1
|
Shoaib S, Iqbal RK, Ashraf H, Younis U, Rasool MA, Ansari MJ, Alarfaj AA, Alharbi SA. Mitigating effect of γ-aminobutyric acid and gibberellic acid on tomato plant cultivated in Pb-polluted soil. Sci Rep 2025; 15:12469. [PMID: 40216907 PMCID: PMC11992259 DOI: 10.1038/s41598-025-96450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Soil heavy metal pollution poses a significant environmental risk to human health and plant growth. Gibberellic acid (GA) and γ-aminobutyric acid (GABA) are effective methods for resolving this issue. GA regulates growth mechanisms such as seed germination, flowering, and stem elongation. Plants use GABA, a signaling molecule, to control physiological processes, growth, and responses to stress. This substance plays a crucial role in the interactions between hormones and plant defense, as evidenced by its effects on photosynthesis, food absorption, and stomatal behavior. The study aimed to determine how GABA and GA amendments affected tomato plants under no toxicity and Pb toxicity. The study included four treatments (0, GA, GABA, and GA + GABA) in four replications following a completely randomized design. Notably, the GA + GABA treatment led to considerable enhancements in fresh weight (88.98%), dry weight (68.28%), shoot length (39.98%), and root length (115.43%) compared to the control under Pb toxicity. Moreover, GA + GABA treatment significantly increased tomato chlorophyll a (161.72%), chlorophyll b (93.33%), and total chlorophyll content (112.45%) under Pb stress toxicity, confirming the effectiveness of GA + GABA treatment. In conclusion, GA + GABA is recommended as the best amendment to mitigate Pb stress in tomato plants. Our findings have broader implications for GA + GABA application, offering a potential technology to enhance sustainable crop production by improving plant growth and yield in Pb-contaminated soils. More investigations are suggested at field levels under different agroclimates on different crops for the declaration of GA + GABA as the best amendment for alleviating different heavy metal pollutions and sustainable agriculture productions.
Collapse
Affiliation(s)
- Saniha Shoaib
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | | | - Hina Ashraf
- Department of Botany, The Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan
| | - Uzma Younis
- Botany Department, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Rahim Yar Khan, Punjab, Pakistan.
| | - Muhammad Ayaz Rasool
- Botany Department, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Rahim Yar Khan, Punjab, Pakistan
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, (Guru Jambheshwar University, Moradabad), Uttar Pradesh, 244001, India
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Gupta M, Dwivedi V, Kumar S, Patel A, Niazi P, Yadav VK. Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. PLANT SIGNALING & BEHAVIOR 2024; 19:2365576. [PMID: 38899525 PMCID: PMC11195469 DOI: 10.1080/15592324.2024.2365576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Soil toxicity is a major environmental issue that leads to numerous harmful effects on plants and human beings. Every year a huge amount of Pb is dumped into the environment either from natural sources or anthropogenically. Being a heavy metal it is highly toxic and non-biodegradable but remains in the environment for a long time. It is considered a neurotoxic and exerts harmful effects on living beings. In the present review article, investigators have emphasized the side effects of Pb on the plants. Further, the authors have focused on the various sources of Pb in the environment. Investigators have emphasized the various responses including molecular, biochemical, and morphological of plants to the toxic levels of Pb. Further emphasis was given to the effect of elevated levels of Pb on the microbial population in the rhizospheres. Further, emphasized the various remediation strategies for the Pb removal from the soil and water sources.
Collapse
Affiliation(s)
- Minoti Gupta
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Chandigarh, Punjab, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh, India
| | - Swatantar Kumar
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Chandigarh, Punjab, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
- Department of Plant Protection, Faculty of Agriculture, EGE University, İzmir, Turkey
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
3
|
Debrah JK, Teye GK, Dinis MAP. Factors influencing management of dry cell battery waste: a case of Greater Accra Region in Ghana. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1181. [PMID: 39511056 PMCID: PMC11543774 DOI: 10.1007/s10661-024-13297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Indiscriminate disposal of dry cell battery (DCB) waste contributes to environmental and public health issues in developing countries such as Ghana, due to the toxic nature of this specific waste. Accordingly, a study was conducted in Accra, Ghana, to determine the socio-economic and demographic factors influencing handling DCB waste, aiming a sustainable environment. Using a random sampling technique, a descriptive cross-sectional survey was conducted, encompassing 367 respondents from the Accra-Tema Metropolitan areas and Tema West Municipal Assembly in Greater Accra, Ghana. Using descriptive and multivariate statistical methods, the survey data were analysed with the Statistical Package for Social Sciences (SPSS) version 27. The results of this study show that female gender and residential area are likely to positively influence the use of DCB at home. Education significantly affects the use of DCB and its proper disposal. The results also suggest that 78% of the respondents disposed of DCB waste in waste bins. The mean monthly income of the respondents stands at USD 270, which is average and likely partially to positively influence the disposal of the DCB. The data collected revealed that female gender, age group, family size, and education level influence the indiscriminate disposal of DCB waste and DCB waste recycling. The results highlight that educated females above the age of 55, with a monthly income, are likely to properly segregate DCB waste. This study contributes to the knowledge gap in relation to dry cell battery waste management (DCBWM) in developing countries, aiming to advance global sustainability. This study is expected to contribute to educate and create awareness in managing DCB waste to reduce its indiscriminate disposal which leads to environmental pollution and negatively affects human health and environmental sustainability in Ghana.
Collapse
Affiliation(s)
- Justice Kofi Debrah
- Faculty of Science and Technology, University Fernando Pessoa (UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal.
| | - Godfred Kwesi Teye
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes of Ministry of Education, College of Environment, Hohai University, No. 1 Xikang Road, Nanjing, 210098, China
| | - Maria Alzira Pimenta Dinis
- Fernando Pessoa Research, Innovation and Development Institute (FP-I3ID), University Fernando Pessoa (UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal
- Marine and Environmental Sciences Centre (MARE), University of Coimbra, Edifício do Patronato, Rua da Matemática, 49, 3004-517, Coimbra, Portugal
| |
Collapse
|
4
|
Yang DC, Zheng BJ, Li J, Yu Y. Iron and ferritin effects on intensive care unit mortality: A meta-analysis. World J Clin Cases 2024; 12:2803-2812. [PMID: 38899309 PMCID: PMC11185325 DOI: 10.12998/wjcc.v12.i16.2803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized. AIM To determine the association between serum iron or ferritin parameters and mortality among critically ill patients. METHODS Web of Science, Embase, PubMed, and Cochrane Library databases were searched for studies on serum iron or ferritin parameters and mortality among critically ill patients. Two reviewers independently assessed, selected, and abstracted data from studies reporting on serum iron or ferritin parameters and mortality among critically ill patients. Data on serum iron or ferritin levels, mortality, and demographics were extracted. RESULTS Nineteen studies comprising 125490 patients were eligible for inclusion. We observed a slight negative effect of serum ferritin on mortality in the United States population [relative risk (RR) 1.002; 95%CI: 1.002-1.004). In patients with sepsis, serum iron had a significant negative effect on mortality (RR = 1.567; 95%CI: 1.208-1.925). CONCLUSION This systematic review presents evidence of a negative correlation between serum iron levels and mortality among patients with sepsis. Furthermore, it reveals a minor yet adverse impact of serum ferritin on mortality among the United States population.
Collapse
Affiliation(s)
- Deng-Can Yang
- Department of Anesthesiology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Bo-Jun Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Jian Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Yi Yu
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| |
Collapse
|
5
|
Nguyen NL, Bui VH, Pham HN, To HM, Dijoux-Franca MG, Vu CT, Nguyen KOT. Ionomics and metabolomics analysis reveal the molecular mechanism of metal tolerance of Pteris vittata L. dominating in a mining site in Thai Nguyen province, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87268-87280. [PMID: 35802316 DOI: 10.1007/s11356-022-21820-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
This study aims to find the interaction between ionome and metabolome profiles of Pteris vittata L., an arsenic hyperaccumulator plant, to reveal its metal tolerance mechanism. Therefore, at the Pb-Zn mining sites located in Thai Nguyen province, Vietnam, where these species dominate, soil and plant samples were collected. Their multi-element compositions were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and thus referred to as the "ionomics" approach. In parallel, the widely targeted metabolomics profiles of these plant samples were performed using liquid chromatography-tandem mass spectrometry (UPLC-QqQ-MS). Nineteen elements, including both metals and nonmetals, were detected and quantified in both tissues of thirty-five plant individuals. A comparison of these elements' levels in two tissues showed that above-ground parts accumulated more As and inorganic P, whereas Zn, Pb, and Sb were raised mostly in the under-ground samples. The partial least squares regression (PLSR) model predicting the level of each element by the whole metabolome indicated that the enhancement of flavonoids content plays an essential contribution in adaptation with the higher levels of Pb, Ag, and Ni accumulated in the aerial part, and Mn, Pb in subterranean part. Moreover, the models also highlighted the effect of Mn and Pb on the metabolic induction of adenosine derivatives in subterranean parts. At the same time, the model presented the most contribution of As to the metabolisms of the amino acids of this tissue. On those accounts, the developed integration approach linking the ionomics and metabolomics data of P. vittata improved the understanding of the molecular mechanism of hyperaccumulation characteristics and provided markers that could be targeted in future investigations.
Collapse
Affiliation(s)
- Ngoc-Lien Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Van-Hoi Bui
- Department of Water, Environment, Oceanography, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hoang-Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hien-Minh To
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Marie-Geneviève Dijoux-Franca
- UMR 5557, Ecologie Microbienne, CNRS, INRA, VetagroSup, UCBL, Université de Lyon, 43 Boulevard du 11 Novembre, 69622, Villeurbanne, France
| | - Cam-Tu Vu
- Department of Water, Environment, Oceanography, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Kieu-Oanh Thi Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
6
|
Jakovljević K, Tomović G, Baker AJM, Đurović S, Mihailović N, Lazarević P, Lazarević M. Strategies of accumulation of potentially toxic elements in Minuartia recurva and M. bulgarica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43421-43434. [PMID: 35094272 DOI: 10.1007/s11356-021-18370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The aim of this study was to determine the concentrations of potentially toxic elements in soil samples and plant tissues of Minuartia recurva and M. bulgarica, predominantly or exclusively calcifuge species. Biological concentration (BCs) and translocation factors (TFs) were used to evaluate their accumulation potential. Considerable differences were observed between M. recurva and M. bulgarica assessions in terms of accumulation strategies of potentially toxic elements (PTEs). In M. recurva, most of the elements analyzed (Mn, Cu, Zn, Cd, and Co) were transported to the shoot, whereas in M. bulgarica, these elements remained predominantly in the roots. The Cu concentrations in the shoot samples of M. recurva from an abandoned iron-copper mine at Mt. Kopaonik were clearly above the notional hyperaccumulation threshold, characterizing this species as a possible Cu hyperaccumulator. Additionally, strong accumulation potential for Cr, Ni, Zn, Pb, and Cd was observed in M. recurva assessions, but without significant accumulation due to the low concentrations of these elements in the soils. The strong accumulation capacity and the different strategies in tolerance to PTEs indicate a potential of the two species for an application in phytoremediation: M. recurva for phytoextraction and M. bulgarica for phytostabilization.
Collapse
Affiliation(s)
- Ksenija Jakovljević
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden, Belgrade, Serbia.
| | - Gordana Tomović
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden, Belgrade, Serbia
| | - Alan J M Baker
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Sanja Đurović
- University of Niš, Faculty of Agriculture, Kruševac, Serbia
| | - Nevena Mihailović
- University of Belgrade, Institute for the Application of Nuclear Energy - INEP, Belgrade, Serbia
| | - Predrag Lazarević
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden, Belgrade, Serbia
| | - Maja Lazarević
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden, Belgrade, Serbia
| |
Collapse
|
7
|
Blanco A, Pignata ML, Rodriguez JH. Effect of Pb-Polluted Soil on Soybean Growth and Associated Toxicological Risk. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:756-761. [PMID: 34751799 DOI: 10.1007/s00128-021-03402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Glycine max (L.) Merr. (soybean) has been mentioned as a potential accumulator of hazardous metals, such as Pb. The main route of human exposure to heavy metals is consumption. This study evaluates Pb accumulation in soybean at different growth stages. The aim was to determine the period of the crop development when absorption and distribution mostly occur. Soybean plants were grown in control and Pb-polluted soils in a greenhouse experiment. Morpho-physiological parameters and Pb content in organs were analyzed. Results showed that Pb affected the biomass of roots and plant height, with the highest Pb accumulation occurring in the roots and with low translocation to aerial organs. Moreover, Pb accumulation and distribution occurred before grain filling, the crop critical period. Soybean seeds accumulated Pb above permissible values, but with no associated toxicological risk. Furthermore, pods showed higher Pb values than seeds, suggesting a protective effect.
Collapse
Affiliation(s)
- Andrés Blanco
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield 1611, X5016CGA, Córdoba, Argentina.
| | - María L Pignata
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield 1611, X5016CGA, Córdoba, Argentina
| | - Judith H Rodriguez
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield 1611, X5016CGA, Córdoba, Argentina
| |
Collapse
|
8
|
Hachani C, Lamhamedi MS, Zine El Abidine A, Abassi M, Khasa DP, Béjaoui Z. Water Relations, Gas Exchange, Chlorophyll Fluorescence and Electrolyte Leakage of Ectomycorrhizal Pinus halepensis Seedlings in Response to Multi-Heavy Metal Stresses (Pb, Zn, Cd). Microorganisms 2021; 10:microorganisms10010057. [PMID: 35056506 PMCID: PMC8779289 DOI: 10.3390/microorganisms10010057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022] Open
Abstract
The success of mine site restoration programs in arid and semi-arid areas poses a significant challenge and requires the use of high-quality seedlings capable of tolerating heavy metal stresses. The effect of ectomycorrhizal fungi on different physiological traits was investigated in Pinus halepensis seedlings grown in soil contaminated with heavy metals (Pb-Zn-Cd). Ectomycorrhizal (M) and non-ectomycorrhizal (NM) seedlings were subjected to heavy metals stress (C: contaminated, NC: control or non-contaminated) soils conditions for 12 months. Gas exchange, chlorophyll fluorescence, water relations parameters derived from pressure–volume curves and electrolyte leakage were evaluated at 4, 8 and 12 months. Ectomycorrhizal symbiosis promoted stronger resistance to heavy metals and improved gas exchange parameters and water-use efficiency compared to the non-ectomycorrhizal seedlings. The decrease in leaf osmotic potentials (Ψπ100: osmotic potential at saturation and Ψπ0: osmotic potential with loss of turgor) was higher for M-C seedling than NM-C ones, indicating that the ectomycorrhizal symbiosis promotes cellular osmotic adjustment and protects leaf membrane cell against leakage induced by Pb, Zn and Cd. Our results suggest that the use of ectomycorrhizal symbiosis is among the promising practices to improve the morphophysiological quality of seedlings produced in forest nurseries, their performance and their tolerance to multi-heavy metal stresses.
Collapse
Affiliation(s)
- Chadlia Hachani
- Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Tunisia;
- Laboratory of Forest Ecology (LR11INRGREF03), National Institute of Research in Rural Engineering, Water and Forests (INRGREF), University of Carthage, Hédi Elkarray Street, Elmenzah IV, BP 10, Ariana 2080, Tunisia;
| | - Mohammed S. Lamhamedi
- Centre for Forest Studies, Faculty of Forestry, Geography and Geomatics, Abitibi Price Building, Laval University, Quebec, QC G1V 0A6, Canada;
| | | | - Mejda Abassi
- Laboratory of Forest Ecology (LR11INRGREF03), National Institute of Research in Rural Engineering, Water and Forests (INRGREF), University of Carthage, Hédi Elkarray Street, Elmenzah IV, BP 10, Ariana 2080, Tunisia;
| | - Damase P. Khasa
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, 1030 Avenue de la Médecine, Quebec, QC G1V 0A6, Canada;
| | - Zoubeir Béjaoui
- Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Tunisia;
- Laboratory of Forest Ecology (LR11INRGREF03), National Institute of Research in Rural Engineering, Water and Forests (INRGREF), University of Carthage, Hédi Elkarray Street, Elmenzah IV, BP 10, Ariana 2080, Tunisia;
- Correspondence:
| |
Collapse
|
9
|
Sun C, Li C, Mu W, Ma L, Xie H, Xu J. The photosynthetic physiological response and purification effect of Salix babylonica to 2, 4-dinitrophenol wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:675-683. [PMID: 34455875 DOI: 10.1080/15226514.2021.1962799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytoremediation technology based on living green plants would clean up water pollution. Through hydroponic experiment, the effects of different concentration of 2, 4-dinitrophenol (2, 4-DNP) on the photosynthetic and chlorophyll fluorescence parameters of Salix babylonica, and the absorption and purification effect of S. babylonica on 2, 4-DNP were measured to explore the tolerance of S. babylonica to 2, 4-DNP and the feasibility to purify dinitrophenol waste water by it. The biomass, actual photochemical efficiency (PSII), net photosynthetic rate (Pn), photochemical quenching coefficient (qP), stomatal conductance (Gs), transpiration rate (Tr), maximum photochemical efficiency (Fv/Fm) and chlorophyll content of the S. babylonica showed downward trend with the increasing exposure concentrations of 2,4-DNP, but the intercellular CO2 concentration (Ci) appeared upward trend. Non-photochemical quenching coefficient (NPQ) increased at 5 mg L-1, then declined with the increase concentrations of 2, 4-DNP. In addition, the percent removal of 2, 4-DNP in 20 mg L-1 waste water was 91.4%. In conclusion, 2, 4-DNP significantly inhibits Pn of S. babylonica and the reduction of Pn was caused by decreasing Gs, carboxylation efficiency and chlorophyll content. When the concentration of 2, 4-DNP is not more than 20 mg L-1, S. babylonica can remove 2, 4-DNP efficiently.
Collapse
Affiliation(s)
- Chaofan Sun
- Forestry College of Shandong Agricultural University, Taian, China
| | - Chuanrong Li
- Forestry College of Shandong Agricultural University, Taian, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, China
| | - Wenxiu Mu
- Forestry College of Shandong Agricultural University, Taian, China
| | - Luyao Ma
- Forestry College of Shandong Agricultural University, Taian, China
| | - Huicheng Xie
- Forestry College of Shandong Agricultural University, Taian, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, China
| | - Jingwei Xu
- Shandong Provincial Academy of Forestry, Jinnan, China
| |
Collapse
|
10
|
Blanco A, Pignata ML, Lascano HR, Salazar MJ, Rodriguez JH. Lead uptake and translocation pathways in soybean seedlings: the role of ion competition and transpiration rates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20624-20636. [PMID: 33405140 DOI: 10.1007/s11356-020-11901-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Glycine max (L.) Merr. (soybean) crop plants have been found to have high lead (Pb) levels in aerial organs; however, knowledge about the processes involved in the incorporation, and subsequent translocation and accumulation of the metal in the plants is scarce. Considering the toxicity of this heavy metal, the aim of the present study was to evaluate Pb uptake and translocation, and their toxic effects on soybean seedlings via experiments of ionic competition with Ca2+ (2.5 mM, Ca:Pb 1:1) and alteration of the transpiration flow [0.25 mM Pb(NO3)2]. The following variables were analyzed: biomass, leaf area (morphological parameters), photosynthetic efficiency, biochemical response (considered physiological stress markers: antioxidant power, chlorophylls, carotenoids, starch, proteins, sugars, and malondialdehyde), and Pb content. Results showed that soybean seedlings can accumulate high Pb concentration in its organs; however, in general, no morpho-physiological Pb stress symptoms were observed, except for lipid peroxidation and antioxidant power. The treatment with Ca ions was not effective in reducing Pb entry into root over time when both Ca and Pb where present in the grow solution. Alteration of the transpiration rate in soybean showed that the air flow increased the consumption of solutions, regardless of the treatments. However, Pb accumulation was lower in seedlings exposed to air flow, indicating a selective exclusion of the metal in the solution. In both experiments, soybean seedlings showed to be tolerant to high Pb concentrations.
Collapse
Affiliation(s)
- Andrés Blanco
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, FCEFyN, Universidad Nacional de Córdoba, CONICET, Av. Vélez Sársfield 1611, X5016CGA, Córdoba, Argentina.
| | - María L Pignata
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, FCEFyN, Universidad Nacional de Córdoba, CONICET, Av. Vélez Sársfield 1611, X5016CGA, Córdoba, Argentina
| | - Hernán R Lascano
- Unidad de Estudios Agropecuarios (UDEA), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 cuadras km 5.5, 5119, Córdoba, Argentina
- Cátedra de Fisiología Vegetal (FCEFyN-UNC), Av. Vélez Sársfield 299, X5000CGA, Córdoba, Argentina
| | - María J Salazar
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, FCEFyN, Universidad Nacional de Córdoba, CONICET, Av. Vélez Sársfield 1611, X5016CGA, Córdoba, Argentina
| | - Judith H Rodriguez
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, FCEFyN, Universidad Nacional de Córdoba, CONICET, Av. Vélez Sársfield 1611, X5016CGA, Córdoba, Argentina
| |
Collapse
|
11
|
Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:635. [PMID: 33801570 PMCID: PMC8066251 DOI: 10.3390/plants10040635] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Worldwide, the effects of metal and metalloid toxicity are increasing, mainly due to anthropogenic causes. Soil contamination ranks among the most important factors, since it affects crop yield, and the metals/metalloids can enter the food chain and undergo biomagnification, having concomitant effects on human health and alterations to the environment. Plants have developed complex mechanisms to overcome these biotic and abiotic stresses during evolution. Metals and metalloids exert several effects on plants generated by elements such as Zn, Cu, Al, Pb, Cd, and As, among others. The main strategies involve hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Recent studies in the omics era have increased knowledge on the plant genome and transcriptome plasticity to defend against these stimuli. The aim of the present review is to summarize relevant findings on the mechanisms by which plants take up, accumulate, transport, tolerate, and respond to this metal/metalloid stress. We also address some of the potential applications of biotechnology to improve plant tolerance or increase accumulation.
Collapse
Affiliation(s)
- Paola I. Angulo-Bejarano
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
- School of Engineering and Sciences, Centre of Bioengineering, Tecnologico de Monterrey, Queretaro 21620, Mexico
| | - Jonathan Puente-Rivera
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| |
Collapse
|
12
|
Muhammad I, Shalmani A, Ali M, Yang QH, Ahmad H, Li FB. Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 11:615942. [PMID: 33584756 PMCID: PMC7876081 DOI: 10.3389/fpls.2020.615942] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/28/2020] [Indexed: 05/02/2023]
Abstract
Photosynthesis sustains plant life on earth and is indispensable for plant growth and development. Factors such as unfavorable environmental conditions, stress regulatory networks, and plant biochemical processes limits the photosynthetic efficiency of plants and thereby threaten food security worldwide. Although numerous physiological approaches have been used to assess the performance of key photosynthetic components and their stress responses, though, these approaches are not extensive enough and do not favor strategic improvement of photosynthesis under abiotic stresses. The decline in photosynthetic capacity of plants due to these stresses is directly associated with reduction in yield. Therefore, a detailed information of the plant responses and better understanding of the photosynthetic machinery could help in developing new crop plants with higher yield even under stressed environments. Interestingly, cracking of signaling and metabolic pathways, identification of some key regulatory elements, characterization of potential genes, and phytohormone responses to abiotic factors have advanced our knowledge related to photosynthesis. However, our understanding of dynamic modulation of photosynthesis under dramatically fluctuating natural environments remains limited. Here, we provide a detailed overview of the research conducted on photosynthesis to date, and highlight the abiotic stress factors (heat, salinity, drought, high light, and heavy metal) that limit the performance of the photosynthetic machinery. Further, we reviewed the role of transcription factor genes and various enzymes involved in the process of photosynthesis under abiotic stresses. Finally, we discussed the recent progress in the field of biodegradable compounds, such as chitosan and humic acid, and the effect of melatonin (bio-stimulant) on photosynthetic activity. Based on our gathered researched data set, the logical concept of photosynthetic regulation under abiotic stresses along with improvement strategies will expand and surely accelerate the development of stress tolerance mechanisms, wider adaptability, higher survival rate, and yield potential of plant species.
Collapse
Affiliation(s)
- Izhar Muhammad
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Muhammad Ali
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Qing-Hua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Husain Ahmad
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Feng Bai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
The Fungicide Tetramethylthiuram Disulfide Negatively Affects Plant Cell Walls, Infection Thread Walls, and Symbiosomes in Pea ( Pisum sativum L.) Symbiotic Nodules. PLANTS 2020; 9:plants9111488. [PMID: 33158267 PMCID: PMC7694270 DOI: 10.3390/plants9111488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
In Russia, tetramethylthiuram disulfide (TMTD) is a fungicide widely used in the cultivation of legumes, including the pea (Pisum sativum). Application of TMTD can negatively affect nodulation; nevertheless, its effect on the histological and ultrastructural organization of nodules has not previously been investigated. In this study, the effect of TMTD at three concentrations (0.4, 4, and 8 g/kg) on nodule development in three pea genotypes (laboratory lines Sprint-2 and SGE, and cultivar 'Finale') was examined. In SGE, TMTD at 0.4 g/kg reduced the nodule number and shoot and root fresh weights. Treatment with TMTD at 8 g/kg changed the nodule color from pink to green, indicative of nodule senescence. Light and transmission electron microscopy analyses revealed negative effects of TMTD on nodule structure in each genotype. 'Finale' was the most sensitive cultivar to TMTD and Sprint-2 was the most tolerant. The negative effects of TMTD on nodules included the appearance of a senescence zone, starch accumulation, swelling of cell walls accompanied by a loss of electron density, thickening of the infection thread walls, symbiosome fusion, and bacteroid degradation. These results demonstrate how TMTD adversely affects nodules in the pea and will be useful for developing strategies to optimize fungicide use on legume crops.
Collapse
|