Maternal and Child Health Care Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, 214023, China.
- Department of Gynecology, The Obstetrics and Gynecology Hospital Affiliated to Jiangnan University, Wuxi, 214023, China.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China.
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
16
|
Araghi M, Gharebakhshi F, Faramarzi F, Mafi A, Mousavi T, Alimohammadi M, Soleimantabar H. Efficacy and Safety of Pembrolizumab Monotherapy or Combined Therapy in Patients with Metastatic Triple-negative Breast Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr Gene Ther 2024; 25:72-88. [PMID: 39468438 DOI: 10.2174/0115665232283880240301035621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Metastatic Triple-negative Breast Cancer (mTNBC) is the most aggressive form of breast cancer, with a greater risk of metastasis and recurrence. Research studies have published in-depth analyses of the advantages and disadvantages of pembrolizumab, and early data from numerous trials suggests that patients with mTNBC have had remarkable outcomes. This meta-analysis compares the data from numerous relevant studies in order to evaluate the safety and efficacy of pembrolizumab monotherapy or combination therapies for mTNBC. METHODS To identify eligible RCTs, a thorough literature search was carried out using electronic databases. CMA software was utilized to perform heterogeneity tests using fixed and random-effects models. RESULTS According to our pooled data, the median Progression-free Survival (PFS) was 2.66 months, and the median overall survival (OS) was 12.26 months. Furthermore, by comparing efficacy indicators between PD-L1-positive and PD-L1-negative groups, a correlation was found between the overexpression of PD-L1 with OS, PFS, and ORR. Patients with PD-L1-positive tumors had a higher response rate, with an ORR of 21.1%, compared to the patients with PD-L1-negative tumors. The ORR for first-line immunotherapy was higher than that of ≥second-line immunotherapy. In addition, pembrolizumab plus combination treatment resulted in a pooled incidence of immune- related adverse events of 22.7%. CONCLUSION A modest response to pembrolizumab monotherapy was detected in the mTNBC patients. Furthermore, a better outcome from pembrolizumab treatment may be predicted by PD-L1-- positive status, non-liver/lung metastases, combination therapy, and first-line immunotherapy. Pembrolizumab, in combination with chemotherapy, may be more beneficial for patients whose tumors are PD-L1 positive.
Collapse
Affiliation(s)
- Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farshad Gharebakhshi
- Department of Radiology, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahoora Mousavi
- Molecular and Cell Biology Research Center (MCBRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Medical Sciences Technologies, Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hussein Soleimantabar
- Department of Radiology, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Sakamoto Y, Ochiya T, Yoshioka Y. Extracellular vesicles in the breast cancer brain metastasis: physiological functions and clinical applications. Front Hum Neurosci 2023; 17:1278501. [PMID: 38111675 PMCID: PMC10725966 DOI: 10.3389/fnhum.2023.1278501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer, which exhibits an increasing incidence and high mortality rate among cancers, is predominantly attributed to metastatic malignancies. Brain metastasis, in particular, significantly contributes to the elevated mortality in breast cancer patients. Extracellular vesicles (EVs) are small lipid bilayer vesicles secreted by various cells that contain biomolecules such as nucleic acids and proteins. They deliver these bioactive molecules to recipient cells, thereby regulating signal transduction and protein expression levels. The relationship between breast cancer metastasis and EVs has been extensively investigated. In this review, we focus on the molecular mechanisms by which EVs promote brain metastasis in breast cancer. Additionally, we discuss the potential of EV-associated molecules as therapeutic targets and their relevance as early diagnostic markers for breast cancer brain metastasis.
Collapse
Affiliation(s)
| | | | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
18
|
Huang R, Wang Z, Hong J, Wu J, Huang O, He J, Chen W, Li Y, Chen X, Shen K. Targeting cancer-associated adipocyte-derived CXCL8 inhibits triple-negative breast cancer progression and enhances the efficacy of anti-PD-1 immunotherapy. Cell Death Dis 2023; 14:703. [PMID: 37898619 PMCID: PMC10613226 DOI: 10.1038/s41419-023-06230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Cancer-associated adipocytes (CAAs), one of the primary stromal components, exhibit intimate crosstalk and release multiple cell factors mediating local and systemic biological effects. However, the role of CAAs in the regulation of systemic immune responses and their potential value in the clinical treatment of triple-negative breast cancer (TNBC) are not well described. Transcriptome sequencing was performed on CAA and normal adipocyte (NA) tissues isolated from surgically resected samples from TNBC patients and healthy controls. Cytokines, including C-X-C motif chemokine ligand 8 (CXCL8, also known as IL-8), secreted from NAs and CAAs were compared by transcriptome sequencing and enzyme-linked immunosorbent assay (ELISA). Proliferation, migration and invasion assays were employed to analyze the role of CAAs and CAA-derived CXCL8 (macrophage inflammatory protein-2 (MIP2) as a functional surrogate in mice). TNBC syngraft models were established to evaluate the curative effect of targeting CXCL8 in combination with anti-PD-1 therapies. Real-time quantitative polymerase chain reaction (RT-qPCR), western blotting (WB), polymerase chain reaction (PCR) array, flow cytometry, immunohistochemistry (IHC), and immunofluorescence (IF) were applied to analyze immune cell infiltration and epithelial-mesenchymal transition (EMT) markers. Specifically, we demonstrated that CAAs and CAA-derived CXCL8 played important roles in tumor growth, EMT, metastasis and tumor immunity suppression. CAA-derived CXCL8 remodeled the tumor immune microenvironment not only by suppressing CD4+ T and CD8+ T immune cell infiltration but also by upregulating CD274 expression in TNBC. The combination of targeting the CXCL8 pathway and blocking the PD-1 pathway synergistically increased the tumor immune response and inhibited tumor progression. Thus, our results highlight the molecular mechanisms and translational significance of CAAs in tumor progression and immune ecosystem regulatory effects and provide a better understanding of the potential clinical benefit of targeting CAA-derived CXCL8 in antitumor immunity and as a new therapeutic moiety in TNBC.
Collapse
Affiliation(s)
- Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025, Shanghai, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025, Shanghai, China.
| | - Jin Hong
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025, Shanghai, China
| | - Jiayi Wu
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025, Shanghai, China
| | - Ou Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025, Shanghai, China
| | - Jianrong He
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025, Shanghai, China
| | - Weiguo Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025, Shanghai, China
| | - Yafen Li
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025, Shanghai, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025, Shanghai, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025, Shanghai, China.
| |
Collapse
|
19
|
Doha ZO, Wang X, Calistri NL, Eng J, Daniel CJ, Ternes L, Kim EN, Pelz C, Munks M, Betts C, Kwon S, Bucher E, Li X, Waugh T, Tatarova Z, Blumberg D, Ko A, Kirchberger N, Pietenpol JA, Sanders ME, Langer EM, Dai MS, Mills G, Chin K, Chang YH, Coussens LM, Gray JW, Heiser LM, Sears RC. MYC Deregulation and PTEN Loss Model Tumor and Stromal Heterogeneity of Aggressive Triple-Negative Breast Cancer. Nat Commun 2023; 14:5665. [PMID: 37704631 PMCID: PMC10499828 DOI: 10.1038/s41467-023-40841-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) patients have a poor prognosis and few treatment options. Mouse models of TNBC are important for development of new therapies, however, few mouse models represent the complexity of TNBC. Here, we develop a female TNBC murine model by mimicking two common TNBC mutations with high co-occurrence: amplification of the oncogene MYC and deletion of the tumor suppressor PTEN. This Myc;Ptenfl model develops heterogeneous triple-negative mammary tumors that display histological and molecular features commonly found in human TNBC. Our research involves deep molecular and spatial analyses on Myc;Ptenfl tumors including bulk and single-cell RNA-sequencing, and multiplex tissue-imaging. Through comparison with human TNBC, we demonstrate that this genetic mouse model develops mammary tumors with differential survival and therapeutic responses that closely resemble the inter- and intra-tumoral and microenvironmental heterogeneity of human TNBC, providing a pre-clinical tool for assessing the spectrum of patient TNBC biology and drug response.
Collapse
Affiliation(s)
- Zinab O Doha
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Department of medical laboratory technology, Taibah University, Al-Madinah al-Munawwarah, Saudi Arabia
| | - Xiaoyan Wang
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Nicholas L Calistri
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Eng
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Luke Ternes
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Eun Na Kim
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Carl Pelz
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
| | - Michael Munks
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Courtney Betts
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Sunjong Kwon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Elmar Bucher
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Xi Li
- Division of Oncologic Sciences, Oregon Health and Science University, Portland, OR, USA
| | - Trent Waugh
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Zuzana Tatarova
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Dylan Blumberg
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Ko
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Nell Kirchberger
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Jennifer A Pietenpol
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melinda E Sanders
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ellen M Langer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Gordon Mills
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Division of Oncologic Sciences, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Koei Chin
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lisa M Coussens
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA.
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
20
|
Huang W, Shi S, Lv H, Ju Z, Liu Q, Chen T. Tellurium-driven maple leaf-shaped manganese nanotherapeutics reshape tumor microenvironment via chemical transition in situ to achieve highly efficient radioimmunotherapy of triple negative breast cancer. Bioact Mater 2023; 27:560-573. [PMID: 37223423 PMCID: PMC10200799 DOI: 10.1016/j.bioactmat.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
The therapeutic efficacy of radioimmunotherapy against triple negative breast cancer (TNBC) is largely limited by the complicated tumor microenvironment (TME) and its immunosuppressive state. Thus developing a strategy to reshape TME is expected to achieve highly efficient radioimmunotherapy. Therefore, we designed and synthesized a tellurium (Te)-driven maple leaf manganese carbonate nanotherapeutics (MnCO3@Te) by gas diffusion method, but also provided a chemical catalytic strategy in situ to augment ROS level and activate immune cells for improving cancer radioimmunotherapy. As expected, with the help of H2O2 in TEM, MnCO3@Te heterostructure with reversible Mn3+/Mn2+ transition could catalyze the intracellular ROS overproduction to amplify radiotherapy. In addition, by virtue of the ability to scavenge H+ in TME by carbonate group, MnCO3@Te directly promote the maturation of dendritic cells and macrophage M1 repolarization by stimulator of interferon genes (STING) pathway activation, resulting in remodeling immuno-microenvironment. As a result, MnCO3@Te synergized with radiotherapy and immune checkpoint blockade therapy effectively inhibited the breast cancer growth and lung metastasis in vivo. Collectively, these findings indicate that MnCO3@Te as an agonist, successfully overcome radioresistance and awaken immune systems, showing promising potential for solid tumor radioimmunotherapy.
Collapse
Affiliation(s)
- Wei Huang
- Jieyang Medical Research Center, Jieyang People's Hospital, Tianfu Road 107, Rongcheng District, Jieyang, Guangdong, 522000, China
| | - Sujiang Shi
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Haoran Lv
- Jieyang Medical Research Center, Jieyang People's Hospital, Tianfu Road 107, Rongcheng District, Jieyang, Guangdong, 522000, China
- Department of Nephrology, The First Affiliated Hospital, NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Qinghua Liu
- Jieyang Medical Research Center, Jieyang People's Hospital, Tianfu Road 107, Rongcheng District, Jieyang, Guangdong, 522000, China
- Department of Nephrology, The First Affiliated Hospital, NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Tianfeng Chen
- Jieyang Medical Research Center, Jieyang People's Hospital, Tianfu Road 107, Rongcheng District, Jieyang, Guangdong, 522000, China
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
21
|
Tong L, Yu X, Wang S, Chen L, Wu Y. Research Progress on Molecular Subtyping and Modern Treatment of Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:647-658. [PMID: 37644916 PMCID: PMC10461741 DOI: 10.2147/bctt.s426121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Breast cancer has become the most common malignant tumor worldwide. Triple-negative breast cancer (TNBC) is a type of breast cancer that is negative for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Compared with other molecular subtypes of breast cancer, TNBC is the most aggressive and highly heterogeneous. TNBC is insensitive to endocrine and anti-HER2 therapy, and chemotherapy is currently the main systemic treatment. With the continuous development of detection techniques and deepening research on TNBC molecular subtypes, drugs targeting immune checkpoints and different targets have emerged, such as atezolizumab, pembrolizumab, poly (ADP-ribose) polymerase (PARP) inhibitors, trophoblast cell-surface antigen 2 (TROP-2), and antibody-drug conjugates. These therapies provide new hope for TNBC treatment. Based on the analysis and classification of TNBC, this article summarizes the immunotherapy, targeted therapy, and new treatment combinations, providing references for the precise treatment of TNBC in the future.
Collapse
Affiliation(s)
- Ling Tong
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Xiangling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Shan Wang
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Ling Chen
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
22
|
Raiter A, Lipovetsky J, Stenbac A, Lubin I, Yerushalmi R. TNBC-derived Gal3BP/Gal3 complex induces immunosuppression through CD45 receptor. Oncoimmunology 2023; 12:2246322. [PMID: 37593677 PMCID: PMC10431740 DOI: 10.1080/2162402x.2023.2246322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
A preliminary study investigating immunotherapy strategies for aggressive triple negative breast cancer (TNBC) revealed an overexpression of genes involved in the release of extracellular vesicles (EVs). Proteins expressed by EVs play a role in reprogramming the tumor microenvironment and impeding effective responses to immunotherapy. Galectin 3 (Gal3), found in the extracellular space of breast cancer cells, downregulates T-cell receptor expression. Gal3 binds to several receptors, including CD45, which is required for T-cell receptor activation. Previously, we reported a novel tumor escape mechanism, whereby TNBC cells suppress immune cells through CD45 intracellular signals. The objective of this study was to determine the potential association of Gal3 with TNBC-secreted EVs induction of immunosuppression via the CD45 signaling pathway. EVs were isolated from MDA-MB-231 cells and the plasma of patients with TNBC. Mass spectrometry revealed the presence of Gal3 binding protein (Gal3BP) in the isolated small EVs, which interacted with TNBC secreted Gal3. Gal3BP and Gal3 form a complex that induces a significant increase in T-regulatory cells in peripheral blood mononuclear cells (PBMCs). This increase correlates with a significant increase in suppressive interleukins 10 and 35. Blocking the CD45 receptor in PBMCs cultured with tumor-derived EVs impeded the immunosuppression exerted by the Gal3BP/Gal3 complex. This led to an increase in IFN-γ and the activation of CD4, CD8 and CD56 effector cells. This study suggests a tumor escape mechanism that may contribute to the development of a different immunotherapy strategy that complements current therapies used for TNBC.
Collapse
Affiliation(s)
- Annat Raiter
- Felsenstein Medical Research Center, Tel Aviv University, Faculty of Medicine, Petach Tikva, Israel
| | - Julia Lipovetsky
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva, Israel
| | - Asaf Stenbac
- Felsenstein Medical Research Center, Tel Aviv University, Faculty of Medicine, Petach Tikva, Israel
| | - Ido Lubin
- Felsenstein Medical Research Center, Tel Aviv University, Faculty of Medicine, Petach Tikva, Israel
| | - Rinat Yerushalmi
- Felsenstein Medical Research Center, Tel Aviv University, Faculty of Medicine, Petach Tikva, Israel
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
23
|
Srivastava N, Usmani SS, Subbarayan R, Saini R, Pandey PK. Hypoxia: syndicating triple negative breast cancer against various therapeutic regimens. Front Oncol 2023; 13:1199105. [PMID: 37492478 PMCID: PMC10363988 DOI: 10.3389/fonc.2023.1199105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the deadliest subtypes of breast cancer (BC) for its high aggressiveness, heterogeneity, and hypoxic nature. Based on biological and clinical observations the TNBC related mortality is very high worldwide. Emerging studies have clearly demonstrated that hypoxia regulates the critical metabolic, developmental, and survival pathways in TNBC, which include glycolysis and angiogenesis. Alterations to these pathways accelerate the cancer stem cells (CSCs) enrichment and immune escape, which further lead to tumor invasion, migration, and metastasis. Beside this, hypoxia also manipulates the epigenetic plasticity and DNA damage response (DDR) to syndicate TNBC survival and its progression. Hypoxia fundamentally creates the low oxygen condition responsible for the alteration in Hypoxia-Inducible Factor-1alpha (HIF-1α) signaling within the tumor microenvironment, allowing tumors to survive and making them resistant to various therapies. Therefore, there is an urgent need for society to establish target-based therapies that overcome the resistance and limitations of the current treatment plan for TNBC. In this review article, we have thoroughly discussed the plausible significance of HIF-1α as a target in various therapeutic regimens such as chemotherapy, radiotherapy, immunotherapy, anti-angiogenic therapy, adjuvant therapy photodynamic therapy, adoptive cell therapy, combination therapies, antibody drug conjugates and cancer vaccines. Further, we also reviewed here the intrinsic mechanism and existing issues in targeting HIF-1α while improvising the current therapeutic strategies. This review highlights and discusses the future perspectives and the major alternatives to overcome TNBC resistance by targeting hypoxia-induced signaling.
Collapse
Affiliation(s)
- Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rajasekaran Subbarayan
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Educations, Chennai, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, New Delhi, India
| | - Pranav Kumar Pandey
- Dr. R.P. Centre for Opthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Ensenyat-Mendez M, Orozco JIJ, Llinàs-Arias P, Íñiguez-Muñoz S, Baker JL, Salomon MP, Martí M, DiNome ML, Cortés J, Marzese DM. Construction and validation of a gene expression classifier to predict immunotherapy response in primary triple-negative breast cancer. COMMUNICATIONS MEDICINE 2023; 3:93. [PMID: 37430006 DOI: 10.1038/s43856-023-00311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/31/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) improve clinical outcomes in triple-negative breast cancer (TNBC) patients. However, a subset of patients does not respond to treatment. Biomarkers that show ICI predictive potential in other solid tumors, such as levels of PD-L1 and the tumor mutational burden, among others, show a modest predictive performance in patients with TNBC. METHODS We built machine learning models based on pre-ICI treatment gene expression profiles to construct gene expression classifiers to identify primary TNBC ICI-responder patients. This study involved 188 ICI-naïve and 721 specimens treated with ICI plus chemotherapy, including TNBC tumors, HR+/HER2- breast tumors, and other solid non-breast tumors. RESULTS The 37-gene TNBC ICI predictive (TNBC-ICI) classifier performs well in predicting pathological complete response (pCR) to ICI plus chemotherapy on an independent TNBC validation cohort (AUC = 0.86). The TNBC-ICI classifier shows better performance than other molecular signatures, including PD-1 (PDCD1) and PD-L1 (CD274) gene expression (AUC = 0.67). Integrating TNBC-ICI with molecular signatures does not improve the efficiency of the classifier (AUC = 0.75). TNBC-ICI displays a modest accuracy in predicting ICI response in two different cohorts of patients with HR + /HER2- breast cancer (AUC = 0.72 to pembrolizumab and AUC = 0.75 to durvalumab). Evaluation of six cohorts of patients with non-breast solid tumors treated with ICI plus chemotherapy shows overall poor performance (median AUC = 0.67). CONCLUSION TNBC-ICI predicts pCR to ICI plus chemotherapy in patients with primary TNBC. The study provides a guide to implementing the TNBC-ICI classifier in clinical studies. Further validations will consolidate a novel predictive panel to improve the treatment decision-making for patients with TNBC.
Collapse
Affiliation(s)
- Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Sandra Íñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Jennifer L Baker
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthew P Salomon
- Department of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| | - Mercè Martí
- Immunology Unit, Department of Cell Biology, Physiology, and Immunology, Institut de Biotecnologia I Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maggie L DiNome
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain
- Medical Scientia Innovation Research (MedSIR), Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - Diego M Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
25
|
Li J, Goh ELK, He J, Li Y, Fan Z, Yu Z, Yuan P, Liu DX. Emerging Intrinsic Therapeutic Targets for Metastatic Breast Cancer. BIOLOGY 2023; 12:697. [PMID: 37237509 PMCID: PMC10215321 DOI: 10.3390/biology12050697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Breast cancer is now the most common cancer worldwide, and it is also the main cause of cancer-related death in women. Survival rates for female breast cancer have significantly improved due to early diagnosis and better treatment. Nevertheless, for patients with advanced or metastatic breast cancer, the survival rate is still low, reflecting a need for the development of new therapies. Mechanistic insights into metastatic breast cancer have provided excellent opportunities for developing novel therapeutic strategies. Although high-throughput approaches have identified several therapeutic targets in metastatic disease, some subtypes such as triple-negative breast cancer do not yet have an apparent tumor-specific receptor or pathway to target. Therefore, exploring new druggable targets in metastatic disease is a high clinical priority. In this review, we summarize the emerging intrinsic therapeutic targets for metastatic breast cancer, including cyclin D-dependent kinases CDK4 and CDK6, the PI3K/AKT/mTOR pathway, the insulin/IGF1R pathway, the EGFR/HER family, the JAK/STAT pathway, poly(ADP-ribose) polymerases (PARP), TROP-2, Src kinases, histone modification enzymes, activated growth factor receptors, androgen receptors, breast cancer stem cells, matrix metalloproteinases, and immune checkpoint proteins. We also review the latest development in breast cancer immunotherapy. Drugs that target these molecules/pathways are either already FDA-approved or currently being tested in clinical trials.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Eyleen L. K. Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Ji He
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Zhimin Fan
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan 250033, China;
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
26
|
Qian K, Liu Q. Narrative review on the role of immunotherapy in early triple negative breast cancer: unveiling opportunities and overcoming challenges. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2023; 4:16. [PMID: 38751461 PMCID: PMC11093071 DOI: 10.21037/tbcr-23-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2024]
Abstract
Background and Objective Triple negative breast cancer (TNBC) represents a highly aggressive breast cancer subtype, historically managed with chemotherapy regimens predominantly involving anthracyclines and taxanes, yielding unfavorable prognoses. This review endeavors to offer a thorough examination of the present state of treatment strategies for early stage triple negative breast cancer (eTNBC), with a particular emphasis on immunotherapy modalities, combination therapies, predictive biomarkers, and ongoing clinical trials. The principal aim of this review is to meticulously assess the available literature, ascertain significant discoveries, and engage in discussions regarding their potential implications for future research endeavors, clinical applications, and policy formulation. Methods This review was conducted using PubMed and Google Scholar databases, with the latest update performed in March 2023. The search strategy was designed to ensure a comprehensive analysis of the literature, with a focus on recent advancements. Key Content and Findings We critically assess the current eTNBC treatment landscape, covering efficacy and limitations of monotherapy, combination therapies, and predictive biomarkers. We highlight promising results from recent trials, address controversies surrounding chemotherapy, and explore optimal approaches for adjuvant and neoadjuvant therapy (NAT). Insights into personalized treatment strategies, ongoing trials, and future perspectives are provided, advancing our understanding of therapeutic options for eTNBC. Conclusions Through a comprehensive analysis of the literature, this review highlights the potential of immunotherapy, particularly in combination with chemotherapy, as a promising approach for treating eTNBC. However, further research is warranted to optimize treatment strategies, refine patient selection criteria, and identify reliable biomarkers for predicting response to immune checkpoint inhibitors (ICIs). The findings of this review hold significant implications for future research, clinical practice, and policy-making, offering valuable insights into the current challenges and advancements in eTNBC treatment. Ultimately, this knowledge can contribute to improved patient outcomes, enhanced quality of life, and the development of more effective therapeutic approaches for eTNBC.
Collapse
Affiliation(s)
- Keyang Qian
- Department of Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Mehdizadeh R, Shariatpanahi SP, Goliaei B, Rüegg C. Targeting myeloid-derived suppressor cells in combination with tumor cell vaccination predicts anti-tumor immunity and breast cancer dormancy: an in silico experiment. Sci Rep 2023; 13:5875. [PMID: 37041172 PMCID: PMC10090155 DOI: 10.1038/s41598-023-32554-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023] Open
Abstract
Among the different breast cancer subsets, triple-negative breast cancer (TNBC) has the worst prognosis and limited options for targeted therapies. Immunotherapies are emerging as novel treatment opportunities for TNBC. However, the surging immune response elicited by immunotherapies to eradicate cancer cells can select resistant cancer cells, which may result in immune escape and tumor evolution and progression. Alternatively, maintaining the equilibrium phase of the immune response may be advantageous for keeping a long-term immune response in the presence of a small-size residual tumor. Myeloid-derived suppressor cells (MDSCs) are activated, expanded, and recruited to the tumor microenvironment by tumor-derived signals and can shape a pro-tumorigenic micro-environment by suppressing the innate and adaptive anti-tumor immune responses. We recently proposed a model describing immune-mediated breast cancer dormancy instigated by a vaccine consisting of dormant, immunogenic breast cancer cells derived from the murine 4T1 TNBC-like cell line. Strikingly, these 4T1-derived dormant cells recruited fewer MDSCs compared to aggressive 4T1 cells. Recent experimental studies demonstrated that inactivating MDSCs has a profound impact on reconstituting immune surveillance against the tumor. Here, we developed a deterministic mathematical model for simulating MDSCs depletion from mice bearing aggressive 4T1 tumors resulting in immunomodulation. Our computational simulations indicate that a vaccination strategy with a small number of tumor cells in combination with MDSC depletion can elicit an effective immune response suppressing the growth of a subsequent challenge with aggressive tumor cells, resulting in sustained tumor dormancy. The results predict a novel therapeutic opportunity based on the induction of effective anti-tumor immunity and tumor dormancy.
Collapse
Affiliation(s)
- Reza Mehdizadeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
28
|
Sánchez-León ML, Jiménez-Cortegana C, Silva Romeiro S, Garnacho C, de la Cruz-Merino L, García-Domínguez DJ, Hontecillas-Prieto L, Sánchez-Margalet V. Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:5208. [PMID: 36982282 PMCID: PMC10048951 DOI: 10.3390/ijms24065208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Breast cancer (BC) continues to be the most diagnosed tumor in women and a very heterogeneous disease both inter- and intratumoral, mainly given by the variety of molecular profiles with different biological and clinical characteristics. Despite the advancements in early detection and therapeutic strategies, the survival rate is low in patients who develop metastatic disease. Therefore, it is mandatory to explore new approaches to achieve better responses. In this regard, immunotherapy arose as a promising alternative to conventional treatments due to its ability to modulate the immune system, which may play a dual role in this disease since the relationship between the immune system and BC cells depends on several factors: the tumor histology and size, as well as the involvement of lymph nodes, immune cells, and molecules that are part of the tumor microenvironment. Particularly, myeloid-derived suppressor cell (MDSC) expansion is one of the major immunosuppressive mechanisms used by breast tumors since it has been associated with worse clinical stage, metastatic burden, and poor efficacy of immunotherapies. This review focuses on the new immunotherapies in BC in the last five years. Additionally, the role of MDSC as a therapeutic target in breast cancer will be described.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Silvia Silva Romeiro
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
29
|
Detection of microsatellite instability high (MSI-H) status by targeted plasma-based genotyping in metastatic breast cancer. NPJ Breast Cancer 2022; 8:117. [PMCID: PMC9636209 DOI: 10.1038/s41523-022-00490-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractWe evaluate microsatellite instability-high (MSI-H) status with cell-free DNA (cfDNA) in metastatic breast cancer (MBC) and the association with clinico-genomic characteristics. Patients with MSI-H in cfDNA (Guardant360®, 74 gene next-generation sequencing (NGS) with MBC are identified. We conduct a retrospective review. The median number of alterations and a median maximum mutant allelic fraction (MAF) in MSI-H and non-MSI-H cohorts are compared with Mann–Whitney U-test. Of 6718 patients with breast cancer with ≥1 plasma NGS alteration, 42 (0.63%) have MSI-H. A median number of genomic alterations per sample is 11 in MSI-H vs. 3 in non-MSI-H (Mann–Whitney U-test p < 0.0001) and the median maximum MAF is 16.8% in MSI-H vs. 2.6% in non-MSI-H (Mann–Whitney U-test p < 0.0001). The co-existing genomic landscape is heterogeneous. The median response duration for seven patients receiving immunotherapy is 92 days (range 29–273 days). CfDNA can identify MSI-H in MBC. Research is needed to validate immunotherapy usage in cfDNA-detected MSI-H MBC.
Collapse
|
30
|
Corvaja C, Taurelli Salimbeni B, Nicolò E, Puglisi F, Curigliano G. Deciding on the best pharmacotherapy for advanced triple-negative breast cancer: expert guidance. Expert Opin Pharmacother 2022; 23:1765-1770. [PMID: 36268855 DOI: 10.1080/14656566.2022.2139176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Carla Corvaja
- Department of Medicine, University of Udine, Udine, Italy.,Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Clinical and Molecular Medicine, Oncology Unit, "La Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Eleonora Nicolò
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Fabio Puglisi
- Department of Medicine, University of Udine, Udine, Italy.,Department of Medicine, University of Udine, and Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano IRCCS, Aviano, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Mempel TR, Krappmann D. Combining precision oncology and immunotherapy by targeting the MALT1 protease. J Immunother Cancer 2022; 10:e005442. [PMID: 36270731 PMCID: PMC9594517 DOI: 10.1136/jitc-2022-005442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
An innovative strategy for cancer therapy is to combine the inhibition of cancer cell-intrinsic oncogenic signaling with cancer cell-extrinsic immunological activation of the tumor microenvironment (TME). In general, such approaches will focus on two or more distinct molecular targets in the malignant cells and in cells of the surrounding TME. In contrast, the protease Mucosa-associated lymphoid tissue protein 1 (MALT1) represents a candidate to enable such a dual approach by engaging only a single target. Originally identified and now in clinical trials as a lymphoma drug target based on its role in the survival and proliferation of malignant lymphomas addicted to chronic B cell receptor signaling, MALT1 proteolytic activity has recently gained additional attention through reports describing its tumor-promoting roles in several types of non-hematological solid cancer, such as breast cancer and glioblastoma. Besides cancer cells, regulatory T (Treg) cells in the TME are particularly dependent on MALT1 to sustain their immune-suppressive functions, and MALT1 inhibition can selectively reprogram tumor-infiltrating Treg cells into Foxp3-expressing proinflammatory antitumor effector cells. Thereby, MALT1 inhibition induces local inflammation in the TME and synergizes with anti-PD-1 checkpoint blockade to induce antitumor immunity and facilitate tumor control or rejection. This new concept of boosting tumor immunotherapy in solid cancer by MALT1 precision targeting in the TME has now entered clinical evaluation. The dual effects of MALT1 inhibitors on cancer cells and immune cells therefore offer a unique opportunity for combining precision oncology and immunotherapy to simultaneously impair cancer cell growth and neutralize immunosuppression in the TME. Further, MALT1 targeting may provide a proof of concept that modulation of Treg cell function in the TME represents a feasible strategy to augment the efficacy of cancer immunotherapy. Here, we review the role of MALT1 protease in physiological and oncogenic signaling, summarize the landscape of tumor indications for which MALT1 is emerging as a therapeutic target, and consider strategies to increase the chances for safe and successful use of MALT1 inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
32
|
Alonso-Miguel D, Fiering S, Arias-Pulido H. Proactive Immunotherapeutic Approaches against Inflammatory Breast Cancer May Improve Patient Outcomes. Cells 2022; 11:2850. [PMID: 36139425 PMCID: PMC9497132 DOI: 10.3390/cells11182850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory breast cancer (IBC) is highly metastatic at the onset of the disease with no IBC-specific treatments, resulting in dismal patient survival. IBC treatment is a clear unmet clinical need. This commentary highlights findings from a recent seminal approach in which pembrolizumab, a checkpoint inhibitor against programmed cell death protein 1 (PD-1), was provided to a triple-negative IBC patient as a neoadjuvant immune therapy combined with anthracycline-taxane-based chemotherapy. We highlight the findings of the case report and offer a perspective on taking a proactive approach to deploy approved immune checkpoint inhibitors. On the basis of our recently published research study, we propose in situ vaccination with direct injection of immunostimulatory agents into the tumor as an option to improve outcomes safely, effectively, and economically for IBC patients.
Collapse
Affiliation(s)
- Daniel Alonso-Miguel
- Department of Animal Medicine and Surgery, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Steven Fiering
- Department of Microbiology and Immunology, and Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, NH 03756, USA
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology, and Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, NH 03756, USA
| |
Collapse
|
33
|
Xing AY, Liu L, Liang K, Wang B. p53 missense mutation is associated with immune cell PD-L1 expression in triple-negative breast cancer. Cancer Invest 2022; 40:879-888. [PMID: 35980253 DOI: 10.1080/07357907.2022.2115058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The programmed death ligand 1 (PD-L1) is a pivotal biomarker of immunotherapy in triple negative breast cancer (TNBC). TP53 is reported as a positive regulatory predictor of immune efficacy. The correlation of p53 expression or mutation and PD-L1 expression is explored. By immunohistochemistry, PD-L1 expression between p53 mutation (missense and nonsense) and wild type; p53 no-expression/loss vs. expression were compared. There was a significant association between p53 mutation, especially missense mutation with higher histological grade, and PD-L1 expression in immune cells (ICs). Both p53 missense mutation and PD-L1 expression may be potential targets for improving immunotherapy response in TNBC.
Collapse
Affiliation(s)
- Ai-Yan Xing
- Department of Pathology, Shandong University Qilu Hospital, Jinan Wen Hua Xi Road 107, 250012, Jinan, P.R. China
| | - Long Liu
- Department of Pathology, Shandong University Qilu Hospital, Jinan Wen Hua Xi Road 107, 250012, Jinan, P.R. China
| | - Ke Liang
- Department of Pathology, Shandong University Qilu Hospital, Jinan Wen Hua Xi Road 107, 250012, Jinan, P.R. China
| | - Bin Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Key Laboratory of Metabolism and Gastrointestinal Tumor, the First Affiliated Hospital of Shandong First Medical University; Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University; Shandong Medicine and Health Key Laboratory of General Surgery, Jinan, P.R. China
| |
Collapse
|