1
|
Li XL, Megdadi M, Quadri HS. Interaction between gut virome and microbiota on inflammatory bowel disease. World J Methodol 2025; 15:100332. [DOI: 10.5662/wjm.v15.i3.100332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 03/06/2025] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a chronic condition marked by recurring gastrointestinal inflammation. While immune, genetic, and environmental factors are well-studied, the gut virome has received less attention. This editorial highlights the work which investigates the gut virome’s role in IBD and its interactions with the bacterial microbiome and host immune system. The gut virome consists of bacteriophages, eukaryotic viruses, and endogenous retroviruses. Among these, Caudovirales bacteriophages are predominant and influence bacterial communities via lysogenic and lytic cycles. Eukaryotic viruses infect host cells directly, while endogenous retroviruses impact gene regulation and immune responses. In IBD, the virome shows distinct alterations, including an increased abundance of Caudovirales phages and reduced Microviridae diversity, suggesting a pro-inflammatory viral environment. Dysbiosis, chronic inflammation, and aberrant immune responses contribute to these changes by disrupting microbial communities and modifying virome composition. Phages affect bacterial dynamics through lysis, lysogeny, and horizontal gene transfer, shaping microbial adaptability and resilience. Understanding these interactions is crucial for identifying novel therapeutic targets and restoring microbial balance in IBD.
Collapse
Affiliation(s)
- Xiao-Long Li
- Department of Surgery, Ascension St Agnes Hospital, Baltimore, MD 21009, United States
| | - Mueen Megdadi
- Department of Surgery, Ascension St Agnes Hospital, Baltimore, MD 21009, United States
| | - Humair S Quadri
- Department of Surgery, Ascension St Agnes Hospital, Baltimore, MD 21009, United States
| |
Collapse
|
2
|
Molecular Signatures of HIV-1 Envelope Associated with HIV-Associated Neurocognitive Disorders. Curr HIV/AIDS Rep 2019; 15:72-83. [PMID: 29460224 DOI: 10.1007/s11904-018-0374-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The HIV-1 envelope gene (env) has been an intense focus of investigation in the search for genetic determinants of viral entry and persistence in the central nervous system (CNS). RECENT FINDINGS Molecular signatures of CNS-derived HIV-1 env reflect the immune characteristics and cellular constraints of the CNS compartment. Although more readily found in those with advanced HIV-1 and HIV-associated neurocognitive disorders (HAND), molecular signatures distinguishing CNS-derived quasispecies can be identified early in HIV-1 infection, in the presence or absence of combination antiretroviral therapy (cART), and are dynamic. Amino acid signatures of CNS-compartmentalization and HAND have been identified across populations. While some significant overlap exists, none are universal. Detailed analyses of CNS-derived HIV-1 env have allowed researchers to identify a number of molecular determinants associated with neuroadaptation. Future investigations using comprehensive cohorts and longitudinal databases have the greatest potential for the identification of robust, validated signatures of HAND in the cART era.
Collapse
|
3
|
ALSUntangled 45: Antiretrovirals. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:630-634. [PMID: 29693424 DOI: 10.1080/21678421.2018.1465248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Ogishi M, Yotsuyanagi H. Prediction of HIV-associated neurocognitive disorder (HAND) from three genetic features of envelope gp120 glycoprotein. Retrovirology 2018; 15:12. [PMID: 29374475 PMCID: PMC5787250 DOI: 10.1186/s12977-018-0401-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND HIV-associated neurocognitive disorder (HAND) remains an important and yet potentially underdiagnosed manifestation despite the fact that the modern combination antiretroviral therapy (cART) has achieved effective viral suppression and greatly reduced the incidence of life-threatening events. Although HIV neurotoxicity is thought to play a central role, the potential of viral genetic signature as diagnostic and/or prognostic biomarker has yet to be fully explored. RESULTS Using a manually curated sequence metadataset (80 specimens, 2349 sequences), we demonstrated that only three genetic features are sufficient to predict HAND status regardless of sampling tissues; the accuracy reached 100 and 94% in the hold-out testing subdataset and the entire dataset, respectively. The three genetic features stratified HAND into four distinct clusters. Extrapolating the classification to the 1619 specimens registered in the Los Alamos HIV Sequence Database, the global HAND prevalence was estimated to be 46%, with significant regional variations (30-71%). The R package HANDPrediction was implemented to ensure public availability of key codes. CONCLUSIONS Our analysis revealed three amino acid positions in gp120 glycoprotein, providing the basis of the development of novel cART regimens specifically optimized for HAND-associated quasispecies. Moreover, the classifier can readily be translated into a diagnostic biomarker, warranting prospective validation.
Collapse
Affiliation(s)
- Masato Ogishi
- Division of Infectious Diseases and Applied Immunology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases and Applied Immunology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Acharjee S, Branton WG, Vivithanaporn P, Maingat F, Paul AM, Dickie P, Baker GB, Power C. HIV-1 Nef expression in microglia disrupts dopaminergic and immune functions with associated mania-like behaviors. Brain Behav Immun 2014; 40:74-84. [PMID: 24607605 DOI: 10.1016/j.bbi.2014.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders during HIV/AIDS are common although the contribution of HIV-1 infection within the brain, and in particular individual HIV-1 proteins, to the development of these brain disorders is unknown. Herein, an in vivo transgenic mouse model was generated in which the HIV-1 Nef protein was expressed in microglia cells, permitting investigation of neurobehavioral phenotypes and associated cellular and molecular properties. METHODS Transgenic (Tg) mice that expressed full length HIV-1 nef under the control of the c-fms promoter and wildtype (Wt) littermates were investigated using different measures of neurobehavioral performance including locomotory, forced swim (FST), elevated plus maze (EPM) and T-maze tests. Host gene and transgene expression were assessed by RT-PCR, immunoblotting, enzymatic activity and immunohistochemistry. Biogenic amine levels were measured by HPLC with electrochemical detection. RESULTS Tg animals exhibited Nef expression in brain microglia and cultured macrophages. Tg males displayed hyperactive behaviors including augmented locomotor activity, decreased immobility in the FST and increased open-arm EPM exploration compared to Wt littermates (p<0.05). Tg animals showed increased CCL2 expression with concurrent IFN-α suppression in striatum compared with Wt littermates (p<0.05). Dopamine levels, MAO activity and the dopamine transporter (DAT) expression were reduced in the striatum of Tg animals (p<0.05). CONCLUSIONS HIV-1 Nef expression in microglia induced CCL2 expression together with disrupting striatal dopaminergic transmission, resulting in hyperactive behaviors which are observed in mania and other psychiatric comorbidities among HIV-infected persons. These findings emphasize the selective effects of individual viral proteins in the brain and their participation in neuropathogenesis.
Collapse
Affiliation(s)
- Shaona Acharjee
- Department of Medicine, University of Alberta, Edmonton, Canada; Department of Physiology and Pharmacology and Hotchkiss Brain Institute, University of Calgary, Bangkok, Thailand
| | | | - Pornpun Vivithanaporn
- Department of Medicine, University of Alberta, Edmonton, Canada; Department of Pharmacology, Mahidol University, Bangkok, Thailand
| | | | - Amber M Paul
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Peter Dickie
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, Canada; Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada; Department of Psychiatry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
6
|
Polyak MJ, Vivithanaporn P, Maingat FG, Walsh JG, Branton W, Cohen EA, Meeker R, Power C. Differential type 1 interferon-regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence. FASEB J 2013; 27:2829-44. [PMID: 23608145 DOI: 10.1096/fj.13-227868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The lentiviruses, human and feline immunodeficiency viruses (HIV-1 and FIV, respectively), infect the brain and cause neurovirulence, evident as neuronal injury, inflammation, and neurobehavioral abnormalities with diminished survival. Herein, different lentivirus infections in conjunction with neural cell viability were investigated, concentrating on type 1 interferon-regulated pathways. Transcriptomic network analyses showed a preponderance of genes involved in type 1 interferon signaling, which was verified by increased expression of the type 1 interferon-associated genes, Mx1 and CD317, in brains from HIV-infected persons (P<0.05). Leukocytes infected with different strains of FIV or HIV-1 showed differential Mx1 and CD317 expression (P<0.05). In vivo studies of animals infected with the FIV strains, FIV(ch) or FIV(ncsu), revealed that FIV(ch)-infected animals displayed deficits in memory and motor speed compared with the FIV(ncsu)- and mock-infected groups (P<0.05). TNF-α, IL-1β, and CD40 expression was increased in the brains of FIV(ch)-infected animals; conversely, Mx1 and CD317 transcript levels were increased in the brains of FIV(ncsu)-infected animals, principally in microglia (P<0.05). Gliosis and neuronal loss were evident among FIV(ch)-infected animals compared with mock- and FIV(ncsu)-infected animals (P<0.05). Lentiviral infections induce type 1 interferon-regulated gene expression in microglia in a viral diversity-dependent manner, representing a mechanism by which immune responses might be exploited to limit neurovirulence.
Collapse
Affiliation(s)
- Maria J Polyak
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kamerman PR, Moss PJ, Weber J, Wallace VCJ, Rice ASC, Huang W. Pathogenesis of HIV-associated sensory neuropathy: evidence from in vivo and in vitro experimental models. J Peripher Nerv Syst 2012; 17:19-31. [PMID: 22462664 DOI: 10.1111/j.1529-8027.2012.00373.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-associated sensory neuropathy (HIV-SN) is a frequent neurological complication of HIV infection and its treatment with some antiretroviral drugs. We review the pathogenesis of the viral- and drug-induced causes of the neuropathy, and its primary symptom, pain, based on evidence from in vivo and in vitro models of HIV-SN. Viral coat proteins mediate nerve fibre damage and hypernociception through direct and indirect mechanisms. Direct interactions between viral proteins and nerve fibres dominate axonal pathology, while somal pathology is dominated by indirect mechanisms that occur secondary to virus-mediated activation of glia and macrophage infiltration into the dorsal root ganglia. The treatment-induced neuropathy and resulting hypernociception arise primarily from drug-induced mitochondrial dysfunction, but the sequence of events initiated by the mitochondrial dysfunction that leads to the nerve fibre damage and dysfunction are still unclear. Overall, the models that have been developed to study the pathogenesis of HIV-SN, and hypernociception associated with the neuropathy, are reasonable models and have provided useful insights into the pathogenesis of HIV-SN. As new models are developed they may ultimately lead to identification of therapeutic targets for the prevention or treatment of this common neurological complication of HIV infection.
Collapse
Affiliation(s)
- Peter R Kamerman
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, South Africa.
| | | | | | | | | | | |
Collapse
|
8
|
Acharjee S, Zhu Y, Maingat F, Pardo C, Ballanyi K, Hollenberg MD, Power C. Proteinase-activated receptor-1 mediates dorsal root ganglion neuronal degeneration in HIV/AIDS. ACTA ACUST UNITED AC 2011; 134:3209-21. [PMID: 22021895 DOI: 10.1093/brain/awr242] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Distal sensory polyneuropathy is a frequent complication of lentivirus infections of the peripheral nervous system including both human immunodeficiency virus and feline immunodeficiency virus. Proteinase-activated receptors are G protein-coupled receptors implicated in the pathogenesis of neuroinflammation and neurodegeneration. Proteinase-activated receptor-1 is expressed on different cell types within the nervous system including neurons and glia, but little is known about its role in the pathogenesis of inflammatory peripheral nerve diseases, particularly lentivirus-related distal sensory polyneuropathy. Herein, the expression and functions of proteinase-activated receptor-1 in the peripheral nervous system during human immunodeficiency virus and feline immunodeficiency virus infections were investigated. Proteinase-activated receptor-1 expression was most evident in autopsied dorsal root ganglion neurons from subjects infected with human immunodeficiency virus, compared with the dorsal root ganglia of uninfected subjects. Human immunodeficiency virus or feline immunodeficiency virus infection of cultured human or feline dorsal root ganglia caused upregulation of interleukin-1β and proteinase-activated receptor-1 expression. In the human immunodeficiency virus- or feline immunodeficiency virus-infected dorsal root ganglia, interleukin-1β activation was principally detected in macrophages, while neurons showed induction of proteinase-activated receptor-1. Binding of proteinase-activated receptor-1 by the selective proteinase-activated receptor-1-activating peptide resulted in neurite retraction and soma atrophy in conjunction with cytosolic calcium activation in human dorsal root ganglion neurons. Interleukin-1β exposure to feline or human dorsal root ganglia caused upregulation of proteinase-activated receptor-1 in neurons. Exposure of feline immunodeficiency virus-infected dorsal root ganglia to the interleukin-1 receptor antagonist prevented proteinase-activated receptor-1 induction and neurite retraction. In vivo feline immunodeficiency virus infection was associated with increased proteinase-activated receptor-1 expression on neurons and interleukin-1β induction in macrophages. Moreover, feline immunodeficiency virus infection caused hyposensitivity to mechanical stimulation. These data indicated that activation and upregulation of proteinase-activated receptor-1 by interleukin-1β contributed to dorsal root ganglion neuronal damage during lentivirus infections leading to the development of distal sensory polyneuropathy and might also provide new targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Shaona Acharjee
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
PTEN gene silencing prevents HIV-1 gp120(IIIB)-induced degeneration of striatal neurons. J Neurovirol 2011; 17:41-9. [PMID: 21234828 DOI: 10.1007/s13365-010-0016-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/26/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
To assess the role of the phosphatase and tensin homologue on chromosome 10 (PTEN) in mediating envelope glycoprotein 120 (gp120)-induced neurotoxicity in the striatum, PTEN was silenced using short interfering RNA (siRNA) vectors. PTEN activity directs multiple downstream pathways implicated in gp120-induced neuronal injury and death. PTEN is a negative regulator of Akt (protein kinase B) phosphorylation, but has also been shown to directly activate extrasynaptic NMDA receptors and dephosphorylate focal adhesion kinase. Rodent striatal neurons were nucleofected with green fluorescent protein (GFP)-expressing siRNA constructs to silence PTEN (PTENsi-GFP) or with negative-control (NCsi-GFP) vectors, and exposed to HIV-1 gp120(IIIB) using rigorously controlled, cell culture conditions including computerized time-lapse microscopy to track the fate of individual neurons following gp120 exposure. Immunofluorescence labeling showed that subpopulations of striatal neurons possess CXCR4 and CCR5 co-receptor immunoreactivity and that gp120(IIIB) was intrinsically neurotoxic to isolated striatal neurons. Importantly, PTENsi-GFP, but not control NCsi-GFP, constructs markedly decreased PTEN mRNA and protein levels and significantly attenuated gp120-induced death. These findings implicate PTEN as a critical factor in mediating the direct neurotoxic effects of HIV-1 gp120, and suggest that effectors downstream of PTEN such as Akt or other targets are potentially affected. The selective abatement of PTEN activity in neurons may represent a potential therapeutic strategy for the CNS complications of HIV-1.
Collapse
|
10
|
Sorce S, Myburgh R, Krause KH. The chemokine receptor CCR5 in the central nervous system. Prog Neurobiol 2010; 93:297-311. [PMID: 21163326 DOI: 10.1016/j.pneurobio.2010.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/29/2010] [Accepted: 12/07/2010] [Indexed: 02/04/2023]
Abstract
The expression and the role of the chemokine receptor CCR5 have been mainly studied in the context of HIV infection. However, this protein is also expressed in the brain, where it can be crucial in determining the outcome in response to different insults. CCR5 expression can be deleterious or protective in controlling the progression of certain infections in the CNS, but it is also emerging that it could play a role in non-infectious diseases. In particular, it appears that, in addition to modulating immune responses, CCR5 can influence neuronal survival. Here, we summarize the present knowledge about the expression of CCR5 in the brain and highlight recent findings suggesting its possible involvement in neuroprotective mechanisms.
Collapse
Affiliation(s)
- Silvia Sorce
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva-4, Switzerland
| | | | | |
Collapse
|
11
|
Lindl KA, Marks DR, Kolson DL, Jordan-Sciutto KL. HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J Neuroimmune Pharmacol 2010; 5:294-309. [PMID: 20396973 PMCID: PMC2914283 DOI: 10.1007/s11481-010-9205-z] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/05/2010] [Indexed: 01/08/2023]
Abstract
Human immunodeficiency virus type 1 (HIV) infection presently affects more that 40 million people worldwide, and is associated with central nervous system (CNS) disruption in at least 30% of infected individuals. The use of highly active antiretroviral therapy has lessened the incidence, but not the prevalence of mild impairment of higher cognitive and cortical functions (HIV-associated neurocognitive disorders) as well as substantially reduced a more severe form dementia (HIV-associated dementia). Furthermore, improving neurological outcomes will require novel, adjunctive therapies that are targeted towards mechanisms of HIV-induced neurodegeneration. Identifying such molecular and pharmacological targets requires an understanding of the events preceding irreversible neuronal damage in the CNS, such as actions of neurotoxins (HIV proteins and cellular factors), disruption of ion channel properties, synaptic damage, and loss of adult neurogenesis. By considering the specific mechanisms and consequences of HIV neuropathogenesis, unified approaches for neuroprotection will likely emerge using a tailored, combined, and non-invasive approach.
Collapse
Affiliation(s)
- Kathryn A Lindl
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Room 312 Levy Building, Philadelphia, PA 19104-6030, USA
| | | | | | | |
Collapse
|
12
|
Jayadev S, Garden GA. Host and viral factors influencing the pathogenesis of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 2009; 4:175-89. [PMID: 19373562 DOI: 10.1007/s11481-009-9154-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 03/27/2009] [Indexed: 01/03/2023]
Abstract
The human immunodeficiency virus (HIV) invades the central nervous system early in the course of infection and establishes a protected viral reservoir. However, neurocognitive consequences of HIV infection, known collectively as HIV-associated neurocognitive disorders (HAND), develop in only a small portion of infected patients. The precise mechanisms of pathogenesis involved in HIV-induced central nervous system injury are still not completely understood. In particular, most theories of HAND pathogenesis cannot account for either the selective vulnerability of specific neuronal populations to HIV-induced neurodegeneration or why only a subset of patients develop clinically detectable nervous system disease. Epidemiological and virological studies have identified a variety of host and viral factors that are associated with increased risk of developing HAND. Some host factors that predispose HIV-infected patients to HAND overlap with those associated with Alzheimer's disease (AD), suggesting the possibility that common pathogenic mechanisms may participate in both diseases. Here, we will review reports of host and viral factors associated with HAND and place these studies in the context of the data employed to support current theories regarding the molecular and cellular mechanisms that lead to HIV-induced neurodegeneration with additional focus on mechanisms common to AD pathogenesis.
Collapse
Affiliation(s)
- Suman Jayadev
- Department of Neurology and Center for Neurogenetics and Neurotherapeutics, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
13
|
Elbim C, Monceaux V, Mueller YM, Lewis MG, François S, Diop O, Akarid K, Hurtrel B, Gougerot-Pocidalo MA, Lévy Y, Katsikis PD, Estaquier J. Early divergence in neutrophil apoptosis between pathogenic and nonpathogenic simian immunodeficiency virus infections of nonhuman primates. THE JOURNAL OF IMMUNOLOGY 2009; 181:8613-23. [PMID: 19050281 DOI: 10.4049/jimmunol.181.12.8613] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We used pathogenic and nonpathogenic simian models of SIV infection of Chinese and Indian rhesus macaque (RMs) and African green monkeys (AGMs), respectively, to investigate the relationship between polymorphonuclear neutrophil (PMN) death and the extent of viral replication and disease outcome. In this study, we showed that PMN death increased early during the acute phase of SIV infection in Chinese RMs and coincided with the peak of viral replication on day 14. The level of PMN death was significantly more severe in RMs that progressed more rapidly to AIDS and coincided with neutropenia. Neutropenia was also observed in Indian RMs and was higher in non-Mamu-A*01 compared with Mamu-A*01 animals. In stark contrast, no changes in the levels of PMN death were observed in the nonpathogenic model of SIVagm-sab (sabaeus) infection of AGMs despite similarly high viral replication. PMN death was a Bax and Bak-independent mitochondrial insult, which is prevented by inhibiting calpain activation but not caspases. We found that BOB/GPR15, a SIV coreceptor, is expressed on the PMN surface of RMs at a much higher levels than AGMs and its ligation induced PMN death, suggesting that SIV particle binding to the cell surface is sufficient to induce PMN death. Taken together, our results suggest that species-specific differences in BOB/GPR15 receptor expression on PMN can lead to increased acute phase PMN death. This may account for the decline in PMN numbers that occurs during primary SIV infection in pathogenic SIV infection and may have important implications for subsequent viral replication and disease progression.
Collapse
Affiliation(s)
- Carole Elbim
- Faculté de Médecine, Service d'Immunologie et d'Hématologie,Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire Xavier Bichat, Université Paris 7-Denis Diderot, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Boissé L, Gill MJ, Power C. HIV infection of the central nervous system: clinical features and neuropathogenesis. Neurol Clin 2008; 26:799-819, x. [PMID: 18657727 DOI: 10.1016/j.ncl.2008.04.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Almost 65 million people worldwide have been infected with HIV since it was first identified in the early 1980s. Neurologic disorders associated with HIV type 1 affect between 40% and 70% of infected individuals. The most significant of these disorders include HIV-associated neurocognitive disorder, which comprises HIV-associated dementia, mild neurocognitive disorder, and asymptomatic neurocognitive impairment. Despite the availability of combination antiretroviral therapy, HIV-related central nervous system disorders continue to represent a substantial personal, economic, and societal burden. This review summarizes the clinical manifestations, diagnosis, treatment, and pathogenesis of the primary HIV-associated central nervous system disorders.
Collapse
Affiliation(s)
- Lysa Boissé
- Division of Neurology, Queen's University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| | | | | |
Collapse
|
15
|
Kazmierczak K, Potash MJ. Host and virus strain dependence in activation of human macrophages by human immunodeficiency virus type 1. J Neurovirol 2008; 13:452-61. [PMID: 17994430 DOI: 10.1080/13550280701510104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1)-associated neuropathogenesis occurs in a large minority of infected people. Presently, there are neither viral nor cellular markers that predict the development of brain disease during HIV-1 infection. This study was conducted to determine whether there exist systematic differences among human cell donors and virus strains for the activation of macrophage gene expression by HIV-1 that may contribute to neuropathogenesis. Four HIV-1, ADA and B-aL, which were isolated from peripheral tissues of acquired immunodeficiency syndrome (AIDS) patients, and DJV and YU-2, which were isolated from brains of patients with HIV-1-associated dementia, were compared for induction of expression of cellular genes associated with antiviral activity or inflammation in monocyte-derived macrophages from several donors. Virus replication and cytokine production were scored by enzyme-linked immunosorbent assay (ELISA) and cellular transcripts were measured by real-time polymerase chain reaction (PCR). ADA and B-aL productively infected cells from all donors tested and induced all cellular transcripts tested, illustrating a common response of macrophages to HIV-1 replication. In sharp contrast, the viruses associated with neuropathogenesis, DJV and YU-2, induced intense gene expression early after infection in cells from a subset of donors but DJV did not productively infect these cells. No such heterogeneity was observed in the responses of macrophages during high-level replication of any HIV-1 tested. The susceptibility to early activation by HIV-1 may reflect susceptibility to neuropathogenesis in AIDS.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, Columbia University Medical Center, 432 West 58th Street, New York, NY 10019, USA
| | | |
Collapse
|
16
|
Antony JM, Ellestad KK, Hammond R, Imaizumi K, Mallet F, Warren KG, Power C. The human endogenous retrovirus envelope glycoprotein, syncytin-1, regulates neuroinflammation and its receptor expression in multiple sclerosis: a role for endoplasmic reticulum chaperones in astrocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:1210-24. [PMID: 17617614 DOI: 10.4049/jimmunol.179.2.1210] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Retroviral envelopes are pathogenic glycoproteins which cause neuroinflammation, neurodegeneration, and endoplasmic reticulum stress responses. The human endogenous retrovirus (HERV-W) envelope protein, Syncytin-1, is highly expressed in CNS glia of individuals with multiple sclerosis (MS). In this study, we investigated the mechanisms by which Syncytin-1 mediated neuroimmune activation and oligodendrocytes damage. In brain tissue from individuals with MS, ASCT1, a receptor for Syncytin-1 and a neutral amino acid transporter, was selectively suppressed in astrocytes (p < 0.05). Syncytin-1 induced the expression of the endoplasmic reticulum stress sensor, old astrocyte specifically induced substance (OASIS), in cultured astrocytes, similar to findings in MS brains. Overexpression of OASIS in astrocytes increased inducible NO synthase expression but concurrently down-regulated ASCT1 (p < 0.01). Treatment of astrocytes with a NO donor enhanced expression of early growth response 1, with an ensuing reduction in ASCT1 expression (p < 0.05). Small-interfering RNA molecules targeting Syncytin-1 selectively down-regulated its expression, preventing the suppression of ASCT1 and the release of oligodendrocyte cytotoxins by astrocytes. A Syncytin-1-transgenic mouse expressing Syncytin-1 under the glial fibrillary acidic protein promoter demonstrated neuroinflammation, ASCT1 suppression, and diminished levels of myelin proteins in the corpus callosum, consistent with observations in CNS tissues from MS patients together with neurobehavioral abnormalities compared with wild-type littermates (p < 0.05). Thus, Syncytin-1 initiated an OASIS-mediated suppression of ASCT1 in astrocytes through the induction of inducible NO synthase with ensuing oligodendrocyte injury. These studies provide new insights into the role of HERV-mediated neuroinflammation and its contribution to an autoimmune disease.
Collapse
Affiliation(s)
- Joseph M Antony
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Liner KJ, Hall CD, Robertson KR. Impact of human immunodeficiency virus (HIV) subtypes on HIV-associated neurological disease. J Neurovirol 2007; 13:291-304. [PMID: 17849313 DOI: 10.1080/13550280701422383] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Among the many variables affecting transmission and pathogenesis of the human immunodeficiency virus type 1(HIV-1), the effects of HIV subtypes, or clades, on disease progression remain unclear. Although debated, some studies have found that the variable env and pol sequences of different subtypes of HIV-1 may endow some subtypes with greater degrees of cell tropism, virulence, and drug resistance, which may lead to differences in overall disease progression. HIV-associated dementia (HAD) appears to be associated with viral diversity and markers of immune activation. Africa has the highest prevalence of HIV, largest viral diversity, and is where clade recombination occurs most frequently. All of these factors would suggest that HAD would pose the largest threat in this region of the world. Although investigations into the effects of different subtypes on overall disease progression are well documented, few have looked into the effects of subtypes on neurological disease progression. This review highlights the need for more international research involving the neurological effects and especially the clinical presentation of dementia for the entire range of the group M HIV-1 subtypes.
Collapse
Affiliation(s)
- Kevin J Liner
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
18
|
Muratori C, Sistigu A, Ruggiero E, Falchi M, Bacigalupo I, Palladino C, Toschi E, Federico M. Macrophages transmit human immunodeficiency virus type 1 products to CD4-negative cells: involvement of matrix metalloproteinase 9. J Virol 2007; 81:9078-87. [PMID: 17581988 PMCID: PMC1951421 DOI: 10.1128/jvi.00675-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It was previously reported that human immunodeficiency virus type 1 (HIV-1) spreads in CD4 lymphocytes through cell-to-cell transmission. Here we report that HIV-1-infected macrophages, but not lymphocytes, transmit HIV-1 products to CD4-negative cells of either epithelial, neuronal, or endothelial origin in the absence of overt HIV-1 infection. This phenomenon was detectable as early as 1 h after the start of cocultivation and depended on cell-to-cell contact but not on the release of viral particles from donor cells. Transfer of HIV-1 products occurred upon their polarization and colocalization within zones of cell-to-cell contact similar to virological synapses. Neither HIV-1 Env nor Nef expression was required but, interestingly, we found that an HIV-1-dependent increase in matrix metalloproteinase 9 production from donor cells significantly contributed to the cell-to-cell transmission of the viral products. The macrophage-driven transfer of HIV-1 products to diverse CD4-negative cell types may have a significant role in AIDS pathogenesis.
Collapse
Affiliation(s)
- Claudia Muratori
- Division of Pathogenesis of Retroviruses, National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Peterson KE, Chesebro B. Influence of proinflammatory cytokines and chemokines on the neuropathogenesis of oncornavirus and immunosuppressive lentivirus infections. Curr Top Microbiol Immunol 2007; 303:67-95. [PMID: 16570857 DOI: 10.1007/978-3-540-33397-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retroviral infection of the CNS can lead to severe debilitating neurological diseases in humans and other animals. Four general types of pathogenic effects with various retroviruses have been observed including: hemorrhage (TR1.3), spongiform encephalopathy (CasBrE, FrCasE, PVC211, NT40, Mol-ts1), demyelination with inflammatory lesions (HTLV-1, visna, CAEV), and encephalopathy with gliosis and proinflammatory chemokines and cytokines, usually with microglial giant cells and nodules [human immunodeficiencyvirus (HIV), feline immunodeficiencyvirus (FIV), simian immunodeficiency virus (SIV), Fr98]. This review focuses on this fourth group of retroviruses. In this latter group, proinflammatory cytokine and chemokine upregulation accompanies the disease process, and may influence pathogenesis by direct effects on resident CNS cells. The review first discusses the Fr98 murine polytropic virus system with particular reference to the roles of cytokines and chemokines in the pathogenic process. The Fr98 data are then compared and contrasted to the cytokine and chemokine data in the lentivirus systems, HIV, SIV, and FIV. Finally, various mechanisms are presented by which tumor necrosis factor (TNF) and several chemokines may alter the pathogenesis of retrovirus infection of the CNS.
Collapse
Affiliation(s)
- K E Peterson
- Dept. of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
20
|
Jones GJ, Barsby NL, Cohen ÉA, Holden J, Harris K, Dickie P, Jhamandas J, Power C. HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci 2007; 27:3703-11. [PMID: 17409234 PMCID: PMC6672409 DOI: 10.1523/jneurosci.5522-06.2007] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the introduction of highly active antiretroviral therapy, dementia caused by human immunodeficiency virus-1 (HIV-1) infection remains a devastating and common neurological disorder. Although the mechanisms governing neurodegeneration during HIV-1 infection remain uncertain, the HIV-1 accessory protein, viral protein R (Vpr), has been proposed as a neurotoxic protein. Herein, we report that Vpr protein and transcript were present in the brains of HIV-infected persons. Moreover, soluble Vpr caused neuronal apoptosis, involving cytochrome c extravasation, p53 induction, and activation of caspase-9 while exerting a depressive effect on whole-cell currents in neurons (p < 0.05), which was inhibited by iberiotoxin. Vpr-activated glial cells secreted neurotoxins in a concentration-dependent manner (p < 0.001). Transgenic (Tg) mice expressing Vpr in brain monocytoid cells displayed the transgene principally in the basal ganglia (p < 0.05) and cerebral cortex (p < 0.01) compared with hindbrain expression. Vpr was released from cultured transgenic macrophages, which was cytotoxic to neurons and was blocked by anti-Vpr antibody (p < 0.05). Neuronal injury was observed in Tg animals compared with wild-type littermates, chiefly affecting GAD65 (p < 0.01) and vesicular acetylcholine transferase (p < 0.001) immunopositive neuronal populations in the basal ganglia. There was also a loss of subcortical synaptophysin (p < 0.001) immunoreactivity as well as an increase in activated caspase-3, which was accompanied by a hyperexcitable neurobehavioral phenotype (p < 0.05). Thus, HIV-1 Vpr caused neuronal death through convergent pathogenic mechanisms with ensuing in vivo neurodegeneration, yielding new insights into the mechanisms by which HIV-1 injures the nervous system.
Collapse
Affiliation(s)
- Gareth J. Jones
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Nicola L. Barsby
- Departments of Medical Microbiology and Immunology and
- Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Éric A. Cohen
- Institut de Recherches Cliniques de Montréal and Department of Microbiology and Immunology, University of Montreal, Montreal, Quebec, Canada H2W 1R7, and
| | - Janet Holden
- Department of Pathology, St. Paul's Hospital, Vancouver, British Columbia, Canada V6Z 1Y6
| | - Kim Harris
- Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Peter Dickie
- Departments of Medical Microbiology and Immunology and
| | - Jack Jhamandas
- Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Christopher Power
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Departments of Medical Microbiology and Immunology and
- Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| |
Collapse
|
21
|
Boven LA, Noorbakhsh F, Bouma G, van der Zee R, Vargas DL, Pardo C, McArthur JC, Nottet HSLM, Power C. Brain-derived human immunodeficiency virus-1 Tat exerts differential effects on LTR transactivation and neuroimmune activation. J Neurovirol 2007; 13:173-84. [PMID: 17505986 DOI: 10.1080/13550280701258399] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Molecular diversity within brain-derived HIV-1 sequences is highly variable depending on the individual gene examined and the neurological status of the patient. Herein, we examined different brain-derived human immunodeficiency virus (HIV)-1 tat sequences in terms of their effects on LTR transactivation and host gene induction in neural cells. Astrocytic and monocytoid cells co-transfected with prototypic tat clones derived from non-demented (ND) (n = 3) and demented (HAD) (n = 3) AIDS patients and different HIV-LTR constructs revealed that LTR transactivation mediated by tat clones derived from HAD patients was decreased (p < 0.05). A Tat-derived peptide containing the amino acid 24-38 domain from a ND clone caused down-regulation of the LTR transactivation (p < 0.05) in contrast to peptides from other Tat regions derived from HAD and ND tat clones. Both brain-derived HAD and ND tat constructs were able to induce the host immune genes, MCP-1 and IL-1beta. Microarray analysis revealed several host genes were selectively upregulated by a HAD-derived tat clone including an enzyme mediating heparan sulphate synthesis, HS3ST3B1 (p < 0.05), which was also found to be increased in the brains of patients with HAD. Expression of the pro-apoptotic gene, PDCD7, was reduced in cells transfected with the HAD-derived tat clone and moreover, this gene was also suppressed in monocytoid cells infected with a neurotropic HIV-1 strain. Thus, mutations within the HIV-1 tat gene may exert pathogenic effects contributing to the development of HAD, which are independent of its effects on LTR transactivation.
Collapse
Affiliation(s)
- Leonie A Boven
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bardi G, Sengupta R, Khan MZ, Patel JP, Meucci O. Human immunodeficiency virus gp120-induced apoptosis of human neuroblastoma cells in the absence of CXCR4 internalization. J Neurovirol 2006; 12:211-8. [PMID: 16877302 PMCID: PMC2665038 DOI: 10.1080/13550280600848373] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The chemokine receptor CXCR4 functions as human immunodeficiency virus (HIV)-1 coreceptor and is involved in acquired immunodeficiency virus (AIDS) neuropathogenesis. CXCR4 is expressed by most cell types in the brain, including microglia, astrocytes, and neurons. Studies have shown that the HIV envelope protein gp120 binds to neuronal CXCR4 and activates signal transduction pathways leading to apoptosis. However, the natural CXCR4 ligand (CXCL12) has been referred to induce both neuronal survival and death. Here the authors used flow cytometry to determine whether gp120 and CXCL12 differ in their ability to induce CXCR4 internalization in the human neuroblastoma cells SH-SY5Y, which constitutively express CXCR4. As expected, increasing concentration of CXCL12 reduced surface expression of CXCR4 in a time-and concentration-dependent manner. Conversely, gp120IIIB (monomeric or oligomeric, in presence or absence of soluble CD4) did not change CXCR4 membrane levels. Similar results were obtained in a murine lymphocyte cell line (300-19) stably expressing human CXCR4. Nevertheless, gp120IIIB was still able to activate intracellular signaling and proapoptotic pathways, via CXCR4. These results show that gp120IIIB toxicity and signaling do not require CXCR4 internalization in SH-SY5Y cells, and suggest that the viral protein may alter normal CXCR4 trafficking thus, interfering with activation of prosurvival pathways.
Collapse
Affiliation(s)
- Giuseppe Bardi
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | |
Collapse
|
23
|
Darbinian-Sarkissian N, Czernik M, Peruzzi F, Gordon J, Rappaport J, Reiss K, Khalili K, Amini S. Dysregulation of NGF-signaling and Egr-1 expression by Tat in neuronal cell culture. J Cell Physiol 2006; 208:506-15. [PMID: 16741963 DOI: 10.1002/jcp.20675] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Examination of signal transduction pathways that modulate neuronal cell differentiation and protection against apoptosis has revealed a central role for the MAPK/Erk cascade. The activation of MAPK/Erk through the TrkA NGF signaling pathway is critical for growth and survival of neuronal cells. Here, we investigate the impact of HIV-1 Tat on the NGF-signaling pathway in SK-N-MC neuroblastoma cells. Expression of Tat decreased cell growth and induced apoptosis. Our results revealed dysregulation of various steps involved in the NGF pathway including suppression of MAPK, and inhibition of the promoter activity of Egr-1, a key pleiotropic mediator of the expression of genes involved in cell growth upon expression of Tat in SK-N-MC cells. Similarly, exposure of SK-N-MC to conditioned media derived from cells expressing Tat decreased phosphorylation of MAPK and reduced the level of Egr-1 protein expression in SK-N-MC cells. Furthermore, MAPK was able to phosphorylate Puralpha, a cellular protein that plays an important role in neuronal cell function and differentiation, and this was inhibited by Tat. The ability of Puralpha to interact with a GA/GC-rich sequence positioned upstream from the transcription start site of the Egr-1 promoter provided a rationale to examine Egr-1 expression. Expression of Tat decreased NGF-induced Egr-1 levels in SK-N-MC cells and reduced binding of Puralpha to the Egr-1 promoter. All of these observations support a model where the interplay between Tat and Puralpha dysregulates the NGF pathway including the MAPK/Erk network, resulting in reduced expression and activity of Egr-1 in neuronal cells.
Collapse
Affiliation(s)
- Nune Darbinian-Sarkissian
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Noorbakhsh F, Tang Q, Liu S, Silva C, van Marle G, Power C. Lentivirus envelope protein exerts differential neuropathogenic effects depending on the site of expression and target cell. Virology 2006; 348:260-76. [PMID: 16492386 DOI: 10.1016/j.virol.2005.10.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 07/30/2005] [Accepted: 10/26/2005] [Indexed: 12/27/2022]
Abstract
We investigated the neuropathogenic effects of feline immunodeficiency virus (FIV) envelope proteins in the context of both extracellular exposure and intracellular expression in feline neural cells. The envelope from the neurovirulent CSF-derived FIV V1 strain (V1-CSF) conferred infectivity to pseudotyped viruses in peripheral blood mononuclear cells (P < 0.01) in contrast to other cell types. Intracellular V1-CSF envelope expression in macrophages and microglia but not astrocytes resulted in the induction of host inflammatory genes contributing to neurotoxicity including IL-1beta, TNF-alpha, and indolamine 2',3'-dioxygenase (IDO) (P < 0.05) with concurrent neuronal death (P < 0.05). Upregulation of the endoplasmic reticulum stress genes was evident in brains from FIV-infected animals (P < 0.05) and in FIV-infected macrophages (P < 0.05) relative to controls. Intrastriatal implantation of an FIV envelope pseudotyped virus led to marked neuroinflammation and neuronal injury associated with neurobehavioral deficits (P < 0.01). Thus, lentivirus envelope proteins exert differential neuropathogenic effects through mechanisms that depend on the infected or exposed cell type.
Collapse
|
25
|
Jones G, Power C. Regulation of neural cell survival by HIV-1 infection. Neurobiol Dis 2005; 21:1-17. [PMID: 16298136 DOI: 10.1016/j.nbd.2005.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/29/2005] [Accepted: 07/06/2005] [Indexed: 02/03/2023] Open
Abstract
Infection by the lentivirus, human immunodeficiency virus type 1 (HIV-1), results in a variety of syndromes involving both the central (CNS) and the peripheral (PNS) nervous systems. Productive HIV-1 infection of the CNS is chiefly detectable in perivascular macrophages and microglia. HIV-1 encoded transcripts and proteins have also been detected in the PNS; however, productive viral replication appears to be sparse and restricted to the macrophage cell population. Despite the absence of productive infection of neurons, HIV-1 infection has been associated with neuronal loss in distinct regions of the brain. Neuronal cell loss may occur through both necrosis and apoptosis, although neuronal apoptosis appears to be a feature of AIDS, as only rare apoptotic neurons have been demonstrated in a few pre-AIDS cases. Although there is no clear consensus as to the underlying mechanism of HIV-induced neuropathogenesis, two complementary concepts predominate. Firstly, HIV-1 encoded proteins injure neurons directly without requiring the intermediary functions of nonneuronal cells. Alternatively, neuronal apoptosis may result indirectly from the secretion of neurotoxic host molecules by resident brain macrophages or microglia in response to HIV-1 infection, stimulation by viral proteins or immune activation. Herein, we review the neurological disorders and their underlying mechanisms associated with HIV infection, focusing on HIV-associated dementia (HAD) and HIV sensory neuropathy (HIV-SN). The evidence that neuronal loss in HIV-1-infected individuals may be due to neuronal apoptosis is then discussed. This review also summarizes the current data supporting both the direct and indirect mechanisms by which neuronal death may occur during infection with HIV-1 or the closely related lentiviruses SIV and FIV. Lastly, strategies are examined for treating or preventing HAD by targeting specific neurotoxic mechanisms.
Collapse
Affiliation(s)
- Gareth Jones
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
26
|
Rostasy K, Gorgun G, Kleyner Y, Garcia A, Kramer M, Melanson SM, Mathys JM, Yiannoutsos C, Skolnik PR, Navia BA. Tumor necrosis factor alpha leads to increased cell surface expression of CXCR4 in SK-N-MC cells. J Neurovirol 2005; 11:247-55. [PMID: 16036804 DOI: 10.1080/13550280590952763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Both host and viral factors play an important role in the pathogenesis of human immunodeficiency virus (HIV)-associated bran injury. In this study, the authors examined the interactions between tumor necrosis factor (TNF)-alpha, CXCR4, the alpha chemokine receptor, and three HIV isolates, including the T-tropic viruses, HIV-1(MN) and HIV-1(IIIB), and the dual tropic virus, HIV-1(89.6). The authors show by flow cytometry that treatment of differentiated SK-N-MC cells with TNF-alpha induces a significant increase in the cell surface expression of CXCR4 in a time- and dose-dependent manner. The effect is partly regulated at the level of transcription. To assess the biological significance of this finding, we show that TNF-alpha potentiates the ability of the above mentioned HIV isolates to induce neuronal apoptosis and that the effect is significantly reduced by pretreating cells with monoclonal antibodies to either CXCR4 and TNF-alpha. Together these results suggest that TNF-alpha may render neuronal cells vulnerable to the apoptotic effects of HIV by increasing the cell surface expression of CXCR4 and thus identify another mechanism by which TNF-alpha contributes to the pathogenesis of HIV-associated brain injury.
Collapse
Affiliation(s)
- Kevin Rostasy
- Department of Pediatrics, Division of Neurology, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Marozsan AJ, Moore DM, Lobritz MA, Fraundorf E, Abraha A, Reeves JD, Arts EJ. Differences in the fitness of two diverse wild-type human immunodeficiency virus type 1 isolates are related to the efficiency of cell binding and entry. J Virol 2005; 79:7121-34. [PMID: 15890952 PMCID: PMC1112120 DOI: 10.1128/jvi.79.11.7121-7134.2005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of one primary human immunodeficiency virus type 1 (HIV-1) isolate to outcompete another in primary CD4+ human lymphoid cells appears to be mediated by the efficiency of host cell entry. This study was designed to test the role of entry on fitness of wild-type HIV-1 isolates (e.g., replicative capacity) and to examine the mechanism(s) involved in differential entry efficiency. The gp120 coding regions of two diverse HIV-1 isolates (the more-fit subtype B strain, B5-91US056, and less-fit C strain, C5-97ZA003) were cloned into a neutral HIV-1 backbone by using a recently described yeast cloning technique. The fitness of the primary B5 HIV-1 isolates and its env gene cloned into the NL4-3 laboratory strain had similar fitness, and both were more fit than the C5 primary isolate and its env/NL4-3 chimeric counterpart. Increased fitness of the B5 over C5 virus was mediated by the gp120 coding region of the env gene. An increase in binding/fusion, as well as decreased sensitivity to entry inhibitors (PSC-RANTES and T-20), was observed in cell fusion assays mediated by B5 gp120 compared to C5 gp120. Competitive binding assays using a novel whole virus-cell system indicate that the primary or chimeric B5 had a higher avidity for CD4/CCR5 on host cells than the C5 counterpart. This increased avidity of an HIV-1 isolate for its cell receptors may be a significant factor influencing overall replicative capacity or fitness.
Collapse
Affiliation(s)
- Andre J Marozsan
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Jones G, Zhu Y, Silva C, Tsutsui S, Pardo CA, Keppler OT, McArthur JC, Power C. Peripheral nerve-derived HIV-1 is predominantly CCR5-dependent and causes neuronal degeneration and neuroinflammation. Virology 2005; 334:178-93. [PMID: 15780868 DOI: 10.1016/j.virol.2005.01.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 10/29/2004] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
HIV-related peripheral neuropathy is a major neurological complication of HIV infection, although little is known about its pathogenesis. We amplified HIV-1 C2V3 envelope sequences from peroneal nerves obtained from HIV/AIDS patients. Sequence analysis and infectious recombinant viruses containing peripheral nerve-derived C2V3 sequences indicated a predominance of CCR5-dependent and macrophage-tropic HIV-1, although dual tropic viruses using both CCR5 and CXCR4 were identified. The neuropathogenic effects of recombinant HIV-1 clones were investigated using a novel dorsal root ganglion culture system that was comprised of sensory neurons, macrophages and Schwann cells from transgenic rats expressing human CD4 and CCR5 on monocytoid cells. Despite restricted viral replication, HIV-1 infection caused a reduction in the percentage of neurons with neuritic processes together with significant neurite retraction, which was accompanied by induction of IL-1beta and TNF-alpha expression, depending on the individual virus. Our results suggest that HIV-1 infection of the peripheral nervous system causes axonal degeneration, possibly through the induction of pro-inflammatory cytokines.
Collapse
|
29
|
Nardacci R, Antinori A, Kroemer G, Piacentini M. Cell death mechanisms in HIV-associated dementia: the involvement of syncytia. Cell Death Differ 2005; 12 Suppl 1:855-8. [PMID: 15846379 DOI: 10.1038/sj.cdd.4401590] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- R Nardacci
- National Institute for Infectious Diseases, 'Lazzaro Spallanzani', Via Portuense 292, 00149 Rome, Italy
| | | | | | | |
Collapse
|
30
|
van Marle G, Power C. Human immunodeficiency virus type 1 genetic diversity in the nervous system: evolutionary epiphenomenon or disease determinant? J Neurovirol 2005; 11:107-28. [PMID: 16036790 DOI: 10.1080/13550280590922838] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Over the past decade there has been a revolution in the understanding and care of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS)-associated disease. Much of this progress stems from a broader recognition of the importance of differences in viral types, including receptor preference(s), replication properties, and reservoirs, as contributing factors to immunosuppresion and disease progression. In contrast, there is limited conceptualizatin of viral diversity and turnover in the brain and circulation in relation to neurocognitive impairments. Herein, the authors review current concepts regarding viral molecular diversity and phenotypes together with features of HIV-1 neuroinvasion, neurotropism, neurovirulence and neurosusceptiblity. Viral genetic and antigenic diversity is reduced within the brain compared to blood or other systemic organs within individuals. Conversely, viral molecular heterogeneity is greater in patients with HIV-associated dementia compared to nondemented patients, depending on the viral gene examined. Individual viral proteins exert multiple neuropathogenic effects, although the neurological consequences of different viral polymorphisms remain uncertain. Nonetheless, host genetic polymorphisms clearly influence neurological disease outcomes and likely dictate both acquired and innate immune responses, which in turn shape viral evolution within the host. Emerging issues include widespread antiretroviral therapy resistance and increasing awareness of viral superinfections together with viral recombination, all of which are likely to impact on both HIV genetic variation and neuropathogenesis. With the persisting prevalence of HIV-induced neurocognitive disabilities, despite marked improvements in managing immunosuppression, it remains imperative to fully define and understand the mechanisms by which viral dynamics and diversity contribute to neurological disease, permitting the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Guido van Marle
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
31
|
Strain MC, Letendre S, Pillai SK, Russell T, Ignacio CC, Günthard HF, Good B, Smith DM, Wolinsky SM, Furtado M, Marquie-Beck J, Durelle J, Grant I, Richman DD, Marcotte T, McCutchan JA, Ellis RJ, Wong JK. Genetic composition of human immunodeficiency virus type 1 in cerebrospinal fluid and blood without treatment and during failing antiretroviral therapy. J Virol 2005; 79:1772-88. [PMID: 15650202 PMCID: PMC544082 DOI: 10.1128/jvi.79.3.1772-1788.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection of the central nervous system (CNS) is a significant cause of morbidity. The requirements for HIV adaptation to the CNS for neuropathogenesis and the value of CSF virus as a surrogate for virus activity in brain parenchyma are not well established. We studied 18 HIV-infected subjects, most with advanced immunodeficiency and some neurocognitive impairment but none with evidence of opportunistic infection or malignancy of the CNS. Clonal sequences of C2-V3 env and population sequences of pol from HIV RNA in cerebrospinal fluid (CSF) and plasma were correlated with clinical and virologic variables. Most (14 of 18) subjects had partitioning of C2-V3 sequences according to compartment, and 9 of 13 subjects with drug resistance exhibited discordant resistance patterns between the two compartments. Regression analyses identified three to seven positions in C2-V3 that discriminated CSF from plasma HIV. The presence of compartmental differences at one or more of the identified positions in C2-V3 was highly associated with the presence of discordant resistance (P = 0.007), reflecting the autonomous replication of HIV and the independent evolution of drug resistance in the CNS. Discordance of resistance was associated with severity of neurocognitive deficits (P = 0.07), while low nadir CD4 counts were linked both to the severity of neurocognitive deficits and to discordant resistance patterns (P = 0.05 and 0.09, respectively). These observations support the study of CSF HIV as an accessible surrogate for HIV virions in the brain, confirm the high frequency of discordant resistance in subjects with advanced disease in the absence of opportunistic infection or malignancy of the CNS, and begin to identify genetic patterns in HIV env associated with adaptation to the CNS.
Collapse
Affiliation(s)
- M C Strain
- University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Khan MZ, Brandimarti R, Patel JP, Huynh N, Wang J, Huang Z, Fatatis A, Meucci O. Apoptotic and antiapoptotic effects of CXCR4: is it a matter of intrinsic efficacy? Implications for HIV neuropathogenesis. AIDS Res Hum Retroviruses 2004; 20:1063-71. [PMID: 15585097 PMCID: PMC2669736 DOI: 10.1089/aid.2004.20.1063] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CXCR4, the specific receptor for the chemokine SDF-1 alpha that also binds CXCR4-using HIV gp120s, affects survival of different cell types, including neurons. However, current data show that the outcome of CXCR4 activation on neuronal survival may vary depending on the ligand and/or the cellular conditions. In this study, we have systematically compared the effects of SDF-1 alpha and gp120(IIIB) (with or without CD4) on several intracellular pathways involved in cell survival, including MAP kinases and Akt-dependent pathways. Our data show that gp120(IIIB) and SDF-1 alpha are both potent activators of MAP kinases in neuronal and non-neuronal cells, though the kinetic of these responses is slightly different. Furthermore, unlike SDF-1 alpha, and independently of CD4, gp120(IIIB) is unable to stimulate Akt and some of its antiapoptotic targets (NF-kappa B and MDM2)--despite its ability to activate other signaling pathways in the same conditions. Finally, the viral protein is more efficient in recruiting some effectors (e.g., JNK) than others in comparison with SDF-1 alpha (EC(50) = 0.1 vs. 0.6 nM). We conclude that the intrinsic efficacy of the two ligands is significantly different and is pathway dependent. These findings have important implications for our understanding of CXCR4-mediated responses in the CNS, as well as the role of this coreceptor in HIV neuropathogenesis.
Collapse
Affiliation(s)
- Muhammad Z Khan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ahr B, Robert-Hebmann V, Devaux C, Biard-Piechaczyk M. Apoptosis of uninfected cells induced by HIV envelope glycoproteins. Retrovirology 2004; 1:12. [PMID: 15214962 PMCID: PMC446229 DOI: 10.1186/1742-4690-1-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 06/23/2004] [Indexed: 02/02/2023] Open
Abstract
Apoptosis, or programmed cell death, is a key event in biologic homeostasis but is also involved in the pathogenesis of many human diseases including human immunodeficiency virus (HIV) infection. Although multiple mechanisms contribute to the gradual T cell decline that occurs in HIV-infected patients, programmed cell death of uninfected bystander T lymphocytes, including CD4+ and CD8+ T cells, is an important event leading to immunodeficiency. The HIV envelope glycoproteins (Env) play a crucial role in transducing this apoptotic signal after binding to its receptors, the CD4 molecule and a coreceptor, essentially CCR5 and CXCR4. Depending on Env presentation, the receptor involved and the complexity of target cell contact, apoptosis induction is related to death receptor and/or mitochondria-dependent pathways. This review summarizes current knowledge of Env-mediated cell death leading to T cell depletion and clinical complications and covers the sometimes conflicting studies that address the possible mechanisms of T cell death.
Collapse
Affiliation(s)
- Barbara Ahr
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121-UM1, Institut de Biologie, 4, Bd Henri IV, CS 89508, 34960 Montpellier Cedex 2, France
| | - Véronique Robert-Hebmann
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121-UM1, Institut de Biologie, 4, Bd Henri IV, CS 89508, 34960 Montpellier Cedex 2, France
| | - Christian Devaux
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121-UM1, Institut de Biologie, 4, Bd Henri IV, CS 89508, 34960 Montpellier Cedex 2, France
| | - Martine Biard-Piechaczyk
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121-UM1, Institut de Biologie, 4, Bd Henri IV, CS 89508, 34960 Montpellier Cedex 2, France
| |
Collapse
|
34
|
Song B, Cayabyab M, Phan N, Wang L, Axthelm MK, Letvin NL, Sodroski JG. Neutralization sensitivity of a simian–human immunodeficiency virus (SHIV-HXBc2P 3.2N) isolated from an infected rhesus macaque with neurological disease. Virology 2004; 322:168-81. [PMID: 15063126 DOI: 10.1016/j.virol.2004.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 02/03/2004] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
Simian-human immunodeficiency virus (SHIV) chimerae, after in vivo passage in monkeys, can induce acquired immunodeficiency syndrome (AIDS)-like illness and death. A monkey infected with the molecularly cloned, pathogenic SHIV-HXBc2P 3.2 exhibited multifocal granulomatous pneumonia as well as progressive neurological impairment characterized by tremors and pelvic limb weakness. SHIV-HXBc2P 3.2N was isolated from brain tissue explants and characterized. Viruses with the envelope glycoproteins of SHIV-HXBc2P 3.2N exhibited increased sensitivity to soluble CD4 and several neutralizing antibodies compared with viruses with the parental SHIV-HXBc2P 3.2 envelope glycoproteins. By contrast, viruses with SHIV-HXBc2P 3.2 and SHIV-HXBc2P 3.2N envelope glycoproteins were neutralized equivalently by 2G12 and 2F5 antibodies, which are rarely elicited in HIV-1-infected humans. A constellation of changes involving both gp120 and gp41 envelope glycoproteins was responsible for the difference in susceptibility to neutralization by most antibodies. Surprisingly, the gain of an N-linked glycosylation site in the gp41 ectodomain contributed greatly to neutralization sensitivity. Thus, the environment of the central nervous system, particularly in the context of immunodeficiency, allows the evolution of immunodeficiency viruses with greater susceptibility to neutralization by antibodies.
Collapse
Affiliation(s)
- Byeongwoon Song
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Oxidative stress is now recognized as accountable for redox regulation involving reactive oxygen species (ROS) and reactive nitrogen species (RNS). Its role is pivotal for the modulation of critical cellular functions, notably for neurons astrocytes and microglia, such as apoptosis program activation, and ion transport, calcium mobilization, involved in excitotoxicity. Excitotoxicity and apoptosis are the two main causes of neuronal death. The role of mitochondria in apoptosis is crucial. Multiple apoptotic pathways emanate from the mitochondria. The respiratory chain of mitochondria that by oxidative phosphorylation, is the fount of cellular energy, i.e. ATP synthesis, is responsible for most of ROS and notably the first produced, superoxide anion (O(2)(;-)). Mitochondrial dysfunction, i.e. cell energy impairment, apoptosis and overproduction of ROS, is a final common pathogenic mechanism in aging and in neurodegenerative disease such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Nitric oxide (NO(;)), an RNS, which can be produced by three isoforms of NO-synthase in brain, plays a prominent role. The research on the genetics of inherited forms notably ALS, AD, PD, has improved our understanding of the pathobiology of the sporadic forms of neurodegenerative diseases or of aging of the brain. ROS and RNS, i.e. oxidative stress, are not the origin of neuronal death. The cascade of events that leads to neurons, death is complex. In addition to mitochondrial dysfunction (apoptosis), excitotoxicity, oxidative stress (inflammation), the mechanisms from gene to disease involve also protein misfolding leading to aggregates and proteasome dysfunction on ubiquinited material.
Collapse
Affiliation(s)
- J Emerit
- Service des Maladies Infectieuses et Tropicales, Groupe Hospitalier Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75651 cedex 13, Paris, France.
| | | | | |
Collapse
|
36
|
Cartier L, Dubois-Dauphin M, Hartley O, Irminger-Finger I, Krause KH. Chemokine-induced cell death in CCR5-expressing neuroblastoma cells. J Neuroimmunol 2003; 145:27-39. [PMID: 14644028 DOI: 10.1016/j.jneuroim.2003.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CCR5 is expressed in neurons but its function in this cellular context is hitherto poorly understood. We have generated CCR5-expressing SH-SY5Y neuroblastoma cells. CCR5 ligands induced cell death in these cells, but not in control neuroblastoma cells or in CCR5-expressing fibroblasts. CCR5-dependent killing of neuroblastoma cells occurred through apoptosis, since it was accompanied by caspase-3 activation and could be prevented by a caspase-3 inhibitor. Finally, cell killing by activated microglia was more rapid and extensive in CCR5-expressing neuroblastoma cells than in control cells. In summary, CCR5 may act as a death receptor in cells of neuronal lineage and therefore be involved in inflammatory neurodegeneration.
Collapse
Affiliation(s)
- Laetitia Cartier
- Biology of Ageing Laboratory, Department of Geriatrics, Geneva University Hospitals, 1225 Chêne-Bourg, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Jian H, Zhao LJ. Pro-apoptotic activity of HIV-1 auxiliary regulatory protein Vpr is subtype-dependent and potently enhanced by nonconservative changes of the leucine residue at position 64. J Biol Chem 2003; 278:44326-30. [PMID: 14506268 DOI: 10.1074/jbc.c300378200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Destruction of CD4+ T cells, the hallmark of AIDS, is caused in part by HIV-1-induced apoptosis of both infected cells and noninfected "bystander" cells. The HIV-1 auxiliary regulatory protein Vpr has been shown to harbor a pro-apoptotic activity that may contribute to cellular and tissue damage during AIDS pathogenesis. The biochemical mechanism of this Vpr function remains unclear. In this report, substitutions of a single amino acid residue Leu64 with Pro, Ala, or Arg are shown to dramatically enhance the pro-apoptotic activity of Vpr, as evidenced by the degradation of cellular DNA into fragments of 200-bp increments. Substitutions of Leu64 with conservative residues have no effect. The pro-apoptotic activity of the VprL64P mutant also requires activation of caspase(s) and is inhibited by the secondary mutation I61A, indicating a high specificity for Vpr-induced apoptosis. Among the three HIV-1 subtypes examined, a subtype B Vpr and an A/G subtype recombinant Vpr have a moderate level of pro-apoptotic activity, whereas a subtype D Vpr has no detectable activity. However, the L64P mutation efficiently enhances the pro-apoptotic potential of the subtype B and subtype D Vpr molecules but not that of the A/G recombinant Vpr. It is hypothesized that Vpr molecules from different HIV-1 subtypes as well as Vpr variants that emerge during HIV-1 infection may have different pro-apoptotic potentials and contribute to the diversity of AIDS pathogenesis.
Collapse
Affiliation(s)
- Heng Jian
- Institute for Molecular Virology, St. Louis University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|