1
|
Pourhajibagher M, Gharibpour F, Nikparto N, Bahrami R, Bahador A. The effect of photobiomodulation on oral microbiota dysbiosis: A literature review. Photodiagnosis Photodyn Ther 2025; 52:104525. [PMID: 39956443 DOI: 10.1016/j.pdpdt.2025.104525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
The balance, or dysbiosis, of the microbial community is crucial for human health and disease. While most microbes are harmless, some can lead to oral infections such as periodontal disease, dental caries, and infections related to Candida biofilms. Conventional treatments, such as mechanical debridement, antibiotics, probiotics, and prebiotics, aim to restore the balance of oral microbiota, but they encounter challenges like microbial resistance and patient compliance issues. To address these problems, laser therapy has emerged as a promising local treatment option. Among the various types of lasers, low-power lasers-specifically low-level laser therapy or photobiomodulation (PBM) therapy-are particularly favored for oral applications due to their antimicrobial effects and non-invasive properties. PBM influences oral microbiota dysbiosis through both direct and indirect pathways. The direct effect occurs when endogenous targets are remained within the cell or released into the colony. In contrast, an indirect effect can result from targets located in the tissues and cells surrounding the bacteria. However, studies using different irradiation protocols have produced varied results. Therefore, this study aims to investigate and review the effects of PBM on oral microbiota dysbiosis and its potential in promoting the maintenance of human health.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fateme Gharibpour
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
| | | | - Rashin Bahrami
- Department of Orthodontics, School of Dentistry, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Pousty D, Ma B, Mathews C, Halanur M, Mamane H, Linden KG. Biofilm inactivation using LED systems emitting germicidal UV and antimicrobial blue light. WATER RESEARCH 2024; 267:122449. [PMID: 39316962 DOI: 10.1016/j.watres.2024.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Biofilms have been widely detected in water distribution and water storage systems posing potential risks to drinking water safety by harboring and shedding pathogens. Light-based disinfection methods, such as germicidal ultraviolet (UV) and antimicrobial blue light (aBL), could serve as non-chemical alternatives for biofilm control. This study investigated the inactivation of pure-culture Pseudomonas aeruginosa biofilms and mixed-culture biofilms using three distinct light-based disinfection methods: a low-pressure (LP) UV lamp emitting at 254 nm, a UV light emitting diode (LED) at 270 nm, and an aBL LED at 405 nm. The biofilms were developed on three commonly used materials including polycarbonate (PC), polytetrafluoroethylene (PTFE), and polyvinyl chloride (PVC), to assess the impact of surface characteristics on light-based biofilm inactivation. Our findings show that all selected devices can effectively inactivate pure-culture and mixed-culture biofilms. While both UV devices (LP UV lamp and UV LED) provided significant inactivation at lower fluences (>1 log reduction at 20 mJ/cm2), aBL LED achieved significant inactivation at higher fluences for pure culture (maximum log reduction of 3.8 ± 0.5 at > 200,000 mJ/cm2). Inactivation performance also varied with surface materials, likely attributed to different surface properties including roughness, hydrophobicity, and surface charge. This study provides important information on using light-based technologies for biofilm control and highlights the effect of surface materials on their inactivation performance.
Collapse
Affiliation(s)
- Dana Pousty
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, United States; Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia St. Reno, NV 89557, United States
| | - Christian Mathews
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, United States
| | - Manohara Halanur
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadas Mamane
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, United States.
| |
Collapse
|
3
|
Özkan Karasu Y, Öner F, Kantarci A. Neutrophil response to Porphyromonas gingivalis is modulated by low-level laser application. Oral Dis 2024; 30:5268-5273. [PMID: 38591787 DOI: 10.1111/odi.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES Neutrophil response is critical in inflammatory regulation and immune response to bacterial infections. During periodontal disease, pathogenic bacteria lead to exaggerated neutrophil responses. We hypothesized that low-level laser application (LLLT), therapeutic strategy for dampening inflammatory processes, will regulate neutrophil activity in response to periodontopathogens. MATERIALS AND METHODS The impact of LLLT on neutrophil responses was measured by light delivered at wavelength of 850 nm. The direct effect of LLLT on P. gingivalis A7436 was determined by flow cytometry using LIVE/DEADTM Cell Vitality kit. The phagocytosis of P. gingivalis A7436 by human neutrophils was measured using flow cytometry. Superoxide generation was measured by cytochrome-C-reduction in the presence of N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP; 1 mM). Cytokine release by neutrophils was measured by multiplex immunoassay. RESULTS The phagocytosis of P. gingivalis by primary human neutrophils was significantly reduced in response to LLLT (p < 0.05). While LLLT led to increased superoxide production in neutrophils that were not challenged by P. gingivalis, it dampened the increased superoxide and IL-6 release by the neutrophils in response to P. gingivalis. LLLT did not directly affect the viability of P. gingivalis. CONCLUSION These results suggested that LLLT can provide therapeutic strategy in periodontal disease, regulating the neutrophil response to P. gingivalis.
Collapse
Affiliation(s)
- Yerda Özkan Karasu
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Faculty of Dentistry, Department of Periodontology, Ataturk University, Erzurum, Turkey
| | - Fatma Öner
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Faculty of Dentistry, Department of Periodontology, Bahcesehir University, Istanbul, Turkey
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- School of Dental Medicine, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Wenzler JS, Wurzel SC, Falk W, Böcher S, Wurzel PP, Braun A. Bactericidal Effect of Different Photochemical-Based Therapy Options on Implant Surfaces-An In Vitro Study. J Clin Med 2024; 13:4212. [PMID: 39064253 PMCID: PMC11278127 DOI: 10.3390/jcm13144212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Objectives: Photochemical systems are frequently recommended as an adjuvant treatment option in peri-implantitis therapy. The aim of the present study was to evaluate the efficacy of these treatment options, as well as a novel curcumin-based option, in a biofilm model on implants. Methods: Eighty dental implants were inoculated with an artificial biofilm of periodontal pathogens and placed in peri-implant pocket models. The following groups were analyzed: I, photodynamic therapy (PDT); II, PDT dye; III, curcumin/DMSO + laser; IV, curcumin/DMSO only; V, dimethyl sulfoxide (DMSO) only; VI, photothermal therapy (PTT); VII, PTT dye; VIII, control. After treatment, remaining bacterial loads were assessed microbiologically using quantitative real-time polymerase chain reaction analysis. Results: The PDT, PTT, and DMSO treatment methods were associated with statistically significant (p < 0.05) improvements in germ reduction in comparison with the other methods and the untreated control group. The mean percentage reductions were as follows: I (PDT) 93.9%, II (PDT dye) 62.9%, III (curcumin/DMSO + laser) 74.8%, IV (curcumin/DMSO only) 67.9%, V (DMSO) 89.4%, VI (PTT) 86.8%, and VII (PTT dye) 66.3%. Conclusions: The commercially available PDT and PTT adjuvant treatment systems were associated with the largest statistically significant reduction in periopathogenic bacteria on implant surfaces. However, activation with laser light at a suitable wavelength is necessary to achieve the bactericidal effects. The use of curcumin as a photosensitizer for 445 nm laser irradiation did not lead to any improvement in antibacterial efficacy in comparison with rinsing with DMSO solution alone.
Collapse
Affiliation(s)
- Johannes-Simon Wenzler
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| | - Svenja Caroline Wurzel
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| | - Wolfgang Falk
- Center for Dental Microbiology, Oro-Dental Microbiology, Hamburger Chausse 25, 24220 Flintbek, Germany
| | - Sarah Böcher
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| | - Piet Palle Wurzel
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| | - Andreas Braun
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| |
Collapse
|
5
|
El-Gendy AO, Ezzat S, Samad FA, Dabbous OA, Dahm J, Hamblin MR, Mohamed T. Studying the viability and growth kinetics of vancomycin-resistant Enterococcus faecalis V583 following femtosecond laser irradiation (420-465 nm). Lasers Med Sci 2024; 39:144. [PMID: 38809462 PMCID: PMC11136855 DOI: 10.1007/s10103-024-04080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Enterococcus faecalis is among the most resistant bacteria found in infected root canals. The demand for cutting-edge disinfection methods has rekindled research on photoinactivation with visible light. This study investigated the bactericidal activity of femtosecond laser irradiation against vancomycin-resistant Enterococcus faecalis V583 (VRE). The effect of parameters such as wavelength and energy density on the viability and growth kinetics of VRE was studied to design an optimized laser-based antimicrobial photoinactivation approach without any prior addition of exogenous photosensitizers. The most effective wavelengths were 430 nm and 435 nm at a fluence of 1000 J/cm2, causing a nearly 2-log reduction (98.6% and 98.3% inhibition, respectively) in viable bacterial counts. The colony-forming units and growth rate of the laser-treated cultures were progressively decreased as energy density or light dose increased at 445 nm but reached a limit at 1250 J/cm2. At a higher fluence of 2000 J/cm2, the efficacy was reduced due to a photobleaching phenomenon. Our results highlight the importance of optimizing laser exposure parameters, such as wavelength and fluence, in bacterial photoinactivation experiments. To our knowledge, this is the first study to report an optimized wavelength for the inactivation of VRE using visible femtosecond laser light.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Sarah Ezzat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Fatma Abdel Samad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ola Ali Dabbous
- Department of Medical Applications of Lasers, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, 12611, Egypt
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
6
|
Hayashi S, Takeuchi Y, Hiratsuka K, Kitanaka Y, Toyoshima K, Nemoto T, Aung N, Hakariya M, Ikeda Y, Iwata T, Aoki A. Effects of various light-emitting diode wavelengths on periodontopathic bacteria and gingival fibroblasts: An in vitro study. Photodiagnosis Photodyn Ther 2023; 44:103860. [PMID: 37884107 DOI: 10.1016/j.pdpdt.2023.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND In recent years, light has been used for bacterial control of periodontal diseases. This in vitro study evaluated the effects of light-emitting diode (LED) irradiation at different wavelengths on both Porphyromonas gingivalis and human gingival fibroblasts (HGF-1). METHODS P. gingivalis suspension was irradiated with LEDs of 365, 405, 450, 470, 565, and 625 nm at 50, 100, 150, and 200 mW/cm2 for 3 min (radiant exposure: 9, 18, 27, 36 J/cm2, respectively). Treated samples were anaerobically cultured on agar plates, and the number of colony-forming units (CFUs) was determined. Reactive oxygen species (ROS) levels were measured after LED irradiation. The viability and damage of HGF-1 were measured through WST-8 and lactate dehydrogenase assays, respectively. Gene expression in P. gingivalis was evaluated through quantitative polymerase chain reaction. RESULTS The greatest reduction in P. gingivalis CFUs was observed on irradiation at 365 nm with 150 mW/cm2 for 3 min (27 J/cm2), followed by 450 and 470 nm under the same conditions. While 365-nm irradiation significantly decreased the viability of HGF-1 cells, the cytotoxic effects of 450- and 470-nm irradiation were comparatively low and not significant. Further, 450-nm irradiation indicated increased ROS production and downregulated the genes related to gingipain and fimbriae. The 565- and 625-nm wavelength groups exhibited no antibacterial effects; rather, they significantly activated HGF-1 proliferation. CONCLUSIONS The 450- and 470-nm blue LEDs showed high antibacterial activity with low cytotoxicity to host cells, suggesting promising bacterial control in periodontal therapy. Additionally, blue LEDs may attenuate the pathogenesis of P. gingivalis.
Collapse
Affiliation(s)
- Sakura Hayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yutaro Kitanaka
- Department of Oral Diagnosis of General Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Keita Toyoshima
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Nemoto
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nay Aung
- Laser Light Dental Clinic Periodontal and Implant Center, Yangon, Myanmar
| | - Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Ikeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
7
|
Salviatto LTC, Prates RA, Pavani C, Bussadori SK, Deana AM. The influence of growth medium on the photodynamic susceptibility of Aggregatibacter actinomycetemcomitans to antimicrobial blue light. Lasers Med Sci 2023; 38:274. [PMID: 37993626 DOI: 10.1007/s10103-023-03937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The aim of this study was to investigate whether antimicrobial blue light (aBL) can cause the death of Aggregatibacter actinomycetemcomitans (A.a) and to determine the influence of different culture media, specifically brain heart infusion and blood agar, on bacterial survival fraction. An LED emitting at 403 ± 15 nm, with a radiant power of 1W, irradiance of 588.2 mW/cm2, and an irradiation time of 0 min, 1 min, 5 min, 10 min, 30 min, and 60 min, was used. The plates were incubated in microaerophilic conditions at 37 °C for 48 h, and the colony-forming units were counted. The photosensitizers were investigated using spectroscopy and fluorescence microscopy. There was no significant difference between the culture media (p > 0.05). However, a statistical reduction in both media was observed at 30 min (1058 J/cm2) (p < 0.05). The findings of this study suggest that aBL has the potential to kill bacteria regardless of the culture media used. Light therapy could be a promising and cost-effective strategy for preventing periodontal disease when used in combination with mechanical plaque control.
Collapse
Affiliation(s)
| | - Renato Araujo Prates
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| | - Christiane Pavani
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| | - Sandra Kalil Bussadori
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| | - Alessandro Melo Deana
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| |
Collapse
|
8
|
Toyoshima K, Ohsugi Y, Lin P, Komatsu K, Shiba T, Takeuchi Y, Hirota T, Shimohira T, Tsuchiya Y, Katagiri S, Iwata T, Aoki A. Blue Light-Emitting Diode Irradiation Without a Photosensitizer Alters Oral Microbiome Composition of Ligature-Induced Periodontitis in Mice. Photobiomodul Photomed Laser Surg 2023; 41:549-559. [PMID: 37788456 DOI: 10.1089/photob.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Objective: This study investigated the suppressive effects of blue light-emitting diode (LED) irradiation on bone resorption and changes in the oral microbiome of mice with ligature-induced periodontitis. Background: Wavelength of blue light has antimicrobial effects; however, whether blue LED irradiation alone inhibits the progression of periodontitis remains unclear. Methods: Nine-week-old male mice ligated ligature around the right maxillary second molar was divided into ligation alone (Li) and ligation with blue LED irradiation (LiBL) groups. The LiBL group underwent blue LED (wavelength, 455 nm) irradiation four times in a week at 150 mW/cm2 without a photosensitizer on the gingival tissue around the ligated tooth at a distance of 5 mm for 5 min. The total energy density per day was 45 J/cm2. Bone resorption was evaluated using micro-computed tomography at 8 days. Differences in the oral microbiome composition of the collected ligatures between the Li and LiBL groups were analyzed using next-generation sequencing based on the 16S rRNA gene from the ligatures. Results: Blue LED irradiation did not suppress bone resorption caused by ligature-induced periodontitis. However, in the LiBL group, the α-diversity, number of observed features, and Chao1 were significantly decreased. The relative abundances in phylum Myxococcota and Bacteroidota were underrepresented, and the genera Staphylococcus, Lactococcus, and Lactobacillus were significantly overrepresented by blue LED exposure. Metagenomic function prediction indicated an increase in the downregulated pathways related to microbial energy metabolism after irradiation. The co-occurrence network was altered to a simpler structure in the LiBL group, and the number of core genera decreased. Conclusions: Blue LED irradiation altered the composition and network of the oral microbiome of ligature-induced periodontitis in mice.
Collapse
Affiliation(s)
- Keita Toyoshima
- Department of Periodontology and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yujin Ohsugi
- Department of Periodontology and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Peiya Lin
- Department of Periodontology and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Yasuo Takeuchi
- Department of Periodontology and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomitsu Hirota
- Division of Molecular Genetics, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Shimohira
- Department of Periodontology and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yosuke Tsuchiya
- Department of Periodontology and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
9
|
Yuan L, Wang Y, Zong Y, Dong F, Zhang L, Wang G, Dong H, Wang Y. Response of genes related to iron and porphyrin transport in Porphyromonas gingivalis to blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112670. [PMID: 36841175 DOI: 10.1016/j.jphotobiol.2023.112670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Antimicrobial blue light (aBL) kills a variety of bacteria, including Porphyromonas gingivalis. However, little is known about the transcriptomic response of P. gingivalis to aBL therapy. This study was designed to evaluate the selective cytotoxicity of aBL against P. gingivalis over human cells and to further investigate the genetic response of P. gingivalis to aBL at the transcriptome level. METHODS Colony forming unit (CFU) testing, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to investigate the antimicrobial effectiveness of blue light against P. gingivalis. The temperatures of the irradiated targets were measured to prevent overheating. Multiple fluorescent probes were used to quantify reactive oxygen species (ROS) generation after blue-light irradiation. RNA sequencing (RNA-seq) was used to investigate the changes in global gene expression. Following the screening of target genes, real-time quantitative polymerase chain reaction (RT-qPCR) was performed to confirm the regulation of gene expression. RESULTS A 405 nm aBL at 100 mW/cm2 significantly killed P. gingivalis within 5 min while sparing human gingival fibroblasts (HGFs). No obvious temperature changes were detected in the irradiated surface under our experimental conditions. RNA-seq showed that the transcription of multiple genes was regulated, and RT-qPCR revealed that the expression levels of the genes RgpA and RgpB, which may promote heme uptake, as well as the genes Ftn and FetB, which are related to iron homeostasis, were significantly upregulated. The expression levels of the FeoB-2 and HmuR genes, which are related to hydroxyl radical scavenging, were significantly downregulated. CONCLUSIONS aBL strengthens the heme uptake and iron export gene pathways while reducing the ROS scavenging pathways in P. gingivalis, thus improving the accumulation of endogenous photosensitizers and enhancing oxidative damage to P. gingivalis.
Collapse
Affiliation(s)
- Lintian Yuan
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yucheng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanni Zong
- Harvard medical school, Boston, MA02115, USA
| | - Fan Dong
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Ludan Zhang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Guiyan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Huihua Dong
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yuguang Wang
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China.
| |
Collapse
|
10
|
Wang D, Nambu T, Tanimoto H, Iwata N, Yoshikawa K, Okinaga T, Yamamoto K. Interdental Plaque Microbial Community Changes under In Vitro Violet LED Irradiation. Antibiotics (Basel) 2021; 10:antibiotics10111348. [PMID: 34827286 PMCID: PMC8614803 DOI: 10.3390/antibiotics10111348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Oral microbiome dysbiosis has important links to human health and disease. Although photodynamic therapy influences microbiome diversity, the specific effect of violet light irradiation remains largely unknown. In this study, we analyzed the effect of violet light-emitting diode (LED) irradiation on interdental plaque microbiota. Interdental plaque was collected from 12 human subjects, exposed to violet LED irradiation, and cultured in a specialized growth medium. Next-generation sequencing of the 16S ribosomal RNA genes revealed that α-diversity decreased, whereas β-diversity exhibited a continuous change with violet LED irradiation doses. In addition, we identified several operational taxonomic units that exhibited significant shifts during violet LED irradiation. Specifically, violet LED irradiation led to a significant reduction in the relative abundance of Fusobacterium species, but a significant increase in several species of oral bacteria, such as Veillonella and Campylobacter. Our study provides an overview of oral plaque microbiota changes under violet LED irradiation, and highlights the potential of this method for adjusting the balance of the oral microbiome without inducing antibiotic resistance.
Collapse
Affiliation(s)
- Dan Wang
- Department of Operative Dentistry, Graduate School of Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan;
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
- Correspondence: (T.N.); (T.O.)
| | - Hiroaki Tanimoto
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| | - Naohiro Iwata
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| | - Kazushi Yoshikawa
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
- Correspondence: (T.N.); (T.O.)
| | - Kazuyo Yamamoto
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| |
Collapse
|
11
|
Hessling M, Haag R, Sicks B. Review of microbial touchscreen contamination for the determination of reasonable ultraviolet disinfection doses. GMS HYGIENE AND INFECTION CONTROL 2021; 16:Doc30. [PMID: 34956822 PMCID: PMC8662742 DOI: 10.3205/dgkh000401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: Touchscreens are usually microbially contaminated and can therefore act as fomites inside and outside healthcare environments. Due to the increasing use of such touchscreens and the growing awareness of infection risks, approaches that allow safe and automatic disinfection are desired. Ultraviolet (UV) irradiation, with its known antimicrobial efficacy, could achieve this goal, but should be executed with limited touchscreen degradation, disinfection duration, and energy consumption. It should also pose as little harm as possible to humans even in case of failure. Materials and methods: A literature search was performed first to identify the microorganisms most commonly found on touchscreens. Then, the 90% reduction doses (D90 doses) for the different relevant microorganisms and UV spectral ranges were determined from the literature, and irradiation doses are suggested that should reduce most of these important microorganisms by 5 log-levels. Results: The most frequent microorganisms are staphylococci, bacilli, micrococci, enterococci, pseudomonads and E. coli with small differences between hospital and community environments, if antibiotic resistance properties are ignored. The determined irradiation doses for a 5 log-reduction of the most frequent microorganisms are about 40 mJ/cm2, 80 J/cm2, 500 J/cm2 and 50 mJ/cm2 for the UV spectral ranges UVC, UVB, UVA and far-UVC, respectively. These doses are also sufficient to inactivate all nosocomial ESKAPE pathogens on touchscreens by at least 99.999%. Conclusion: Disinfection is achievable in all UV spectral ranges, with UVC being the most effective, enabling automatic disinfection within a minute or less. The much higher doses required in the UVB and UVA spectral range result in much longer disinfection durations, with the advantage of a reduced risk to humans. For all kinds of UV irradiation, the doses should be limited to reasonable values to avoid irradiating an already more or less sterile surface and to prevent degradation of touchscreen devices.
Collapse
Affiliation(s)
- Martin Hessling
- Ulm University of Applied Sciences, Institute of Medical Engineering and Mechatronics, Ulm, Germany
| | - Robin Haag
- Ulm University of Applied Sciences, Institute of Medical Engineering and Mechatronics, Ulm, Germany
| | - Ben Sicks
- Ulm University of Applied Sciences, Institute of Medical Engineering and Mechatronics, Ulm, Germany
| |
Collapse
|
12
|
Jiang Q, Yu Y, Xu R, Zhang Z, Liang C, Sun H, Deng F, Yu X. The temporal shift of peri-implant microbiota during the biofilm formation and maturation in a canine model. Microb Pathog 2021; 158:105100. [PMID: 34302932 DOI: 10.1016/j.micpath.2021.105100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Although the mature peri-implant biofilm composition is well studied, there is very little information on the succession of in vivo dental implant colonization. The aim of this study was to characterize the temporal changes and diversity of peri-implant supra-mucosal and sub-mucosal microbiota during the process of the plaque maturation. MATERIALS AND METHODS Dental implants (n = 25) were placed in the mandible of 3 beagle dogs. Illumina MiSeq sequencing of the hypervariable V3-V4 region of the 16S rRNA gene amplicons was used to characterize the supra/sub-mucosal microbiota in the peri-implant niches at 1day (T1), 7days (T2), 14days (T3), 21days (T4) and 28days (T5) after Phase Ⅱ surgery of the healing abutment placement. QIIME, Mothur, LEfSe and R-package were used for downstream analysis. RESULTS A total of 1184 operational taxonomic units (OTUs), assigned into 22 phyla, 264 genera and 339 species were identified. In supra-mucosal niches, the alpha parameters of shannon, sobs and chao1 displayed significant differences between T1 and other time-points. However, in sub-mucosal niches, only sobs, chao1, and ace indexes displayed significant differences between T1 and T3, and T1 and T5. Beta-diversity showed statistically significant difference between T1 and T2, T3, T4, T5 within both sub-mucosal and supra-mucosal plaque. The phyla Bacteroidetes, Proteobacteria and Firmicutes were the most dominant phyla of both sub-mucosal and supra-mucosal niches at all time-points and Firmicutes increased during the maturation of peri-implant plaque. At the genus level, Neisseria decreased significantly after T1 suggesting the establishment of an anaerobic microenvironment. A decrease of Porphyromonas during the formation of sub-mucosal microbial community was also detected. Co-occurrence network analysis exhibited a more complicated co-occurrence relationship of bacterial species in the sub-mucosal niches. Fusobacterium nucleatum, Filifactor villosus, and some other species may play a crucial role in biofilm maturation. CONCLUSIONS The present results suggested that the development of peri-implant biofilm followed a similar pattern to dental plaque formation. Sub-mucosal biofilm may go through a more complicated procedure of maturation than supra-mucosal biofilm.
Collapse
Affiliation(s)
- Qiming Jiang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yi Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Ruogu Xu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Chaoan Liang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Hanyu Sun
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Xiaolin Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
13
|
Rapacka-Zdończyk A, Woźniak A, Michalska K, Pierański M, Ogonowska P, Grinholc M, Nakonieczna J. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne) 2021; 8:642609. [PMID: 34055830 PMCID: PMC8149737 DOI: 10.3389/fmed.2021.642609] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Photodynamic inactivation of microorganisms (aPDI) is an excellent method to destroy antibiotic-resistant microbial isolates. The use of an exogenous photosensitizer or irradiation of microbial cells already equipped with endogenous photosensitizers makes aPDI a convenient tool for treating the infections whenever technical light delivery is possible. Currently, aPDI research carried out on a vast repertoire of depending on the photosensitizer used, the target microorganism, and the light delivery system shows efficacy mostly on in vitro models. The search for mechanisms underlying different responses to photodynamic inactivation of microorganisms is an essential issue in aPDI because one niche (e.g., infection site in a human body) may have bacterial subpopulations that will exhibit different susceptibility. Rapidly growing bacteria are probably more susceptible to aPDI than persister cells. Some subpopulations can produce more antioxidant enzymes or have better performance due to efficient efflux pumps. The ultimate goal was and still is to identify and characterize molecular features that drive the efficacy of antimicrobial photodynamic inactivation. To this end, we examined several genetic and biochemical characteristics, including the presence of individual genetic elements, protein activity, cell membrane content and its physical properties, the localization of the photosensitizer, with the result that some of them are important and others do not appear to play a crucial role in the process of aPDI. In the review, we would like to provide an overview of the factors studied so far in our group and others that contributed to the aPDI process at the cellular level. We want to challenge the question, is there a general pattern of molecular characterization of aPDI effectiveness? Or is it more likely that a photosensitizer-specific pattern of molecular characteristics of aPDI efficacy will occur?
Collapse
Affiliation(s)
| | - Agata Woźniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Klaudia Michalska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Pierański
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Patrycja Ogonowska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
14
|
Lusche I, Dirk C, Frentzen M, Meister J. Cavity Disinfection With a 445 nm Diode Laser Within the Scope of Restorative Therapy - A Pilot Study. J Lasers Med Sci 2021; 11:417-426. [PMID: 33425292 DOI: 10.34172/jlms.2020.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Cavity disinfection is necessary to prevent a progressive infection of the crown dentin and pulp. Increasing intolerance and resistance to antiseptics and antibiotics as well as the controversy over the effects of those on the dental hard tissue and composite have prompted the investigation of alternative treatment options. The objective of this pilot study is to evaluate the antibacterial potential of a diode laser with a wavelength of 445 nm in the cavity preparation using the bacterium Streptococcus salivarius associated with caries in conjunction with the characteristics and influences of dentin on light transmission. Methods: The bactericidal effect of the laser irradiation was determined in culture experiments by using caries-free human dentin samples on bacteria-inoculated agar. For this, dentin discs (horizontally cut coronal dentin) of 500 µm and 1000 µm thicknesses were produced and irradiated with the laser with irradiation parameters of 0.7-1 W in a cw-mode and exposure times of between 5-30 s. Based on the different sample thicknesses, the penetration depth effect of the irradiation was ascertained after the subsequent incubation of the bacteria-inoculated agar. Additional influential parameters on the irradiation transmission were investigated, including surface moisture, tooth color as well as the presence of a smear layer on the dentin surface. Results: The optical transmission values of the laser radiation for dentin were significantly dependent on the sample thickness (P = 0.006) as well as its moisture content (P = 0.013) and were independent of the presence of a smear layer. There was a 40% reduction in bacteria after the radiography of the 500-µm-thick dentin samples, which was shown as the lowest laser dose (443 J/cm2). Conclusion: These findings indicate that the diode laser with light emission at a wavelength of 445 nm is interesting for the supportive cavity disinfection within the scope of caries therapy and show potential for clinical applications.
Collapse
Affiliation(s)
- Inés Lusche
- Department of Operative and Preventive Dentistry, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany
| | - Cornelius Dirk
- Oral Technology, Bonn University, Wilhelmsplatz 5, 53111 Bonn, Germany
| | - Matthias Frentzen
- Department of Operative and Preventive Dentistry, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Center of Dento-Maxillo-Facial Medicine, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany
| | - Jörg Meister
- Center of Dento-Maxillo-Facial Medicine, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Center of Applied Medical Laser Research and Biomedical Optics (AMLaReBO), Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Sicks B, Hönes K, Spellerberg B, Hessling M. Blue LEDs in Endotracheal Tubes May Prevent Ventilator-Associated Pneumonia. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020. [DOI: 10.1089/photob.2020.4842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ben Sicks
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Katharina Hönes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
16
|
Felix Gomez GG, Lippert F, Ando M, Zandona AF, Eckert GJ, Gregory RL. Photoinhibition of Streptococcus mutans Biofilm-Induced Lesions in Human Dentin by Violet-Blue Light. Dent J (Basel) 2019; 7:dj7040113. [PMID: 31835833 PMCID: PMC6960986 DOI: 10.3390/dj7040113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/29/2019] [Accepted: 11/28/2019] [Indexed: 01/13/2023] Open
Abstract
This in vitro study determined the effectiveness of violet-blue light on Streptococcus mutans (UA159) biofilm induced dentinal lesions. Biofilm was formed on human dentin specimens in a 96-well microtiter plate and incubated for 13 h in the presence of tryptic soy broth (TSB) or TSB supplemented with 1% sucrose (TSBS). Violet-blue light (405 nm) from quantitative light-induced fluorescence (QLFTM) was used to irradiate the biofilm. Supernatant liquid was removed, and the biofilm was irradiated continuously with QLF for 5 min twice daily with an interval of 6 h for 5 d, except with one treatment on the final day. Colony forming units (CFU) of the treated biofilm, changes in fluorescence (∆F; QLF-Digital BiluminatorTM), lesion depth (L), and integrated mineral loss (∆Z; both transverse microradiography) were quantified at the end of the fifth day. Statistical analysis used analysis of variance (ANOVA), testing at a 5% significance level. In the violet-blue light irradiated groups, there was a significant reduction (p < 0.05) of bacterial viability (CFU) of S. mutans with TSB and TSBS. Violet-blue light irradiation resulted in the reduction of ∆F and L of the dentinal surface with TSBS. These results indicate that violet-blue light has the capacity to reduce S. mutans cell numbers.
Collapse
Affiliation(s)
- Grace Gomez Felix Gomez
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
| | - Frank Lippert
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (F.L.); (M.A.)
| | - Masatoshi Ando
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (F.L.); (M.A.)
| | - Andrea F. Zandona
- Department of Comprehensive Care, Tufts School of Dental Medicine, Boston, MA 02111, USA;
| | - George J. Eckert
- Department of Biostatistics, Indiana University, Indianapolis, IN 46202, USA
| | - Richard L. Gregory
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
- Correspondence: ; Tel.: +1-317-274-9949
| |
Collapse
|
17
|
Photonic Therapy in Periodontal Diseases an Overview with Appraisal of the Literature and Reasoned Treatment Recommendations. Int J Mol Sci 2019; 20:ijms20194741. [PMID: 31554277 PMCID: PMC6801906 DOI: 10.3390/ijms20194741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/13/2019] [Accepted: 09/21/2019] [Indexed: 12/26/2022] Open
Abstract
Recent reviews and meta-analyses of the literature over the past quarter-century have failed to provide enough evidence to prove or disprove the actual utility of photonic therapy in periodontitis, alone or adjunctive to conventional approaches. This apparent paradox has been explained by the many physical, molecular, biological, anatomical, and technical variables of photonic treatments, which can differ in light-emitting devices (laser or LED), wavelengths, irradiation power and modes, clinical objectives, follow-up times, disease grading, and assessment methods. This multi-faceted, controversial scenario has led practitioners to underestimate the actual potential of photonic therapy in periodontal diseases. In this critical appraisal of the literature, we have briefly summarized the main photonic therapies and instruments used in Periodontology, highlighting their main characteristics and limitations. Then, we have tried to identify and discuss the key methodological issues which can have an impact on the outcome of photonic therapies. Our main goal was to identify the best parameters, settings, and methodologies to perform effective periodontal photonic treatments and to extrapolate some recommendations for clinical use. Should these recommendations find a consensus among periodontologists and be adopted in future clinical studies, they will hopefully contribute to dissipate the present confusion and uncertainty on this complex matter.
Collapse
|
18
|
Comparison of different laser-based photochemical systems for periodontal treatment. Photodiagnosis Photodyn Ther 2019; 27:433-439. [PMID: 31319164 DOI: 10.1016/j.pdpdt.2019.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE The main aim in periodontitis treatment is to remove supragingival and subgingival biofilm. Mechanical treatment to eliminate pathogenic bacteria is limited by morphological conditions on the root surface. This study assessed the antibacterial effectiveness of different laser-based photochemical systems, particularly a novel curcumin-based option. METHODS Ninety-one titanium bars were inoculated with an artificial biofilm of common pathogenic periodontal bacteria and inserted into an artificial periodontal pocket model. The following groups (n = 13) were tested: 1, curcumin solution plus SLB laser irradiation (C + L; 445 nm, 0.6 W, 25% duty cycle, 100 Hz, 10 s); 2, curcumin solution (Cur); 3, dimethyl sulfoxide solution (DMSO); 4, SiroLaser Blue (SLB) - laser irradiation (445 nm, 0.6 W, 25% duty cycle, 100 Hz, 10 s); 5, antimicrobial photodynamic therapy (aPDT); 6, antimicrobial photothermal therapy (aPTT); 7, control. The samples were stored in Eppendorf tubes and analyzed microbiologically using quantitative real-time polymerase chain reaction (PCR). The main parameter for analyzing group differences was the total bacterial load. Statistical analysis was performed with nonparametric methods. RESULTS Statistically significant reductions in bacterial count were observed in all experimental groups (p < 0.05). The mean percentage reductions were as follows: SLB, 95.03%; aPDT, 83.91%; DMSO, 95.69%; C + L, 97.15%. No statistically significant differences in bacteria reduction were observed for laser alone (SLB), DMSO, or curcumin with or without additional laser irradiation. CONCLUSIONS The greatest antibacterial efficacy was observed in samples treated with aPTT. Using curcumin as a photosensitizing agent for 445 nm laser irradiation did not result in improved antibacterial effectiveness in comparison with laser alone.
Collapse
|
19
|
Shany-Kdoshim S, Polak D, Houri-Haddad Y, Feuerstein O. Killing mechanism of bacteria within multi-species biofilm by blue light. J Oral Microbiol 2019; 11:1628577. [PMID: 31275529 PMCID: PMC6598489 DOI: 10.1080/20002297.2019.1628577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Objectives: The aim of the study was to characterize the immediate and delayed effects of non-coherent blue-light treatment on the composition and viability of an in vitro biofilm composed of anaerobic multispecies, as well as the mechanisms involved. Methods: A multispecies biofilm was constructed of Streptococcus sanguinis, Actinomyces naeslundii, Porphyromonas gingivalis and Fusobacterium nucleatum, test groups were exposed to blue light. The multispecies biofilm was explored with a newly developed method based on flow cytometry and confocal microscopy. The involvement of the paracrine pathway in the phototoxic mechanism was investigated by a crossover of the supernatants between mono-species P. gingivalis and F. nucleatum biofilms. Results: Blue light led to a reduction of about 50% in the viable pathogenic bacteria P. gingivalis and F. nucleatum, vs that in the non-exposed biofilm. Biofilm thickness was also reduced by 50%. The phototoxic effect of blue light on mono-species biofilm was observed in P. gingivalis, whereas F. nucleatum biofilm was unaffected. A lethal effect was obtained when the supernatant of P. gingivalis biofilm previously exposed to blue light was added to the F. nucleatum biofilm. The effect was circumvented by the addition of reactive oxygen species (ROS) scavengers to the supernatant. Conclusion: Blue-light has an impact on the bacterial composition and viability of the multispecies biofilm. The phototoxic effect of blue light on P. gingivalis in biofilm was induced directly and on F. nucleatum via ROS mediators of the paracrine pathway. This phenomenon may lead to a novel approach for 'replacement therapy,' resulting in a less periodonto-pathogenic biofilm.
Collapse
Affiliation(s)
- Sharon Shany-Kdoshim
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - David Polak
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Osnat Feuerstein
- Department of Prosthodontics, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
20
|
High-resolution novel method for tracking bacteria in a multi-species biofilm. Arch Microbiol 2019; 201:259-266. [PMID: 30610246 DOI: 10.1007/s00203-018-1614-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023]
Abstract
The aim of this study is to establish a novel high resolution tracking ability of a specific bacterium in multispecies biofilm. A periodontal multispecies biofilm was constructed with Streptococcus sanguis, Actinomyces naeslundii, Porphyromonas gingivalis and Fusobacterium nucleatum. A single species was stained with fluorescein isothiocyanate (FITC). The mature biofilm was stained for viability (propidium iodide) and analysis was performed with flow cytometry. The sensitivity of the assay was compared with colony forming units (CFU) counts. A single cell suspension of P. gingivalis was grown in broth and biofilm to identify the location of these events on side scatter and forward scatter. The sensitivity of the assay was comparable to that of the CFU counts. The assay allows quantification of the ratio of a single bacterium within the biofilm, and its viable proportion. The described method is reproducible and of high resolution, and allows the examination of microbes' composition and viability within a biofilm structure.
Collapse
|
21
|
Ponomareva AL, Buzoleva LS, Bogatyrenko EA. Abiotic Environmental Factors Affecting the Formation of Microbial Biofilms. BIOL BULL+ 2018. [DOI: 10.1134/s106235901805014x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Gomez GF, Huang R, Eckert G, Gregory RL. Effect of phototherapy on the metabolism of Streptococcus mutans biofilm based on a colorimetric tetrazolium assay. J Oral Sci 2018; 60:242-246. [PMID: 29925708 DOI: 10.2334/josnusd.17-0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of this in vitro study was to determine the effect of violet-blue light on the metabolic activity of early Streptococcus mutans biofilm, reincubated at 0, 2, and 6 h after 5 min of violet-blue light treatment. S. mutans UA159 biofilm cells were cultured for 12 to 16 h in microtiter plates with Tryptic Soy broth (TSB) or TSB with 1% sucrose (TSBS) and irradiated with violet-blue light for 5 min. After irradiation, the plates were reincubated at 37°C for 0, 2, or 6 h in 5% CO2. Colorimetric tetrazolium salt reduction assay was used to investigate bacterial metabolic activity. Mixed model ANOVA was used to find the difference between the violet-blue light treated and nontreated groups. Bacterial metabolic activity was significantly lower in the violet-blue light group for TSB than in the nontreated group (P < 0.0001) regardless of recovery time. However, the differences between metabolic activity in the treated groups without sucrose decreased over time. For TSBS, metabolic activity was significantly lower with violet-blue light at 0 and 2 h. Violet-blue light inhibited the metabolic activity of S. mutans biofilm cells in the light-treated group. This finding may present a unique treatment method for patients with active caries.
Collapse
Affiliation(s)
- Grace F Gomez
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry
| | - Ruijie Huang
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University
| | - George Eckert
- Department of Biostatistics, Indiana University School of Medicine
| | - Richard L Gregory
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry
| |
Collapse
|
23
|
Plavskii VY, Mikulich AV, Tretyakova AI, Leusenka IA, Plavskaya LG, Kazyuchits OA, Dobysh II, Krasnenkova TP. Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:172-183. [PMID: 29715591 DOI: 10.1016/j.jphotobiol.2018.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/19/2018] [Accepted: 04/14/2018] [Indexed: 12/23/2022]
Abstract
It is shown that exposure of suspensions of gram-positive Staphylococcus aureus, gram-negative Escherichia coli and yeast-like fungi Candida albicans to laser radiation of blue spectral region with 405 and 445 nm causes their growth inhibition without prior addition of exogenous photosensitizers. It is experimentally confirmed that compounds of flavin type capable of sensitizing the formation of reactive oxygen species can act as acceptors of optical radiation of blue spectral region determining its antimicrobial effect along with endogenous metal-free porphyrins (the role of endogenous porphyrins has been confirmed earlier by a number of researchers). The participation of these compounds in the antimicrobial effect of laser radiation is supported by the registration of porphyrin and flavin fluorescence in extracts of microbial cells upon excitation by radiation used to inactivate the pathogens. In addition, the intensity of the porphyrin fluorescence in extracts of microbial cells in the transition from radiation with λ = 405 nm to radiation with λ = 445 nm decreases by 15-30 times, whereas the photosensitivity of the cells under study in this transition decreases only 3.7-6.2 times. The contribution of porphyrin photosensitizers is most pronounced upon exposure to radiation with λ = 405 nm (absorption maximum of the Soret band of porphyrins), and flavins - upon exposure to radiation with λ = 445 nm (maximum in the flavin absorption spectrum and minimum in the absorption spectrum of porphyrins). The ratio between the intensity of the porphyrin and flavin components in the fluorescence spectrum of extracts depends on the type of microbial cells.
Collapse
Affiliation(s)
- V Yu Plavskii
- State Scientific Institution B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 220072 Minsk, 68-2 Nezavisimosti ave., Belarus.
| | - A V Mikulich
- State Scientific Institution B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - A I Tretyakova
- State Scientific Institution B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - I A Leusenka
- State Scientific Institution B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - L G Plavskaya
- State Scientific Institution B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 220072 Minsk, 68-2 Nezavisimosti ave., Belarus
| | - O A Kazyuchits
- Republican Manufacturing Unitary Enterprise Academpharm, 220141 Minsk, Kuprevich st. 5/3, Belarus
| | - I I Dobysh
- Republican Manufacturing Unitary Enterprise Academpharm, 220141 Minsk, Kuprevich st. 5/3, Belarus
| | - T P Krasnenkova
- Republican Manufacturing Unitary Enterprise Academpharm, 220141 Minsk, Kuprevich st. 5/3, Belarus
| |
Collapse
|
24
|
Remediation of adult black dental stains by phototherapy. BDJ Open 2018; 4:17035. [PMID: 29977603 PMCID: PMC5933729 DOI: 10.1038/s41405-018-0001-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/18/2022] Open
Abstract
Introduction and aims This study investigates the effects of the application of antimicrobial phototherapy on black-stained tooth surfaces. Key variables were area, color and time taken to reappearance of black stain following dental prophylaxis with and without antimicrobial phototherapy. Differences in bacterial composition of black stain (specifically Aggregatibacter actinomycetemcomitans, Tannerella forsythia, and Porphyromonas gingivalis) were analyzed. Material and methods The phototherapy device used was GLO™ Science LLC, New York, America, emitting light at 475 nm and a power of 3 W. Light was applied in 2 cycles of 8 min on 31 volunteers. Microbial identification was carried out on DNA extracted from black plaque. This study is registered with ClinicalTrials.gov, number NCT03309748. Results Following antimicrobial phototherapy, 64.5% of patients displayed reduced pigmentation area. Plaque color was lighter in 48.4% of subjects. Pigmentation area and depth of color returned to normal levels during the course of the study. Colonization by the three bacterial species decreased, although the changes were not statistically significant. We report a key novel finding showing elevated levels of colonization by Tannerella forsythia (83.9%) in adult black stain. Conclusions Application of phototherapy results in a reduction in area, color and bacterial colonization of black plaque in adults. The changes were not found to be statistically significant, perhaps owing to the low illumination power of the home-whitening device. For the first time, we document the elevated presence of Tannerella forsythia in adult black stain. We also demonstrate the potential application of a commercially available home-whitening device for black plaque treatment.
Collapse
|
25
|
Tomb RM, White TA, Coia JE, Anderson JG, MacGregor SJ, Maclean M. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light. Photochem Photobiol 2018; 94:445-458. [DOI: 10.1111/php.12883] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Rachael M. Tomb
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - Tracy A. White
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - John E. Coia
- Department of Clinical Microbiology; Glasgow Royal Infirmary; Glasgow UK
| | - John G. Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - Scott J. MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
- Department of Biomedical Engineering; University of Strathclyde; Glasgow UK
| |
Collapse
|
26
|
Wang Y, Wang Y, Wang Y, Murray CK, Hamblin MR, Hooper DC, Dai T. Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist Updat 2017; 33-35:1-22. [PMID: 29145971 DOI: 10.1016/j.drup.2017.10.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
As an innovative non-antibiotic approach, antimicrobial blue light in the spectrum of 400-470nm has demonstrated its intrinsic antimicrobial properties resulting from the presence of endogenous photosensitizing chromophores in pathogenic microbes and, subsequently, its promise as a counteracter of antibiotic resistance. Since we published our last review of antimicrobial blue light in 2012, there have been a substantial number of new studies reported in this area. Here we provide an updated overview of the findings from the new studies over the past 5 years, including the efficacy of antimicrobial blue light inactivation of different microbes, its mechanism of action, synergism of antimicrobial blue light with other angents, its effect on host cells and tissues, the potential development of resistance to antimicrobial blue light by microbes, and a novel interstitial delivery approach of antimicrobial blue light. The potential new applications of antimicrobial blue light are also discussed.
Collapse
Affiliation(s)
- Yucheng Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Center, Aviation General Hospital, Beijing, China; Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Laser Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yuguang Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center of Digital Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Clinton K Murray
- Infectious Disease Service, San Antonio Military Medical Center, JBSA-Fort Sam Houston, TX, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Kodukula K, Faller DV, Harpp DN, Kanara I, Pernokas J, Pernokas M, Powers WR, Soukos NS, Steliou K, Moos WH. Gut Microbiota and Salivary Diagnostics: The Mouth Is Salivating to Tell Us Something. Biores Open Access 2017; 6:123-132. [PMID: 29098118 PMCID: PMC5665491 DOI: 10.1089/biores.2017.0020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The microbiome of the human body represents a symbiosis of microbial networks spanning multiple organ systems. Bacteria predominantly represent the diversity of human microbiota, but not to be forgotten are fungi, viruses, and protists. Mounting evidence points to the fact that the "microbial signature" is host-specific and relatively stable over time. As our understanding of the human microbiome and its relationship to the health of the host increases, it is becoming clear that many and perhaps most chronic conditions have a microbial involvement. The oral and gastrointestinal tract microbiome constitutes the bulk of the overall human microbial load, and thus presents unique opportunities for advancing human health prognosis, diagnosis, and therapy development. This review is an attempt to catalog a broad diversity of recent evidence and focus it toward opportunities for prevention and treatment of debilitating illnesses.
Collapse
Affiliation(s)
- Krishna Kodukula
- Bridgewater College, Bridgewater, Virginia
- ShangPharma Innovation, Inc., South San Francisco, California
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Nikolaos S. Soukos
- Dana Research Center, Department of Physics, Northeastern University, Boston, Massachusetts
| | - Kosta Steliou
- PhenoMatriX, Inc., Natick, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Walter H. Moos
- ShangPharma Innovation, Inc., South San Francisco, California
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
| |
Collapse
|
28
|
Antimicrobial efficacy of irradiation with visible light on oral bacteria in vitro: a systematic review. Future Med Chem 2017; 9:1557-1574. [PMID: 28792235 DOI: 10.4155/fmc-2017-0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Resistances to antibiotics employed for treatment of infectious diseases have increased to alarming numbers making it more and more difficult to treat diseases caused by microorganisms resistant to common antibiotics. Consequently, novel methods for successful inactivation of pathogens are required. In this instance, one alternative could be application of light for treatment of topical infections. Antimicrobial properties of UV light are well documented, but due to its DNA-damaging properties use for medical purposes is limited. In contrast, irradiation with visible light may be more promising. METHODS Literature was systematically screened for research concerning inactivation of main oral bacterial species by means of visible light. RESULTS Inactivation of bacterial species, especially pigmented ones, in planktonic state showed promising results. There is a lack of research examining the situation when organized as biofilms. CONCLUSION More research concerning situation in a biofilm state is required.
Collapse
|
29
|
Makdoumi K, Goodrich R, Bäckman A. Photochemical eradication of methicillin-resistant Staphylococcus aureus by blue light activation of riboflavin. Acta Ophthalmol 2017; 95:498-502. [PMID: 28205348 DOI: 10.1111/aos.13409] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/29/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE To compare elimination of methicillin-resistant Staphylococcus aureus (MRSA) by exposure of blue light alone and with riboflavin. METHODS A reference strain of MRSA was cultured and diluted in PBS with and without riboflavin (0.01%). Fifteen microlitre was added on a microscope slide, creating a fluid layer with a thickness of around 400 microns. Both of the bacterial suspensions were exposed to blue light, and the effect between exposure with and without riboflavin was compared. Evaluation involved two different wavelengths (412 and 450 nm) of blue light with a lower (5.4 J/cm2 ) and higher dose (approximately 28.5 J/cm2 ). The effect of 412 nm light was also evaluated for a thicker fluid layer (1.17 mm). After exposure, colony-forming units (CFUs) were determined for each solution. All measurements were repeated eight times. RESULTS The reductions in bacteria were similar for both wavelengths. With riboflavin, a statistically significant elimination was observed for both 412 and 450 nm (p < 0.001). At both dosages, the mean reduction was more pronounced with the presence of riboflavin than without it. Using the higher dose, CFU reduction was 99% and 98%, respectively, for 412 and 450 nm light. The bactericidal efficacy was high also in the deeper fluid layer (93%, higher dose). CONCLUSION Riboflavin enhanced the antibacterial effect on the exposed MRSA strain of blue light for both 412 and 450 nm blue light. This indicates that blue light could be considered for possible implementation in deep corneal infections.
Collapse
Affiliation(s)
- Karim Makdoumi
- Department of Ophthalmology; Faculty of Medicine and Health; Örebro University; Örebro Sweden
| | | | - Anders Bäckman
- Clinical Research Centre; Faculty of Medicine and Health; Örebro University; Örebro Sweden
| |
Collapse
|
30
|
Chair-side detection of Prevotella Intermedia in mature dental plaque by its fluorescence. Photodiagnosis Photodyn Ther 2017; 18:335-341. [DOI: 10.1016/j.pdpdt.2017.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 01/14/2023]
|
31
|
Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study. Lasers Med Sci 2017; 32:857-864. [PMID: 28283813 DOI: 10.1007/s10103-017-2185-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/02/2017] [Indexed: 02/03/2023]
Abstract
Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This study investigates the in vitro efficacy of photodynamic treatment (PDT) with methylene blue (MB) photoactivated with λ 635 nm diode laser and of λ 405 nm violet-blue LED phototreatment for the reduction of bacterial biofilm and lipopolysaccharide (LPS) adherent to titanium surface mimicking the bone-implant interface. Staphylococcus aureus biofilm grown on titanium discs with a moderately rough surface was subjected to either PDT (0.1% MB and λ 635 nm diode laser) or λ 405 nm LED phototreatment for 1 and 5 min. Bactericidal effect was evaluated by vital staining and residual colony-forming unit count. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, discs coated with Escherichia coli LPS were treated as above before seeding with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Both PDT and LED phototreatment induced a statistically significant (p < 0.05 or higher) reduction of viable bacteria, up to -99 and -98% (5 min), respectively. Moreover, besides bactericidal effect, PDT and LED phototreatment also inhibited LPS bioactivity, assayed as nitrite formation, up to -42%, thereby blunting host inflammatory response. Non-invasive phototherapy emerges as an attractive alternative in the treatment of peri-implantitis to reduce bacteria and LPS adherent to titanium implant surface without causing damage of surface microstructure. Its efficacy in the clinical setting remains to be investigated.
Collapse
|
32
|
Hessling M, Spellerberg B, Hoenes K. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths - a review on existing data. FEMS Microbiol Lett 2016; 364:fnw270. [PMID: 27915252 DOI: 10.1093/femsle/fnw270] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/29/2016] [Accepted: 11/25/2016] [Indexed: 12/31/2022] Open
Abstract
Visible light has strong disinfectant properties, a fact that is not well known in comparison to the antibacterial properties of UV light. This review compiles the published data on bacterial inactivation caused by visible light and endogenous photosensitizers. It evaluates more than 50 published studies containing information on about 40 different bacterial species irradiated within the spectral range from 380 to 780 nm. In the available data a high variability of photoinactivation sensitivity is observed, which may be caused by undefined illumination conditions. Under aerobic conditions almost all bacteria except spores should be reduced by at least three log-levels with a dose of about 500 J cm-2 of 405 nm irradiation, including both Gram-positive as well as Gram-negative microorganisms. Irradiation of 470 nm is also appropriate for photoinactivating all bacteria species investigated so far but compared to 405 nm illumination it is less effective by a factor between 2 and 5. The spectral dependence of the observed photoinactivation sensitivities gives reason to the assumption that a so far unknown photosensitizer may be involved at 470 nm photoinactivation.
Collapse
Affiliation(s)
- M Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - B Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - K Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
33
|
Fyrestam J, Bjurshammar N, Paulsson E, Mansouri N, Johannsen A, Östman C. Influence of culture conditions on porphyrin production in Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Photodiagnosis Photodyn Ther 2016; 17:115-123. [PMID: 27825899 DOI: 10.1016/j.pdpdt.2016.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/12/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Increasing antibiotic resistance among pathogens has raised the demands for new treatment methods such as antimicrobial photodynamic therapy (aPDT) and phototherapy (PT). Experiments for investigating the effects of these methods are often performed in vitro, but the procedures for cultivation of microbes vary between different studies. The aim of this study has been to elucidate how the profile of endogenously produced porphyrins differs by changing the variables of bacteria culturing conditions. METHODS Two oral pathogens, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, were selected as model organisms. The contents of porphyrins and heme in the bacteria were analysed with liquid chromatography-tandem mass spectrometry when bacteria was cultivated for different lengths of time (3-9 days), upon passaging as well as when growth medium were supplemented with or without horse blood. RESULTS Both porphyrin and heme content in A. actinomycetemcomitans are highly affected by the age of the culture, and that the porphyrin profiles changes during cultivation. When cultivated colonies of A. actinomycetemcomitans were passaged onto a new, fresh growth medium a large change in porphyrin content occurred. Additional porphyrins were detected; uroporphyrin and 7-carboxylporphyrin, and the total porphyrin content increased up to 28 times. When P. gingivalis was grown on blood containing medium higher concentrations of protoporphyrin IX (2.5 times) and heme (5.4 times) were quantified compared to bacteria grown without blood. CONCLUSIONS This study demonstrate that there is a need for more standardized culturing protocols when performing aPDT and PT experiments in vitro to avoid large variations in porphyrin profiles and concentrations, the aPDT/PT target compounds, depending on the culturing conditions.
Collapse
Affiliation(s)
- Jonas Fyrestam
- Department of Environmental Science and Analytical Chemistry, Division of Analytical and Toxicological Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | - Nadja Bjurshammar
- Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden
| | - Elin Paulsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| | - Nesrine Mansouri
- Department of Environmental Science and Analytical Chemistry, Division of Analytical and Toxicological Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | - Annsofi Johannsen
- Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden
| | - Conny Östman
- Department of Environmental Science and Analytical Chemistry, Division of Analytical and Toxicological Chemistry, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
34
|
Fornaini C, Merigo E, Rocca JP, Lagori G, Raybaud H, Selleri S, Cucinotta A. 450 nm Blue Laser and Oral Surgery: Preliminary ex vivo Study. J Contemp Dent Pract 2016; 17:795-800. [PMID: 27794148 DOI: 10.5005/jp-journals-10024-1933] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Dental diode lasers were started to be used at the end of the 1990s and were shown to possess several important characteristics, such as small size and low cost, as well as the advantage of optic fibers delivering system. Although only two wavelengths (810 and 980 nm) had been the most used dental diode lasers, a wavelength emitting in the blue portion of the spectrum has recently been proposed. AIM The aim of this ex vivo study was to compare the effectiveness of five different fiber-delivered laser wavelengths (450, 532, 808, 1064, and 1340 nm) in the oral soft tissue ablation. MATERIALS AND METHODS Specimens were surgically collected from the dorsal surface of four bovine tongues and, while deep thermal increase was measured by two thermocouples at 0.5 and 2 mm depth, surface temperature was recorded by an infrared thermometer. Subsequently, specimens were fixed in 10% buffered formalin solution, cut into slices, and embedded in paraffin blocks, and a pathologist made a morphological analysis by optic microscope assigning a score based on the quality of the cut and tissue damage. RESULTS The analysis showed the best quality of the cut and the lowest temperature increase on the specimens obtained with the shortest laser wavelength (450 nm). CONCLUSION Even considering this as preliminary study, the use of 450 nm blue diode laser in oral surgery may be suggested to the clinician in their daily practice. CLINICAL SIGNIFICANCE This study opens a new perspective in oral surgery. Blue diode laser has demonstrated a good quality of the cut with a low energy causing a minimal thermal damage to the tissue, promising a better comfort to patients.
Collapse
Affiliation(s)
- Carlo Fornaini
- Micoralis Laboratory, Faculty of Dentistry, University of Nice Sophia Antipolice, Nice, France, e-mail: .,Department of Information Engineering, University of Parma Parma, Italy
| | - Elisabetta Merigo
- Micoralis Laboratory, Faculty of Dentistry, University of Nice Sophia Antipolice, Nice, France
| | - Jean-Paul Rocca
- Micoralis Laboratory, Faculty of Dentistry, University of Nice Sophia Antipolice, Nice, France
| | - Giuseppe Lagori
- Micoralis Laboratory, Faculty of Dentistry, University of Nice Sophia Antipolice, Nice, France
| | - Hélène Raybaud
- Micoralis Laboratory, Faculty of Dentistry, University of Nice Sophia Antipolice, Nice, France
| | - Stefano Selleri
- Department of Information Engineering, University of Parma Parma, Italy
| | | |
Collapse
|
35
|
Fornaini C, Rocca JP, Merigo E. 450 nm diode laser: A new help in oral surgery. World J Clin Cases 2016; 4:253-257. [PMID: 27672639 PMCID: PMC5018621 DOI: 10.12998/wjcc.v4.i9.253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/22/2016] [Accepted: 07/18/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To describe the performance of 450 nm diode laser in oral surgery procedures.
METHODS The case described consisted of the removal of a lower lip fibroma through a blue diode laser (λ = 450 nm).
RESULTS The efficacy of this device, even at very low power (1W, CW), allows us to obtain very high intra and postoperative comfort for the patient, even with just topical anaesthesia and without needing suture. The healing process was completed in one week and, during the follow-up, the patient did not report any problems, pain or discomfort even without the consumption of any kind of drugs, such as painkillers and antibiotics. The histological examination performed by the pathologist showed a large area of fibrous connective tissue with some portions of epithelium-connective detachments and a regular incision with very scanty areas of carbonization.
CONCLUSION The 450 nm diode laser proved of being very efficient in the oral soft tissue surgical procedures, with no side effects for the patients.
Collapse
|
36
|
Rose bengal uptake by E. faecalis and F. nucleatum and light-mediated antibacterial activity measured by flow cytometry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:258-265. [PMID: 27394008 DOI: 10.1016/j.jphotobiol.2016.06.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023]
Abstract
Antibacterial photodynamic therapy (aPDT) using rose bengal (RB) and blue-light kills bacteria through the production of reactive oxygen derivates. However, the interaction mechanism of RB with bacterial cells remains unclear. This study investigated the uptake efficiency and the antibacterial activity of blue light-activated RB against Enterococcus faecalis and Fusobacterium nucleatum. Spectrophotometry and epifluorescence microscopy were used to evaluate binding of RB to bacteria. The antibacterial activity of RB after various irradiation times was assessed by flow cytometry in combination with cell sorting. Uptake of RB increased in a concentration dependent manner in both strains although E. faecalis displayed higher uptake values. RB appeared to bind specific sites located at the cellular poles of E. faecalis and at regular intervals along F. nucleatum. Blue-light irradiation of samples incubated with RB significantly reduced bacterial viability. After incubation with 10μM RB and 240s irradiation, only 0.01% (±0.01%) of E. faecalis cells and 0.03% (±0.03%) of F. nucleatum survived after treatment. This study indicated that RB can bind to E. faecalis and F. nucleatum in a sufficient amount to elicit effective aPDT. Epifluorescence microscopy showed a yet-unreported property of RB binding to bacterial membranes. Flow cytometry allowed the detection of bacteria with damaged membranes that were unable to form colonies on agars after cell sorting.
Collapse
|
37
|
Wang Y, Wu X, Chen J, Amin R, Lu M, Bhayana B, Zhao J, Murray CK, Hamblin MR, Hooper DC, Dai T. Antimicrobial Blue Light Inactivation of Gram-Negative Pathogens in Biofilms: In Vitro and In Vivo Studies. J Infect Dis 2016; 213:1380-7. [PMID: 26908743 DOI: 10.1093/infdis/jiw070] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Biofilms affect >80% bacterial infections in human and are usually difficult to eradicate because of their inherent drug resistance. METHODS We investigated the effectiveness of antimicrobial blue light (aBL) (wavelength, 415 nm) for inactivating Acinetobacter baumannii or Pseudomonas aeruginosa biofilms in 96-well microplates or infected mouse burn wounds. RESULTS In vitro, in 96-well microplates, exposure of 24-hour-old and 72-hour-old A. baumannii biofilms to 432 J/cm(2) aBL resulted in inactivation of 3.59 log10 and 3.18 log10 colony-forming units (CFU), respectively. For P. aeruginosa biofilms, similar levels of inactivation-3.02 log10 and 3.12 log10 CFU, respectively-were achieved. In mouse burn wounds infected with 5 × 10(6) CFU ofA. baumannii, approximately 360 J/cm(2) and 540 J/cm(2) aBL was required to inactivate 3 log10 CFU in biofilms when delivered 24 and 48 hours, respectively, after bacterial inoculation. High-performance liquid chromatography analysis revealed the presence of endogenous porphyrins in both A. baumannii and P. aeruginosa TUNEL assay detected no apoptotic cells in aBL-irradiated mouse skin at up to 24 hours after aBL exposure (540 J/cm(2)). CONCLUSIONS aBL has antimicrobial activity in biofilms ofA. baumannii and P. aeruginosa and is a potential therapeutic approach for biofilm-related infections.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing College of Medicine, Nankai University, Tianjin Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ximing Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jia Chen
- Shanghai Dermatology Hospital, China Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Rehab Amin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Min Lu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Brijesh Bhayana
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jie Zhao
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Clinton K Murray
- Infectious Disease Service, Brooke Army Medical Center, Fort Sam Houston, Texas
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|