1
|
Liu B, Yao X, Huang Q, Shi Z, Wei J, Li S, Li M, Chen X, Dai J. Sodium fluoride promotes myopia progression via the activation of the ferroptosis pathway by PIEZO1 and pharmacological targeting PIEZO1 represents an innovative approach for myopia treatment. Cell Biol Toxicol 2025; 41:64. [PMID: 40175653 PMCID: PMC11965261 DOI: 10.1007/s10565-025-10020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Sodium fluoride-induced ocular damage constitutes a significant public health concern globally; however, the precise molecular mechanisms underlying this issue remain obscure. This study aims to investigate the effects of sodium fluoride on myopia and to offer novel theoretical foundations for future strategies in myopia prevention and control. The experimental data showed that sodium fluoride could promote myopia progression, and through bioinformatics analysis, we found that sodium fluoride could affect the ferroptosis pathway. Western blotting and redox kit assays further confirmed that sodium fluoride activates the ferroptosis pathway. We also demonstrated that PIEZO1 plays a crucial role in sodium fluoride-induced myopia, and that the PIEZO1 inhibitor (GsMTx4) can inhibit the ferroptosis pathway. Subsequently, we identified PIEZO1 as a potential target of baicalin, which inhibited PIEZO1 expression in vivo and in vitro, as confirmed by molecular docking modeling and CETSA assays. Finally, we found that baicalin inhibited sodium fluoride-induced myopia via PIEZO1. Taken together, our findings indicate that sodium fluoride can promote myopia progression by activating the ferroptosis pathway through PIEZO1, and that targeting PIEZO1 expression can delay myopia progression, which may provide a new drug target for myopia treatment in the future.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinying Huang
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zehui Shi
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinfei Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shijia Li
- Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiuping Chen
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Ablordeppey RK, Lin CR, Srinivas M, Benavente-Perez A. Experimental Myopia Results in Peripapillary Ganglion Cell and Astrocyte Reorganization with No Functional Implications During Early Development. Int J Mol Sci 2024; 25:13484. [PMID: 39769248 PMCID: PMC11678399 DOI: 10.3390/ijms252413484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Myopic eye growth induces mechanical stretch, which can lead to structural and functional retinal alterations. Here, we investigated the effect of lens-induced myopic growth on the distribution of retinal ganglion cells (RGCs), glial fibrillary acidic protein (GFAP) expression and intensity, and peripapillary retinal nerve fiber layer (ppRNFL) thickness in common marmosets (Callithrix jacchus) induced with myopia continuously for six months, using immunohistochemistry and spectral-domain optical coherence tomography. We also explored the relationship between cellular structural parameters and the photopic negative response (PhNR) using full-field electroretinography. Marmosets induced with myopia for six months developed axial myopia, had a thinner ppRNFL, reduced peripapillary ganglion cell (≈20%) and astrocyte density (≈42%), increased panretinal GFAP expression (≈42%) and nasal mid-periphery staining intensity (≈81%) compared to age-matched controls. Greater degrees of myopia and vitreous elongation were associated with reduced peripapillary RGCs and astrocyte density, and increased GFAP expression and intensity. These cellular structural changes did not show a significant relationship with the features of the PhNR, which remained unchanged. The outcomes of this study suggest that myopia induces a reorganization of the peripapillary inner retina at the cellular level that may not result in measurable functional repercussions at this stage of myopia development.
Collapse
Affiliation(s)
| | | | | | - Alexandra Benavente-Perez
- Department of Biological Sciences, State University of New York College of Optometry, New York, NY 10036, USA; (R.K.A.); (C.R.L.); (M.S.)
| |
Collapse
|
3
|
Gu Z, Meng J, Zhong W, Lan C, Tan Q, Xiang X, Zhou H, Liao X. The role of the KEAP1-NRF2 signaling pathway in form deprivation myopia guinea pigs. BMC Ophthalmol 2024; 24:497. [PMID: 39543533 PMCID: PMC11566547 DOI: 10.1186/s12886-024-03754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
In recent years, the global prevalence of myopia has reached an unprecedented level, especially in East Asia. Multitude of studies has shown that the etiology of myopia is complex. Some researchers have suggested that oxidative stress (OS) may contribute to myopia, although there are limited reports on the alterations of related signaling pathways. Notably, the Kelch-like ECH-associated protein 1 (KEAP1) -nuclear factor erythroid 2-related factor 2 (NRF2), which plays a significant role in regulating OS and the mechanism, has not been explored in myopia. To investigate the modulation of KEAP1-NRF2 signaling pathway and its downstream superoxide dismutase (SOD) during the development of form-deprivation myopia, three-week-old guinea pigs were randomly assigned to four groups: negative control (NC), self-control (SC), form-deprivation myopia (FDM), and FDM group treated with tert-butylhydroquinone (TBHQ). Spherical equivalent (SE) and axial length (AL) were measured by retinoscopy and A-scan ultrasound, respectively. The results revealed that TBHQ treatment decelerated the progression in SE and AL changes. Immunohistochemistry (IHC) assessed the distribution and expression of KEAP1, NRF2, and SOD. The results shown that they located in the retinal ganglion cells (RGC). Subsequently, retinal mRNA and protein expression levels of KEAP1, NRF2, and SOD were quantified using real-time polymerase chain reaction (RT-PCR) and Western blot (WB) analysis. The RT-PCR and WB results demonstrated that TBHQ could activate NRF2, induce KEAP1 degradation, and enhance the expression of the antioxidant SOD. In summary, the modulation of KEAP1-NRF2 and it downstream SOD expression could alter the retinal antioxidant capacity and influence the development of myopia.
Collapse
Affiliation(s)
- Zhiming Gu
- Ophthalmology Department of Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, Nanchong, Sichuan Province, 637000, China
- Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Jiayu Meng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Weiqi Zhong
- Ophthalmology Department of Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, Nanchong, Sichuan Province, 637000, China
- Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Changjun Lan
- Ophthalmology Department of Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, Nanchong, Sichuan Province, 637000, China
- Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Qingqing Tan
- Ophthalmology Department of Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, Nanchong, Sichuan Province, 637000, China
- Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Xiaoling Xiang
- Ophthalmology Department of Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, Nanchong, Sichuan Province, 637000, China
- Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Hong Zhou
- Ophthalmology Department of Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, Nanchong, Sichuan Province, 637000, China
- Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Xuan Liao
- Ophthalmology Department of Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, Nanchong, Sichuan Province, 637000, China.
- Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China.
| |
Collapse
|
4
|
Musa M, Enaholo E, Bale BI, Salati C, Spadea L, Zeppieri M. Retinoscopes: Past and present. World J Methodol 2024; 14:91497. [PMID: 39310243 PMCID: PMC11230066 DOI: 10.5662/wjm.v14.i3.91497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Retinoscopy is arguably the most important method in the eye clinic for diagnosing and managing refractive errors. Advantages of retinoscopy include its non-invasive nature, ability to assess patients of all ages, and usefulness in patients with limited cooperation or communication skills. AIM To discuss the history of retinoscopes and examine current literature on the subject. METHODS A search was conducted on the PubMed and with the reference citation analysis (https://www.referencecitationanalysis.com) database using the term "Retinoscopy," with a range restricted to the last 10 years (2013-2023). The search string algorithm was: "Retinoscopy" (MeSH Terms) OR "Retinoscopy" (All Fields) OR "Retinoscopes" (All Fields) AND [(All Fields) AND 2013: 2023 (pdat)]. RESULTS This systematic review included a total of 286 records. Publications reviewed iterations of the retinoscope into autorefractors, infrared photo retinoscope, television retinoscopy, and the Wifi enabled digital retinoscope. CONCLUSION The retinoscope has evolved significantly since its discovery, with a significant improvement in its diagnostic capabilities. While it has advantages such as non-invasiveness and broad applicability, limitations exist, and the need for skilled interpretation remains. With ongoing research, including the integration of artificial intelligence, retinoscopy is expected to continue advancing and playing a vital role in eye care.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre, Benin 300105, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Africa Eye Laser Centre, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor 434101, Nigeria
| | | | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
5
|
Sripinun P, See LP, Nikonov S, Chavali VRM, Vrathasha V, He J, O'Brien JM, Xia J, Lu W, Mitchell CH. Piezo1 and Piezo2 channels in retinal ganglion cells and the impact of Piezo1 stimulation on light-dependent neural activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.599602. [PMID: 38979351 PMCID: PMC11230181 DOI: 10.1101/2024.06.25.599602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Piezo channels are associated with neuropathology in diseases like traumatic brain injury and glaucoma, but pathways linking tissue stretch to aberrant neural signaling remain unclear. The present study demonstrates that Piezo1 activation increases action potential frequency in response to light and the spontaneous dark signal from mouse retinal explants. Piezo1 stimulation was sufficient to increase cytoplasmic Ca 2+ in soma and neurites, while stretch increased spiking activity in current clamp recordings from of isolated retinal ganglion cells (RGCs). Axon-marker beta-tubulin III colocalized with both Piezo1 and Piezo2 protein in the mouse optic nerve head, while RGC nuclear marker BRN3A colocalized with Piezo channels in the soma. Piezo1 was also present on GFAP-positive regions in the optic nerve head and colocalized with glutamine synthetase in the nerve fiber layer, suggesting expression in optic nerve head astrocytes and Müller glia end feet, respectively. Human RGCs from induced pluripotent stem cells also expressed Piezo1 and Piezo2 in soma and axons, while staining patterns in rats resembled those in mice. mRNA message for Piezo1 was greatest in the RPE/choroid tissue, while Piezo2 levels were highest in the optic nerve, with both channels also expressed in the retina. Increased expression of Piezo1 and Piezo2 occurred both 1 and 10 days after a single stretch in vivo; this increase suggests a potential role in rising sensitivity to repeated nerve stretch. In summary, Piezo1 and Piezo2 were detected in the soma and axons of RGCs, and stimulation affected the light-dependent output of RGCs. The rise in RGCs excitability induced by Piezo stimulation may have parallels to the early disease progression in models of glaucoma and other retinal degenerations. Highlights Activation of Piezo1 excites retinal ganglion cells, paralleling the early neurodegenerative progression in glaucoma mouse models and retinal degeneration.Piezo1 and Piezo2 were expressed in axons and soma of retinal ganglion cells in mice, rats, and human iPSC-RGCs.Functional assays confirmed Piezo1 in soma and neurites of neurons. Sustained elevation of Piezo1 and Piezo2 occurred after a single transient stretch may enhance damage from repeated traumatic nerve injury. Abstract Figure
Collapse
|
6
|
Pang JJ. The Variety of Mechanosensitive Ion Channels in Retinal Neurons. Int J Mol Sci 2024; 25:4877. [PMID: 38732096 PMCID: PMC11084373 DOI: 10.3390/ijms25094877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in intraocular and external pressure critically involve the pathogenesis of glaucoma, traumatic retinal injury (TRI), and other retinal disorders, and retinal neurons have been reported to express multiple mechanical-sensitive channels (MSCs) in recent decades. However, the role of MSCs in visual functions and pressure-related retinal conditions has been unclear. This review will focus on the variety and functional significance of the MSCs permeable to K+, Na+, and Ca2+, primarily including the big potassium channel (BK); the two-pore domain potassium channels TRAAK and TREK; Piezo; the epithelial sodium channel (ENaC); and the transient receptor potential channels vanilloid TRPV1, TRPV2, and TRPV4 in retinal photoreceptors, bipolar cells, horizontal cells, amacrine cells, and ganglion cells. Most MSCs do not directly mediate visual signals in vertebrate retinas. On the other hand, some studies have shown that MSCs can open in physiological conditions and regulate the activities of retinal neurons. While these data reasonably predict the crossing of visual and mechanical signals, how retinal light pathways deal with endogenous and exogenous mechanical stimulation is uncertain.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Wang Y, Li L, Tang X, Fan H, Song W, Xie J, Tang Y, Jiang Y, Zou Y. The role of vasoactive intestinal peptide (VIP) in atropine-related inhibition of the progression of myopia. BMC Ophthalmol 2024; 24:41. [PMID: 38279089 PMCID: PMC10811830 DOI: 10.1186/s12886-024-03309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the potential involvement of vasoactive intestinal polypeptide (VIP) in myopia development and its contribution to the mechanism of action of the anti-myopia drug, atropine. METHODS Thirty-three-week-old guinea pigs were randomly divided into normal control (NC, n = 10), monocularly form-deprived (FDM, n = 10), and FDM treated with 1% atropine (FDM + AT, n = 10) groups. The diopter and axial length were measured at 0, 2, and 4 weeks. Guinea pig eyeballs were removed at week four, fixed, and stained for morphological changes. Immunohistochemistry (IHC) and in situ hybridization (ISH) were performed to evaluate VIP protein and mRNA levels. RESULTS The FDM group showed an apparent myopic shift compared to the control group. The results of the H&E staining were as follows: the cells of the inner/outer nuclear layers and retinal ganglion cells were disorganized; the choroidal thickness (ChT), blood vessel lumen, and area were decreased; the sclera was thinner, with disordered fibers and increased interfibrillar space. IHC and ISH revealed that VIP's mRNA and protein expressions were significantly up-regulated in the retina of the FDM group. Atropine treatment attenuated FDM-induced myopic shift and fundus changes, considerably reducing VIP's mRNA and protein expressions. CONCLUSIONS The findings of elevated VIP mRNA and protein levels observed in the FDM group indicate the potential involvement of VIP in the pathogenesis and progression of myopia. The ability of atropine to reduce this phenomenon suggests that this may be one of the molecular mechanisms for atropine to control myopia.
Collapse
Affiliation(s)
- Ying Wang
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
- Department of Ophthalmology, the Second Clinical College of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China
| | - Lan Li
- Langzhong People's Hospital, Langzhong, Sichuan, China
| | - Xiaoli Tang
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haobo Fan
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
- Department of Optometry and Pediatric Ophthalmology, Ineye Hospital of Chengdu University of TCM, Chengdu, China
| | - Weiqi Song
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Juan Xie
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yangyu Tang
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yanqing Jiang
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yunchun Zou
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China.
- Department of Ophthalmology, the Second Clinical College of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China.
| |
Collapse
|