1
|
Cirillo J, Mooney RA, Ackerley SJ, Barber PA, Borges VM, Clarkson AN, Mangold C, Ren A, Smith MC, Stinear CM, Byblow WD. Neurochemical balance and inhibition at the subacute stage after stroke. J Neurophysiol 2020; 123:1775-1790. [PMID: 32186435 DOI: 10.1152/jn.00561.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stroke is a leading cause of death and disability worldwide with many people left with impaired motor function. Evidence from experimental animal models of stroke indicates that reducing motor cortex inhibition may facilitate neural plasticity and motor recovery. This study compared primary motor cortex (M1) inhibition measures over the first 12 wk after stroke with a cohort of age-similar healthy controls. The excitation-inhibition ratio and gamma-aminobutyric acid (GABA) neurotransmission within M1 were assessed using magnetic resonance spectroscopy and threshold hunting paired-pulse transcranial magnetic stimulation respectively. Upper limb impairment and function were assessed with the Fugl-Meyer Upper Extremity Scale and Action Research Arm Test. Patients with a functional corticospinal pathway had motor-evoked potentials on the paretic side and exhibited better recovery from upper limb impairment and recovery of function than patients without a functional corticospinal pathway. Compared with age-similar controls, the neurochemical balance in terms of the excitation-inhibition ratio was greater within contralesional M1 in patients with a functional corticospinal pathway. There was evidence for elevated long-interval inhibition in both ipsilesional and contralesional M1 compared with controls. Short-interval inhibition measures differed between the first and second phases, with evidence for elevation of the former only in ipsilesional M1 and no evidence of disinhibition for the latter. Overall, findings from transcranial magnetic stimulation indicate an upregulation of GABA-mediated tonic inhibition in M1 early after stroke. Therapeutic approaches that aim to normalize inhibitory tone during the subacute period warrant further investigation.NEW & NOTEWORTHY Magnetic resonance spectroscopy indicated higher excitation-inhibition ratios within motor cortex during subacute recovery than age-similar healthy controls. Measures obtained from adaptive threshold hunting paired-pulse transcranial magnetic stimulation indicated greater tonic inhibition in patients compared with controls. Therapeutic approaches that aim to normalize motor cortex inhibition during the subacute stage of recovery should be explored.
Collapse
Affiliation(s)
- John Cirillo
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ronan A Mooney
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Suzanne J Ackerley
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand
| | - P Alan Barber
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Victor M Borges
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Christine Mangold
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - April Ren
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Marie-Claire Smith
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Cathy M Stinear
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Ma H, Zheng M, Lu Y, Hua X, Xu W. Cerebral plasticity after contralateral cervical nerve transfer in human by longitudinal PET evaluation. J Clin Neurosci 2018; 48:95-99. [DOI: 10.1016/j.jocn.2017.10.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022]
|
3
|
Chen JC, Shaw FZ. Progress in sensorimotor rehabilitative physical therapy programs for stroke patients. World J Clin Cases 2014; 2:316-326. [PMID: 25133141 PMCID: PMC4133420 DOI: 10.12998/wjcc.v2.i8.316] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 02/05/2023] Open
Abstract
Impaired motor and functional activity following stroke often has negative impacts on the patient, the family and society. The available rehabilitation programs for stroke patients are reviewed. Conventional rehabilitation strategies (Bobath, Brunnstrom, proprioception neuromuscular facilitation, motor relearning and function-based principles) are the mainstream tactics in clinical practices. Numerous advanced strategies for sensory-motor functional enhancement, including electrical stimulation, electromyographic biofeedback, constraint-induced movement therapy, robotics-aided systems, virtual reality, intermittent compression, partial body weight supported treadmill training and thermal stimulation, are being developed and incorporated into conventional rehabilitation programs. The concept of combining valuable rehabilitative procedures into “a training package”, based on the patient’s functional status during different recovery phases after stroke is proposed. Integrated sensorimotor rehabilitation programs with appropriate temporal arrangements might provide great functional benefits for stroke patients.
Collapse
|
4
|
Chang CL, Munin MC, Skidmore ER, Niyonkuru C, Huber LM, Weber DJ. Effect of baseline spastic hemiparesis on recovery of upper-limb function following botulinum toxin type A injections and postinjection therapy. Arch Phys Med Rehabil 2009; 90:1462-8. [PMID: 19735772 DOI: 10.1016/j.apmr.2009.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/23/2009] [Accepted: 03/03/2009] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To determine whether baseline hand spastic hemiparesis assessed by the Chedoke-McMaster Assessment influences functional improvement after botulinum toxin type A (BTX-A) injections and postinjection therapy. DESIGN Prospective cohort study. SETTING Outpatient spasticity clinic. PARTICIPANTS Participants (N=14) with spastic hemiparesis divided into 2 groups: Chedoke-McMaster Assessment Hand-Higher Function (stage> or =4, n=5) and Chedoke-McMaster Assessment Hand-Lower Function (stage=2 or 3, n=9). INTERVENTIONS Upper-limb BTX-A injections followed by 6 weeks of postinjection therapy. MAIN OUTCOME MEASURES Primary outcomes were Motor Activity Log-28 and Motor Activity Log items. Secondary outcomes were Action Research Arm Test (ARAT), Motor Activity Log-Self-Report, and Modified Ashworth Scale (MAS). Measures were assessed at baseline (preinjection), 6 weeks, 9 weeks, and 12 weeks postinjection. RESULTS Primary and secondary outcomes improved significantly over time in both groups. Although no significant differences in ARAT or MAS change scores were noted between groups, Chedoke-McMaster Assessment Hand-Higher Function group demonstrated greater change on Motor Activity Log-28 (P=.013) from baseline to 6 weeks and Motor Activity Log items (P=.006) from baseline to 12 weeks compared to Chedoke-McMaster Assessment Hand-Lower Function group. CONCLUSIONS BTX-A injections and postinjection therapy improved hand function and reduced spasticity for both Chedoke-McMaster Assessment Hand-Higher Function and Chedoke-McMaster Assessment Hand-Lower Function groups. Clinicians should expect to see larger gains for persons with less baseline impairment.
Collapse
Affiliation(s)
- Chia-Lin Chang
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|