1
|
Marques-da-Silva C, Schmidt-Silva C, Bowers C, Charles-Chess NAE, Samuel C, Shiau JC, Park ES, Yuan Z, Kim BH, Kyle DE, Harty JT, MacMicking JD, Kurup SP. Type I interferons induce guanylate-binding proteins and lysosomal defense in hepatocytes to control malaria. Cell Host Microbe 2025; 33:529-544.e9. [PMID: 40168996 DOI: 10.1016/j.chom.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/09/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
Plasmodium parasites undergo development and replication within hepatocytes before infecting erythrocytes and initiating clinical malaria. Although type I interferons (IFNs) are known to hinder Plasmodium infection within the liver, the underlying mechanisms remain unclear. Here, we describe two IFN-I-driven hepatocyte antimicrobial programs controlling liver-stage malaria. First, oxidative defense by NADPH oxidases 2 and 4 triggers a pathway of lysosomal fusion with the parasitophorous vacuole (PV) to help clear Plasmodium. Second, guanylate-binding protein (GBP) 1-mediated disruption of the PV activates the caspase-1 inflammasome, inducing pyroptosis to remove infected host cells. Remarkably, both human and mouse hepatocytes enlist these cell-autonomous immune programs to eliminate Plasmodium, with their pharmacologic or genetic inhibition leading to profound malarial susceptibility in vivo. In addition to identifying IFN-I-mediated cell-autonomous immune circuits controlling Plasmodium infection in the hepatocytes, our study also extends the understanding of how non-immune cells are integral to protective immunity against malaria.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Clyde Schmidt-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Carson Bowers
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Nana Appiah Essel Charles-Chess
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Cristina Samuel
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Justine C Shiau
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Eui-Soon Park
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA; Yale Systems Biology Institute, West Haven, CT, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhongyu Yuan
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA; Yale Systems Biology Institute, West Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Bae-Hoon Kim
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA; Yale Systems Biology Institute, West Haven, CT, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dennis E Kyle
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John D MacMicking
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA; Yale Systems Biology Institute, West Haven, CT, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Eslami M, Arjmand N, Mahmoudian F, Babaeizad A, Tahmasebi H, Fattahi F, Oksenych V. Deciphering Host-Virus Interactions and Advancing Therapeutics for Chronic Viral Infection. Viruses 2025; 17:390. [PMID: 40143318 PMCID: PMC11946419 DOI: 10.3390/v17030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic viral infections like HIV, HBV, and HCV establish persistent interactions with the host immune system, resulting in immune evasion and long-term immune dysfunction. These viruses use a range of strategies to limit host defenses, such as downregulating MHC class I, disrupting interferon signaling, altering apoptosis pathways, and suppressing cytotoxic T-cell activity. Key viral proteins, including HIV Nef, HBV X protein, and HCV NS5A, interfere with antigen presentation and JAK/STAT signaling, thereby reducing antiviral immune responses. Chronic infections induce immune exhaustion due to persistent antigen exposure, which leads to the expression of inhibitory receptors like PD-1 and CTLA-4 on T cells. Viral epigenetic changes, such as N6-methyladenosine modifications and histone deacetylation, enhance immune evasion by modulating gene expression in infected cells. Viruses further manipulate host cytokine networks by promoting an immunosuppressive environment through IL-10 and TGF-β secretion, which suppress inflammatory responses and inhibit T-cell activation. This review examines the molecular/cellular mechanisms that enable chronic viruses to escape host immunity, focusing on antigenic variation, cytokine disruption, and control of apoptotic pathways. It also addresses how host genetic factors, such as HLA polymorphisms, influence disease progression. Lastly, we discuss host-targeted therapies, including immune checkpoint inhibitors, cytokine treatments, and CRISPR.
Collapse
Affiliation(s)
- Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran; (M.E.)
- Department of Bacteriology and Virology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Neda Arjmand
- Department of Obstetrics and Gynecology, Tehran Medical University, Tehran 14167-53955, Iran
| | - Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran; (M.E.)
| | - Ali Babaeizad
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud 36147-73943, Iran
| | - Fahimeh Fattahi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak 38186-49433, Iran
| | | |
Collapse
|
3
|
Bockmann JH, Allweiss L, Volmari A, da Fonseca Araújo D, Kohsar M, Hyrina A, Kah J, Song Z, Chan J, Giersch K, Volz T, Lütgehetmann M, Wallin JJ, Manuilov D, Holdorf MM, Fletcher SP, Lohse AW, Bertoletti A, Schulze zur Wiesch J, Dandri M. Hepatitis D virus infection triggers CXCL9-11 upregulation in hepatocytes and liver infiltration of CXCR3+ CD4 T cells. JHEP Rep 2025; 7:101273. [PMID: 39980752 PMCID: PMC11840482 DOI: 10.1016/j.jhepr.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 02/22/2025] Open
Abstract
Background & Aims The role of hepatocytes in producing chemokines and triggering liver inflammation and damage in chronic hepatitis D (CHD) is not fully understood. Herein, we investigated the contribution of primary human hepatocytes (PHHs) infected with HDV in triggering inflammation by producing the chemokines CXCL9-11. Methods We performed quantitative PCR, RNA in situ hybridisation, activation-induced marker (AIM) assays, and FACS analysis to investigate the CXCR3/CXCL9-11 receptor/ligand axis of T cells in peripheral blood and livers from patients with chronic hepatitis B (n = 27 and 18, respectively) and CHD (n = 20 and 18, respectively). Chemokine expression was investigated in cultured HDV-infected PHHs and in livers of HBV- or HBV/HDV-infected humanised mice in the presence or absence of adoptively transferred human immune cells (n = 35 in total). Results In patient and chimeric mouse livers, higher expression levels of CXCL9-11 were found in an HBV/HDV-coinfected vs. HBV-mono-infected setting. Similarly, high levels of CXCL9-11 were observed in HDV-infected PHHs in vitro. Analysis by RNA in situ hybridisation on patient livers revealed that HDV-infected hepatocytes were a significant contributor to the chemokine expression. The corresponding chemokine receptor CXCR3 was found upregulated specifically on peripheral bulk CD4 T cells of patients with CHD. CXCR3 upregulation was unspecific and was not detected on HDAg- or HBsAg-specific CD4 T cells by activation-induced marker assay. Lastly, adoptive transfer of human T cells in humanised mice led to recruitment of non-HBV/HDV-specific CD4+ T cells only in the setting of HBV/HDV coinfection, but not in HBV-mono-infected mice. Conclusions HDV infection upregulated the intrahepatic expression of the CXCL9-11/CXCR3 receptor/ligand axis. Higher amounts of HBV/HDV-unspecific CD4 T cells expressing CXCR3 may contribute to the aggravated liver inflammation frequently observed in patients with CHD. Impact and implications Chronic hepatitis D (CHD) causes the most severe form of viral hepatitis, and treatment options are still limited; therefore, a more precise understanding of CHD immunopathology is needed. In this study, we demonstrated that HDV infection triggers CXCL9-11 expression in hepatocytes and liver infiltration of CXCR3-expressing CD4 T cells in preclinical models as well as patient biopsies. Because recruitment of Th1-polarised CD4 T cells to the liver has been also described for other severe liver diseases, such as autoimmune hepatitis, it may represent an important mechanism of aggravating liver diseases. The data of this study set hereby the basis for future studies analysing phenotype and function of intrahepatic T cells in CHD.
Collapse
Affiliation(s)
- Jan-Hendrik Bockmann
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Germany
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Germany
| | - Annika Volmari
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Germany
| | - David da Fonseca Araújo
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matin Kohsar
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Janine Kah
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center of Internal Medicine II, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | | | | | - Katja Giersch
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Germany
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | - Ansgar W. Lohse
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Germany
| | | | - Julian Schulze zur Wiesch
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Germany
| |
Collapse
|
4
|
Marques-da-Silva C, Schmidt-Silva C, Bowers C, Charles-Chess E, Shiau JC, Park ES, Yuan Z, Kim BH, Kyle DE, Harty JT, MacMicking JD, Kurup SP. Type-I IFNs induce GBPs and lysosomal defense in hepatocytes to control malaria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619707. [PMID: 39484443 PMCID: PMC11526971 DOI: 10.1101/2024.10.22.619707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Plasmodium parasites undergo development and replication within the hepatocytes before infecting the erythrocytes and initiating clinical malaria. Although type-I interferons (IFNs) are known to hinder Plasmodium infection within the liver, the underlying mechanisms remain unclear. Here, we describe two IFN-I-driven hepatocyte antimicrobial programs controlling liver-stage malaria. First, oxidative defense by NADPH oxidases 2 and 4 triggers a pathway of lysosomal fusion with the parasitophorous vacuole (PV) to help clear Plasmodium . Second, guanylate-binding protein (GBP) 1 disruption of the PV activates caspase-1 inflammasome, inducing pyroptosis to remove the infected host cells. Remarkably, both human and mouse hepatocytes enlist these cell-autonomous immune programs to eliminate Plasmodium ; their pharmacologic or genetic inhibition led to profound malarial susceptibility, and are essential in vivo . In addition to identifying the IFN-I-mediated cell-autonomous immune circuits controlling Plasmodium infection in the hepatocytes, this study extends our understanding of how non-immune cells are integral to protective immunity against malaria.
Collapse
|
5
|
Ye X, Chen X, Liu H, Jiang Y, Yang C, Xu T, Chen Z, Wang Y, Chen F, Liu X, Yu H, Yuan Q, Xia N, Chen Y, Luo W. HBsAg and TLR7/8 dual-targeting antibody-drug conjugates induce sustained anti-HBV activity in AAV/HBV mice: a preliminary study. Antib Ther 2024; 7:249-255. [PMID: 39262443 PMCID: PMC11384142 DOI: 10.1093/abt/tbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 09/13/2024] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) infection is a significant global health concern due to elevated immunosuppressive viral antigen levels, the host immune system's inability to manage HBV, and the liver's immunosuppressive conditions. While immunotherapies utilizing broadly reactive HBV neutralizing antibodies present potential due to their antiviral capabilities and Fc-dependent vaccinal effects, they necessitate prolonged and frequent dosing to achieve optimal therapeutic outcomes. Toll-like receptor 7/8 (TLR7/8) agonists have been demonstrated promise for the cure of chronic hepatitis B, but their systemic use often leads to intense side effects. In this study, we introduced immune-stimulating antibody conjugates which consist of TLR7/8 agonists 1-[[4-(aminomethyl)phenyl]methyl]-2-butyl-imidazo[4,5-c]quinolin-4-amine (IMDQ) linked to an anti-hepatitis B surface antigen (HBsAg) antibody 129G1, and designated as 129G1-IMDQ. Our preliminary study highlights that 129G1-IMDQ can prompt robust and sustained anti-HBsAg specific reactions with short-term administration. This underscores the conjugate's potential as an effective strategy for HBsAg clearance and seroconversion, offering a fresh perspective for a practical therapeutic approach in the functional cure of CHB. HIGHLIGHTS HBV-neutralizing antibody 129G1 was linked with a TLR7/8 agonist small molecule compound IMDQ.Treatment with 129G1-IMDQ has shown significant promise in lowering HBsAg levels in AAV/HBV mice.129G1-IMDQ were eliciting a strong and lasting anti-HBsAg immune response after short-term treatment in AAV/HBV mice.
Collapse
Affiliation(s)
- Xinya Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoqing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Han Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yichao Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengyu Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ziyou Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yalin Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Fentian Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuanzhi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
6
|
Marques-da-Silva C, Schmidt-Silva C, Kurup SP. Hepatocytes and the art of killing Plasmodium softly. Trends Parasitol 2024; 40:466-476. [PMID: 38714463 PMCID: PMC11156546 DOI: 10.1016/j.pt.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/09/2024]
Abstract
The Plasmodium parasites that cause malaria undergo asymptomatic development in the parenchymal cells of the liver, the hepatocytes, prior to infecting erythrocytes and causing clinical disease. Traditionally, hepatocytes have been perceived as passive bystanders that allow hepatotropic pathogens such as Plasmodium to develop relatively unchallenged. However, now there is emerging evidence suggesting that hepatocytes can mount robust cell-autonomous immune responses that target Plasmodium, limiting its progression to the blood and reducing the incidence and severity of clinical malaria. Here we discuss our current understanding of hepatocyte cell-intrinsic immune responses that target Plasmodium and how these pathways impact malaria.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Clyde Schmidt-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Gehring AJ, Salimzadeh L. Current and future use of antibody-based passive immunity to prevent or control HBV/HDV infections. Antiviral Res 2024; 226:105893. [PMID: 38679166 DOI: 10.1016/j.antiviral.2024.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
With the increasing momentum and success of monoclonal antibody therapy in conventional medical practices, there is a revived emphasis on the development of monoclonal antibodies targeting the hepatitis B surface antigen (anti-HBs) for the treatment of chronic hepatitis B (HBV) and hepatitis D (HDV). Combination therapies of anti-HBs monoclonal antibodies, and novel anti-HBV compounds and immunomodulatory drugs presenting a promising avenue to enhanced therapeutic outcomes in HBV/HDV cure regimens. In this review, we will cover the role of antibodies in the protection and clearance of HBV infection, the association of anti-HBV surface antigen antibodies (anti-HBs) in protection against HBV and how antibody effector functions, beyond neutralization, are likely necessary. Lastly, we will review clinical data from previous and ongoing clinical trials of passive antibody therapy to provide a state-of-the-are perspective on passive antibody therapies in combinations with additional novel agents.
Collapse
Affiliation(s)
- Adam J Gehring
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Loghman Salimzadeh
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
8
|
Asandem DA, Segbefia SP, Kusi KA, Bonney JHK. Hepatitis B Virus Infection: A Mini Review. Viruses 2024; 16:724. [PMID: 38793606 PMCID: PMC11125943 DOI: 10.3390/v16050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatitis B and C viruses (HBV and HCV) are the leading causes of end-stage liver disease worldwide. Although there is a potent vaccine against HBV, many new infections are recorded annually, especially in poorly resourced places which have lax vaccination policies. Again, as HBV has no cure and chronic infection is lifelong, vaccines cannot help those already infected. Studies to thoroughly understand the HBV biology and pathogenesis are limited, leaving much yet to be understood about the genomic features and their role in establishing and maintaining infection. The current knowledge of the impact on disease progression and response to treatment, especially in hyperendemic regions, is inadequate. This calls for in-depth studies on viral biology, mainly for the purposes of coming up with better management strategies for infected people and more effective preventative measures for others. This information could also point us in the direction of a cure. Here, we discuss the progress made in understanding the genomic basis of viral activities leading to the complex interplay of the virus and the host, which determines the outcome of HBV infection as well as the impact of coinfections.
Collapse
Affiliation(s)
- Diana Asema Asandem
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra P.O. Box LG 52, Ghana;
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (S.P.S.); (K.A.K.)
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (S.P.S.); (K.A.K.)
| | - Joseph Humphrey Kofi Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| |
Collapse
|
9
|
Ferraguti G, Terracina S, Tarani L, Fanfarillo F, Allushi S, Caronti B, Tirassa P, Polimeni A, Lucarelli M, Cavalcanti L, Greco A, Fiore M. Nerve Growth Factor and the Role of Inflammation in Tumor Development. Curr Issues Mol Biol 2024; 46:965-989. [PMID: 38392180 PMCID: PMC10888178 DOI: 10.3390/cimb46020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Nerve growth factor (NGF) plays a dual role both in inflammatory states and cancer, acting both as a pro-inflammatory and oncogenic factor and as an anti-inflammatory and pro-apoptotic mediator in a context-dependent way based on the signaling networks and its interaction with diverse cellular components within the microenvironment. This report aims to provide a summary and subsequent review of the literature on the role of NGF in regulating the inflammatory microenvironment and tumor cell growth, survival, and death. The role of NGF in inflammation and tumorigenesis as a component of the inflammatory system, its interaction with the various components of the respective microenvironments, its ability to cause epigenetic changes, and its role in the treatment of cancer have been highlighted in this paper.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Allushi
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
10
|
Jiang P, Jia H, Qian X, Tang T, Han Y, Zhang Z, Jiang L, Yu Z, Zheng L, Yu G, Cai H, Zhang S, Zhang X, Gu J, Ye C, Yang L, Lu Y, Liu H, Lu X, Jin C, Ren Y, Lu M, Xu L, Yu J, Jin X, Yang Y, Qian P. Single-cell RNA sequencing reveals the immunoregulatory roles of PegIFN-α in patients with chronic hepatitis B. Hepatology 2024; 79:167-182. [PMID: 37368993 DOI: 10.1097/hep.0000000000000524] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND AND AIMS Chronic hepatitis B (CHB) is caused by HBV infection and affects the lives of millions of people worldwide by causing liver inflammation, cirrhosis, and liver cancer. Interferon-alpha (IFN-α) therapy is a conventional immunotherapy that has been widely used in CHB treatment and achieved promising therapeutic outcomes by activating viral sensors and interferon-stimulated genes (ISGs) suppressed by HBV. However, the longitudinal landscape of immune cells of CHB patients and the effect of IFN-α on the immune system are not fully understood. APPROACH AND RESULTS Here, we applied single-cell RNA sequencing (scRNA-seq) to delineate the transcriptomic landscape of peripheral immune cells in CHB patients before and after PegIFN-α therapy. Notably, we identified three CHB-specific cell subsets, pro-inflammatory (Pro-infla) CD14+ monocytes, Pro-infla CD16+ monocytes and IFNG+ CX3CR1- NK cells, which highly expressed proinflammatory genes and positively correlated with HBsAg. Furthermore, PegIFN-α treatment attenuated percentages of hyperactivated monocytes, increased ratios of long-lived naive/memory T cells and enhanced effector T cell cytotoxicity. Finally, PegIFN-α treatment switched the transcriptional profiles of entire immune cells from TNF-driven to IFN-α-driven pattern and enhanced innate antiviral response, including virus sensing and antigen presentation. CONCLUSIONS Collectively, our study expands the understanding of the pathological characteristics of CHB and the immunoregulatory roles of PegIFN-α, which provides a new powerful reference for the clinical diagnosis and treatment of CHB.
Collapse
Affiliation(s)
- Penglei Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Hongyu Jia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Tian Tang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhaoru Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lingli Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zebin Yu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jueqing Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chanyuan Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisha Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqing Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ciliang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaomiao Lu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, The Second People's Hospital of Yuhang District, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
11
|
Jiang Y, Sun S, Quan Y, Wang X, You Y, Zhang X, Zhang Y, Liu Y, Wang B, Xu H, Cao X. Nuclear RPSA senses viral nucleic acids to promote the innate inflammatory response. Nat Commun 2023; 14:8455. [PMID: 38114488 PMCID: PMC10730619 DOI: 10.1038/s41467-023-43784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Innate sensors initiate the production of type I interferons (IFN-I) and proinflammatory cytokines to protect host from viral infection. Several innate nuclear sensors that mainly induce IFN-I production have been identified. Whether there exist innate nuclear sensors that mainly induce proinflammatory cytokine production remains to be determined. By functional screening, we identify 40 S ribosomal protein SA (RPSA) as a nuclear protein that recognizes viral nucleic acids and predominantly promotes proinflammatory cytokine gene expression in antiviral innate immunity. Myeloid-specific Rpsa-deficient mice exhibit less innate inflammatory response against infection with Herpes simplex virus-1 (HSV-1) and Influenza A virus (IAV), the viruses replicating in nucleus. Mechanistically, nucleus-localized RPSA is phosphorylated at Tyr204 upon infection, then recruits ISWI complex catalytic subunit SMARCA5 to increase chromatin accessibility of NF-κB to target gene promotors without affecting innate signaling. Our results add mechanistic insights to an intra-nuclear way of initiating proinflammatory cytokine expression in antiviral innate defense.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Siqi Sun
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuan Quan
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xin Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuling You
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiao Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yue Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yin Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Bingjing Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Henan Xu
- Frontiers Science Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Frontiers Science Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
12
|
Papatheodoridi A, Papatheodoridis G. Hepatocellular carcinoma: The virus or the liver? Liver Int 2023; 43 Suppl 1:22-30. [PMID: 35319167 DOI: 10.1111/liv.15253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) represents a major public health problem being one of the most common causes of cancer-related deaths worldwide. Hepatitis B (HBV) and C viruses have been classified as oncoviruses and are responsible for the majority of HCC cases, while the role of hepatitis D virus (HDV) in liver carcinogenesis has not been elucidated. HDV/HBV coinfection is related to more severe liver damage than HBV mono-infection and recent studies suggest that HDV/HBV patients are at increased risk of developing HCC compared to HBV mono-infected patients. HBV is known to promote hepatocarcinogenesis via DNA integration into host DNA, disruption of molecular pathways by regulatory HBV x (HBx) protein and excessive oxidative stress. Recently, several molecular mechanisms have been proposed to clarify the pathogenesis of HDV-related HCC including activation of signalling pathways by specific HDV antigens, epigenetic dysregulation and altered gene expression. Alongside, ongoing chronic inflammation and impaired immune responses have also been suggested to facilitate carcinogenesis. Finally, cellular senescence seems to play an important role in chronic viral infection and inflammation leading to hepatocarcinogenesis. In this review, we summarize the current literature on the impact of HDV in HCC development and discuss the potential interplay between HBV, HDV and neighbouring liver tissue in liver carcinogenesis.
Collapse
Affiliation(s)
- Alkistis Papatheodoridi
- Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, "Alexandra" General Hospital of Athens, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens School of Health Sciences, General Hospital of Athens "Laiko", Athens, Greece
| |
Collapse
|
13
|
Hermanussen L, Lampalzer S, Bockmann JH, Ziegler AE, Piecha F, Dandri M, Pischke S, Haag F, Lohse AW, Lütgehetmann M, Weiler-Normann C, zur Wiesch JS. Non-organ-specific autoantibodies with unspecific patterns are a frequent para-infectious feature of chronic hepatitis D. Front Med (Lausanne) 2023; 10:1169096. [PMID: 37387781 PMCID: PMC10300640 DOI: 10.3389/fmed.2023.1169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Infections with hepatotropic viruses are associated with various immune phenomena. Hepatitis D virus (HDV) causes the most severe form of viral hepatitis. However, few recent data are available on non-disease-specific and non-organ-specific antibody (NOSA) titers and immunoglobulin G (IgG) levels in chronic hepatitis D (CHD) patients. Here, we examined the NOSA titers and IgG levels of 40 patients with CHD and different disease courses and compared them to 70 patients with chronic hepatitis B (CHB) infection. 43% of CHD patients had previously undergone treatment with pegylated interferon-α (IFN-α). The antibody display of 46 untreated patients diagnosed with autoimmune hepatitis (AIH) was used as a reference. The frequency of elevated NOSA titers (CHD 69% vs. CHB 43%, p < 0.01), and the median IgG levels (CHD 16.9 g/L vs. CHB 12.7 g/L, p < 0.01) were significantly higher in CHD patients than in patients with CHB, and highest in patients with AIH (96%, 19.5 g/L). Also, the antinuclear antibody pattern was homogeneous in many patients with AIH and unspecific in patients with viral hepatitis. Additionally, f-actin autoantibodies were only detectable in patients with AIH (39% of SMA). In CHD patients, IgG levels correlated with higher HDV viral loads, transaminases, and liver stiffness values. IgG levels and NOSA were similar in CHD patients irrespective of a previous IFN-α treatment. In summary, autoantibodies with an unspecific pattern are frequently detected in CHD patients with unclear clinical relevance.
Collapse
Affiliation(s)
- Lennart Hermanussen
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sibylle Lampalzer
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jan-Hendrik Bockmann
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Annerose E. Ziegler
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felix Piecha
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Maura Dandri
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Sven Pischke
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W. Lohse
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Christina Weiler-Normann
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Medicine and Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Strain-specific responsiveness of hepatitis D virus to interferon-alpha treatment. JHEP Rep 2023; 5:100673. [PMID: 36908749 PMCID: PMC9996322 DOI: 10.1016/j.jhepr.2023.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Background & Aims Pegylated interferon alpha (pegIFNα) is commonly used for the treatment of people infected with HDV. However, its mode of action in HDV-infected cells remains elusive and only a minority of people respond to pegIFNα therapy. Herein, we aimed to assess the responsiveness of three different cloned HDV strains to pegIFNα. We used a previously cloned HDV genotype 1 strain (dubbed HDV-1a) that appeared insensitive to interferon-α in vitro, a new HDV strain (HDV-1p) we isolated from an individual achieving later sustained response to IFNα therapy, and one phylogenetically distant genotype 3 strain (HDV-3). Methods PegIFNα was administered to human liver chimeric mice infected with HBV and the different HDV strains or to HBV/HDV infected human hepatocytes isolated from chimeric mice. Virological parameters and host responses were analysed by qPCR, sequencing, immunoblotting, RNA in situ hybridisation and immunofluorescence staining. Results PegIFNα treatment efficiently reduced HDV RNA viraemia (∼2-log) and intrahepatic HDV markers both in mice infected with HBV/HDV-1p and HBV/HDV-3. In contrast, HDV parameters remained unaffected by pegIFNα treatment both in mice (up to 9 weeks) and in isolated cells infected with HBV/HDV-1a. Notably, HBV viraemia was efficiently lowered (∼2-log) and human interferon-stimulated genes similarly induced in all three HBV/HDV-infected mouse groups receiving pegIFNα. Genome sequencing revealed highly conserved ribozyme and L-hepatitis D antigen post-translational modification sites among all three isolates. Conclusions Our comparative study indicates the ability of pegIFNα to lower HDV loads in stably infected human hepatocytes in vivo and the existence of complex virus-specific determinants of IFNα responsiveness. Impact and implications Understanding factors counteracting HDV infections is paramount to develop curative therapies. We compared the responsiveness of three different cloned HDV strains to pegylated interferon alpha in chronically infected mice. The different responsiveness of these HDV isolates to treatment highlights a previously underestimated heterogeneity among HDV strains.
Collapse
Key Words
- ADAR, adenosine deaminase
- ADF, adefovir
- AG, antigenomic
- Actb, actin beta
- Antiviral
- BSA, bovine serum albumin
- CHD, chronic hepatitis D
- CK18, cytokeratin 18
- CXCL10, C-X-C motif chemokine ligand 10
- Eef2, eukaryotic elongation factor
- FCS, foetal calf serum
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- Genotype
- HBsAg, hepatitis B virus surface antigen
- HDAg, hepatitis delta antigen (S, small, L, large)
- HDV
- HLA, human leucocyte antigen
- HSA, uman serum albumin
- Human liver chimeric mice
- IFNα, interferon α
- ISGs, interferon stimulated genes
- LAM, lamivudine
- LLoD, lower limit of detection
- MDA5, melanoma differentiation-associated protein 5
- MOI, multiplicity of infection
- Mavs, mitochondrial antiviral-signalling protein
- MoA, mode of action
- MxA, myxovirus resistance gene A
- NTCP, sodium (Na+) taurocholate co-transporting polypeptide
- NUCs, nucleos(t)ide analogues
- OAS1, 2′-5′-oligoadenylatsynthetase 1
- PEG, polyethylene glycol
- PHHs, primary human hepatocytes
- RNP, ribonucleoprotein
- Resistance
- Rig-I, retinoic acid-inducible gene I
- SCID, severe combined immunodeficiency
- STAT1, signal transducers and activators of transcription 1
- TGFβ, transforming growth factor-β
- USG, uPA/SCID/beige/IL2RG-/-
- casp, caspase
- hAAT, human alpha antitrypsin
- pegIFNα, pegylated interferon alpha
- pgRNA, pregenomic RNA
- qPCR, quantitative real time polymerase chain reaction
- uPA, urokinase plasminogen activator
Collapse
|
15
|
The scientific basis of combination therapy for chronic hepatitis B functional cure. Nat Rev Gastroenterol Hepatol 2023; 20:238-253. [PMID: 36631717 DOI: 10.1038/s41575-022-00724-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 01/13/2023]
Abstract
Functional cure of chronic hepatitis B (CHB) - or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy - is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available.
Collapse
|
16
|
Zhang S, Zong Y, Hu Y, Sheng Y, Xiao G. High HBV-DNA serum levels are associated with type 2 diabetes in adults with positive HBsAg: An observational study. Front Endocrinol (Lausanne) 2023; 14:1146798. [PMID: 37077357 PMCID: PMC10106711 DOI: 10.3389/fendo.2023.1146798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The prevalence of diabetes is higher in hepatitis B virus (HBV)-infected population. We aimed to examine the relationship between different serum HBV-DNA levels and type 2 diabetes in adults with positive HBV surface antigen (HBsAg). METHODS We conducted cross-sectional analyses of data obtaining from the Clinical Database System of Wuhan Union Hospital. Diabetes was defined by self-report of type 2 diabetes, fasting plasma glucose (FPG) ≥7mmol/L, or glycated hemoglobin (HbA1c) ≥6.5%. Binary logistic regression analyses were performed to investigate the factors associated with diabetes. RESULTS Among 12,527 HBsAg-positive adults, 2,144 (17.1%) were diabetic. Patients with serum HBV-DNA <100, 100-2000, 2000-20000 and ≥20000 IU/mL accounted for 42.2% (N=5,285), 22.6% (N=2,826), 13.3% (N=1,665) and 22.0% (N=2,751), respectively. The risk of type 2 diabetes, FPG ≥7mmol/L and HbA1c ≥6.5% in individuals with highly elevated serum HBV-DNA level (≥20000 IU/mL) were 1.38 (95% confidence interval [CI]: 1.16 to 1.65), 1.40 (95% CI: 1.16 to 1.68) and 1.78 (95% CI: 1.31 to 2.42) times relative to those with negative or lowly elevated serum HBV-DNA (<100 IU/mL). However, the analyses showed no association of moderately (2000-20000 IU/mL) to slightly (100-2000 IU/mL) raised serum HBV-DNA levels with type 2 diabetes (OR=0.88, P=0.221; OR=1.08, P=0.323), FPG ≥7mmol/L (OR=1.00, P=0.993; OR=1.11, P=0.250) and HbA1c ≥6.5% (OR=1.24, P=0.239; OR=1.17, P=0.300). CONCLUSION In HBsAg-positive adults, highly elevated level rather than moderately to slightly raised levels of serum HBV-DNA is independently associated with an increased risk of type 2 diabetes.
Collapse
|
17
|
Many Ways to Communicate-Crosstalk between the HBV-Infected Cell and Its Environment. Pathogens 2022; 12:pathogens12010029. [PMID: 36678377 PMCID: PMC9866324 DOI: 10.3390/pathogens12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells. They do so by both interacting directly and by secreting factors into their environment. Such factors may be small molecules, such as metabolites, single viral proteins or host proteins, but can also be more complex, such as virions, protein complexes, and extracellular vesicles. The latter are small, membrane-enclosed vesicles that are exchanged between cells, and have recently gained a lot of attention for their potential to mediate complex communication and their potential for therapeutic repurposing. Here, we review how HBV infection affects the communication between HBV-infected cells and cells in their environment. We discuss the impact of these interactions on viral persistence in chronic infection, as well as their relation to HBV infection-related pathology.
Collapse
|
18
|
Dandri M, Volmari A, Lütgehetmann M. The hepatitis delta virus and chronic hepatitis D. J Hepatol 2022; 77:1448-1450. [PMID: 35850738 DOI: 10.1016/j.jhep.2022.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner site, Germany.
| | - Annika Volmari
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner site, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner site, Germany; Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Gherlan GS. Occult hepatitis B - the result of the host immune response interaction with different genomic expressions of the virus. World J Clin Cases 2022; 10:5518-5530. [PMID: 35979101 PMCID: PMC9258381 DOI: 10.12998/wjcc.v10.i17.5518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/30/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
With over 40 years of history, occult hepatitis B infection (OBI) continues to remain an important and challenging public health problem. Defined as the presence of replication-competent hepatitis B virus (HBV) DNA (i.e., episomal HBV covalently closed circular DNA) in the liver and/or HBV DNA in the blood of people who test negative for hepatitis B surface antigen (HBsAg) in currently available assays, OBI is currently diagnosed using polymerase chain reaction (PCR) and real-time PCR assays. However, all efforts should be made to exclude a false negative HBsAg in order to completely follow the definition of OBI. In recent years, significant advances have been made in understanding the HBV lifecycle and the molecular mechanisms that lead to the persistence of the virus in the occult form. These factors are mainly related to the host immune system and, to a smaller proportion, to the virus. Both innate and adaptive immune responses are important in HBV infection management, and epigenetic changes driven by host mechanisms (acetylation, methylation, and microRNA implication) are added to such actions. Although greater genetic variability in the S gene of HBV isolated from OBIs was found compared with overt infection, the mechanisms of OBI are not mainly viral mutations.
Collapse
Affiliation(s)
- George Sebastian Gherlan
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy, Bucharest 030303, Romania
- Department of Infectious Diseases, “Dr. Victor Babes” Hospital of Infectious and Tropical Diseases, Bucharest 030303, Romania
| |
Collapse
|
20
|
Colombatto P, Coco B, Bonino F, Brunetto MR. Management and Treatment of Patients with Chronic Hepatitis B: Towards Personalized Medicine. Viruses 2022; 14:701. [PMID: 35458431 PMCID: PMC9027850 DOI: 10.3390/v14040701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
The currently available antiviral treatments (Peg-Interferon-α and Nucleos(t)ide Analogues, NA) for chronic hepatitis B (CHB) achieve a functional cure (serum HBsAg and HDV-DNA clearance) of HBV infection in a limited number of patients. Nevertheless, the continuous pharmacological suppression of viral replication by NA halts liver disease progression lowering the risk of HCC development and improving the survival. In the near future, to fully exploit the potential of old and new drugs for HBV treatment a personalized approach to the patients will be required according to an accurate definition of their virologic, immunologic and clinical profile.
Collapse
Affiliation(s)
- Piero Colombatto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, Department of Medical Specialties, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (P.C.); (B.C.)
| | - Barbara Coco
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, Department of Medical Specialties, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (P.C.); (B.C.)
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging, National Research Council, Via De Amicis 95, 80145 Naples, Italy;
| | - Maurizia R. Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, Department of Medical Specialties, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (P.C.); (B.C.)
- Institute of Biostructure and Bioimaging, National Research Council, Via De Amicis 95, 80145 Naples, Italy;
- Internal Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56127 Pisa, Italy
| |
Collapse
|
21
|
Immunopathogenesis of Acute Flare of Chronic Hepatitis B: With Emphasis on the Role of Cytokines and Chemokines. Int J Mol Sci 2022; 23:ijms23031407. [PMID: 35163330 PMCID: PMC8835919 DOI: 10.3390/ijms23031407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Acute flares (AFs) of chronic hepatitis B usually occur during the immune-active stage (both immune clearance phase and immune reactivation phase), as the host immune system tries to control the virus. Successful host immune control over viral replication is usually presented as hepatitis B surface antigen seroclearance; however, 20–30% individuals with chronic hepatitis B may encounter repeated AFs with accumulative liver injuries, finally leading to the development of cirrhosis and hepatocellular carcinoma. AF can also develop in other clinical situations such as organ transplantation, cancer chemotherapy, and under treatment for chronic hepatitis B or treatment for chronic hepatitis C in patients with co-infected hepatitis B/hepatitis C. Understanding the natural history and immunopathogenesis of AF would help develop effective strategies to eradicate the virus and improve the clinical outcomes of patients with chronic hepatitis B. In this review article, the immunopathogenesis of AF, and the involvement of innate and adaptive immune responses on the development of hepatitis B flare will be briefly reviewed, with the emphasis on the role of cytokines and chemokines.
Collapse
|
22
|
Adaptive Immune Responses, Immune Escape and Immune-Mediated Pathogenesis during HDV Infection. Viruses 2022; 14:v14020198. [PMID: 35215790 PMCID: PMC8880046 DOI: 10.3390/v14020198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known human virus, yet it causes great harm to patients co-infected with hepatitis B virus (HBV). As a satellite virus of HBV, HDV requires the surface antigen of HBV (HBsAg) for sufficient viral packaging and spread. The special circumstance of co-infection, albeit only one partner depends on the other, raises many virological, immunological, and pathophysiological questions. In the last years, breakthroughs were made in understanding the adaptive immune response, in particular, virus-specific CD4+ and CD8+ T cells, in self-limited versus persistent HBV/HDV co-infection. Indeed, the mechanisms of CD8+ T cell failure in persistent HBV/HDV co-infection include viral escape and T cell exhaustion, and mimic those in other persistent human viral infections, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), and HBV mono-infection. However, compared to these larger viruses, the small HDV has perfectly adapted to evade recognition by CD8+ T cells restricted by common human leukocyte antigen (HLA) class I alleles. Furthermore, accelerated progression towards liver cirrhosis in persistent HBV/HDV co-infection was attributed to an increased immune-mediated pathology, either caused by innate pathways initiated by the interferon (IFN) system or triggered by misguided and dysfunctional T cells. These new insights into HDV-specific adaptive immunity will be discussed in this review and put into context with known well-described aspects in HBV, HCV, and HIV infections.
Collapse
|
23
|
Mediators of liver inflammation and carcinogenesis. Semin Immunopathol 2021; 43:477-479. [PMID: 34528106 PMCID: PMC8443494 DOI: 10.1007/s00281-021-00880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|