1
|
Zimmermann J, Nitsch L, Krauthausen M, Müller M. IL-17A Facilitates Entry of Autoreactive T-Cells and Granulocytes into the CNS During EAE. Neuromolecular Med 2023; 25:350-359. [PMID: 36857006 PMCID: PMC10514131 DOI: 10.1007/s12017-023-08739-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/11/2023] [Indexed: 03/02/2023]
Abstract
Interleukin-17A plays a crucial role in multiple sclerosis and other autoimmune diseases. Although the link between IL-17 and disease activity has been clearly demonstrated, the precise function of this cytokine remains elusive. Here, we investigated the function of astrocyte-targeted IL-17A production in GF/IL-17 transgenic mice during EAE. In particular, IL-17A is important during disease induction. In mice with transgenic IL-17A production, disease occurs earlier and peak disease is more severe, whereas remission is unimpaired. IL-17A synthesis is associated with increased infiltration of granulocytes into the CNS and microglial activation. Moreover, IL-17A synthesis allows induction of MOG-EAE without the additional administration of the co-adjuvant pertussis toxin. Examination of double transgenic GF/IL-17 2D2 mice revealed that, in addition, local IL-17A production facilitates spontaneous infiltration of immune cells into the CNS in mice expressing a MOG-specific T-cell receptor. Overall, we provide evidence for a crucial effect of IL-17A in the induction phase of EAE, facilitating the infiltration of granulocytes and autoreactive T-cells into the CNS.
Collapse
Affiliation(s)
- Julian Zimmermann
- Department of Neurology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| | - Louisa Nitsch
- Department of Neurology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Marius Krauthausen
- Department of Neurology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Marcus Müller
- Department of Neurology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| |
Collapse
|
2
|
Dedoni S, Scherma M, Camoglio C, Siddi C, Dazzi L, Puliga R, Frau J, Cocco E, Fadda P. An overall view of the most common experimental models for multiple sclerosis. Neurobiol Dis 2023:106230. [PMID: 37453561 DOI: 10.1016/j.nbd.2023.106230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis (MS) is a complex chronic disease with an unknown etiology. It is considered an inflammatory demyelinating and neurodegenerative disorder of the central nervous system (CNS) characterized, in most cases, by an unpredictable onset of relapse and remission phases. The disease generally starts in subjects under 40; it has a higher incidence in women and is described as a multifactorial disorder due to the interaction between genetic and environmental risk factors. Unfortunately, there is currently no definitive cure for MS. Still, therapies can modify the disease's natural history, reducing the relapse rate and slowing the progression of the disease or managing symptoms. The limited access to human CNS tissue slows down. It limits the progression of research on MS. This limit has been partially overcome over the years by developing various experimental models to study this disease. Animal models of autoimmune demyelination, such as experimental autoimmune encephalomyelitis (EAE) and viral and toxin or transgenic MS models, represent the most significant part of MS research approaches. These models have now been complemented by ex vivo studies, using organotypic brain slice cultures and in vitro, through induced Pluripotent Stem cells (iPSCs). We will discuss which clinical features of the disorders might be reproduced and investigated in vivo, ex vivo, and in vitro in models commonly used in MS research to understand the processes behind the neuropathological events occurring in the CNS of MS patients. The primary purpose of this review is to give the reader a global view of the main paradigms used in MS research, spacing from the classical animal models to transgenic mice and 2D and 3D cultures.
Collapse
Affiliation(s)
- S Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - M Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - C Camoglio
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - C Siddi
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - L Dazzi
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato (Cagliari), Italy.
| | - R Puliga
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato (Cagliari), Italy.
| | - J Frau
- Regional Multiple Sclerosis Center, ASSL Cagliari, ATS Sardegna, Italy
| | - E Cocco
- Regional Multiple Sclerosis Center, ASSL Cagliari, ATS Sardegna, Italy; Department Medical Science and Public Health, University of Cagliari, Italy.
| | - P Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy.
| |
Collapse
|
3
|
Jiao Y, Yan Z, Yang A. Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases. Front Immunol 2023; 14:1160035. [PMID: 37122709 PMCID: PMC10130412 DOI: 10.3389/fimmu.2023.1160035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Autoimmune diseases are characterized by vast alterations in immune responses, but the pathogenesis remains sophisticated and yet to be fully elucidated. Multiple mechanisms regulating cell differentiation, maturation, and death are critical, among which mitochondria-related cellular organelle functions have recently gained accumulating attention. Mitochondria, as a highly preserved organelle in eukaryotes, have crucial roles in the cellular response to both exogenous and endogenous stress beyond their fundamental functions in chemical energy conversion. In this review, we aim to summarize recent findings on the function of mitochondria in the innate immune response and its aberrancy in autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, etc., mainly focusing on its direct impact on cellular metabolism and its machinery on regulating immune response signaling pathways. More importantly, we summarize the status quo of potential therapeutic targets found in the mitochondrial regulation in the setting of autoimmune diseases and wish to shed light on future studies.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- 4+4 Medical Doctor Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Onisiforou A, Spyrou GM. Systems Bioinformatics Reveals Possible Relationship between COVID-19 and the Development of Neurological Diseases and Neuropsychiatric Disorders. Viruses 2022; 14:2270. [PMID: 36298824 PMCID: PMC9611753 DOI: 10.3390/v14102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is associated with increased incidence of neurological diseases and neuropsychiatric disorders after infection, but how it contributes to their development remains under investigation. Here, we investigate the possible relationship between COVID-19 and the development of ten neurological disorders and three neuropsychiatric disorders by exploring two pathological mechanisms: (i) dysregulation of host biological processes via virus-host protein-protein interactions (PPIs), and (ii) autoreactivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes with host "self" proteins via molecular mimicry. We also identify potential genetic risk factors which in combination with SARS-CoV-2 infection might lead to disease development. Our analysis indicated that neurodegenerative diseases (NDs) have a higher number of disease-associated biological processes that can be modulated by SARS-CoV-2 via virus-host PPIs than neuropsychiatric disorders. The sequence similarity analysis indicated the presence of several matching 5-mer and/or 6-mer linear motifs between SARS-CoV-2 epitopes with autoreactive epitopes found in Alzheimer's Disease (AD), Parkinson's Disease (PD), Myasthenia Gravis (MG) and Multiple Sclerosis (MS). The results include autoreactive epitopes that recognize amyloid-beta precursor protein (APP), microtubule-associated protein tau (MAPT), acetylcholine receptors, glial fibrillary acidic protein (GFAP), neurofilament light polypeptide (NfL) and major myelin proteins. Altogether, our results suggest that there might be an increased risk for the development of NDs after COVID-19 both via autoreactivity and virus-host PPIs.
Collapse
Affiliation(s)
| | - George M. Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
5
|
Belyaeva IV, Kosova AN, Vasiliev AG. Tuberculosis and Autoimmunity. PATHOPHYSIOLOGY 2022; 29:298-318. [PMID: 35736650 PMCID: PMC9228380 DOI: 10.3390/pathophysiology29020022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis remains a common and dangerous chronic bacterial infection worldwide. It is long-established that pathogenesis of many autoimmune diseases is mainly promoted by inadequate immune responses to bacterial agents, among them Mycobacterium tuberculosis. Tuberculosis is a multifaceted process having many different outcomes and complications. Autoimmunity is one of the processes characteristic of tuberculosis; the presence of autoantibodies was documented by a large amount of evidence. The role of autoantibodies in pathogenesis of tuberculosis is not quite clear and widely disputed. They are regarded as: (1) a result of imbalanced immune response being reactive in nature, (2) a critical part of TB pathogenicity, (3) a beginning of autoimmune disease, (4) a protective mechanism helping to eliminate microbes and infected cells, and (5) playing dual role, pathogenic and protective. There is no single autoimmunity-mechanism development in tuberculosis; different pathways may be suggested. It may be excessive cell death and insufficient clearance of dead cells, impaired autophagy, enhanced activation of macrophages and dendritic cells, environmental influences such as vitamin D insufficiency, and genetic polymorphism, both of Mycobacterium tuberculosis and host.
Collapse
|
6
|
Krovi SH, Kuchroo VK. Activation pathways that drive CD4 + T cells to break tolerance in autoimmune diseases . Immunol Rev 2022;307:161-190. [PMID: 35142369 PMCID: PMC9255211 DOI: 10.1111/imr.13071] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Zorzella-Pezavento SFG, Mimura LAN, Denadai MB, de Souza WDF, Fraga-Silva TFDC, Sartori A. Is there a window of opportunity for the therapeutic use of vitamin D in multiple sclerosis? Neural Regen Res 2022; 17:1945-1954. [PMID: 35142671 PMCID: PMC8848597 DOI: 10.4103/1673-5374.335139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis is an autoimmune treatable but not curable disease. There are a multiplicity of medications for multiple sclerosis therapy, including a class entitled disease-modifying drugs that are mainly indicated to reduce the number and severity of disease relapses. Not all patients respond well to these therapies, and minor to severe adverse effects have been reported. Vitamin D, called sunshine vitamin, is being studied as a possible light at the end of the tunnel. In this review, we recapitulated the similar immunopathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis, the immunomodulatory and neuroprotective potential of vitamin D and the state-of-art concerning its supplementation to multiple sclerosis patients. Finally, based on our and other groups’ experimental findings, we analyzed the need to consider the relevance of the route and the different time-point administration aspects for a more rational indication of this vitamin to multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Luiza Ayumi Nishiyama Mimura
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marina Bonifácio Denadai
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - William Danilo Fernandes de Souza
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Alexandrina Sartori
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
8
|
Li H, Liu S, Han J, Li S, Gao X, Wang M, Zhu J, Jin T. Role of Toll-Like Receptors in Neuroimmune Diseases: Therapeutic Targets and Problems. Front Immunol 2021; 12:777606. [PMID: 34790205 PMCID: PMC8591135 DOI: 10.3389/fimmu.2021.777606] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are a class of proteins playing a key role in innate and adaptive immune responses. TLRs are involved in the development and progression of neuroimmune diseases via initiating inflammatory responses. Thus, targeting TLRs signaling pathway may be considered as a potential therapy for neuroimmune diseases. However, the role of TLRs is elusive and complex in neuroimmune diseases. In addition to the inadequate immune response of TLRs inhibitors in the experiments, the recent studies also demonstrated that partial activation of TLRs is conducive to the production of anti-inflammatory factors and nervous system repair. Exploring the mechanism of TLRs in neuroimmune diseases and combining with developing the emerging drug may conquer neuroimmune diseases in the future. Herein, we provide an overview of the role of TLRs in several neuroimmune diseases, including multiple sclerosis, neuromyelitis optica spectrum disorder, Guillain-Barré syndrome and myasthenia gravis. Emerging difficulties and potential solutions in clinical application of TLRs inhibitors will also be discussed.
Collapse
Affiliation(s)
- Haixia Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shan Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Shengxian Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyan Gao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meng Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Luu T, Cheung JF, Baccon J, Waldner H. Priming of myelin-specific T cells in the absence of dendritic cells results in accelerated development of Experimental Autoimmune Encephalomyelitis. PLoS One 2021; 16:e0250340. [PMID: 33891644 PMCID: PMC8064509 DOI: 10.1371/journal.pone.0250340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an established animal model of multiple sclerosis (MS). Inflammatory CD4+ T cell responses directed against CNS antigens, including myelin proteolipid protein (PLP), are key mediators of EAE. Dendritic cells (DCs) are critical for the induction of T cell responses against infectious agents. However, the importance of DCs in priming self-reactive CD4+ T cells in autoimmune disease such as MS has been unclear. To determine the requirement of DCs in PLP-specific CD4+ T cell responses and EAE, we genetically deleted CD11c+ DCs in PLP T cell receptor (TCR) transgenic SJL mice constitutively. DC deficiency did not impair the development, selection or the pathogenic function of PLP-specific CD4+ T cells in these mice, and resulted in accelerated spontaneous EAE compared to DC sufficient controls. In addition, using a genetic approach to ablate DCs conditionally in SJL mice, we show that CD11c+ DCs were dispensable for presenting exogenous or endogenous myelin antigen to PLP-specific T cells and for promoting pro-inflammatory T cell responses and severe EAE. Our findings demonstrate that constitutive or conditional ablation of CD11c+ DCs diminished self-tolerance to PLP autoantigen. They further show that in the absence of DCs, non-DCs can efficiently present CNS myelin antigens such as PLP to self-reactive T cells, resulting in accelerated onset of spontaneous or induced EAE.
Collapse
Affiliation(s)
- Thaiphi Luu
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Julie F. Cheung
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jennifer Baccon
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Hanspeter Waldner
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
10
|
Magen E, Blum I, Waitman DA, Kahan N, Forer B. Autoimmune Inner Ear Disease among Patients with Selective IgA Deficiency. Audiol Neurootol 2020; 26:127-134. [PMID: 33311024 DOI: 10.1159/000509577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/19/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Autoimmune inner ear disease (AIED) is a distinct clinical entity from sudden sensorineural hearing loss. The purpose of this study was to investigate the clinical characteristics of AIED in patients with selective IgA deficiency (sIgAD). MATERIALS AND METHODS This retrospective observational study was based on data from the Leumit Healthcare Services database in Israel. We searched all subjects aged ≥12 years who had undergone serum total IgA measurements during 2004-2014 for any reason. The sIgAD patients included all subjects with serum IgA of ≤7 mg/dL (0.07 g/L). A control group was randomly sampled from the full study population (n ≈ 730,000) with a case-control ratio of 10 controls for each case (1:10). RESULTS Among 347 subjects with sIgAD, we identified 9 patients with concomitant AIED (sIgAD + AIED group). This group was characterized by a higher prevalence of allergic diseases (8 patients; 88.9%) than sIgAD patients without AEID (sIgAD + AIED group; 153 patients; 45.2%; p = 0.014). Both systemic diseases (3 patients; 33.3%) and organ-specific autoimmune diseases (7 patients; 77.8%) were more prevalent in the sIgAD + AIED group (sIgAD + AIED group: 19 patients 5.5%, p = 0.015; sIgAD - AEID group: 76 patients, 21.9%, p < 0.001), with an OR of 8.39 (1.94-36.19; p = 0.004). sIgAD patients with and without AIED were characterized by a higher prevalence of documented episodes of acute otitis media, allergic diseases, and autoimmune diseases than the control group. CONCLUSION The study exposes a significant association between AIED and sIgAD. We believe that sIgAD has to be excluded in AIED patients.
Collapse
Affiliation(s)
- Eli Magen
- Leumit Health Services, Tel Aviv, Israel, .,Medicine C Department, Allergy and Clinical Immunology Unit, Barzilai University Medical Center, Ashkelon, Israel, .,Ben-Gurion University of the Negev, Beer Sheba, Israel,
| | - Idan Blum
- Medicine C Department, Allergy and Clinical Immunology Unit, Barzilai University Medical Center, Ashkelon, Israel.,Ben-Gurion University of the Negev, Beer Sheba, Israel
| | | | - Natan Kahan
- Leumit Health Services, Tel Aviv, Israel.,School of Public Health, Tel-Aviv University, Tel Aviv, Israel
| | - Boaz Forer
- School of Public Health, Tel-Aviv University, Tel Aviv, Israel.,Department of Otolaryngology Head and Neck Surgery, Barzilai Medical Center, Ashkelon, Israel
| |
Collapse
|
11
|
Zheng C, Chen J, Chu F, Zhu J, Jin T. Inflammatory Role of TLR-MyD88 Signaling in Multiple Sclerosis. Front Mol Neurosci 2020; 12:314. [PMID: 31998072 PMCID: PMC6965019 DOI: 10.3389/fnmol.2019.00314] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a neuro-autoimmune and neurodegenerative disorder leading to chronic inflammation, demyelination, axonal, and neuronal loss in the central nervous system (CNS). Despite intense research efforts, the pathogenesis of MS still remains unclear. Toll-like receptors (TLRs) are a family of type I transmembrane receptors that play a crucial role in the innate immune response. Myeloid differentiation factor 88 (MyD88) is the adaptor of major TLRs. It has been widely considered that the TLR-MyD88 signaling pathway plays an important role in the occurrence and development of autoimmune disease. Data have revealed that the TLR-MyD88 signaling may be involved in the pathogenesis of MS and experimental autoimmune encephalomyelitis (EAE), an animal model for MS, by regulating the antigen presentation of dendritic cells, the integrity of blood-brain barrier (BBB), and the activation of T cells and B cells. Here, we summarize the role of TLRs and MyD88 in MS and discuss the possible therapies that are based on these molecules.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengna Chu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Simon MC, Reinbeck AL, Wessel C, Heindirk J, Jelenik T, Kaul K, Arreguin-Cano J, Strom A, Blaut M, Bäckhed F, Burkart V, Roden M. Distinct alterations of gut morphology and microbiota characterize accelerated diabetes onset in nonobese diabetic mice. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49908-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
13
|
Simon MC, Reinbeck AL, Wessel C, Heindirk J, Jelenik T, Kaul K, Arreguin-Cano J, Strom A, Blaut M, Bäckhed F, Burkart V, Roden M. Distinct alterations of gut morphology and microbiota characterize accelerated diabetes onset in nonobese diabetic mice. J Biol Chem 2019; 295:969-980. [PMID: 31822562 DOI: 10.1074/jbc.ra119.010816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
The rising prevalence of type 1 diabetes (T1D) over the past decades has been linked to lifestyle changes, but the underlying mechanisms are largely unknown. Recent findings point to gut-associated mechanisms in the control of T1D pathogenesis. In nonobese diabetic (NOD) mice, a model of T1D, diabetes development accelerates after deletion of the Toll-like receptor 4 (TLR4). We hypothesized that altered intestinal functions contribute to metabolic alterations, which favor accelerated diabetes development in TLR4-deficient (TLR4-/-) NOD mice. In 70-90-day-old normoglycemic (prediabetic) female NOD TLR4+/+ and NOD TLR4-/- mice, gut morphology and microbiome composition were analyzed. Parameters of lipid metabolism, glucose homeostasis, and mitochondrial respiratory activity were measured in vivo and ex vivo Compared with NOD TLR4+/+ mice, NOD TLR4-/- animals showed lower muscle mass of the small intestine, higher abundance of Bacteroidetes, and lower Firmicutes in the large intestine, along with lower levels of circulating short-chain fatty acids (SCFA). These changes are associated with higher body weight, hyperlipidemia, and severe insulin and glucose intolerance, all occurring before the onset of diabetes. These mice also exhibited insulin resistance-related abnormalities of energy metabolism, such as lower total respiratory exchange rates and higher hepatic oxidative capacity. Distinct alterations of gut morphology and microbiota composition associated with reduction of circulating SCFA may contribute to metabolic disorders promoting the progression of insulin-deficient diabetes/T1D development.
Collapse
Affiliation(s)
- Marie-Christine Simon
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany.,Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, S-41348 Gothenburg, Sweden
| | - Anna Lena Reinbeck
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Corinna Wessel
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Julia Heindirk
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Juan Arreguin-Cano
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition, D-14558 Potsdam-Rehbrücke, Germany
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, S-41348 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany .,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Qu X, Han J, Zhang Y, Wang X, Fan H, Hua F, Yao R. TLR4-RelA-miR-30a signal pathway regulates Th17 differentiation during experimental autoimmune encephalomyelitis development. J Neuroinflammation 2019; 16:183. [PMID: 31561751 PMCID: PMC6764145 DOI: 10.1186/s12974-019-1579-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Toll-like receptor 4 (TLR4) is well known for activating the innate immune system; however, it is also highly expressed in adaptive immune cells, such as CD4+ T-helper 17 (Th17) cells, which play a key role in multiple sclerosis (MS) pathology. However, the function and governing mechanism of TLR4 in Th17 remain unclear. Methods The changes of TLR4 in CD4+ T cells from MS patients and experimental autoimmune encephalomyelitis (EAE) mice were tested. TLR4-deficient (TLR4−/−) naïve T cells were induced in vitro and transferred into Rag1−/− mice to measure Th17 differentiation and EAE pathology. DNA sequence analyses combining with deletion fragments and mutation analyses, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA) were used to explore the mechanism of TLR4 signaling pathway in regulating Th17 differentiation. Results The levels of TLR4 were increased in CD4+ Th17 cells both from MS patients and EAE mice, as well as during Th17 differentiation in vitro. TLR4−/− CD4+ naïve T cells inhibited their differentiation into Th17, and transfer of TLR4−/− CD4+ naïve T cells into Rag1−/− mice was defective in promoting EAE, characterized by less demyelination and Th17 infiltration in the spinal cord. TLR4 signal enhanced Th17 differentiation by activating RelA, downregulating the expression of miR-30a, a negative regulator of Th17 differentiation. Inhibition of RelA activity increased miR-30a level, but decreased Th17 differentiation rate. Furthermore, RelA directly regulated the expression of miR-30a via specific binding to a conserved element of miR-30a gene. Conclusions TLR4−/− CD4+ naïve T cells are inadequate in differentiating to Th17 cells both in vitro and in vivo. TLR4-RelA-miR-30a signal pathway regulates Th17 differentiation via direct binding of RelA to the regulatory element of miR-30a gene. Our results indicate modulating TLR4-RelA-miR-30a signal in Th17 may be a therapeutic target for Th17-mediated neurodegeneration in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221009, Jiangsu, People's Republic of China.
| | - Jingjing Han
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Ying Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221009, Jiangsu, People's Republic of China
| | - Xingqi Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Fang Hua
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.,Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221009, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Meyer Zu Horste G, Przybylski D, Schramm MA, Wang C, Schnell A, Lee Y, Sobel R, Regev A, Kuchroo VK. Fas Promotes T Helper 17 Cell Differentiation and Inhibits T Helper 1 Cell Development by Binding and Sequestering Transcription Factor STAT1. Immunity 2018; 48:556-569.e7. [PMID: 29562202 DOI: 10.1016/j.immuni.2018.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
The death receptor Fas removes activated lymphocytes through apoptosis. Previous transcriptional profiling predicted that Fas positively regulates interleukin-17 (IL-17)-producing T helper 17 (Th17) cells. Here, we demonstrate that Fas promoted the generation and stability of Th17 cells and prevented their differentiation into Th1 cells. Mice with T-cell- and Th17-cell-specific deletion of Fas were protected from induced autoimmunity, and Th17 cell differentiation and stability were impaired. Fas-deficient Th17 cells instead developed a Th1-cell-like transcriptional profile, which a new algorithm predicted to depend on STAT1. Experimentally, Fas indeed bound and sequestered STAT1, and Fas deficiency enhanced IL-6-induced STAT1 activation and nuclear translocation, whereas deficiency of STAT1 reversed the transcriptional changes induced by Fas deficiency. Thus, our computational and experimental approach identified Fas as a regulator of the Th17-to-Th1 cell balance by controlling the availability of opposing STAT1 and STAT3 to have a direct impact on autoimmunity.
Collapse
Affiliation(s)
- Gerd Meyer Zu Horste
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Department of Neurology, University Hospital Münster, Münster, Germany
| | | | - Markus A Schramm
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Chao Wang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Youjin Lee
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Raymond Sobel
- Palo Alto Veteran's Administration Health Care System and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
16
|
Glatigny S, Bettelli E. Experimental Autoimmune Encephalomyelitis (EAE) as Animal Models of Multiple Sclerosis (MS). Cold Spring Harb Perspect Med 2018; 8:cshperspect.a028977. [PMID: 29311122 DOI: 10.1101/cshperspect.a028977] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is a multifocal demyelinating disease of the central nervous system (CNS) leading to the progressive destruction of the myelin sheath surrounding axons. It can present with variable clinical and pathological manifestations, which might reflect the involvement of distinct pathogenic processes. Although the mechanisms leading to the development of the disease are not fully understood, numerous evidences indicate that MS is an autoimmune disease, the initiation and progression of which are dependent on an autoimmune response against myelin antigens. In addition, genetic susceptibility and environmental triggers likely contribute to the initiation of the disease. At this time, there is no cure for MS, but several disease-modifying therapies (DMTs) are available to control and slow down disease progression. A good number of these DMTs were identified and tested using animal models of MS referred to as experimental autoimmune encephalomyelitis (EAE). In this review, we will recapitulate the characteristics of EAE models and discuss how they help shed light on MS pathogenesis and help test new treatments for MS patients.
Collapse
Affiliation(s)
- Simon Glatigny
- Immunology Program, Benaroya Research Institute, Seattle, Washington 98101.,Department of Immunology, University of Washington, Seattle, Washington 98109
| | - Estelle Bettelli
- Immunology Program, Benaroya Research Institute, Seattle, Washington 98101.,Department of Immunology, University of Washington, Seattle, Washington 98109
| |
Collapse
|
17
|
He H, Hu Z, Xiao H, Zhou F, Yang B. The tale of histone modifications and its role in multiple sclerosis. Hum Genomics 2018; 12:31. [PMID: 29933755 PMCID: PMC6013900 DOI: 10.1186/s40246-018-0163-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 02/08/2023] Open
Abstract
Epigenetics defines the persistent modifications of gene expression in a manner that does not involve the corresponding alterations in DNA sequences. It includes modifications of DNA nucleotides, nucleosomal remodeling, and post-translational modifications (PTMs). It is becoming evident that PTMs which act singly or in combination to form “histone codes” orchestrate the chromatin structure and dynamic functions. PTMs of histone tails have been demonstrated to influence numerous biological developments, as well as disease onset and progression. Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating and neurodegenerative disease of the central nervous system, of which the precise pathophysiological mechanisms remain to be fully elucidated. There is a wealth of emerging evidence that epigenetic modifications may confer risk for MS, which provides new insights into MS. Histone PTMs, one of the key events that regulate gene activation, seem to play a prominent role in the epigenetic mechanism of MS. In this review, we summarize recent studies in our understanding of the epigenetic language encompassing histone, with special emphasis on histone acetylation and histone lysine methylation, two of the best characterized histone modifications. We also discuss how the current studies address histone acetylation and histone lysine methylation influencing pathophysiology of MS and how future studies could be designed to establish optimized therapeutic strategies for MS.
Collapse
Affiliation(s)
- Hui He
- Department of Neurology, 2nd Xiangya Hospital, Central South University, No 139, Renmin Road, Changsha, Hunan Province, China
| | - Zhiping Hu
- Department of Neurology, 2nd Xiangya Hospital, Central South University, No 139, Renmin Road, Changsha, Hunan Province, China
| | - Han Xiao
- Department of Neurology, 2nd Xiangya Hospital, Central South University, No 139, Renmin Road, Changsha, Hunan Province, China
| | - Fangfang Zhou
- Department of Neurology, 2nd Xiangya Hospital, Central South University, No 139, Renmin Road, Changsha, Hunan Province, China
| | - Binbin Yang
- Department of Neurology, 2nd Xiangya Hospital, Central South University, No 139, Renmin Road, Changsha, Hunan Province, China.
| |
Collapse
|
18
|
Bjelobaba I, Begovic-Kupresanin V, Pekovic S, Lavrnja I. Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis. J Neurosci Res 2018; 96:1021-1042. [PMID: 29446144 DOI: 10.1002/jnr.24224] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is a chronic, progressive disorder of the central nervous system (CNS) that affects more than two million people worldwide. Several animal models resemble MS pathology; the most employed are experimental autoimmune encephalomyelitis (EAE) and toxin- and/or virus-induced demyelination. In this review we will summarize our knowledge on the utility of different animal models in MS research. Although animal models cannot replicate the complexity and heterogeneity of the MS pathology, they have proved to be useful for the development of several drugs approved for treatment of MS patients. This review focuses on EAE because it represents both clinical and pathological features of MS. During the past decades, EAE has been effective in illuminating various pathological processes that occur during MS, including inflammation, CNS penetration, demyelination, axonopathy, and neuron loss mediated by immune cells.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| | | | - Sanja Pekovic
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Insights into the Role of Neuroinflammation in the Pathogenesis of Multiple Sclerosis. J Funct Morphol Kinesiol 2018. [DOI: 10.3390/jfmk3010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
20
|
Gut dysbiosis breaks immunological tolerance toward the central nervous system during young adulthood. Proc Natl Acad Sci U S A 2017; 114:E9318-E9327. [PMID: 29078267 DOI: 10.1073/pnas.1615715114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease targeting the central nervous system (CNS) mainly in young adults, and a breakage of immune tolerance to CNS self-antigens has been suggested to initiate CNS autoimmunity. Age and microbial infection are well-known factors involved in the development of autoimmune diseases, including MS. Recent studies have suggested that alterations in the gut microbiota, referred to as dysbiosis, are associated with MS. However, it is still largely unknown how gut dysbiosis affects the onset and progression of CNS autoimmunity. In this study, we investigated the effects of age and gut dysbiosis on the development of CNS autoimmunity in humanized transgenic mice expressing the MS-associated MHC class II (MHC-II) gene, HLA-DR2a, and T-cell receptor (TCR) genes specific for MBP87-99/DR2a that were derived from an MS patient. We show here that the induction of gut dysbiosis triggers the development of spontaneous experimental autoimmune encephalomyelitis (EAE) during adolescence and early young adulthood, while an increase in immunological tolerance with aging suppresses disease onset after late young adulthood in mice. Furthermore, gut dysbiosis induces the expression of complement C3 and production of the anaphylatoxin C3a, and down-regulates the expression of the Foxp3 gene and anergy-related E3 ubiquitin ligase genes. Consequently, gut dysbiosis was able to trigger the development of encephalitogenic T cells and promote the induction of EAE during the age window of young adulthood.
Collapse
|
21
|
Blackmore S, Hernandez J, Juda M, Ryder E, Freund GG, Johnson RW, Steelman AJ. Influenza infection triggers disease in a genetic model of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2017; 114:E6107-E6116. [PMID: 28696309 PMCID: PMC5544260 DOI: 10.1073/pnas.1620415114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. Most MS patients experience periods of symptom exacerbation (relapses) followed by periods of partial recovery (remission). Interestingly, upper-respiratory viral infections increase the risk for relapse. Here, we used an autoimmune-prone T-cell receptor transgenic mouse (2D2) and a mouse-adapted human influenza virus to test the hypothesis that upper-respiratory viral infection can cause glial activation, promote immune cell trafficking to the CNS, and trigger disease. Specifically, we inoculated 2D2 mice with influenza A virus (Puerto Rico/8/34; PR8) and then monitored them for symptoms of inflammatory demyelination. Clinical and histological experimental autoimmune encephalomyelitis was observed in ∼29% of infected 2D2 mice. To further understand how peripheral infection could contribute to disease onset, we inoculated wild-type C57BL/6 mice and measured transcriptomic alterations occurring in the cerebellum and spinal cord and monitored immune cell surveillance of the CNS by flow cytometry. Infection caused temporal alterations in the transcriptome of both the cerebellum and spinal cord that was consistent with glial activation and increased T-cell, monocyte, and neutrophil trafficking to the brain at day 8 post infection. Finally, Cxcl5 expression was up-regulated in the brains of influenza-infected mice and was elevated in cerebrospinal fluid of MS patients during relapse compared with specimens acquired during remission. Collectively, these data identify a mechanism by which peripheral infection may exacerbate MS as well as other neurological diseases.
Collapse
Affiliation(s)
- Stephen Blackmore
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Jessica Hernandez
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Michal Juda
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Emily Ryder
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Gregory G Freund
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Department of Pathology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801;
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
22
|
Diny NL, Rose NR, Čiháková D. Eosinophils in Autoimmune Diseases. Front Immunol 2017; 8:484. [PMID: 28496445 PMCID: PMC5406413 DOI: 10.3389/fimmu.2017.00484] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
Eosinophils are multifunctional granulocytes that contribute to initiation and modulation of inflammation. Their role in asthma and parasitic infections has long been recognized. Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this review, we summarize the function of eosinophils in inflammatory bowel diseases, neuromyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical studies, eosinophil-targeted therapies, and experimental models have contributed to our understanding of the regulation and function of eosinophils in these diseases. By examining the role of eosinophils in autoimmune diseases of different organs, we can identify common pathogenic mechanisms. These include degranulation of cytotoxic granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of proteases degrading extracellular matrix, immune modulation through cytokines, antigen presentation, and prothrombotic functions. The association of eosinophilic diseases with autoimmune diseases is also examined, showing a possible increase in autoimmune diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and non-allergic asthma. Finally, we summarize key future research needs.
Collapse
Affiliation(s)
- Nicola L Diny
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Pertussis toxin targets the innate immunity through DAP12, FcRγ, and MyD88 adaptor proteins. Immunobiology 2017; 222:664-671. [DOI: 10.1016/j.imbio.2016.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 11/22/2022]
|
24
|
Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function. Stem Cells Int 2017; 2017:2389753. [PMID: 28250776 PMCID: PMC5303870 DOI: 10.1155/2017/2389753] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS). Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs) in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs) suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS-) induced maturation of dendritic cells (DCs) in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG) E2 in this process. In vivo, early administration of murine and human ASCs (hASCs) ameliorated myelin oligodendrocyte protein- (MOG35-55-) induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+) DCs in draining lymph nodes (DLNs). In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function.
Collapse
|
25
|
Mohammad Hosseini A, Majidi J, Baradaran B, Yousefi M. Toll-Like Receptors in the Pathogenesis of Autoimmune Diseases. Adv Pharm Bull 2015; 5:605-14. [PMID: 26793605 DOI: 10.15171/apb.2015.082] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 12/15/2022] Open
Abstract
Human Toll-like receptors (TLRs) are a family of transmembrane receptors, which play a key role in both innate and adaptive immune responses. Beside of recognizing specific molecular patterns that associated with different types of pathogens, TLRs may also detect a number of self-proteins and endogenous nucleic acids. Activating TLRs lead to the heightened expression of various inflammatory genes, which have a protective role against infection. Data rising predominantly from human patients and animal models of autoimmune disease indicate that, inappropriate triggering of TLR pathways by exogenous or endogenous ligands may cause the initiation and/or perpetuation of autoimmune reactions and tissue damage. Given their important role in infectious and non-infectious disease process, TLRs and its signaling pathways emerge as appealing targets for therapeutics. In this review, we demonstrate how TLRs pathways could be involved in autoimmune disorders and their therapeutic application.
Collapse
Affiliation(s)
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases. Immunobiology 2015; 221:535-43. [PMID: 26709064 DOI: 10.1016/j.imbio.2015.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/05/2015] [Accepted: 12/06/2015] [Indexed: 12/26/2022]
Abstract
The Gram-negative bacterium Campylobacter jejuni causes gastroenteritis and Guillain-Barré syndrome in humans. Recent advances in the immunobiology of C. jejuni have been made. This review summarizes C. jejuni-binding innate receptors and highlights the role of innate immunity in autoimmune diseases. This human pathogen produces a variety of glycoconjugates, including human ganglioside-like determinants and multiple activators of Toll-like receptors (TLRs). Furthermore, C. jejuni targets MyD88, NLRP3 inflammasome, TIR-domain-containing adapter-inducing interferon-β (TRIF), sialic acid-binding immunoglobulin-like lectins (Siglecs), macrophage galactose-type lectin (MGL), and immunoglobulin-like receptors (TREM2, LMIR5/CD300b). The roles of these innate receptors and signaling molecules have been extensively studied. MyD88-mediated TLR activation or inflammasome-dependent IL-1β secretion is essential for autoimmune induction. TRIF mediates the production of type I interferons that promote humoral immune responses and immunoglobulin class-switching. Siglec-1 and Siglec-7 interact directly with gangliosides. Siglec-1 activation enhances phagocytosis and inflammatory responses. MGL internalizes GalNAc-containing glycoconjugates. TREM2 is well-known for its role in phagocytosis. LMIR5 recognizes C. jejuni components and endogenous sulfoglycolipids. Several lines of evidence from animal models of autoimmune diseases suggest that simultaneous activation of innate immunity in the presence of autoreactive lymphocytes or antigen mimicry may link C. jejuni to immunopathology.
Collapse
|
27
|
Steelman AJ. Infection as an Environmental Trigger of Multiple Sclerosis Disease Exacerbation. Front Immunol 2015; 6:520. [PMID: 26539193 PMCID: PMC4609887 DOI: 10.3389/fimmu.2015.00520] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/24/2015] [Indexed: 01/19/2023] Open
Abstract
Over the past several decades, significant advances have been made in identifying factors that contribute to the pathogenesis of multiple sclerosis (MS) and have culminated in the approval of some effective therapeutic strategies for disease intervention. However, the mechanisms by which environmental factors, such as infection, contribute to the pathogenesis and/or symptom exacerbation remain to be fully elucidated. Relapse frequency in MS patients contributes to neurological impairment and, in the initial phases of disease, serves as a predictor of poor disease prognosis. The purpose of this review is to examine the evidence that supports a role for peripheral infection in modulating the natural history of this disease. Evidence supporting a role for infection in promoting exacerbation in animal models of MS is also reviewed. Finally, a few mechanisms by which infection may exacerbate symptoms of MS and other neurological diseases are discussed. Those who comprise the majority of MS patients acquire approximately two upper-respiratory infections per year; furthermore, this type of infection doubles the risk for MS relapse, underscoring the contribution of this relationship as being potentially important and particularly detrimental.
Collapse
Affiliation(s)
- Andrew J Steelman
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign , Urbana, IL , USA ; Neuroscience Program, University of Illinois Urbana-Champaign , Urbana, IL , USA ; Division of Nutritional Sciences, University of Illinois Urbana-Champaign , Urbana, IL , USA
| |
Collapse
|
28
|
HIKAL W, ZAKI B, SABRY H. Evaluation of Ozone Application in Dental Unit Water Lines Contaminated with Pathogenic Acanthamoeba. IRANIAN JOURNAL OF PARASITOLOGY 2015; 10:410-9. [PMID: 26622296 PMCID: PMC4662741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 06/20/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND In this study morphological and molecular characterization of Acanthamoeba strains, isolated from dental unit waterlines (DUWLs) were surveyed and the levels of disinfection achievable in vitro by the application of ozone disinfectant to DUWLs were evaluate. METHODS Water samples were collected from air-water syringes, cup fillers and tap water before and at the end of the working day. They were cultured on non-nutrient agar (NNA) plates. Species identification was carried out with a PCR assay based on sequence analysis of the 18S rRNA gene. The cellular response to ozone was tested on Acanthamoeba cyst with different doses at different contact time in vitro twice. RESULTS Prevalence rates for Acanthamoeba contamination were 100, 100 and 72% for air-water syringes, cup fillers and tap water, respectively. The morphological analysis revealed the presence of A. castellanii, A. griffin, A. hatchitti and A. lenticulata. Phylogenetic analysis of the sequences showed the four strains to be closely related to a sequence type (T3, T4, T5 and T11). Acanthamoeba cells were stained with trypan blue, which revealed killed of Acanthamoeba instantaneously after 10 minutes in ozonized water. There was no growth of Acanthamoeba occurred after ozone treatment in water bottles for 5 minutes with a flow rate of 500 mg/hour. Conclusion : Ozone can play an important role in controlling the problem of contamination of DUWLs as a potent disinfectant.
Collapse
Affiliation(s)
- Wafaa HIKAL
- Parasitology Lab, Water Pollution Research Department, National Research Centre, Egypt
| | - Basma ZAKI
- Oral Medicine and Periodontology, Surgery and Oral Medicine Department, National Research Centre, Egypt
| | - Hany SABRY
- Laser applications in Fixed Prosthodontics, Prosthodontics Research Department, National Research Centre, Egypt
| |
Collapse
|
29
|
Riedhammer C, Weissert R. Antigen Presentation, Autoantigens, and Immune Regulation in Multiple Sclerosis and Other Autoimmune Diseases. Front Immunol 2015; 6:322. [PMID: 26136751 PMCID: PMC4470263 DOI: 10.3389/fimmu.2015.00322] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
Antigen presentation is in the center of the immune system, both in host defense against pathogens, but also when the system is unbalanced and autoimmune diseases like multiple sclerosis (MS) develop. It is not just by chance that a major histocompatibility complex gene is the major genetic susceptibility locus in MS; a feature that MS shares with other autoimmune diseases. The exact etiology of the disease, however, has not been fully understood yet. T cells are regarded as the major players in the disease, but most probably a complex interplay of altered central and peripheral tolerance mechanisms, T-cell and B-cell functions, characteristics of putative autoantigens, and a possible interference of environmental factors like microorganisms are at work. In this review, new data on all these different aspects of antigen presentation and their role in MS will be discussed, probable autoantigens will be summarized, and comparisons to other autoimmune diseases will be drawn.
Collapse
Affiliation(s)
- Christine Riedhammer
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| | - Robert Weissert
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| |
Collapse
|
30
|
|
31
|
Toll-like receptors recognize distinct proteinase-resistant glycoconjugates in Campylobacter jejuni and Escherichia coli. Mol Immunol 2015; 64:195-203. [DOI: 10.1016/j.molimm.2014.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022]
|
32
|
Giovanna Z, Marzia D, Claudio L, Puccetti A. Celiac Disease and Rotavirus Infection. INFECTION AND AUTOIMMUNITY 2015:453-464. [DOI: 10.1016/b978-0-444-63269-2.00028-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Schmitz K, Barthelmes J, Stolz L, Beyer S, Diehl O, Tegeder I. "Disease modifying nutricals" for multiple sclerosis. Pharmacol Ther 2014; 148:85-113. [PMID: 25435020 DOI: 10.1016/j.pharmthera.2014.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/20/2014] [Indexed: 12/26/2022]
Abstract
The association between vitamin D and multiple sclerosis has (re)-opened new interest in nutrition and natural compounds in the prevention and treatment of this neuroinflammatory disease. The dietary amount and type of fat, probiotics and biologicals, salmon proteoglycans, phytoestrogens and protease inhibitor of soy, sodium chloride and trace elements, and fat soluble vitamins including D, A and E were all considered as disease-modifying nutraceuticals. Studies in experimental autoimmune encephalomyelitis mice suggest that poly-unsaturated fatty acids and their 'inflammation-resolving' metabolites and the gut microflora may reduce auto-aggressive immune cells and reduce progression or risk of relapse, and infection with whipworm eggs may positively change the gut-brain communication. Encouraged by the recent interest in multiple sclerosis-nutrition nature's pharmacy has been searched for novel compounds with anti-inflammatory, immune-modifying and antioxidative properties, the most interesting being the scorpion toxins that inhibit specific potassium channels of T cells and antioxidative compounds including the green tea flavonoid epigallocatechin-3-gallate, curcumin and the mustard oil glycoside from e.g. broccoli and sulforaphane. They mostly also inhibit pro-inflammatory signaling through NF-κB or toll-like receptors and stabilize the blood brain barrier. Disease modifying functions may also complement analgesic and anti-spastic effects of cannabis, its constituents, and of 'endocannabinoid enhancing' drugs or nutricals like inhibitors of fatty acid amide hydrolase. Nutricals will not solve multiple sclerosis therapeutic challenges but possibly support pharmacological interventions or unearth novel structures.
Collapse
Affiliation(s)
- Katja Schmitz
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Julia Barthelmes
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Leonie Stolz
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Susanne Beyer
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Olaf Diehl
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Irmgard Tegeder
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany.
| |
Collapse
|
34
|
Kanwal Z, Wiegertjes GF, Veneman WJ, Meijer AH, Spaink HP. Comparative studies of Toll-like receptor signalling using zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:35-52. [PMID: 24560981 DOI: 10.1016/j.dci.2014.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish model systems for infectious disease are increasingly used for the functional analysis of molecular pattern recognition processes. These studies benefit from the high conservation level of all innate immune factors in vertebrates. Zebrafish studies are strategically well positioned for this because of the ease of comparisons with studies in other fish species of which the immune system also has been intensively studied, but that are currently still less amendable to detailed genetic or microscopic studies. In this paper we focus on Toll-like receptor (TLR) signalling factors, which currently are the best characterized in mammalian systems. We review the knowledge on TLR signalling in the context of recent advances in zebrafish studies and discuss possibilities for future approaches that can complement studies in cell cultures and rodent models. A focus in these comparisons is the role of negative control mechanisms in immune responses that appear very important in a whole organism to keep adverse systemic responses in check. We also pay much attention to comparisons with studies in common carp that is highly related to zebrafish and that because of its large body mass can complement immune studies in zebrafish.
Collapse
Affiliation(s)
- Zakia Kanwal
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Wouter J Veneman
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Annemarie H Meijer
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman P Spaink
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
35
|
Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 2014; 54:33-50. [PMID: 25175979 DOI: 10.1016/j.jaut.2014.06.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS), a demyelinating disease of the central nervous system (CNS), presents as a complex disease with variable clinical and pathological manifestations, involving different pathogenic pathways. Animal models, particularly experimental autoimmune encephalomyelitis (EAE), have been key to deciphering the pathophysiology of MS, although no single model can recapitulate the complexity and diversity of MS, or can, to date, integrate the diverse pathogenic pathways. Since the first EAE model was introduced decades ago, multiple classic (induced), spontaneous, and humanized EAE models have been developed, each recapitulating particular aspects of MS pathogenesis. The advances in technologies of genetic ablation and transgenesis in mice of C57BL/6J background and the development of myelin-oligodendrocyte glycoprotein (MOG)-induced EAE in C57BL/6J mice yielded several spontaneous and humanized EAE models, and resulted in a plethora of EAE models in which the role of specific genes or cell populations could be precisely interrogated, towards modeling specific pathways of MS pathogenesis/regulation in MS. Collectively, the numerous studies on the different EAE models contributed immensely to our basic understanding of cellular and molecular pathways in MS pathogenesis as well as to the development of therapeutic agents: several drugs available today as disease modifying treatments were developed from direct studies on EAE models, and many others were tested or validated in EAE. In this review, we discuss the contribution of major classic, spontaneous, and humanized EAE models to our understanding of MS pathophysiology and to insights leading to devising current and future therapies for this disease.
Collapse
Affiliation(s)
- Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl St. Rehovot, 7610001, Israel.
| | - Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl St. Rehovot, 7610001, Israel.
| | - Naoto Kawakami
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany; Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | | | - Kerstin Berer
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany.
| | | | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | - Hartmut Wekerle
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany.
| |
Collapse
|
36
|
Lobo DR, García-Berrocal JR, Ramírez-Camacho R. New prospects in the diagnosis and treatment of immune-mediated inner ear disease. World J Methodol 2014; 4:91-98. [PMID: 25332908 PMCID: PMC4202484 DOI: 10.5662/wjm.v4.i2.91] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/10/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Autoimmune inner ear disease (AIED) represents a very fertile research field and the advancements in the understanding of this disease have a direct application not only in patients affected with this condition but also in other inner ear disorders that share the same injury mechanism, damage to the inner ear hair cells. AIED also presents many challenges that have still to be overcome. Firstly, access to the inner ear is limited, as many interventions such as biopsies can result in great irreversible damage. Secondly, there are no completely specific markers for AIED. Lack of a definitive diagnosis can result in the treatment of patients not affected with the disease and, therefore, no response. Finally, some patients become refractory to glucocorticoids and new therapies are needed. This review offers an overview of the animal models that have contributed to the understanding of AIED pathophysiology, the value of currently available diagnostic tests, and therapeutic options, with a special focus on new therapies for non responders or patients refractory to glucocorticoids. Among these new options for therapy, biological agents have been tested recently, whereas gene and stem cell therapy may have a role in the future. The intratympanic route of administration avoids the systemic side effects associated with currently used drugs, and may become a more frequent approach in the future.
Collapse
|
37
|
Massilamany C, Marciano-Cabral F, da Rocha-Azevedo B, Jamerson M, Gangaplara A, Steffen D, Zabad R, Illes Z, Sobel RA, Reddy J. SJL mice infected with Acanthamoeba castellanii develop central nervous system autoimmunity through the generation of cross-reactive T cells for myelin antigens. PLoS One 2014; 9:e98506. [PMID: 24879066 PMCID: PMC4039519 DOI: 10.1371/journal.pone.0098506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/02/2014] [Indexed: 12/22/2022] Open
Abstract
We recently reported that Acanthamoeba castellanii (ACA), an opportunistic pathogen of the central nervous system (CNS) possesses mimicry epitopes for proteolipid protein (PLP) 139–151 and myelin basic protein 89–101, and that the epitopes induce experimental autoimmune encephalomyelitis (EAE) in SJL mice reminiscent of the diseases induced with their corresponding cognate peptides. We now demonstrate that mice infected with ACA also show the generation of cross-reactive T cells, predominantly for PLP 139–151, as evaluated by T cell proliferation and IAs/dextramer staining. We verified that PLP 139–151-sensitized lymphocytes generated in infected mice contained a high proportion of T helper 1 cytokine-producing cells, and they can transfer disease to naïve animals. Likewise, the animals first primed with suboptimal dose of PLP 139–151 and later infected with ACA, developed EAE, suggesting that ACA infection can trigger CNS autoimmunity in the presence of preexisting repertoire of autoreactive T cells. Taken together, the data provide novel insights into the pathogenesis of Acanthamoeba infections, and the potential role of infectious agents with mimicry epitopes to self-antigens in the pathogenesis of CNS diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Francine Marciano-Cabral
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Bruno da Rocha-Azevedo
- University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Melissa Jamerson
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Arunakumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Rana Zabad
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Zsolt Illes
- University of Pecs, Pecs, Hungary
- University of Southern Denmark, Odense, Denmark
| | - Raymond A. Sobel
- Stanford University School of Medicine, Stanford, California and VA Health Care System, Palo Alto, California, United States of America
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
38
|
Microbial view of central nervous system autoimmunity. FEBS Lett 2014; 588:4207-13. [PMID: 24746689 DOI: 10.1016/j.febslet.2014.04.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 02/07/2023]
Abstract
Not much is known about the initial events leading to the development of the central nervous system (CNS)-specific autoimmune disorder Multiple Sclerosis (MS). Environmental factors are suspected to trigger the pathogenic events in people with genetic disease susceptibility. Historically, many infectious microbes were linked to MS, but no infection has ever been demonstrated to be the cause of the disease. Recent emerging evidence from animal models of MS suggests a causal link with resident commensal bacteria. Microbial organisms may trigger the activation of CNS-specific, auto-aggressive lymphocytes either through molecular mimicry or via bystander activation. In addition, several gut microbial metabolites and bacterial products may interact with the immune system to modulate CNS autoimmunity.
Collapse
|
39
|
Berer K, Boziki M, Krishnamoorthy G. Selective accumulation of pro-inflammatory T cells in the intestine contributes to the resistance to autoimmune demyelinating disease. PLoS One 2014; 9:e87876. [PMID: 24504092 PMCID: PMC3913661 DOI: 10.1371/journal.pone.0087876] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/30/2013] [Indexed: 12/17/2022] Open
Abstract
Myelin-specific, pro-inflammatory TH17 cells are widely regarded as the drivers of experimental autoimmune encephalomyelitis (EAE), an animal model for Multiple sclerosis (MS). The factors, responsible for the generation and maintenance of TH17 cells as well as their participation in the pathogenic cascade leading to the demyelinating disease, have been studied extensively. However, how these harmful autoreactive cells are controlled in vivo remains unclear. By comparing TCR transgenic mice on a disease susceptible and a disease resistant genetic background, we show here that pathogenic TH17 cells are sequestered within the intestine of spontaneous EAE resistant B10.S mice. Disease resistant B10.S mice harbored higher frequencies of TH17 cells in the intestine compared to EAE susceptible SJL/J mice. Moreover, transferred TH17 cells selectively migrated to intestinal lymphoid organs of B10.S mice. The sequestration of TH17 cells in the gut was partially dependent on the gut homing receptor α4β7-mediated adhesion to the intestine. Administration of α4β7 blocking-antibodies increased the peripheral availability of TH17 cells, resulting in increased EAE severity after immunization in B10.S mice. Together, these results support the concept that the intestine is a check-point for controlling pathogenic, organ-specific T cells.
Collapse
Affiliation(s)
- Kerstin Berer
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Marina Boziki
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany
| | | |
Collapse
|
40
|
Shi G, Vistica BP, Nugent LF, Tan C, Wawrousek EF, Klinman DM, Gery I. Differential involvement of Th1 and Th17 in pathogenic autoimmune processes triggered by different TLR ligands. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:415-23. [PMID: 23720812 PMCID: PMC3749791 DOI: 10.4049/jimmunol.1201732] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interaction between TLRs and their cognate ligands triggers both the innate and adaptive immune systems, and thus can play a pivotal role in the defense against pathogen invasion. This work investigates the differentiation of naive CD4 cells into Th1 or Th17 phenotypes in mice treated with different TLR ligands. We use a model system in which naive transgenic cells specific to hen egg lysozyme are adoptively transferred into recipients that express hen egg lysozyme in the lens of the eye. The transferred naive T cells induce ocular inflammation only in recipients treated with TLR ligands. Treatment with LPS preferentially stimulated IL-17 production, whereas CpG oligodeoxynucleotide and polyinosinic:polycytidylic acid primarily stimulated Th1 cells. Peptidoglycan stimulated the two Th subpopulations equally. The preferential induction of Th1 or Th17 by the four ligands was detected in the spleen (where a major portion of the adoptively transferred cells homed) and in the eyes, where activated Th cells initiate inflammation. Analysis of the cytokines present in recipient mice suggests that Th1 induction is elicited by IL-12 and/or IFN-α, whereas Th17 generation is preferentially mediated by IL-6. Importantly, we show in this article that treatment with LPS selectively promoted in the recipient mice the generation of IL-6-producing activated B cells. An inverse correlation was found between the level of regulatory T cells and severity of inflammation induced by the donor cells. Taken together, our data show that specific TLR ligands differentially activate the immune system as evidenced by the generation of distinct Th phenotypes from naive CD4 cells.
Collapse
Affiliation(s)
- Guangpu Shi
- Laboratory of Immunology, NIH, Bethesda, MD 20892
| | | | | | - Cuiyan Tan
- Laboratory of Immunology, NIH, Bethesda, MD 20892
| | - Eric F. Wawrousek
- Laboratory of Molecular and Developmental Biology of the National Eye Institute, NIH, Bethesda, MD 20892
| | - Dennis M. Klinman
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD 21702
| | - Igal Gery
- Laboratory of Immunology, NIH, Bethesda, MD 20892
| |
Collapse
|
41
|
Podda G, Nyirenda M, Crooks J, Gran B. Innate immune responses in the CNS: role of toll-like receptors, mechanisms, and therapeutic opportunities in multiple sclerosis. J Neuroimmune Pharmacol 2013; 8:791-806. [PMID: 23812895 DOI: 10.1007/s11481-013-9483-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/04/2013] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), which is considered immune-mediated. Our knowledge of innate immune mechanisms in the CNS and their implications for pathogenesis and treatment of multiple sclerosis (MS) are limited, particularly if compared with the body of literature on adaptive immune mechanisms. There is, however, growing understanding of the workings of the innate immune system and accordingly, of its potential role in driving immune-mediated pathology. Such mechanisms will be discussed in this review along with potential therapeutic opportunities. These may require blocking pathogenic innate immunity and in some cases, promoting its protective effects.
Collapse
Affiliation(s)
- Giulio Podda
- Division of Clinical Neurology, University of Nottingham, C Floor, South Block, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
42
|
Development of a transgenic mouse model with immune tolerance for human coagulation factor VIIa. Pharm Res 2013; 30:2855-67. [PMID: 23775444 DOI: 10.1007/s11095-013-1115-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Human factor VIIa (FVIIa) is commonly used as bypassing therapy to treat bleeding episodes in hemophilia patients with neutralizing antibodies to factors VIII (FVIII) or IX (FIX). There is a need for a suitable animal model to assess the immunogenicity of new FVIIa products during preclinical development. The aim of this study was the design of a novel transgenic mouse model with immune tolerance to human FVIIa. METHODS The model was generated by transgenic expression of human F7 cDNA. FVIIa-specific immune responses after treatment with human FVIIa were assessed by analyzing circulating antibodies, antibody producing plasma cells and CD4(+) T cells. RESULTS In contrast to wild-type mice, human FVII transgenic mice did not develop antibodies when treated with human FVIIa. The immune tolerance was specific and could be broken by application of human FVIIa together with a strong stimulus of the innate immune system. Break of tolerance was associated with increased numbers of pro-inflammatory FVIIa-specific CD4(+) T cells. CONCLUSIONS The new mouse model is suitable to study the influence of the innate immune system on maintenance and break of immune tolerance against FVIIa and could be used to assess the immunogenicity of new FVIIa products during pre-clinical development.
Collapse
|
43
|
von Glehn F, Santos LM, Balashov KE. Plasmacytoid dendritic cells and immunotherapy in multiple sclerosis. Immunotherapy 2013; 4:1053-61. [PMID: 23148757 DOI: 10.2217/imt.12.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized APCs implicated in the pathogenesis of many human diseases. Compared with other peripheral blood mononuclear cells, pDCs express a high level of TLR9, which recognizes viral DNA at the initial phase of viral infection. Upon stimulation, these cells produce large amounts of type I interferon and other proinflammatory cytokines and are able to prime T lymphocytes. Thus, pDCs regulate innate and adaptive immune responses. This article reviews select aspects of pDC biology relevant to the disease pathogenesis and immunotherapy in multiple sclerosis. Many unresolved questions remain in this area, promising important future discoveries in pDC research.
Collapse
Affiliation(s)
- Felipe von Glehn
- Neuroimmunology Unit, Department of Genetics, Evolution & Bioagents, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP Brazil, CEP 13083-970, Brazil
| | | | | |
Collapse
|
44
|
Annexin A1 on the surface of early apoptotic cells suppresses CD8+ T cell immunity. PLoS One 2013; 8:e62449. [PMID: 23638088 PMCID: PMC3640057 DOI: 10.1371/journal.pone.0062449] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/21/2013] [Indexed: 12/13/2022] Open
Abstract
Prevention of an immune response against self-antigens derived from apoptotic cells is essential to preclude autoimmune and chronic inflammatory diseases. Here, we describe apoptosis induced externalization of endogenous cytosolic annexin 1 initiating an anti-inflammatory effector mechanism that suppresses the immune response against antigens of apoptotic cells. Cytosolic annexin 1 rapidly translocated to the apoptotic cell surface and inhibited dendritic cell (DC) activation induced by Toll like receptors (TLR). Annexin 1-inhibited DC showed strongly reduced secretion of pro-inflammatory cytokines (e.g. TNF and IL-12) and costimulatory surface molecules (e.g. CD40 and CD86), while anti-inflammatory mediators like PD-L1 remained unchanged. T cells stimulated by such DC lacked secretion of interferon-γ (IFN-γ) and TNF but retained IL-10 secretion. In mice, annexin 1 prevented the development of inflammatory DC and suppressed the cellular immune response against the model antigen ovalbumin (OVA) expressed in apoptotic cells. Furthermore, annexin 1 on apoptotic cells compromised OVA-specific tumor vaccination and impaired rejection of an OVA-expressing tumor. Thus, our results provide a molecular mechanism for the suppressive activity of apoptotic cells on the immune response towards apoptotic cell-derived self-antigens. This process may play an important role in prevention of autoimmune diseases and of the immune response against cancer.
Collapse
|
45
|
Wang J, Lu J, Lan Y, Zhou H, Li W, Xiang M. Total coumarins from Urtica dentata Hand prevent murine autoimmune diabetes via suppression of the TLR4-signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:379-392. [PMID: 23340441 DOI: 10.1016/j.jep.2013.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Urtica dentata Hand (UDH), the root of Laportea bulbifera (Sieb. et. Zucc.) Wedd, has been traditionally used in traditional Chinese medicine as an anti-inflammatory and immuno-regulatory agent for rheumatoid arthritis and some other autoimmune diseases treatment. And the coumarins are the major components of UDH. AIM OF THE STUDY To investigate the effect of total coumarins (TC) isolated from UDH on the development of autoimmune diabetes. MATERIALS AND METHODS Eight-week-old non-obese diabetic (NOD) mice were randomly divided into four groups: control group, low-dose (37.5 mg/kg), middle-dose (75 mg/kg), and high-dose (150 mg/kg) TC-treatment groups. NOD mice were then given with a suspension of TC or saline by intragastric (i.g.) administration every other day. After 4 weeks of treatment, 8 mice at 12-weeks of age per group were randomly selected to be sacrificed to perform intraperitoneal glucose tolerance test, examine histopathological insulitis, spleen T lymphocyte proliferation, the percentage of CD4+CD25+Foxp3+ T regulatory cell (Treg), dendritic cell (DC) surface molecules, toll-like receptor (TLR)4 expression and signal pathways involved. The remaining 10 mice per group were kept until 26 weeks of age to assess the incidence of diabetes. We also studied the direct effect of TC on DC and CD4+CD25+ Tregs in vitro. RESULTS Treatment with TC for 4 weeks significantly inhibited insulitis, increased pancreatic islet number, delayed the onset and decreased the development of diabetes by 26 weeks of age in NOD mice, compared with the untreated control mice. TC suppressed spleen T lymphocyte proliferation, induced Th2-biased cytokine response, the generation of CD4+CD25+Foxp3+ Tregs and Foxp3 mRNA expression. And TC-treated DCs were characterized as low expression of MHC class II and CD86 molecules. TLR4 gene and protein expressions in the spleen, thymus and pancreas were down-regulated in TC-treated groups. The key molecules in the downstream signaling cascades of TLR4, including myeloid differentiation factor (MyD)88, nuclear factor (NF)-κB, IL-1β, Toll-IL-1 receptor domain-containing adaptor inducing interferon-β(TRIF), TRIF-related adaptor molecule (TRAM), interferon regulatory factor (IRF)-3 and IFN-β, all decreased significantly in TC groups, suggesting that TC inhibits both MyD88-dependent and -independent pathways of TLR4. At the cellular level, however, TLR4 protein expression in DCs, but not in Tregs, was downregulated by TC. And TC strengthened the role of DC, not Treg, in negative immune regulation in vitro. In contrast, anti-TLR4 antibody could block the effect of TC on DCs immune function. CONCLUSION These results suggest that TC extracted from UDH prevent the development of autoimmune diabetes in NOD mice via suppression of the TLR4-signaling pathways. TC maintain the DCs in an immature tolerogenic state, at least in part, mediated by down-regulating TLR4-signaling pathways in DCs, then enhance Treg differentiation, shift toward Th2 and suppress T lymphocyte proliferation.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | |
Collapse
|
46
|
Miranda-Hernandez S, Baxter AG. Role of toll-like receptors in multiple sclerosis. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2013; 2:75-93. [PMID: 23885326 PMCID: PMC3714200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/16/2013] [Indexed: 06/02/2023]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease in which Central Nervous System (CNS) lesions result from perivascular immune cell infiltration associated with damage to myelin, oligodendrocytes and neurons. CNS autoimmunity and its regulation are dominated by the inflammatory cytokines IL17 and IFNγ, and the opposing regulatory cytokines IL10 and the type I IFNs. Toll-like receptors (TLR) play a critical role in modulating cytokine and chemokine secretion in response to exogenous Pathogen Associated to Molecular Patterns and endogenous Danger-Associated to Molecular Patterns. Here, we systematically examine the evidence that TLR play a major role in the initiation disease, the triggering of relapses, and regulation of CNS damage. Data from human studies are supported analyses of a variety of animal models, including Experimental Autoimmune Encephalomyelitis in TLR-deficient mice.
Collapse
Affiliation(s)
- Socorro Miranda-Hernandez
- Comparative Genomics Centre, Molecular Sciences Building 21, James Cook University Townsville, QLD 4811, Australia
| | | |
Collapse
|
47
|
Tosiek MJ, Bader SR, Gruber AD, Buer J, Gereke M, Bruder D. CD8(+) T cells responding to alveolar self-antigen lack CD25 expression and fail to precipitate autoimmunity. Am J Respir Cell Mol Biol 2012; 47:869-78. [PMID: 22984087 DOI: 10.1165/rcmb.2011-0387oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although the contribution of CD8(+) T cells to the pathogenesis of noncommunicable lung diseases has become increasingly appreciated, our knowledge about the mechanisms controlling self-reactive CD8(+) T cells in the respiratory tract remains largely elusive. The outcome of the encounter between pulmonary self-antigen and naive CD8(+) T cells, in the presence or absence of inflammation, was traced after adoptive transfer of fluorescence-labeled CD8(+) T cells specific for the neo-self-antigen influenza A hemagglutinin into transgenic mice expressing hemagglutinin specifically in alveolar type II epithelial cells in order: to study the outcome of alveolar antigen encounter in the steady state and under inflammatory conditions; to define the phenotype and fate of CD8(+) T cells primed in the respiratory tract; and, finally, to correlate these findings with the onset of autoimmunity in the lung. We found that CD8(+) T cells remain ignorant in the steady state, whereas transient proliferation of self-reactive CD8(+) T cells is induced by forced maturation or licensing of dendritic cells, increases in the antigenic threshold, and targeted release of alveolar self-antigen by epithelial injury. However, these cells fail to acquire effector functions, lack the expression of the high-affinity IL-2 receptor CD25, and do not precipitate autoimmunity in the lung. We conclude that inadvertent activation of CD8(+) T cells in the lung is prevented in the absence of "danger signals," whereas tissue damage after infection or noninfectious inflammation creates an environment that allows the priming of previously ignorant T cells. Failure in effector cell differentiation after abortive priming, however, precludes the establishment of self-perpetuating autoimmunity in the lung.
Collapse
Affiliation(s)
- Milena J Tosiek
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci U S A 2012; 109:13064-9. [PMID: 22826216 DOI: 10.1073/pnas.1120585109] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Toll-like receptors (TLRs) are critical components of innate immunity and function as rapid pathogen sensors. TLR4 is expressed on CD4(+) T cells as well, the functional significance of which is unclear. In this study, we analyzed the function of TLR4 in T cells but did not find a role in promoting T helper (Th) cell polarization. Instead, TLR4 ligation enhanced both CD4(+) T-cell proliferation and survival in vitro. Using the experimental autoimmune encephalomyelitis (EAE) model, we found that the loss of TLR4 solely in CD4(+) T cells almost completely abrogated disease symptoms, mainly through blunted Th17 and, to a lesser degree, Th1 responses. Moreover, Tlr4(-/-) γδ T cells were defective in IL-17 and IFN-γ production following EAE induction. This study supports an important role of this innate receptor in the direct regulation of T-cell activation and survival during autoimmune inflammation.
Collapse
|
49
|
Auletta JJ, Bartholomew AM, Maziarz RT, Deans RJ, Miller RH, Lazarus HM, Cohen JA. The potential of mesenchymal stromal cells as a novel cellular therapy for multiple sclerosis. Immunotherapy 2012; 4:529-47. [PMID: 22642335 PMCID: PMC3381871 DOI: 10.2217/imt.12.41] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the CNS for which only partially effective therapies exist. Intense research defining the underlying immune pathophysiology is advancing both the understanding of MS as well as revealing potential targets for disease intervention. Mesenchymal stromal cell (MSC) therapy has the potential to modulate aberrant immune responses causing demyelination and axonal injury associated with MS, as well as to repair and restore damaged CNS tissue and cells. This article reviews the pathophysiology underlying MS, as well as providing a cutting-edge perspective into the field of MSC therapy based upon the experience of authors intrinsically involved in MS and MSC basic and translational science research.
Collapse
Affiliation(s)
- Jeffery J Auletta
- National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Gupta AA, Ding D, Lee RK, Levy RB, Bhattacharya SK. Spontaneous ocular and neurologic deficits in transgenic mouse models of multiple sclerosis and noninvasive investigative modalities: a review. Invest Ophthalmol Vis Sci 2012; 53:712-24. [PMID: 22331505 DOI: 10.1167/iovs.11-8351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory, neurodegenerative, demyelinating disease of the central nervous system, predominantly involving myelinated neurons of the brain, spinal cord, and optic nerve. Optic neuritis is frequently associated with MS and often precedes other neurologic deficits associated with MS. A large number of patients experience visual defects and have abnormalities concomitant with neurologic abnormalities. Transgenic mice manifesting spontaneous neurologic and ocular disease are unique models that have revolutionized the study of MS. Spontaneous experimental autoimmune encephalomyelitis (sEAE) presents with spontaneous onset of demyelination, without the need of an injectable immunogen. This review highlights the various models of sEAE, their disease characteristics, and applicability for future research. The study of optic neuropathy and neurologic manifestations of demyelination in sEAE will expand our understanding of the pathophysiological mechanisms underlying MS. Early and precise diagnosis of MS with different noninvasive methods has opened new avenues in managing symptoms, reducing morbidity, and limiting disease burden. This review discusses the spectrum of available noninvasive techniques, such as electrophysiological and behavioral assessment, optical coherence tomography, scanning laser polarimetry, confocal scanning laser ophthalmoscopy, pupillometry, magnetic resonance imaging, positron emission tomography, gait, and cardiovascular monitoring, and their clinical relevance.
Collapse
Affiliation(s)
- Archana A Gupta
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|