1
|
Dogan O, Kamer MS, Sahan MF. Multi-Objective Optimization of Low-Velocity Impact and Compression Behavior of 3D-Printed PLA Cubic Samples. Polymers (Basel) 2025; 17:627. [PMID: 40076119 PMCID: PMC11902764 DOI: 10.3390/polym17050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
This study investigates how various 3D printing parameters influence mechanical properties, specifically strength in compression and low-velocity impact (LVI) tests, and identifies the best printing parameters (layer thickness, nozzle diameter, and infill density) that lead to durable samples. Utilizing a Taguchi L9 orthogonal array, the study systematically examined the effects of three critical 3D printing parameters on the mechanical strength of cubic test samples. Nine experimental configurations were tested, each subjected to compression and LVI tests according to ASTM standards. Statistical analyses, including analysis of variance (ANOVA) and grey relational analysis (GRA), were employed to evaluate parameter significance and optimize results. Infill density significantly influenced the compression tests, while nozzle diameter was the most impactful parameter in LVI tests. Layer thickness had a minimal influence on both outcomes. Additionally, applying GRA revealed that optimal 3D printing parameters differ when considering the two mechanical properties simultaneously, highlighting the complexity of achieving balanced performance in 3D-printed structures. The application of the Taguchi method to optimize 3D printing parameters improved the mechanical properties of printed materials while significantly reducing the number of required experiments. By employing an efficient experimental design, this research demonstrates how to achieve high-quality results in compression and LVI tests with minimal resource use and time investment. Additionally, integrating GRA for the simultaneous optimization of multiple performance characteristics further enhances the practical applicability of the findings in additive manufacturing.
Collapse
Affiliation(s)
- Oguz Dogan
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, Kahramanmaras Sutcu Imam University, Kahramanmaras 46040, Turkey;
| | - Muhammed S. Kamer
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, Kahramanmaras Sutcu Imam University, Kahramanmaras 46040, Turkey;
| | - Mehmet F. Sahan
- Department of Civil Engineering, Faculty of Engineering, Adiyaman University, Adiyaman 02040, Turkey;
| |
Collapse
|
2
|
Park YE, Lee S. Characterization of PLA/LW-PLA Composite Materials Manufactured by Dual-Nozzle FDM 3D-Printing Processes. Polymers (Basel) 2024; 16:2852. [PMID: 39458680 PMCID: PMC11511382 DOI: 10.3390/polym16202852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the properties of 3D-printed composite structures made from polylactic acid (PLA) and lightweight-polylactic acid (LW-PLA) filaments using dual-nozzle fused-deposition modeling (FDM) 3D printing. Composite structures were modeled by creating three types of cubes: (i) ST4-built with a total of four alternating layers of the two filaments in the z-axis, (ii) ST8-eight alternating layers of the two filaments, and (iii) CH4-a checkered pattern with four alternating divisions along the x, y, and z axes. Each composite structure was analyzed for printing time and weight, morphology, and compressive properties under varying nozzle temperatures and infill densities. Results indicated that higher nozzle temperatures (230 °C and 240 °C) activate foaming, particularly in ST4 and ST8 at 100% infill density. These structures were 103.5% larger on one side than the modeled dimensions and up to 9.25% lighter. The 100% infill density of ST4-Com-PLA/LW-PLA-240 improved toughness by 246.5% due to better pore compression. The ST4 and ST8 cubes exhibited decreased stiffness with increasing temperatures, while CH4 maintained consistent compressive properties across different conditions. This study confirmed that the characteristics of LW-PLA become more pronounced as the material is printed continuously, with ST4 showing the strongest effect, followed by ST8 and CH4. It highlights the importance of adjusting nozzle temperature and infill density to control foaming, density, and mechanical properties. Overall optimal conditions are 230 °C and 50% infill density, which provide a balance of strength and toughness for applications.
Collapse
Affiliation(s)
- Ye-Eun Park
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea;
| | - Sunhee Lee
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea;
- Department of Fashion Design, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
3
|
Farazin A, Mahjoubi S. Dual-functional Hydroxyapatite scaffolds for bone regeneration and precision drug delivery. J Mech Behav Biomed Mater 2024; 157:106661. [PMID: 39018918 DOI: 10.1016/j.jmbbm.2024.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Addressing infected bone defects remains a significant challenge in orthopedics, requiring effective infection control and bone defect repair. A promising therapeutic approach involves the development of dual-functional engineered biomaterials with drug delivery systems that combine antibacterial properties with osteogenesis promotion. The Hydroxyapatite composite scaffolds offer a one-stage treatment, eliminating the need for multiple surgeries and thereby streamlining the process and reducing treatment time. This review delves into the impaired bone repair mechanisms within pathogen-infected and inflamed microenvironments, providing a theoretical foundation for treating infectious bone defects. Additionally, it explores composite scaffolds made of antibacterial and osteogenic materials, along with advanced drug delivery systems that possess both antibacterial and bone-regenerative properties. By offering a comprehensive understanding of the microenvironment of infectious bone defects and innovative design strategies for dual-function scaffolds, this review presents significant advancements in treatment methods for infectious bone defects. Continued research and clinical validation are essential to refine these innovations, ensuring biocompatibility and safety, achieving controlled release and stability, and developing scalable manufacturing processes for widespread clinical application.
Collapse
Affiliation(s)
- Ashkan Farazin
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, 07030, United States
| | - Soroush Mahjoubi
- Department of Civil and Environmental Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
4
|
Darghiasi SF, Farazin A, Ghazali HS. Design of bone scaffolds with calcium phosphate and its derivatives by 3D printing: A review. J Mech Behav Biomed Mater 2024; 151:106391. [PMID: 38211501 DOI: 10.1016/j.jmbbm.2024.106391] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Tissue engineering is a fascinating field that combines biology, engineering, and medicine to create artificial tissues and organs. It involves using living cells, biomaterials, and bioengineering techniques to develop functional tissues that can be used to replace or repair damaged or diseased organs in the human body. The process typically starts by obtaining cells from the patient or a donor. These cells are then cultured and grown in a laboratory under controlled conditions. Scaffold materials, such as biodegradable polymers or natural extracellular matrices, are used to provide support and structure for the growing cells. 3D bone scaffolds are a fascinating application within the field of tissue engineering. These scaffolds are designed to mimic the structure and properties of natural bone tissue and serve as a temporary framework for new bone growth. The main purpose of a 3D bone scaffold is to provide mechanical support to the surrounding cells and guide their growth in a specific direction. It acts as a template, encouraging the formation of new bone tissue by providing a framework for cells to attach, proliferate, and differentiate. These scaffolds are typically fabricated using biocompatible materials like ceramics, polymers, or a combination of both. The choice of material depends on factors such as strength, biodegradability, and the ability to facilitate cell adhesion and growth. Advanced techniques like 3D printing have revolutionized the fabrication process of these scaffolds. Using precise layer-by-layer deposition, it allows for the creation of complex, patient-specific geometries, mimicking the intricacies of natural bone structure. This article offers a brief overview of the latest developments in the research and development of 3D printing techniques for creating scaffolds used in bone tissue engineering.
Collapse
Affiliation(s)
- Seyedeh Farnaz Darghiasi
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID, USA; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), P.O. Box 16846-13114, Tehran, Iran
| | - Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran; Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Hanieh Sadat Ghazali
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA.
| |
Collapse
|
5
|
Esakkimuthu ES, Ponnuchamy V, Sipponen MH, DeVallance D. Elucidating intermolecular forces to improve compatibility of kraft lignin in poly(lactic acid). Front Chem 2024; 12:1347147. [PMID: 38389728 PMCID: PMC10882097 DOI: 10.3389/fchem.2024.1347147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Owing to its abundant supply from renewable resources, lignin has emerged as a promising functional filler for the development of sustainable composite materials. However, achieving good interfacial compatibility between lignin and synthetic polymers, particularly poly (lactic acid) (PLA), remains a fundamental challenge. To advance the development of high-performance bio-based composites incorporating lignin and PLA, our study has scrutinized to unravel the nuances of interfacial binding interactions with the lignin and PLA composite system. Molecular level and experimental examinations were employed to decipher fundamental mechanisms governing and demonstrating the interfacial adhesion. We synthesized casted films of lignin/PLA and acetylated lignin/PLA at varying weight percentages of lignin (5%, 10%, and 20%) and comprehensively investigated their physicochemical and mechanical properties. The inclusion of acetylated lignin in the composites resulted in improved mechanical strength and Young's modulus, while the glass transition temperature and melting point were reduced compared to neat PLA. Systematic variations in these properties revealed distinct compatibility behaviors between unmodified lignin and acetylated lignin when incorporated into PLA. Molecular dynamics (MD) simulation results elucidated that the observed changes in material properties were primarily attributed to the acetylation of lignin. Acetylated lignin exhibited lower Coulombic interaction energy and higher van der Waals forces, indicating a stronger affinity to PLA and a reduced propensity for intermolecular aggregation compared to unmodified lignin. Our findings highlight the critical role of controlling intermolecular interactions and lignin aggregation to develop PLA composites with predictable performance for new applications, such as functional packaging materials.
Collapse
Affiliation(s)
- Esakkiammal Sudha Esakkimuthu
- InnoRenew CoE, Izola, Slovenia
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Veerapandian Ponnuchamy
- InnoRenew CoE, Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, Koper, Slovenia
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - David DeVallance
- InnoRenew CoE, Izola, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| |
Collapse
|
6
|
Miralaei N, Mohammadimehr M, Farazin A, Ghasemi AH, Bargozini F. Design, fabrication, evaluation, and in vitro study of green biomaterial and antibacterial polymeric biofilms of polyvinyl alcohol/tannic acid/CuO/ SiO2. J Mech Behav Biomed Mater 2023; 148:106219. [PMID: 37951146 DOI: 10.1016/j.jmbbm.2023.106219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023]
Abstract
In this study, a three-component biofilm for rapid wound dressing consisting of polyvinyl alcohol (PVA)/tannic acid (TA)/with CuO/SiO2 with different percentages (0, 5, 10, and 15 wt% NPs) is evaluated. In addition to controlling bleeding and absorption of blood and wound secretions, it protects the damaged tissue from the attack of microbes. It protects against viruses and thus reduces the treatment time. Analysis of biofilms morphology is performed by Field emission scanning electron microscopy (FE-SEM), phases in biofilms were analyzed by X-ray diffraction (XRD) analysis, chemical bonds, and functional groups are analyzed by Fourier transform infrared (FTIR) spectroscopy, and mechanical tests are performed to evaluate the strength of the samples. The thermogravimetric analysis (TGA) is applied to estimate the thermal stability of the biopolymer films with various percentages of CuO/SiO2 nanoparticles. Also, antibacterial test, bioactivity of the biofilms, the percentage of swelling ratio, and porosity of the samples were examined by immersing the samples in simulated body fluid (SBF) and Phosphate-buffered saline (PBS) for 14 days in vitro. The composite makeup of the TA/PVA sample, comprising 15 wt % CuO/SiO2 and containing 15 wt% of nanoparticles, exhibited superior heat resistance compared to other samples by an increase of 50 °C. This improvement can be attributed to the nanoparticles reaching their saturation point. The swelling ratio was assessed in both SBF and PBS, and in both instances, the sample increased by up to 10 wt% before decreasing, indicating the saturation of the nanoparticles.
Collapse
Affiliation(s)
- Nasim Miralaei
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran, P.O. Box 87317-53153.
| | - Mehdi Mohammadimehr
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran, P.O. Box 87317-53153.
| | - Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran, P.O. Box 87317-53153.
| | - Amir Hossein Ghasemi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran, P.O. Box 87317-51167
| | - Fatemeh Bargozini
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran, P.O. Box 87317-53153
| |
Collapse
|
7
|
Yi J, Hao R, Ji Q, Guan S, Wang Z, Yin J. Study on the Equation of State and Jet Forming of 3D-Printed PLA and PLA-Cu Materials. Polymers (Basel) 2023; 15:3564. [PMID: 37688190 PMCID: PMC10490074 DOI: 10.3390/polym15173564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In order to improve the research and development efficiency and quality of low-density liners in production and scientific research development, PLA and PLA-Cu composite liners were prepared based on 3D-printing technology. In this paper, the relationship between the shock wave velocity D and the particle velocity u of PLA and PLA-Cu materials was tested by a one-stage light gas gun experiment device, and then the Grüneisen equation of state parameters of the two materials was obtained by fitting. The forming process of the two jets was numerically simulated by using the equation of state. When combined with the pulsed X-ray shooting results of the jets, it was found that the jets of the two materials showed obvious characteristics of "expansion particle flow", and the head of the PLA jet had a gasification phenomenon. The length of the PLA jet at 20 μs in the numerical simulation was 127.2 mm, and the average length of the PLA jet at 20 μs in the pulsed X-ray shooting experiment was 100.45 mm. The length of the PLA jet gasification part accounted for about 21% of the total length of the jet. The average velocity of the head of the PLA jet is 7798.35 m/s, and the average velocity of the head of the PLA-Cu jet is 8104.25 m/s. In this paper, 3D-printing technology is used to prepare the liner for the first time, aiming to open up a new preparation technology and provide a new material selection for low-density material liners.
Collapse
Affiliation(s)
- Jianya Yi
- School of Mechatronic Engineering, North University of China, Taiyuan 030051, China; (R.H.); (S.G.); (Z.W.); (J.Y.)
| | - Ruijie Hao
- School of Mechatronic Engineering, North University of China, Taiyuan 030051, China; (R.H.); (S.G.); (Z.W.); (J.Y.)
| | - Qing Ji
- Northwest Institute of Mechanical & Electrical Engineering, Xianyang 712099, China;
| | - Siman Guan
- School of Mechatronic Engineering, North University of China, Taiyuan 030051, China; (R.H.); (S.G.); (Z.W.); (J.Y.)
| | - Zhijun Wang
- School of Mechatronic Engineering, North University of China, Taiyuan 030051, China; (R.H.); (S.G.); (Z.W.); (J.Y.)
| | - Jianping Yin
- School of Mechatronic Engineering, North University of China, Taiyuan 030051, China; (R.H.); (S.G.); (Z.W.); (J.Y.)
| |
Collapse
|
8
|
Farazin A, Mohammadimehr M, Naeimi H. Flexible self-healing nanocomposite based gelatin/tannic acid/acrylic acid reinforced with zinc oxide nanoparticles and hollow silver nanoparticles based on porous silica for rapid wound healing. Int J Biol Macromol 2023; 241:124572. [PMID: 37100326 DOI: 10.1016/j.ijbiomac.2023.124572] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
In this research, gelatin (Ge), tannic acid (TA), acrylic acid (AA) as a matrix are used. Zinc oxide (ZnO) nanoparticles (10, 20, 30, 40 and 50 wt%) and hollow silver nanoparticles along with ascorbic acid (1, 3, and 5 wt%) are considered as reinforcement. In order to prove the functional groups of nanoparticles made from Fourier-transform infrared spectroscopy (FTIR), and determine the existing phases of the powders in the hydrogel, X-ray diffraction (XRD) is used, also to investigate the morphology, size, and porosity of the holes and in the scaffolds, scanning electron microscope analysis is used (FESEM). Then, mechanical tests such as tension and compression test are performed to determine the most optimal state of the composite. Also, the antibacterial test is performed for the manufactured powders and hydrogel, as well as the toxicity test for the fabricated hydrogel. The results show that the sample (30 wt% of zinc oxide and 5 wt% of hollow nanoparticles) is the most optimal hydrogel based on mechanical tests and biological properties.
Collapse
Affiliation(s)
- Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran
| | - Mehdi Mohammadimehr
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran.
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| |
Collapse
|
9
|
Farazin A, Zhang C, Ghasemi AH. Preparation and identification of new antibacterial and biocompatible dressings based on gelatin/polyvinyl alcohol and castor oil. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
10
|
Liu J, Su Z, Wang C, Xu Z. Effect of an Adaptive-Density Filling Structure on the Mechanical Properties of FDM Parts with a Variable Cross-Section. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8746. [PMID: 36556552 PMCID: PMC9785937 DOI: 10.3390/ma15248746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Fused deposition modeling (FDM) technique is one of the most popular additive manufacturing techniques. Infill density is a critical factor influencing the mechanical properties of 3D-printed components using the FDM technique. For irregular components with variable cross-sections, to increase their overall mechanical properties while maintaining a lightweight, it is necessary to enhance the local infill density of the thin part while decreasing the infill density of the thick part. However, most current slicing software can only generate a uniform infill throughout one model to be printed and cannot adaptively create a filling structure with a varying infill density according to the dimensional variation of the cross-section. In the present study, to improve the mechanical properties of irregular components with variable cross-sections, an adaptive-density filling structure was proposed, in which Hilbert curve with the same order was used to fill each slice, i.e., the level of the Hilbert curves in each slice is the same, but the side length of the Hilbert curve decreases with the decreasing size of each slice; hence, the infill density of the smaller cross-section is greater than that of the larger cross-section. The ultimate bearing capacity of printed specimens with the adaptive-density filling structure was evaluated by quasi-static compression, three-point bending, and dynamic compression tests, and the printed specimens with uniform filling structure and the same overall infill density were tested for comparison. The results show that the maximum flexural load, the ultimate compression load, and the maximum impact resistance of the printed specimens with the adaptive-density filling structure were increased by 140%, 47%, and 82%, respectively, compared with their counterparts using the uniform filling structure.
Collapse
Affiliation(s)
- Jian Liu
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China
| | - Zhou Su
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China
| | - Chenyue Wang
- Zhongchuang Xinhang Technology Co., Ltd., Changzhou 213200, China
| | - Zhuofei Xu
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China
| |
Collapse
|
11
|
Farazin A, Ghasemi AH. Design, Synthesis, and Fabrication of Chitosan/Hydroxyapatite Composite Scaffold for Use as Bone Replacement Tissue by Sol–Gel Method. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02343-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Cojocaru V, Frunzaverde D, Miclosina CO, Marginean G. The Influence of the Process Parameters on the Mechanical Properties of PLA Specimens Produced by Fused Filament Fabrication-A Review. Polymers (Basel) 2022; 14:polym14050886. [PMID: 35267709 PMCID: PMC8912674 DOI: 10.3390/polym14050886] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Polylactic acid (PLA) is produced from renewable materials, has a low melting temperature and has a low carbon footprint. These advantages have led to the extensive use of polylactic acid in additive manufacturing, particularly by fused filament fabrication (FFF). PLA parts that are 3D printed for industrial applications require stable mechanical properties and predictability regarding their dependence on the process parameters. Therefore, the development of the FFF process has been continuously accompanied by the development of software packages that generate CNC codes for the printers. A large number of user-controllable process parameters have been introduced in these software packages. In this respect, a lot of articles in the specialized literature address the issue of the influence of the process parameters on the mechanical properties of 3D-printed specimens. A systematic review of the research targeting the influence of process parameters on the mechanical properties of PLA specimens additively manufactured by fused filament fabrication was carried out by the authors of this paper. Six process parameters (layer thickness, printing speed, printing temperature, build plate temperature, build orientation and raster angle) were followed. The mechanical behavior was evaluated by tensile, compressive and bending properties.
Collapse
Affiliation(s)
- Vasile Cojocaru
- Department of Engineering Science, Babeș-Bolyai University, P-ța Traian Vuia, Nr. 1-4, 320085 Resita, Romania; (V.C.); (C.-O.M.)
| | - Doina Frunzaverde
- Department of Engineering Science, Babeș-Bolyai University, P-ța Traian Vuia, Nr. 1-4, 320085 Resita, Romania; (V.C.); (C.-O.M.)
- Correspondence:
| | - Calin-Octavian Miclosina
- Department of Engineering Science, Babeș-Bolyai University, P-ța Traian Vuia, Nr. 1-4, 320085 Resita, Romania; (V.C.); (C.-O.M.)
| | - Gabriela Marginean
- Department of Materials Science and Testing, Westphalian University of Applied Sciences Gelsenkirchen Bocholt Recklinghausen, Neidenburgerstr. 43, 45897 Gelsenkirchen, Germany;
| |
Collapse
|