1
|
Ghorab BEA, Liu T, Ying M, Wang P, Qin M, Xing J, Wang H, Xu F. Advances in the Drug Development and Quality Evaluation Principles of Oncolytic Herpes Simplex Virus. Viruses 2025; 17:581. [PMID: 40285023 PMCID: PMC12031214 DOI: 10.3390/v17040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Oncolytic herpes simplex virus (oHSV) represents a promising therapeutic approach to treating cancers by virtue of its selective replication in and lysis of tumor cells, with stimulation of host antitumor immunity. At present, four OV drugs have been approved for the treatment of cancers worldwide, two of which are oHSV drugs that have received extensive attention, known as T-VEC and Delytact. This review discusses the history, mechanism of action, clinical development, quality control, and evaluation principles of oHSV products, including viral species and genetic modifications that have improved these products' therapeutic potential, limitations, and future directions. Integration of oHSVs with immunotherapeutic agents and conventional therapies has a promising future in the field of treatment of malignant tumors. Although much progress has been achieved, there is still much work to be done regarding the optimization of treatment protocols and the quality control of oncolytic virus drugs. The approval of various oncolytic virus therapies underlines their clinical relevance, safety, and efficacy, thereby paving the way for further research aimed at overcoming the existing limitations and enhancing patient responses.
Collapse
Affiliation(s)
- Basma Eid Abdullah Ghorab
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.E.A.G.); (T.L.); (J.X.)
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Guangdong Provincial Key Laboratory of Viral Biotechnology and Application, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtan Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.E.A.G.); (T.L.); (J.X.)
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Guangdong Provincial Key Laboratory of Viral Biotechnology and Application, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Ying
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Anesthesiology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China; (P.W.); (M.Q.)
| | - Meirong Qin
- Shenzhen Institute for Drug Control, Shenzhen 518057, China; (P.W.); (M.Q.)
| | - Jiayong Xing
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.E.A.G.); (T.L.); (J.X.)
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Guangdong Provincial Key Laboratory of Viral Biotechnology and Application, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huadong Wang
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.E.A.G.); (T.L.); (J.X.)
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Guangdong Provincial Key Laboratory of Viral Biotechnology and Application, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.E.A.G.); (T.L.); (J.X.)
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Guangdong Provincial Key Laboratory of Viral Biotechnology and Application, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Goli S, Kadkhodazadeh M, Kharaziha M, Javanmard SH, Azadmanesh K. Detection and isolation of viable cancer cells mediated by spytag and spycatcher using conditionally replicative adenovirus and magnetic microbeads. Sci Rep 2025; 15:11243. [PMID: 40175496 PMCID: PMC11965448 DOI: 10.1038/s41598-025-95671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Circulating tumor cells (CTCs) are critical biomarkers for cancer diagnosis, prognosis, and therapy monitoring, but their rarity and reliance on surface markers limit detection and isolation. While conditionally replicative adenoviruses (crADs) enable tumor-selective targeting, their use has been limited to fluorescence-based detection without robust isolation of viable cells. To overcome this, we developed a crAD-based platform integrating SpyTag/SpyCatcher technology with SpyCatcher-decorated magnetic microbeads for marker-independent CTC detection and isolation. The engineered adenovirus (CR-Ad5-ST-GFP) selectively replicates in telomerase-positive tumor cells, expressing green fluorescent protein (GFP) and SpyTag under independent promoters. By leveraging the SpyTag/SpyCatcher interaction, our platform isolates CTCs without relying on surface markers, addressing epithelial-to-mesenchymal transition (EMT) and phenotype variations. In proof-of-concept experiments, A-549 and Ca Ski cells spiked into peripheral blood mononuclear cells (PBMCs) at 1:10,000 were detected and isolated with over 80% efficiency. The isolated cells remained viable and were successfully re-cultured, demonstrating their potential for downstream applications such as molecular profiling and drug sensitivity testing. This method advances crAD-based approaches by combining tumor-selective viral targeting with marker-independent, viable CTC isolation. Its compatibility with microfluidic systems makes it a promising tool for tumor monitoring and personalized cancer treatment.
Collapse
Affiliation(s)
- Sadegh Goli
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
- Molecular Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Kadkhodazadeh
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Molecular Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Metabolomics and Genomics Research Center, Cellular and Molecular Institute, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayhan Azadmanesh
- Molecular Virology Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Meléndez-Vázquez NM, Gomez-Manzano C, Godoy-Vitorino F. Oncolytic Virotherapies and Adjuvant Gut Microbiome Therapeutics to Enhance Efficacy Against Malignant Gliomas. Viruses 2024; 16:1775. [PMID: 39599889 PMCID: PMC11599061 DOI: 10.3390/v16111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant brain tumor. Current standard-of-care treatments offer limited benefits for patient survival. Virotherapy is emerging as a novel strategy to use oncolytic viruses (OVs) for the treatment of GBM. These engineered and non-engineered viruses infect and lyse cancer cells, causing tumor destruction without harming healthy cells. Recent advances in genetic modifications to OVs have helped improve their targeting capabilities and introduce therapeutic genes, broadening the therapeutic window and minimizing potential side effects. The efficacy of oncolytic virotherapy can be enhanced by combining it with other treatments such as immunotherapy, chemotherapy, or radiation. Recent studies suggest that manipulating the gut microbiome to enhance immune responses helps improve the therapeutic efficacy of the OVs. This narrative review intends to explore OVs and their role against solid tumors, especially GBM while emphasizing the latest technologies used to enhance and improve its therapeutic and clinical responses.
Collapse
Affiliation(s)
- Natalie M. Meléndez-Vázquez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| |
Collapse
|
4
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Rahman MA, Ali MM. Recent Treatment Strategies and Molecular Pathways in Resistance Mechanisms of Antiangiogenic Therapies in Glioblastoma. Cancers (Basel) 2024; 16:2975. [PMID: 39272834 PMCID: PMC11394361 DOI: 10.3390/cancers16172975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Malignant gliomas present great difficulties in treatment, with little change over the past 30 years in the median survival time of 15 months. Current treatment options include surgery, radiotherapy (RT), and chemotherapy. New therapies aimed at suppressing the formation of new vasculature (antiangiogenic treatments) or destroying formed tumor vasculature (vascular disrupting agents) show promise. This study summarizes the existing knowledge regarding the processes by which glioblastoma (GBM) tumors acquire resistance to antiangiogenic treatments. The discussion encompasses the activation of redundant proangiogenic pathways, heightened tumor cell invasion and metastasis, resistance induced by hypoxia, creation of vascular mimicry channels, and regulation of the tumor immune microenvironment. Subsequently, we explore potential strategies to overcome this resistance, such as combining antiangiogenic therapies with other treatment methods, personalizing treatments for each patient, focusing on new therapeutic targets, incorporating immunotherapy, and utilizing drug delivery systems based on nanoparticles. Additionally, we would like to discuss the limitations of existing methods and potential future directions to enhance the beneficial effects of antiangiogenic treatments for patients with GBM. Therefore, this review aims to enhance the research outcome for GBM and provide a more promising opportunity by thoroughly exploring the mechanisms of resistance and investigating novel therapeutic strategies.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Meser M Ali
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
6
|
Shi X, Sun K, Li L, Xian J, Wang P, Jia F, Xu F. Oncolytic Activity of Sindbis Virus with the Help of GM-CSF in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7195. [PMID: 39000311 PMCID: PMC11241666 DOI: 10.3390/ijms25137195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma is a refractory tumor with poor prognosis and high mortality. Many oncolytic viruses are currently being investigated for the treatment of hepatocellular carcinoma. Based on previous studies, we constructed a recombinant GM-CSF-carrying Sindbis virus, named SINV-GM-CSF, which contains a mutation (G to S) at amino acid 285 in the nsp1 protein of the viral vector. The potential of this mutated vector for liver cancer therapy was verified at the cellular level and in vivo, respectively, and the changes in the tumor microenvironment after treatment were also described. The results showed that the Sindbis virus could effectively infect hepatocellular carcinoma cell lines and induce cell death. Furthermore, the addition of GM-CSF enhanced the tumor-killing effect of the Sindbis virus and increased the number of immune cells in the intra-tumor microenvironment during the treatment. In particular, SINV-GM-CSF was able to efficiently kill tumors in a mouse tumor model of hepatocellular carcinoma by regulating the elevation of M1-type macrophages (which have a tumor-resistant ability) and the decrease in M2-type macrophages (which have a tumor-promoting capacity). Overall, SINV-GM-CSF is an attractive vector platform with clinical potential for use as a safe and effective oncolytic virus.
Collapse
Affiliation(s)
- Xiangwei Shi
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangyixin Sun
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Li
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingwen Xian
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Fan Jia
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
7
|
Gromek P, Senkowska Z, Płuciennik E, Pasieka Z, Zhao LY, Gielecińska A, Kciuk M, Kłosiński K, Kałuzińska-Kołat Ż, Kołat D. Revisiting the standards of cancer detection and therapy alongside their comparison to modern methods. World J Methodol 2024; 14:92982. [PMID: 38983668 PMCID: PMC11229876 DOI: 10.5662/wjm.v14.i2.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.
Collapse
Affiliation(s)
- Piotr Gromek
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zuzanna Senkowska
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Karol Kłosiński
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| |
Collapse
|
8
|
Ageenko A, Vasileva N, Richter V, Kuligina E. Combination of Oncolytic Virotherapy with Different Antitumor Approaches against Glioblastoma. Int J Mol Sci 2024; 25:2042. [PMID: 38396720 PMCID: PMC10889383 DOI: 10.3390/ijms25042042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma is one of the most malignant and aggressive tumors of the central nervous system. Despite the standard therapy consisting of maximal surgical resection and chemo- and radiotherapy, the median survival of patients with this diagnosis is about 15 months. Oncolytic virus therapy is one of the promising areas for the treatment of malignant neoplasms. In this review, we have focused on emphasizing recent achievements in virotherapy, both as a monotherapy and in combination with other therapeutic schemes to improve survival rate and quality of life among patients with glioblastoma.
Collapse
Affiliation(s)
- Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|