1
|
Proppe CE, Rivera PM, Lubiak SM, Fukuda DH, Anderson AW, Mansy HA, Hill EC. Exercise-induced hypoalgesia following blood flow restricted exercise. Phys Ther Sport 2025; 73:17-24. [PMID: 40054102 DOI: 10.1016/j.ptsp.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 05/17/2025]
Abstract
OBJECTIVES Assess the repeatability of exercise-induced hypoalgesia (EIH) following low-load resistance exercise with blood flow restriction (LL + BFR) and the magnitude of EIH following LL + BFR, high-load resistance exercise, and a control intervention 1-h after exercise. DESIGN Crossover design. SETTING University laboratory. PARTICIPANTS 15 females, 15 males. MAIN OUTCOME MEASURES Pain pressure threshold and tolerance of the rectus femoris, gastrocnemius, and biceps brachii pre-exercise and 0-, 15-, 30-, 45-, and 60-min post-exercise. RESULTS There was no significant (p = 0.211-0.741) difference in pain pressure threshold or tolerance between LL + BFR1 and LL + BFR2 suggesting that EIH following LL + BFR is repeatable. LL + BFR elicited a significant (p = 0.001-0.043) increase in local pain pressure threshold (1.57 ± 1.21-0.98 ± 1.48 Δkgf) and tolerance (1.98 ± 2.65-0.83 ± 2.15 Δkgf) up to 1-h post-exercise. High-load resistance exercise elicited a significant (p = 0.003-0.034) increase in pain pressure threshold 0-min post-exercise (1.69 ± 1.74 Δkgf) and tolerance 0- and 15-min post-exercise (2.31 ± 2.44 Δkgf; 0.56 ± 1.83 Δkgf, respectively) then returned to pre-exercise levels. LL + BFR elicited a significant (p = 0.025-0.046) increase in systemic pain pressure tolerance (0.77 ± 0.88 Δkgf) of the gastrocnemius as well as pain pressure threshold (0.53 ± 0.54 Δkgf) and tolerance (0.49 ± 1.02 Δkgf) of the biceps brachii, when collapsed across Time. CONCLUSIONS LL + BFR may be a repeatable, effective pain management intervention that can produce prolonged EIH.
Collapse
Affiliation(s)
- Christopher E Proppe
- Department of Human Performance Studies, Wichita State University, Wichita, KS, USA.
| | - Paola M Rivera
- School of Sport Science, Endicott College, Beverly, MA, USA
| | - Sean M Lubiak
- Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - David H Fukuda
- Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - Abigail W Anderson
- Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - Hansen A Mansy
- College of Engineering and Computer Science, University of Central Florida, Orlando, FL, USA
| | - Ethan C Hill
- Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
2
|
Eserhaut DA, DeLeo JM, Fry AC. Blood Flow Restricted Resistance Exercise in Well-Trained Men: Salivary Biomarker Responses and Oxygen Saturation Kinetics. J Strength Cond Res 2024; 38:e716-e726. [PMID: 39808815 DOI: 10.1519/jsc.0000000000004913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
ABSTRACT Eserhaut, DA, DeLeo, JM, and Fry, AC. Blood flow restricted resistance exercise in well-trained men: Salivary biomarker responses and oxygen saturation kinetics. J Strength Cond Res 38(12): e716-e726, 2024-Resistance exercise with continuous lower-limb blood flow restriction (BFR) may provide supplementary benefit to highly resistance-trained men. Thus, the purpose of this study was to compare cardiovascular and salivary biomarker responses, along with skeletal muscle oxygen saturation (SmO2) during passive lower-limb BFR (pBFR), BFR resistance exercise performed to task failure (BFR+RE), and volume-matched resistance exercise (RE). A within-subjects, repeated measures design was used. Nineteen men (x̄±SD: relative squat 1RM: 1.9 ± 0.3 kg·bw-1) reported for 3 visits. First, body composition, blood pressure, back squat, and leg extension 1 repetition maximums (1RM) were assessed. Resting systolic blood pressure and proximal thigh circumferences were used to estimate arterial occlusion pressures (eAOP). Visit 1 involved pBFR, where BFR cuffs were inflated to 80% eAOP around the proximal thighs for 10 minutes while subjects were seated in a leg extension machine. Then, 24-120 hours later, 4 sets of bilateral seated leg extensions at 30% 1RM were performed to momentary task failure with 1-minute rest at the same 80% eAOP. After 72-120 hours rest, subjects matched the repetition performances from BFR+RE at 30% 1RM for the RE condition. BFR+RE elicited greater (p ≤ 0.05) heart rates, systolic, and diastolic blood pressures relative to pBFR and RE. Significantly elevated (p ≤ 0.05) blood lactate, salivary cortisol concentrations, and α-amylase activity occurred following BFR+RE relative to pBFR and RE. BFR+RE also induced blunted (p < 0.001) SmO2 interset resaturation rates compared with RE. In trained men, continuous BFR+RE seems to significantly alter acute physiological responses to a greater degree than either pBFR alone or volume-matched RE.
Collapse
Affiliation(s)
- Drake A Eserhaut
- Jayhawk Athletic Performance Laboratory, Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas
| | | | | |
Collapse
|
3
|
Bielitzki R, Behrendt T, Motzko M, Behrens M, Schega L. Stiffness of elastic cuffs affects physiological and perceptual responses but not motor performance fatigue during low external load resistance exercise with practical blood flow restriction. J Sports Sci 2024; 42:2115-2123. [PMID: 39533538 DOI: 10.1080/02640414.2024.2423136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Practical blood flow restriction (pBFR), using non-pneumatic elastic cuffs, is a feasible and cost-effective alternative to pneumatic systems. There is evidence that cuff stiffness influences haemodynamic and perceptual responses in the upper body during rest. However, the impact of cuff stiffness during exercise is still unknown. Therefore, this study investigated the influence of cuff stiffness on physiological, perceptual, and performance changes during exercise. In a randomized and counterbalanced order, ten recreationally active males performed four sets of unilateral elbow flexions at 20% of individuals' one-repetition-maximum with two elastic cuffs of different stiffness (low stiffness cuff [LS] and high stiffness cuff [HS]) each applied with two different overlaps (10% and 20% overlap in relation to the limb circumference) as well as a control condition without pBFR. Before and after exercise, maximal voluntary isometric contraction torque was measured to assess motor performance fatigue. During exercise, muscle oxygen saturation of the biceps brachii as well as effort and exercise-induced muscle pain perception were recorded. Statistical analysis revealed that motor performance fatigue was not different between conditions (BF10 = 0.289). The decline in muscle oxygen saturation (BF10 = 8.508 and BF10 = 1039.543) as well as effort (BF10 = 2646.104 and BF10 = 2.773∙106) and exercise-induced muscle pain perception (BF10 = 14087.983 and BF10 = 7.306∙109) were higher when using the stiffer cuff at 10% and 20% overlap, respectively. Conclusively, physiological and perceptual responses but not motor performance fatigue were affected by cuff stiffness when equal relative overlaps were applied.
Collapse
Affiliation(s)
- Robert Bielitzki
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tom Behrendt
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Marcel Motzko
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Solsona R, Sabater Pastor F, Normand-Gravier T, Borrani F, Sanchez AM. Sprint training in hypoxia and with blood flow restriction: Controversies and perspectives. J Sports Sci 2024:1-15. [PMID: 39422258 DOI: 10.1080/02640414.2024.2416839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
This narrative review assesses the effects of repeated sprint training (RST) in hypoxia (RSH) and blood flow restriction (BFR) methods on skeletal muscle adaptations and performance. Current literature suggests that RSH promotes metabolic modifications in muscle cells, especially driven by reactive oxygen species production, HIF-1α stabilization, and changes in metabolism. Training with BFR promotes metabolite accumulation in working muscles due to limited blood flow, however, cellular mechanisms affected by BFR during RST are less explored. Data highlight that RSH improves repeated sprint ability (RSA) in several sport disciplines (e.g. rugby, tennis, soccer, cross-country skiing). However, recent studies showed that addition of hypoxia or BFR during RST did not promote supplementary benefits on aerobic performance, force-velocity power profile, and V ˙ O 2 max . Nonetheless, gains in V ˙ O 2 max were observed during sprint interval training protocols when BFR was applied during recovery between sets. Finally, recent studies highlighted that RSH can improve RSA in a short period. Thus, RSH and sprint training with BFR may be useful for sports disciplines requiring high glycolytic demand and can promote gains in RSA in a short window. Further studies must be encouraged to better understand the biological consequences of adding such stimuli to exercise, especially BFR, on long-term adaptation.
Collapse
Affiliation(s)
- Robert Solsona
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), University of Perpignan Via Domitia, Font-Romeu, France
| | - Frederic Sabater Pastor
- Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), University of Perpignan Via Domitia, Font-Romeu, France
| | - Tom Normand-Gravier
- Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), University of Perpignan Via Domitia, Font-Romeu, France
- Dynamique du Muscle et Métabolisme (DMeM), University of Montpellier, Montpellier, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Anthony Mj Sanchez
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), University of Perpignan Via Domitia, Font-Romeu, France
| |
Collapse
|
5
|
Soltani M, Shafiei M, Ariabod A, Farhani F, Abbasi A. Acute effects of blood flow restriction on EMG activity of arm muscles during karate tsuki strike in young men. J Bodyw Mov Ther 2024; 40:482-485. [PMID: 39593630 DOI: 10.1016/j.jbmt.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND The positive effect of Blood Flow Restriction (BFR) on muscular performance have been documented in previous researches. However, its effect on agonist-antagonist cocontraction during fist movement has not been considered from a biomechanical perspective. The purpose of this research was to investigate the acute effect of BFR on EMG activity of arm muscles during karate tsuki strike in young men. METHODS 20 professional young, male karatekas voluntarily participated in this research. Biceps and triceps muscular activity and their cocontraction in the right arm (with BFR) and the left arm (control) were captured and compared using an EMG device during tsuki strike until exhaustion. RESULTS The results of independent t-test showed that biceps and triceps EMG activity in the BFR arm were significantly higher than the control arm (24.45% and 27.78% for biceps and triceps, respectively). Moreover, muscular cocontraction in BFR arm was significantly less than control arm (32.05%). CONCLUSION The results indicate that acute arm BFR can increase arm muscle EMG activity during tsuki strike until exhaustion, which indirectly it is a sign for activation of type II motor units. However, BFR decreased agonist-antagonist cocontraction, which may increase the risk for injury during elbow extension in throw fist.
Collapse
Affiliation(s)
- Mohammad Soltani
- Department of Sports Biomechanics, Faculty of Physical Education and Sports Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehran Shafiei
- Department of Physical Education and Sports Science, Shiraz, Iran
| | - Atefeh Ariabod
- Department of Physical Education and Sports Science, Shiraz, Iran
| | - Farid Farhani
- Department of Physical Education, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Ali Abbasi
- Department of Biomechanics and Sports Injuries, Faculty of Physical Education & Sport Sciences, Kharazmi University, Tehran, Iran; Department of Sport Sciences, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran.
| |
Collapse
|
6
|
Proppe CE, Rivera PM, Kelly RT, Rotenberger NP, Salazar S, Lubiak SM, Hill EC. Indices of exercise induced muscle damage following low load resistance exercise with blood flow restriction in untrained males. J Sports Med Phys Fitness 2024; 64:880-888. [PMID: 38863419 DOI: 10.23736/s0022-4707.24.15896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
BACKGROUND There is conflicting evidence regarding the presence and magnitude of exercise-induced muscle damage (EIMD) following low-load resistance training with blood flow restriction (LL+BFR), which may be related to the protocol implemented or exercise volume. Therefore, the purpose of this investigation was to examine the effects of a 75 repetition (BFR-75) (1×30, 3×15) and four sets to volitional failure (BFR-4x) protocols on indices of EIMD among untrained men. METHODS Twelve males with no history of lower-body resistance training during the previous six months volunteered for this investigation. One leg was randomly assigned to BFR-75, and the other to BFR-4x. Participants performed isokinetic, unilateral, concentric-eccentric, leg extension muscle actions at 30% of maximal strength with BFR. Indices of EIMD (limb circumference, perceived muscle soreness, pain pressure threshold [PPT], passive range of motion, and maximal strength [MVIC]) were recorded before exercise and 0, 24, 48, 72, and 96-hours post-exercise for each protocol. RESULTS There were no significant changes (P>0.05) in limb circumference, PPT, passive range of motion, or MVIC. For both BFR-75 and BFR-4x, perceived muscle soreness increased (P<0.001) similarly 24- (2.5±1.7 AU) and 48-hours (1.9±1.7 AU) post-exercise. CONCLUSIONS There was an increase in muscle soreness 24-48 hours post-exercise for both conditions, which may be due to metabolic stress, but this did not affect the force-generating capacity of the muscle (MVIC), suggesting minimal EIMD. The conflicting evidence of EIMD following LL+BFR may be related to differences in restriction time or overall exercise time.
Collapse
Affiliation(s)
- Christopher E Proppe
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA -
| | - Paola M Rivera
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Ryan T Kelly
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Nathaniel P Rotenberger
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Santiago Salazar
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Sean M Lubiak
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Ethan C Hill
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
- Florida Space Institute, Partnership I, Research Parkway, University of Central Florida, Orlando, FL, USA
- College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
7
|
Cho C, Lee S. The Effects of Blood Flow Restriction Aerobic Exercise on Body Composition, Muscle Strength, Blood Biomarkers, and Cardiovascular Function: A Narrative Review. Int J Mol Sci 2024; 25:9274. [PMID: 39273223 PMCID: PMC11394695 DOI: 10.3390/ijms25179274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Blood flow restriction exercise has emerged as a promising alternative, particularly for elderly individuals and those unable to participate in high-intensity exercise. However, existing research has predominantly focused on blood flow restriction resistance exercise. There remains a notable gap in understanding the comprehensive effects of blood flow restriction aerobic exercise (BFRAE) on body composition, lipid profiles, glycemic metabolism, and cardiovascular function. This review aims to explore the physiological effects induced by chronic BFRAE. Chronic BFRAE has been shown to decrease fat mass, increase muscle mass, and enhance muscular strength, potentially benefiting lipid profiles, glycemic metabolism, and overall function. Thus, the BFRAE offers additional benefits beyond traditional aerobic exercise effects. Notably, the BFRAE approach may be particularly suitable for individuals with low fitness levels, those prone to injury, the elderly, obese individuals, and those with metabolic disorders.
Collapse
Affiliation(s)
- Chaeeun Cho
- Department of Human Movement Science, Graduate School, Incheon National University, Incheon 22012, Republic of Korea
| | - Sewon Lee
- Division of Sport Science, College of Arts & Physical Education, Incheon National University, Incheon 22012, Republic of Korea
- Sport Science Institute, College of Arts & Physical Education, Incheon National University, Incheon 22012, Republic of Korea
- Health Promotion Center, College of Arts & Physical Education, Incheon National University, Incheon 22012, Republic of Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
8
|
Lavigne C, Mons V, Grange M, Blain GM. Acute neuromuscular, cardiovascular, and muscle oxygenation responses to low-intensity aerobic interval exercises with blood flow restriction. Exp Physiol 2024; 109:1353-1369. [PMID: 38875101 PMCID: PMC11291873 DOI: 10.1113/ep091742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
We investigated the influence of short- and long-interval cycling exercise with blood flow restriction (BFR) on neuromuscular fatigue, shear stress and muscle oxygenation, potent stimuli to BFR-training adaptations. During separate sessions, eight individuals performed short- (24 × 60 s/30 s; SI) or long-interval (12 × 120 s/60 s; LI) trials on a cycle ergometer, matched for total work. One leg exercised with (BFR-leg) and the other without (CTRL-leg) BFR. Quadriceps fatigue was quantified using pre- to post-interval changes in maximal voluntary contraction (MVC), potentiated twitch force (QT) and voluntary activation (VA). Shear rate was measured by Doppler ultrasound at cuff release post-intervals. Vastus lateralis tissue oxygenation was measured by near-infrared spectroscopy during exercise. Following the initial interval, significant (P < 0.05) declines in MVC and QT were found in both SI and LI, which were more pronounced in the BFR-leg, and accounted for approximately two-thirds of the total reduction at exercise termination. In the BFR-leg, reductions in MVC (-28 ± 15%), QT (-42 ± 17%), and VA (-15 ± 17%) were maximal at exercise termination and persisted up to 8 min post-exercise. Exercise-induced muscle deoxygenation was greater (P < 0.001) in the BFR-leg than CTRL-leg and perceived pain was more in LI than SI (P < 0.014). Cuff release triggered a significant (P < 0.001) shear rate increase which was consistent across trials. Exercise-induced neuromuscular fatigue in the BFR-leg exceeded that in the CTRL-leg and was predominantly of peripheral origin. BFR also resulted in diminished muscle oxygenation and elevated shear stress. Finally, short-interval trials resulted in comparable neuromuscular and haemodynamic responses with reduced perceived pain compared to long-intervals.
Collapse
|
9
|
Bielitzki R, Behrendt T, Weinreich A, Mittlmeier T, Schega L, Behrens M. Acute effects of static balance exercise combined with different levels of blood flow restriction on motor performance fatigue as well as physiological and perceptual responses in young healthy males and females. Eur J Appl Physiol 2024; 124:227-243. [PMID: 37429967 PMCID: PMC10787004 DOI: 10.1007/s00421-023-05258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE This study investigated the acute effects of a static balance exercise combined with different blood flow restriction (BFR) pressures on motor performance fatigue development and recovery as well as physiological and perceptual responses during exercise in males and females. METHODS Twenty-four recreational active males (n = 13) and females (n = 11) performed static balance exercise on a BOSU ball (3 sets of 60 s with 30 s rest in-between) on three separate (> 3 days) laboratory visits with three different BFR pressures (80% arterial occlusion pressure [AOP], 40%AOP, 30 mmHg [SHAM]) in random order. During exercise, activity of various leg muscles, vastus lateralis muscle oxygenation, and ratings of effort and pain perception were recorded. Maximal squat jump height was measured before, immediately after, 1, 2, 4, and 8 min after exercise to quantify motor performance fatigue development and recovery. RESULTS Quadriceps muscle activity as well as ratings of effort and pain were highest, while muscle oxygenation was lowest in the 80%AOP compared to the 40%AOP and SHAM condition, with no differences in postural sway between conditions. Squat jump height declined after exercise with the highest reduction in the 80%AOP (- 16.4 ± 5.2%) followed by the 40%AOP (- 9.1 ± 3.2%), and SHAM condition (- 5.4 ± 3.3%). Motor performance fatigue was not different after 1 min and 2 min of recovery in 40% AOP and 80% AOP compared to SHAM, respectively. CONCLUSION Static balance exercise combined with a high BFR pressure induced the largest changes in physiological and perceptual responses, without affecting balance performance. Although motor performance fatigue was increased by BFR, it may not lead to long-term impairments in maximal performance.
Collapse
Affiliation(s)
- Robert Bielitzki
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany.
| | - Tom Behrendt
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Andy Weinreich
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Thomas Mittlmeier
- Department of Traumatology, Hand-and Reconstructive Surgery, Rostock University Medical Center, Schillingallee 35, 18057, Rostock, Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Martin Behrens
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| |
Collapse
|
10
|
Hornikel B, Saffold KS, Esco MR, Mota JA, Fedewa MV, Wind SA, Adams TL, Winchester LJ. Acute Responses to High-Intensity Back Squats with Bilateral Blood Flow Restriction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3555. [PMID: 36834246 PMCID: PMC9959773 DOI: 10.3390/ijerph20043555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
This study examined the acute effects of high-intensity resistance exercise with blood flow restriction (BFR) on performance and fatigue, metabolic stress, and markers of inflammation (interleukin-6 (IL-6)), muscle damage (myoglobin), angiogenesis (vascular endothelial growth factor (VEGF)). Thirteen resistance-trained participants (four female, 24.8 ± 4.7 years) performed four sets of barbell back-squats (75% 1RM) to failure under two conditions: blood flow restriction (BFR, bilateral 80% occlusion pressure) and control (CTRL). Completed repetitions and pre-post-exercise changes in maximal voluntary isometric contractions, countermovement jump, barbell mean propulsive velocity, and surface electromyography were recorded. Pre-post blood lactate (BLa) and venous blood samples for analysis of IL-6, myoglobin, and VEGF were collected. Ratings of perceived exertion (RPE) and pain were recorded for each set. Fewer repetitions were performed during BFR (25.5 ± 9.6 reps) compared to CTRL (43.4 ± 14.2 reps, p < 0.001), with greater repetitions performed during sets 1, 2, and 4 (p < 0.05) in CTRL. Although RPE between conditions was similar across all sets (p > 0.05), pain was greater in BFR across all sets (p < 0.05). Post-exercise fatigue was comparable between conditions. BLa was significantly greater in CTRL compared to BFR at two minutes (p = 0.001) but not four minutes post-exercise (p = 0.063). IL-6 was significantly elevated following BFR (p = 0.011). Comparable increases in myoglobin (p > 0.05) and no changes in VEGF were observed (p > 0.05). BFR increases the rate of muscular fatigue during high-intensity resistance exercise and acutely enhances IL-6 response, with significantly less total work performed, but increases pain perception, limiting implementation.
Collapse
Affiliation(s)
- Bjoern Hornikel
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Keith S. Saffold
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Michael R. Esco
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jacob A. Mota
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael V. Fedewa
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Stefanie A. Wind
- Department of Educational Studies in Psychology, Research Methodology, and Counseling, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Tiffany L. Adams
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lee J. Winchester
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
11
|
Winchester LJ, Blake MT, Fleming AR, Aguiar EJ, Fedewa MV, Esco MR, Earley RL. Hemodynamic Responses to Resistance Exercise with Blood Flow Restriction Using a Practical Method Versus a Traditional Cuff-Inflation System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811548. [PMID: 36141820 PMCID: PMC9517024 DOI: 10.3390/ijerph191811548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 05/22/2023]
Abstract
UNLABELLED The aim of this study was to examine the potential differences in acute hemodynamic responses and muscular performance outcomes following resistance exercise between traditional blood flow restriction (TRABFR) and a novel band tissue flossing method (BTFBFR). METHODS Fifteen healthy young adults (23.27 ± 2.69 years) visited the lab for three sessions (≥72 h apart). Each session's exercise consisted of three sets of 20 maximum-effort seated leg extensions and flexions with one of three conditions: control (CON), TRABFR (50% limb occlusion pressure (LOP)), or BTFBFR. During TRABFR and BTFBFR sessions, occlusion was applied immediately prior to exercise and removed immediately after. Heart rate was collected prior to exercise, after onset of occlusion, immediately after exercise, and one-minute after removal of occlusion. Ultrasonography was performed prior to, and at least 30 s after, occlusion. RESULTS BTFBFR caused greater reductions in arterial distance (14.28%, p = 0.010) and arterial area (28.43%, p = 0.020) than TRABFR. BTFBFR was able to significantly reduce arterial flow below pre-occlusion values, while TRABFR did not. Both conditions caused significant elevations in heart rate following occlusion (TRABFR: +4.67 bpm, p = 0.046 and BTFBFR: +6.07 bpm, p = 0.034), immediately post-exercise (TRABFR: +56.93 bpm, p < 0.001 and BTFBFR: +52.79 bpm, p < 0.001) and one-minute post-exercise (TRABFR: +15.71, p = 0.003 and BTFBFR: +14.57, p < 0.001). Only BTFBFR caused significant reductions in performance as measured by average power per repetition. CONCLUSIONS BTFBFR causes a more exaggerated decrease in arterial blood flow as well as muscular power when compared to traditional TRABFR at 50% of LOP.
Collapse
Affiliation(s)
- Lee J. Winchester
- Exercise Physiology Laboratory, Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
- Correspondence:
| | - Morgan T. Blake
- Exercise Physiology Laboratory, Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Abby R. Fleming
- Exercise Physiology Laboratory, Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Elroy J. Aguiar
- Exercise Physiology Laboratory, Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Michael V. Fedewa
- Exercise Physiology Laboratory, Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Michael R. Esco
- Exercise Physiology Laboratory, Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ryan L. Earley
- Department of Biology, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
12
|
Solsona R, Berthelot H, Borrani F, Sanchez AMJ. Mechanical, Cardiorespiratory, and Muscular Oxygenation Responses to Sprint Interval Exercises Under Different Hypoxic Conditions in Healthy Moderately Trained Men. Front Physiol 2022; 12:773950. [PMID: 34975526 PMCID: PMC8716850 DOI: 10.3389/fphys.2021.773950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/19/2021] [Indexed: 01/31/2023] Open
Abstract
Objective: The aim of this study was to determine the effects of sprint interval exercises (SIT) conducted under different conditions (hypoxia and blood flow restriction [BFR]) on mechanical, cardiorespiratory, and muscular O2 extraction responses. Methods: For this purpose, 13 healthy moderately trained men completed five bouts of 30 s all-out exercises interspaced by 4 min resting periods with lower limb bilateral BFR at 60% of the femoral artery occlusive pressure (BFR60) during the first 2 min of recovery, with gravity-induced BFR (pedaling in supine position; G-BFR), in a hypoxic chamber (FiO2≈13%; HYP) or without additional stress (NOR). Peak and average power, time to achieve peak power, rating of perceived exertion (RPE), and a fatigue index (FI) were analyzed. Gas exchanges and muscular oxygenation were measured by metabolic cart and NIRS, respectively. Heart rate (HR) and peripheral oxygen saturation (SpO2) were continuously recorded. Results: Regarding mechanical responses, peak and average power decreased after each sprint (p < 0.001) excepting between sprints four and five. Time to reach peak power increased between the three first sprints and sprint number five (p < 0.001). RPE increased throughout the exercises (p < 0.001). Of note, peak and average power, time to achieve peak power and RPE were lower in G-BFR (p < 0.001). Results also showed that SpO2 decreased in the last sprints for all the conditions and was lower for HYP (p < 0.001). In addition, Δ[O2Hb] increased in the last two sprints (p < 0.001). Concerning cardiorespiratory parameters, BFR60 application induced a decrease in gas exchange rates, which increased after its release compared to the other conditions (p < 0.001). Moreover, muscle blood concentration was higher for BFR60 (p < 0.001). Importantly, average and peak oxygen consumption and muscular oxyhemoglobin availability during sprints decreased for HYP (p < 0.001). Finally, the tissue saturation index was lower in G-BFR. Conclusions: Thus, SIT associated with G-BFR displayed lower mechanical, cardiorespiratory responses, and skeletal muscle oxygenation than the other conditions. Exercise with BFR60 promotes higher blood accumulation within working muscles, suggesting that BFR60 may additionally affect cellular stress. In addition, HYP and G-BFR induced local hypoxia with higher levels for G-BFR when considering both exercise bouts and recovery periods.
Collapse
Affiliation(s)
- Robert Solsona
- University of Perpignan Via Domitia (UPVD), Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR4640, Perpignan, France.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Hugues Berthelot
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Anthony M J Sanchez
- University of Perpignan Via Domitia (UPVD), Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR4640, Perpignan, France.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
de Queiros VS, de França IM, Trybulski R, Vieira JG, Dos Santos IK, Neto GR, Wilk M, de Matos DG, Vieira WHDB, Novaes JDS, Makar P, Cabral BGDAT, Dantas PMS. Myoelectric Activity and Fatigue in Low-Load Resistance Exercise With Different Pressure of Blood Flow Restriction: A Systematic Review and Meta-Analysis. Front Physiol 2021; 12:786752. [PMID: 34880783 PMCID: PMC8646757 DOI: 10.3389/fphys.2021.786752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Low-load resistance exercise (LL-RE) with blood flow restriction (BFR) promotes increased metabolic response and fatigue, as well as more pronounced myoelectric activity than traditional LL-RE. Some studies have shown that the relative pressure applied during exercise may have an effect on these variables, but existing evidence is contradictory. Purpose: The aim of this study was to systematically review and pool the available evidence on the differences in neuromuscular and metabolic responses at LL-RE with different pressure of BFR. Methods: The systematic review and meta-analysis was reported according to PRISMA items. Searches were performed in the following databases: CINAHL, PubMed, Scopus, SPORTDiscus and Web of Science, until June 15, 2021. Randomized or non-randomized experimental studies that analyzed LL-RE, associated with at least two relative BFR pressures [arterial occlusion pressure (AOP)%], on myoelectric activity, fatigue, or metabolic responses were included. Random-effects meta-analyses were performed for MVC torque (fatigue measure) and myoelectric activity. The quality of evidence was assessed using the PEDro scale. Results: Ten studies were included, all of moderate to high methodological quality. For MVC torque, there were no differences in the comparisons between exercise with 40–50% vs. 80–90% AOP. When analyzing the meta-analysis data, the results indicated differences in comparisons in exercise with 15–20% 1 repetition maximum (1RM), with higher restriction pressure evoking greater MVC torque decline (4 interventions, 73 participants; MD = −5.05 Nm [95%CI = −8.09; −2.01], p = 0.001, I2 = 0%). For myoelectric activity, meta-analyses indicated a difference between exercise with 40% vs. 60% AOP (3 interventions, 38 participants; SMD = 0.47 [95%CI = 0.02; 0.93], p = 0.04, I2 = 0%), with higher pressure of restriction causing greater myoelectric activity. This result was not identified in the comparisons between 40% vs. 80% AOP. In analysis of studies that adopted pre-defined repetition schemes, differences were found (4 interventions, 52 participants; SMD = 0.58 [95%CI = 0.11; 1.05], p = 0.02, I2 = 27%). Conclusion: The BFR pressure applied during the LL-RE may affect the magnitude of muscle fatigue and excitability when loads between 15 and 20% of 1RM and predefined repetition protocols (not failure) are prescribed, respectively. Systematic Review Registration: [http://www.crd.york.ac.uk/prospero], identifier [CRD42021229345].
Collapse
Affiliation(s)
- Victor Sabino de Queiros
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Ingrid Martins de França
- Graduate Program in Physiotherapy, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Robert Trybulski
- Department of Medical Sciences, The Wojciech Korfanty School of Economics, Katowice, Poland.,Provita Zory Medical Center, Zory, Poland
| | - João Guilherme Vieira
- Graduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Isis Kelly Dos Santos
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Gabriel Rodrigues Neto
- Graduate Program in Family Health, Faculties of Nursing and Medicine Nova Esperança (FACENE/FAMENE), João Pessoa, Brazil.,Coordination of Physical Education, University Center for Higher Education and Development (CESED/UNIFACISA/FCM/ESAC), Campina Grande, Brazil
| | - Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Dihogo Gama de Matos
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
| | | | - Jefferson da Silva Novaes
- Graduate Program at the School of Physical Education and Sport at the Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Piotr Makar
- Faculty of Physical Education, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Breno Guilherme de Araújo Tinoco Cabral
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Paulo Moreira Silva Dantas
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| |
Collapse
|
14
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
de Queiros VS, dos Santos ÍK, Almeida-Neto PF, Dantas M, de França IM, Vieira WHDB, Neto GR, Dantas PMS, Cabral BGDAT. Effect of resistance training with blood flow restriction on muscle damage markers in adults: A systematic review. PLoS One 2021; 16:e0253521. [PMID: 34143837 PMCID: PMC8213181 DOI: 10.1371/journal.pone.0253521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
Background The purpose of this review was to systematically analyze the evidence regarding the occurrence of muscle damage (changes in muscle damage markers) after resistance training with blood flow restriction sessions. Materials and methods This systematic review was conducted in accordance with the PRISMA recommendations. Two researchers independently and blindly searched the following electronic databases: PubMed, Scopus, Web of Science, CINAHL, LILACS and SPORTdicus. Randomized and non-randomized clinical trials which analyzed the effect of resistance training with blood flow restriction on muscle damage markers in humans were included. The risk of bias assessment was performed by two blinded and independent researchers using the RoB2 tool. Results A total of 21 studies involving 352 healthy participants (men, n = 301; women, n = 51) were eligible for this review. The samples in 66.6% of the studies (n = 14) were composed of untrained individuals. All included studies analyzed muscle damage using indirect markers. Most studies had more than one muscle damage marker and Delayed Onset Muscle Soreness was the measure most frequently used. The results for the occurrence of significant changes in muscle damage markers after low-load resistance training with blood flow restriction sessions were contrasting, and the use of a pre-defined repetition scheme versus muscle failure seems to be the determining point for this divergence, mainly in untrained individuals. Conclusions In summary, the use of sets until failure is seen to be determinant for the occurrence of significant changes in muscle damage markers after low-load resistance training with blood flow restriction sessions, especially in individuals not used to resistance exercise. Trial registration Register number: PROSPERO number: CRD42020177119.
Collapse
Affiliation(s)
- Victor Sabino de Queiros
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- * E-mail:
| | - Ísis Kelly dos Santos
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Paulo Francisco Almeida-Neto
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Matheus Dantas
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Ingrid Martins de França
- Graduate Program in Physiotherapy, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | | | - Gabriel Rodrigues Neto
- Graduate Program in Family Health, Faculties of Nursing and Medicine Nova Esperança (FACENE / FAMENE), João Pessoa, Paraíba, Brazil
| | - Paulo Moreira Silva Dantas
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | | |
Collapse
|
16
|
Acute Neuromuscular Electrical Stimulation (NMES) With Blood Flow Restriction: The Effect of Restriction Pressures. J Sport Rehabil 2020; 30:375-383. [PMID: 32736338 DOI: 10.1123/jsr.2019-0505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/02/2020] [Accepted: 04/26/2020] [Indexed: 11/18/2022]
Abstract
CONTEXT Neuromuscular electrical stimulation (NMES) combined with blood flow restriction (BFR) has been shown to improve muscular strength and size better than NMES alone. However, previous studies used varied methodologies not recommended by previous NMES or BFR research. OBJECTIVE The present study investigated the acute effects of NMES combined with varying degrees of BFR using research-recommended procedures to enhance understanding and the clinical applicability of this combination. DESIGN Randomized crossover. SETTING Physiology laboratory. PARTICIPANTS A total of 20 healthy adults (age 27 [4] y; height 177 [8] cm; body mass 77 [13] kg). INTERVENTIONS Six sessions separated by at least 7 days. The first 2 visits served as familiarization, with the experimental conditions performed in the final 4 sessions: NMES alone, NMES 40% BFR, NMES 60% BFR, and NMES 80% BFR. MAIN OUTCOME MEASURES Maximal voluntary isometric contraction, muscle thickness, blood pressure, heart rate, rating of perceived exertion, and pain were all recorded before and after each condition. RESULTS The NMES 80% BFR caused greater maximal voluntary isometric contraction decline than any other condition (-38.9 [22.3] N·m, P < .01). Vastus medialis and vastus lateralis muscle thickness acutely increased after all experimental conditions (P < .05). Pain and ratings of perceived exertion were higher after NMES 80% BFR compared with all other experimental conditions (P < .05). No cardiovascular effects were observed between conditions. CONCLUSION The NMES combined with 80% BFR caused greater acute force decrement than the other conditions. However, greater perceptual ratings of pain and ratings of perceived exertion were observed with NMES 80% BFR. These acute observations must be investigated during chronic interventions to corroborate any relationship to changes in muscle strength and size in clinical populations.
Collapse
|
17
|
Egawa K, Horii Y, Misonou Y, Yamasaki I, Takemoto D, Ono Y, Rogi T, Shibata H, Nagai K. Sesame lignans increase sympathetic nerve activity and blood flow in rat skeletal muscles. Physiol Res 2020; 69:253-260. [PMID: 32199013 DOI: 10.33549/physiolres.934277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Beneficial effects of sesame lignans, especially antioxidative effects, have been widely reported; however, its potential effects on autonomic nerves have not yet been investigated. Therefore, the current study aimed to investigate the effect of sesame lignans on the autonomic nervous system. The sympathetic nerve activity in rat skeletal muscle was measured using electrophysiological approaches, with blood flow determined using the laser Doppler method. Sesame lignans were administered intragastrically at 2 and 20 mg/kg, and after 60 min, the sympathetic nerve activity was observed to increase by 45.2% and 66.1%, respectively. A significant increase in blood flow (39.6%) was also observed for the 20-mg/kg dose when measured at 55 min after administration. These sympathomimetic effects were completely prevented by subdiaphragmatic vagotomy, and the increase in blood flow was eliminated in the presence of the beta2-adrenergic receptor inhibitor butoxamine. Thus, it is proposed that sesame lignans can increase the blood flow of skeletal muscle, possibly by exciting sympathetic nerve activity through the afferent vagal nerve.
Collapse
Affiliation(s)
- K Egawa
- ANBAS Corporation, Toyosaki Kita-ku, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Acute Muscular Responses to Practical Low-Load Blood Flow Restriction Exercise Versus Traditional Low-Load Blood Flow Restriction and High-/Low-Load Exercise. J Sport Rehabil 2019; 29:984-992. [PMID: 31821993 DOI: 10.1123/jsr.2019-0217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 11/18/2022]
Abstract
CONTEXT Blood flow restriction (BFR) increases muscle size and strength when combined with low loads, but various methods are used to produce this stimulus. It is unclear how using elastic knee wraps can impact acute muscular responses compared with using nylon cuffs, where the pressure can be standardized. OBJECTIVE Investigate how elastic knee wraps compare with nylon cuffs and high-load (HL)/low-load (LL) resistance exercise. DESIGN A randomized cross-over experimental design using 6 conditions combined with unilateral knee extension. SETTING Human Performance Laboratory. PARTICIPANTS A total of 9 healthy participants (males = 7 and females = 2) and had an average age of 22 (4) years. INTERVENTION LL (30% of 1-repetition maximum [1-RM]), HL (70% 1-RM), BFR at 40% of arterial occlusion pressure (BFR-LOW), BFR at 80% of arterial occlusion pressure (BFR-HIGH), elastic knee wraps stretched by 2 in (PRACTICAL-LOW), and elastic knee wraps stretched to a new length equivalent to 85% of thigh circumference (PRACTICAL-HIGH). BFR and practical conditions used 30% 1-RM. MAIN OUTCOME MEASURES Muscle thickness, maximum voluntary isometric contraction, and electromyography amplitude. Bayesian statistics evaluated differences in changes between conditions using the Bayes factor (BF10), and median and 95% credible intervals were reported from the posterior distribution. RESULTS Total repetitions completed were greater for BFR-LOW versus PRACTICAL-HIGH (BF10 = 3.2, 48.6 vs 44 repetitions) and greater for PRACTICAL-LOW versus BFR-HIGH (BF10 = 717, 51.8 vs 36.3 repetitions). Greater decreases in changes in maximum voluntary isometric contraction were found in PRACTICAL-HIGH versus HL (BF10 = 1035, ∼103 N) and LL (BF10 = 45, ∼66 N). No differences in changes in muscle thickness were found between LL versus PRACTICAL-LOW/PRACTICAL-HIGH conditions (BF10 = 0.32). Greater changes in electromyography amplitude were also found for BFR-LOW versus PRACTICAL-HIGH condition (BF10 = 6.13, ∼12%), but no differences were noted between the other BFR conditions. CONCLUSIONS Overall, elastic knee wraps produce a more fatiguing stimulus than LL or HL conditions and might be used as an alternative to pneumatic cuffs that are traditionally used for BFR exercise.
Collapse
|
19
|
Ipavec M, Grapar Žargi T, Jelenc J, Kacin A. Efficiency of Pneumatic Tourniquet Cuff With Asymmetric Pressure Distribution at Rest and During Isometric Muscle Action. J Strength Cond Res 2019; 33:2570-2578. [PMID: 29952864 DOI: 10.1519/jsc.0000000000002678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ipavec, M, Grapar Žargi, T, Jelenc, J, and Kacin, A. Efficiency of pneumatic tourniquet cuff with asymmetric pressure distribution at rest and during isometric muscle action. J Strength Cond Res 33(9): 2570-2578, 2019-The aim of this study was to compare effects of newly designed double-chamber cuff with asymmetric pressure (APC) distribution and standard single-chamber cuff with symmetric pressure (SPC) distribution on muscle perfusion and volitional activation. First, the 2 cuffs were compared bilaterally on resting thigh muscles of 17 healthy volunteers at 4 cuff pressures (120, 160, 200, and 240 mm Hg). Then, the subjects performed the isometric endurance test of knee extensor muscles to volitional failure at 40% of maximal volitional isometric action in both free-flow and blood flow restricted condition. Changes in hemoglobin kinetics in vastus lateralis muscle (near-infrared spectroscopy), surface electromyography of vastus medialis muscle, and pain intensity (visual analogue scale [VAS]) were continuously recorded. At rest, a significant difference (p = 0.009) in velocity of change in total hemoglobin concentration was noted between the cuffs at 160 mm Hg (APC = 0.028 μM·s and SPC = 0.056 μM·s). The VAS scores significantly increased (p = 0.031) at pressures ≥200 mm Hg, with no difference between the cuffs. Duration of isometric action with blood flow restriction was 12% shorter (p = 0.003) than in free-flow condition, with no difference between the cuffs. There were no significant differences in muscle activation or hemoglobin kinetics between the exercise conditions or cuff types. The results show that APC reduces blood flow in quadriceps femoris muscle at rest at lower pressure than SPC, which suggests its enhanced efficiency for blood flow restriction. Given that application of either type of cuff during sustained isometric action had only minor impact on muscle endurance and oxygen kinetics, future research must focus primarily on dynamic muscle actions.
Collapse
Affiliation(s)
- Matej Ipavec
- Faculty of Health Sciences, Laboratory of Physiotherapy, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Grapar Žargi
- Faculty of Health Sciences, Laboratory of Physiotherapy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Alan Kacin
- Faculty of Health Sciences, Laboratory of Physiotherapy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
20
|
Credeur DP, Jones R, Stanford D, Stoner L, McCoy S, Jessee M. Central cardiovascular hemodynamic response to unilateral handgrip exercise with blood flow restriction. Eur J Appl Physiol 2019; 119:2255-2263. [PMID: 31420736 DOI: 10.1007/s00421-019-04209-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022]
Abstract
AIM Exercise training with blood flow restriction (BFR) increases muscle size and strength. However, there is limited investigation into the effects of BFR on cardiovascular health, particularly central hemodynamic load. PURPOSE To determine the effects of BFR exercise on central hemodynamic load (heart rate-HR, central pressures, arterial wave reflection, and aortic stiffness). METHODS Fifteen males (age = 25 ± 2 years; BMI = 27 ± 2 kg/m2, handgrip max voluntary contraction-MVC = 50 ± 2 kg) underwent 5-min bouts (counter-balanced, 10 min rest between) of rhythmic unilateral handgrip (1 s squeeze, 2 s relax) performed with a moderate-load (60% MVC) with and without BFR (i.e., 71 ± 5% arterial inflow flow reduction, assessed via Doppler ultrasound), and also with a low-load (40% MVC) with BFR. Outcomes included HR, central mean arterial pressure (cMAP), arterial wave reflection (augmentation index, AIx; wave reflection magnitude, RM%), aortic arterial stiffness (pulse wave velocity, aPWV), and peripheral (vastus lateralis) microcirculatory response (tissue saturation index, TSI%). RESULTS HR increased above baseline and time control for all handgrip bouts, but was similar between the moderate load with and without BFR conditions (moderate-load with BFR = + 9 ± 2; moderate-load without BFR = + 8 ± 2 bpm, p < 0.001). A similar finding was noted for central pressure (e.g., moderate load with BFR, cMAP = + 14 ± 1 mmHg, p < 0.001). No change occurred for RM% or AIx (p > 0.05) for any testing stage. TSI% increased during the moderate-load conditions (p = 0.01), and aPWV increased above baseline following moderate-load handgrip with BFR only (p = 0.012). CONCLUSIONS Combined with BFR, moderate load handgrip training with BFR does not significantly augment central hemodynamic load during handgrip exercise in young healthy men.
Collapse
Affiliation(s)
- Daniel P Credeur
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA.
| | - Raymond Jones
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Daphney Stanford
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Lee Stoner
- Department of Exercise and Sports Science, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie McCoy
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Matthew Jessee
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
21
|
Christiansen D. Molecular stressors underlying exercise training-induced improvements in K + regulation during exercise and Na + ,K + -ATPase adaptation in human skeletal muscle. Acta Physiol (Oxf) 2019; 225:e13196. [PMID: 30288889 DOI: 10.1111/apha.13196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022]
Abstract
Despite substantial progress made towards a better understanding of the importance of skeletal muscle K+ regulation for human physical function and its association with several disease states (eg type-II diabetes and hypertension), the molecular basis underpinning adaptations in K+ regulation to various stimuli, including exercise training, remains inadequately explored in humans. In this review, the molecular mechanisms essential for enhancing skeletal muscle K+ regulation and its key determinants, including Na+ ,K+ -ATPase function and expression, by exercise training are examined. Special attention is paid to the following molecular stressors and signaling proteins: oxygenation, redox balance, hypoxia, reactive oxygen species, antioxidant function, Na+ ,K+ , and Ca2+ concentrations, anaerobic ATP turnover, AMPK, lactate, and mRNA expression. On this basis, an update on the effects of different types of exercise training on K+ regulation in humans is provided, focusing on recent discoveries about the muscle fibre-type-dependent regulation of Na+ ,K+ -ATPase-isoform expression. Furthermore, with special emphasis on blood-flow-restricted exercise as an exemplary model to modulate the key molecular mechanisms identified, it is discussed how training interventions may be designed to maximize improvements in K+ regulation in humans. The novel insights gained from this review may help us to better understand how exercise training and other strategies, such as pharmacological interventions, may be best designed to enhance K+ regulation and thus the physical function in humans.
Collapse
Affiliation(s)
- Danny Christiansen
- Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Denmark
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| |
Collapse
|
22
|
Husmann F, Mittlmeier T, Bruhn S, Zschorlich V, Behrens M. Impact of Blood Flow Restriction Exercise on Muscle Fatigue Development and Recovery. Med Sci Sports Exerc 2018; 50:436-446. [PMID: 29112627 DOI: 10.1249/mss.0000000000001475] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The present study was designed to provide mechanistic insight into the time course and etiology of muscle fatigue development and recovery during and after low-intensity exercise when it is combined with blood flow restriction (BFR). METHODS Seventeen resistance-trained males completed four sets of low-intensity isotonic resistance exercise under two experimental conditions: knee extension exercise (i) with BFR and (ii) without BFR (CON). Neuromuscular tests were performed before, during (immediately after each set of knee extension exercise), and 1, 2, 4, and 8 min after each experimental condition. Maximal voluntary torque, quadriceps twitch torque in response to paired electrical stimuli at 10 Hz (PS10) and 100 Hz (PS100), PS10·PS100 ratio as an index of low-frequency fatigue, and voluntary activation were measured under isometric conditions. Perceptual and EMG data were recorded during each exercise condition. RESULTS After the first set of exercise, BFR induced significantly greater reductions in maximal voluntary torque, PS100, and PS10·PS100 ratio compared with CON. These parameters progressively declined throughout the BFR protocol but recovered substantially within 2 min postexercise when blood flow was restored. Neither a progressive decline in the course of the exercise protocol nor a substantial recovery of these parameters occurred during and after CON. Only at exercise termination, voluntary activation differed significantly between BFR and CON with greater reductions during BFR. CONCLUSION At the early stage of exercise, BFR exacerbated the development of muscle fatigue mainly due to a pronounced impairment in contractile function. Despite the high level of muscle fatigue during BFR exercise, the effect of BFR on muscle fatigue was diminished after 2 min of reperfusion, suggesting that BFR has a strong but short-lasting effect on neuromuscular function.
Collapse
Affiliation(s)
- Florian Husmann
- Institute of Sport Science, University of Rostock, Rostock, GERMANY
| | | | - Sven Bruhn
- Institute of Sport Science, University of Rostock, Rostock, GERMANY
| | | | - Martin Behrens
- Institute of Sport Science, University of Rostock, Rostock, GERMANY
| |
Collapse
|
23
|
Letieri RV, Teixeira AM, Furtado GE, Lamboglia CG, Rees JL, Gomes BB. Effect of 16 weeks of resistance exercise and detraining comparing two methods of blood flow restriction in muscle strength of healthy older women: A randomized controlled trial. Exp Gerontol 2018; 114:78-86. [DOI: 10.1016/j.exger.2018.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
|
24
|
Lixandrão ME, Ugrinowitsch C, Berton R, Vechin FC, Conceição MS, Damas F, Libardi CA, Roschel H. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med 2018; 48:361-378. [PMID: 29043659 DOI: 10.1007/s40279-017-0795-y] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Low-load resistance training (< 50% of one-repetition maximum [1RM]) associated with blood-flow restriction (BFR-RT) has been thought to promote increases in muscle strength and mass. However, it remains unclear if the magnitude of these adaptations is similar to conventional high-load resistance training (> 65% 1RM; HL-RT). OBJECTIVE To compare the effects of HL- versus BFR-RT on muscle adaptations using a systematic review and meta-analysis procedure. METHODS Studies were identified via electronic databases based on the following inclusion criteria: (a) pre- and post-training assessment of muscular strength; (b) pre- and post-training assessment of muscle hypertrophy; (c) comparison of HL-RT vs. BFR-RT; (d) score ≥ 4 on PEDro scale; (e) means and standard deviations (or standard errors) are reported from absolute values or allow estimation from graphs. If this last criterion was not met, data were directly requested from the authors. RESULTS The main results showed higher increases in muscle strength for HL- as compared with BFR-RT, even when considering test specificity, absolute occlusion pressure, cuff width, and occlusion pressure prescription. Regarding the hypertrophic response, results revealed similar effects between HL- and BFR-RT, regardless of the absolute occlusion pressure, cuff width, and occlusion pressure prescription. CONCLUSIONS Based on the present data, maximum muscle strength may be optimized by specific training methods (i.e., HL-RT) while both HL- and BFR-RT seem equally effective in increasing muscle mass. Importantly, BFR-RT is a valid and effective approach for increasing muscle strength in a wide spectrum of ages and physical capacity, although it may seem particularly of interest for those individuals with physical limitations to engage in HL-RT.
Collapse
Affiliation(s)
- Manoel E Lixandrão
- School of Physical Education and Sport, University of Sao Paulo, Av. Prof. Mello Moraes, 65, Sao Paulo, SP, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of Sao Paulo, Av. Prof. Mello Moraes, 65, Sao Paulo, SP, Brazil
| | - Ricardo Berton
- School of Physical Education and Sport, University of Sao Paulo, Av. Prof. Mello Moraes, 65, Sao Paulo, SP, Brazil
| | - Felipe C Vechin
- School of Physical Education and Sport, University of Sao Paulo, Av. Prof. Mello Moraes, 65, Sao Paulo, SP, Brazil
| | - Miguel S Conceição
- School of Physical Education and Sport, University of Sao Paulo, Av. Prof. Mello Moraes, 65, Sao Paulo, SP, Brazil
| | - Felipe Damas
- School of Physical Education and Sport, University of Sao Paulo, Av. Prof. Mello Moraes, 65, Sao Paulo, SP, Brazil
| | - Cleiton A Libardi
- Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Hamilton Roschel
- School of Physical Education and Sport, University of Sao Paulo, Av. Prof. Mello Moraes, 65, Sao Paulo, SP, Brazil.
| |
Collapse
|
25
|
Jessee MB, Buckner SL, Mouser JG, Mattocks KT, Dankel SJ, Abe T, Bell ZW, Bentley JP, Loenneke JP. Muscle Adaptations to High-Load Training and Very Low-Load Training With and Without Blood Flow Restriction. Front Physiol 2018; 9:1448. [PMID: 30386254 PMCID: PMC6198179 DOI: 10.3389/fphys.2018.01448] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/24/2018] [Indexed: 11/18/2022] Open
Abstract
An inability to lift loads great enough to disrupt muscular blood flow may impair the ability to fatigue muscles, compromising the hypertrophic response. It is unknown what level of blood flow restriction (BFR) pressure, if any, is necessary to reach failure at very low-loads [i.e., 15% one-repetition maximum (1RM)]. The purpose of this study was to investigate muscular adaptations following resistance training with a very low-load alone (15/0), with moderate BFR (15/40), or with high BFR (15/80), and compare them to traditional high-load (70/0) resistance training. Using a within/between subject design, healthy young participants (n = 40) performed four sets of unilateral knee extension to failure (up to 90 repetitions/set), twice per week for 8 weeks. Data presented as mean change (95% CI). There was a condition by time interaction for 1RM (p < 0.001), which increased for 70/0 [3.15 (2.04,4.25) kg] only. A condition by time interaction (p = 0.028) revealed greater changes in endurance for 15/80 [6 (4,8) repetitions] compared to 15/0 [4 (2,6) repetitions] and 70/0 [4 (2,5) repetitions]. There was a main effect of time for isometric MVC [change = 10.51 (3.87,17.16) Nm, p = 0.002] and isokinetic MVC at 180°/s [change = 8.61 (5.54,11.68) Nm, p < 0.001], however there was no change in isokinetic MVC at 60°/s [2.45 (−1.84,6.74) Nm, p = 0.261]. Anterior and lateral muscle thickness was assessed at 30, 40, 50, and 60% of the upper leg. There was no condition by time interaction for muscle thickness sites (all p ≥ 0.313). There was a main effect of time for all sites, with increases over time (all p < 0.001). With the exception of the 30% lateral site (p = 0.059) there was also a main effect of condition (all p < 0.001). Generally, 70/0 was greater. Average weekly volume increased for all conditions across the 8 weeks, and was greatest for 70/0 followed by 15/0, 15/40, then 15/80. With the exception of 1RM, changes in strength and muscle size were similar regardless of load or restriction. The workload required to elicit these changes lowered with increased BFR pressure. These findings may be pertinent to rehabilitative settings, future research, and program design.
Collapse
Affiliation(s)
- Matthew B Jessee
- School of Kinesiology, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Samuel L Buckner
- Exercise Science Program, University of South Florida, Tampa, FL, United States
| | - J Grant Mouser
- Department of Kinesiology and Health Promotion, Troy University, Troy, AL, United States
| | - Kevin T Mattocks
- Department of Exercise Science, Lindenwood University - Belleville, Belleville, IL, United States
| | - Scott J Dankel
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, MS, United States
| | - Takashi Abe
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, MS, United States
| | - Zachary W Bell
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, MS, United States
| | - John P Bentley
- Department of Pharmacy Administration, The University of Mississippi, Oxford, MS, United States
| | - Jeremy P Loenneke
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, MS, United States
| |
Collapse
|
26
|
Nakajima T, Koide S, Yasuda T, Hasegawa T, Yamasoba T, Obi S, Toyoda S, Nakamura F, Inoue T, Poole DC, Kano Y. Muscle hypertrophy following blood flow-restricted, low-force isometric electrical stimulation in rat tibialis anterior: role for muscle hypoxia. J Appl Physiol (1985) 2018; 125:134-145. [DOI: 10.1152/japplphysiol.00972.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low-force exercise training with blood flow restriction (BFR) elicits muscle hypertrophy as seen typically after higher-force exercise. We investigated the effects of microvascular hypoxia [i.e., low microvascular O2 partial pressures (P mvO2)] during contractions on muscle hypertrophic signaling, growth response, and key muscle adaptations for increasing exercise capacity. Wistar rats were fitted with a cuff placed around the upper thigh and inflated to restrict limb blood flow. Low-force isometric contractions (30 Hz) were evoked via electrical stimulation of the tibialis anterior (TA) muscle. The P mvO2 was determined by phosphorescence quenching. Rats underwent acute and chronic stimulation protocols. Whereas P mvO2 decreased transiently with 30 Hz contractions, simultaneous BFR induced severe hypoxia, reducing P mvO2 lower than present for maximal (100 Hz) contractions. Low-force electrical stimulation (EXER) induced muscle hypertrophy (6.2%, P < 0.01), whereas control group conditions or BFR alone did not. EXER+BFR also induced an increase in muscle mass (11.0%, P < 0.01) and, unique among conditions studied, significantly increased fiber cross-sectional area in the superficial TA ( P < 0.05). Phosphorylation of ribosomal protein S6 was enhanced by EXER+BFR, as were peroxisome proliferator-activated receptor gamma coactivator-1α and glucose transporter 4 protein levels. Fibronectin type III domain-containing protein 5, cytochrome c oxidase subunit 4, monocarboxylate transporter 1 (MCT1), and cluster of differentiation 147 increased with EXER alone. EXER+BFR significantly increased MCT1 expression more than EXER alone. These data demonstrate that microvascular hypoxia during contractions is not essential for hypertrophy. However, hypoxia induced via BFR may potentiate the muscle hypertrophic response (as evidenced by the increased superficial fiber cross-sectional area) with increased glucose transporter and mitochondrial biogenesis, which contributes to the pleiotropic effects of exercise training with BFR that culminate in an improved capacity for sustained exercise. NEW & NOTEWORTHY We investigated the effects of low microvascular O2 partial pressures (P mvO2) during contractions on muscle hypertrophic signaling and key elements in the muscle adaptation for increasing exercise capacity. Although demonstrating that muscle hypoxia is not obligatory for the hypertrophic response to low-force, electrically induced muscle contractions, the reduced P mvO2 enhanced ribosomal protein S6 phosphorylation and potentiated the hypertrophic response. Furthermore, contractions with blood flow restriction increased oxidative capacity, glucose transporter, and mitochondrial biogenesis, which are key determinants of the pleiotropic effects of exercise training.
Collapse
Affiliation(s)
- Toshiaki Nakajima
- Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | - Seiichiro Koide
- Bioscience and Technology Program, Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Tomohiro Yasuda
- School of Nursing, Seirei Christopher University, Shizuoka, Japan
| | - Takaaki Hasegawa
- Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | | | - Syotaro Obi
- Department of Cardiovascular Medicine and Research Support Center, Dokkyo Medical University, Tochigi, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | - Fumitaka Nakamura
- Third Department of Internal Medicine, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Teruo Inoue
- Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | - David C. Poole
- Department of Anatomy, Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Bioscience and Technology Program, Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
27
|
Mouser JG, Laurentino GC, Dankel SJ, Buckner SL, Jessee MB, Counts BR, Mattocks KT, Loenneke JP. Blood flow in humans following low-load exercise with and without blood flow restriction. Appl Physiol Nutr Metab 2017; 42:1165-1171. [DOI: 10.1139/apnm-2017-0102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Blood flow restriction (BFR) in combination with exercise has been used to increase muscle size and strength using relatively low loads (20%–30% 1-repetition maximum (1RM)). In research, the range of applied pressures based on a percentage of arterial occlusion pressure (AOP), is wide. The purpose of the study is to measure the blood flow response before exercise, following each set of exercise, and postexercise to low-load elbow flexion combined with no restriction (NOBFR), 40% of AOP (40BFR), and 80% of AOP (80BFR). One hundred and fifty-two participants volunteered; 140 completed the protocol (women = 75, men = 65). Participants were counter-balanced into 1 of 3 conditions. Following AOP and 1RM measurement, ultrasound was used to measure standing blood flow at rest in the right brachial artery. Participants performed 4 sets of elbow flexion at 30% 1RM. Blood flow was measured between sets and at 1 and 5 min postexercise. Blood flow decreased following inflation, with no difference between conditions (p < 0.001). Men had greater blood flow than women in all conditions at all time points (p < 0.001). Resting hyperemia decreased with pressure (NOBFR > 40BFR > 80BFR, p < 0.001). Blood flow increased from rest to after set 1 regardless of condition. Following cuff deflation, blood flow increased in both the 80BFR and 40BFR conditions. The reduction in hyperemia during BFR is pressure-dependent. Contrary to previous investigations, blood flow was increased above baseline following exercise.
Collapse
Affiliation(s)
- J. Grant Mouser
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
| | - Gilberto C. Laurentino
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
| | - Scott J. Dankel
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
| | - Samuel L. Buckner
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
| | - Matthew B. Jessee
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
| | - Brittany R. Counts
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
| | - Kevin T. Mattocks
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
| | - Jeremy P. Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA
| |
Collapse
|
28
|
de Freitas MC, Gerosa-Neto J, Zanchi NE, Lira FS, Rossi FE. Role of metabolic stress for enhancing muscle adaptations: Practical applications. World J Methodol 2017; 7:46-54. [PMID: 28706859 PMCID: PMC5489423 DOI: 10.5662/wjm.v7.i2.46] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
Metabolic stress is a physiological process that occurs during exercise in response to low energy that leads to metabolite accumulation [lactate, phosphate inorganic (Pi) and ions of hydrogen (H+)] in muscle cells. Traditional exercise protocol (i.e., Resistance training) has an important impact on the increase of metabolite accumulation, which influences hormonal release, hypoxia, reactive oxygen species (ROS) production and cell swelling. Changes in acute exercise routines, such as intensity, volume and rest between sets, are determinants for the magnitude of metabolic stress, furthermore, different types of training, such as low-intensity resistance training plus blood flow restriction and high intensity interval training, could be used to maximize metabolic stress during exercise. Thus, the objective of this review is to describe practical applications that induce metabolic stress and the potential effects of metabolic stress to increase systemic hormonal release, hypoxia, ROS production, cell swelling and muscle adaptations.
Collapse
|
29
|
Kim D, Loenneke JP, Ye X, Bemben DA, Beck TW, Larson RD, Bemben MG. Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training. Muscle Nerve 2017; 56:E126-E133. [PMID: 28224640 DOI: 10.1002/mus.25626] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 11/06/2022]
Abstract
INTRODUCTION This study compares the acute and chronic response of high-load resistance training (HL) to low-load resistance training with low blood flow restriction (LL-BFR) pressure. METHODS Participants completed elbow flexion with either HL or LL-BFR or nonexercise. In the chronic study, participants in the HL and LL-BFR groups were trained for 8 weeks to determine differences in muscle size and strength. The acute study examined the changes in pretesting/posttesting (Pre/Post) torque, muscle swelling, and blood lactate. RESULTS In the chronic study, similar changes in muscle size and strength were observed for both HL and LL-BFR. In the acute study, Pre/Post changes in the torque, muscle swelling, and blood lactate were similar between HL and LL-BFR. DISCUSSION Our findings indicate that pressure as low as 50% arterial occlusion can produce similar changes in muscle mass and strength compared with traditional HL. Muscle Nerve 56: E126-E133, 2017.
Collapse
Affiliation(s)
- Daeyeol Kim
- Department of Physical Education, Chonnam National University, Yongbong-Ro 77 Education Building 5-302, Buk-Gu, Gwang-Ju, South Korea, 61186
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, University of Mississippi, Oxford, Mississippi, USA
| | - Xin Ye
- Department of Health, Exercise Science, and Recreation Management, University of Mississippi, Oxford, Mississippi, USA
| | - Debra A Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Travis W Beck
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Rebecca D Larson
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
30
|
Teixeira EL, Barroso R, Silva-Batista C, Laurentino GC, Loenneke JP, Roschel H, Ugrinowitsch C, Tricoli V. Blood flow restriction increases metabolic stress but decreases muscle activation during high-load resistance exercise. Muscle Nerve 2017; 57:107-111. [PMID: 28214295 DOI: 10.1002/mus.25616] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 11/07/2022]
Abstract
INTRODUCTION We investigated differences in metabolic stress (lactate) and muscle activation (electromyography; EMG) when high-load resistance exercise (HL) is compared with a condition in which blood flow restriction (BFR) is applied during the exercise or during the rest interval. METHODS Twelve participants performed HL with BFR during the intervals (BFR-I), during the set (BFR-S), and without BFR. Each condition consisted of 3 sets of 8 repetitions with knee extension at 70% of 1-repetition maximum. Lactate and root mean square (RMS) from the surface EMG of the vastus lateralis were calculated. RESULTS Lactate increased in all protocols but was higher with BFR-I than with BFR-S and HL. RMS decreased under all conditions, with a larger effect size in BFR-I (1.47) than in BFR-S (0.66) and HL (0.59). DISCUSSION BFR-I increases lactate, possibly as a result of reduced restoration of ATP. Muscle activation seems to be impacted by mechanical stress but may be reduced by metabolic stress. Muscle Nerve 57: 107-111, 2018.
Collapse
Affiliation(s)
- Emerson L Teixeira
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello Moraes, 65, Butantã, São Paulo, São Paulo, Brazil, 05508-030
| | - Renato Barroso
- Faculty of Physical Education, University of Campinas, Campinas, São Paulo, Brazil
| | - Carla Silva-Batista
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello Moraes, 65, Butantã, São Paulo, São Paulo, Brazil, 05508-030
| | - Gilberto C Laurentino
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello Moraes, 65, Butantã, São Paulo, São Paulo, Brazil, 05508-030
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, Oxford, Mississippi, USA
| | - Hamilton Roschel
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello Moraes, 65, Butantã, São Paulo, São Paulo, Brazil, 05508-030
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello Moraes, 65, Butantã, São Paulo, São Paulo, Brazil, 05508-030
| | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello Moraes, 65, Butantã, São Paulo, São Paulo, Brazil, 05508-030
| |
Collapse
|
31
|
Jessee MB, Mattocks KT, Buckner SL, Mouser JG, Counts BR, Dankel SJ, Laurentino GC, Loenneke JP. The acute muscular response to blood flow-restricted exercise with very low relative pressure. Clin Physiol Funct Imaging 2017; 38:304-311. [PMID: 28251784 DOI: 10.1111/cpf.12416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/22/2016] [Indexed: 11/26/2022]
Abstract
To investigate the acute responses to blood flow-restricted (BFR) exercise across low, moderate and high relative pressures. Muscle thickness, maximal voluntary contraction (MVC) and electromyography (EMG) amplitude were assessed following exercise with six different BFR pressures: 0%, 10%, 20%, 30%, 50% and 90% of arterial occlusion pressure (AOP). There were differences between each time point within each condition for muscle thickness, which increased postexercise [+0·47 (0·40, 0·54) cm] and then trended towards baseline. For MVC, higher pressures resulted in greater decrements than lower pressures [e.g. 10% AOP: -20·7 (-15·5, -25·8) Nm versus 90% AOP: -24 (-19·1, -28·9) Nm] postexercise. EMG amplitude increased from the first three repetitions to the last three repetitions within each set. When using a common BFR protocol with 30% 1RM, applying BFR does not seem to augment acute responses over that of exercise alone when exercise is taken to failure.
Collapse
Affiliation(s)
- Matthew B Jessee
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Kevin T Mattocks
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Samuel L Buckner
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - J Grant Mouser
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Brittany R Counts
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Scott J Dankel
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Gilberto C Laurentino
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| |
Collapse
|
32
|
Buckner SL, Dankel SJ, Counts BR, Jessee MB, Mouser JG, Mattocks KT, Laurentino GC, Abe T, Loenneke JP. Influence of cuff material on blood flow restriction stimulus in the upper body. J Physiol Sci 2017; 67:207-215. [PMID: 27194224 PMCID: PMC10717541 DOI: 10.1007/s12576-016-0457-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to examine the acute skeletal muscle and perceptual responses to blood flow restriction (BFR) exercise to failure between narrow nylon and elastic inflatable cuffs at rest and during exercise. Torque and muscle thickness was measured pre, post, and 5, 20, 40, and 60 min post-exercise with muscle activation being measured throughout exercise. Resting arterial occlusion pressure was different between the nylon [139 (14) mmHg] and elastic [246 (71) mmHg, p < 0.001] cuffs. However, when exercising at 40 % of each cuff's respective arterial occlusion pressure [nylon: 57 (7) vs. elastic: 106 (38) mmHg, p < 0.001], there were no differences in repetitions to failure, torque, muscle thickness, or muscle activation between the cuffs. Exercising with cuffs of different material but similar width resulted in the same acute muscular response when the cuffs were inflated to a pressure relative to each individual cuff.
Collapse
Affiliation(s)
- Samuel L Buckner
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, PO Box 1848, Oxford, MS, 38677, USA
| | - Scott J Dankel
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, PO Box 1848, Oxford, MS, 38677, USA
| | - Brittany R Counts
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, PO Box 1848, Oxford, MS, 38677, USA
| | - Matthew B Jessee
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, PO Box 1848, Oxford, MS, 38677, USA
| | - J Grant Mouser
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, PO Box 1848, Oxford, MS, 38677, USA
| | - Kevin T Mattocks
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, PO Box 1848, Oxford, MS, 38677, USA
| | - Gilberto C Laurentino
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, PO Box 1848, Oxford, MS, 38677, USA
| | - Takashi Abe
- National Institute of Fitness and Sports in Kanoya, Kanoya, Kagoshima, Japan
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, PO Box 1848, Oxford, MS, 38677, USA.
| |
Collapse
|
33
|
Loenneke JP, Kim D, Fahs CA, Thiebaud RS, Abe T, Larson RD, Bemben DA, Bemben MG. The influence of exercise load with and without different levels of blood flow restriction on acute changes in muscle thickness and lactate. Clin Physiol Funct Imaging 2016; 37:734-740. [DOI: 10.1111/cpf.12367] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/10/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Jeremy P. Loenneke
- Kevser Ermin Applied Physiology Laboratory; Department of Health, Exercise Science and Recreation Management; The University of Mississippi; University MS USA
| | - Daeyeol Kim
- Department of Health and Exercise Science; University of Oklahoma; Norman OK USA
| | - Christopher A. Fahs
- Division of Education and Counseling; Lindenwood University-Belleville; IL USA
| | | | - Takashi Abe
- National institute of Fitness and Sports in Kanoya; Kanoya Kagoshima Japan
| | - Rebecca D. Larson
- Department of Health and Exercise Science; University of Oklahoma; Norman OK USA
| | - Debra A. Bemben
- Department of Health and Exercise Science; University of Oklahoma; Norman OK USA
| | - Michael G. Bemben
- Department of Health and Exercise Science; University of Oklahoma; Norman OK USA
| |
Collapse
|
34
|
Counts BR, Dankel SJ, Barnett BE, Kim D, Mouser JG, Allen KM, Thiebaud RS, Abe T, Bemben MG, Loenneke JP. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve 2015; 53:438-45. [PMID: 26137897 DOI: 10.1002/mus.24756] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 11/10/2022]
Abstract
INTRODUCTION The aim of this study was to investigate the acute and chronic skeletal muscle response to differing levels of blood flow restriction (BFR) pressure. METHODS Fourteen participants completed elbow flexion exercise with pressures from 40% to 90% of arterial occlusion. Pre/post torque measurements and electromyographic (EMG) amplitude of each set were quantified for each condition. This was followed by a separate 8-week training study of the effect of high (90% arterial occlusion) and low (40% arterial occlusion) pressure on muscle size and function. RESULTS For the acute study, decreases in torque were similar between pressures [-15.5 (5.9) Nm, P = 0.344]. For amplitude of the first 3 and last 3 reps there was a time effect. After training, increases in muscle size (10%), peak isotonic strength (18%), peak isokinetic torque (180°/s = 23%, 60°/s = 11%), and muscular endurance (62%) changed similarly between pressures. CONCLUSION We suggest that higher relative pressures may not be necessary when exercising under BFR.
Collapse
Affiliation(s)
- Brittany R. Counts
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management; University of Mississippi; P.O. Box 1848 University, Mississippi 38677 USA
| | - Scott J. Dankel
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management; University of Mississippi; P.O. Box 1848 University, Mississippi 38677 USA
| | - Brian E. Barnett
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management; University of Mississippi; P.O. Box 1848 University, Mississippi 38677 USA
| | - Daeyeol Kim
- Department of Health and Exercise Science; Neuromuscular Research Laboratory; University of Oklahoma; Norman Oklahoma USA
| | - J. Grant Mouser
- Department of Health and Exercise Science; Neuromuscular Research Laboratory; University of Oklahoma; Norman Oklahoma USA
| | - Kirsten M. Allen
- Department of Health and Exercise Science; Neuromuscular Research Laboratory; University of Oklahoma; Norman Oklahoma USA
| | - Robert S. Thiebaud
- Department of Kinesiology; Texas Wesleyan University; Fort Worth Texas USA
| | - Takashi Abe
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management; University of Mississippi; P.O. Box 1848 University, Mississippi 38677 USA
| | - Michael G. Bemben
- Department of Health and Exercise Science; Neuromuscular Research Laboratory; University of Oklahoma; Norman Oklahoma USA
| | - Jeremy P. Loenneke
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management; University of Mississippi; P.O. Box 1848 University, Mississippi 38677 USA
| |
Collapse
|
35
|
The adenylate energy charge as a new and useful indicator of capture stress in chondrichthyans. J Comp Physiol B 2015; 186:193-204. [PMID: 26660290 DOI: 10.1007/s00360-015-0948-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 02/04/2023]
Abstract
Quantifying the physiological stress response of chondrichthyans to capture has assisted the development of fishing practices conducive to their survival. However, currently used indicators of stress show significant interspecific and intraspecific variation in species' physiological responses and tolerances to capture. To improve our understanding of chondrichthyan stress physiology and potentially reduce variation when quantifying the stress response, we investigated the use of the adenylate energy charge (AEC); a measure of available metabolic energy. To determine tissues sensitive to metabolic stress, we extracted samples of the brain, heart, liver, white muscle and blood from gummy sharks (Mustelus antarcticus) immediately following gillnet capture and after 3 h recovery under laboratory conditions. Capture caused significant declines in liver, white muscle and blood AEC, whereas no decline was detected in the heart and brain AEC. Following 3 h of recovery from capture, the AEC of the liver and blood returned to "unstressed" levels (control values) whereas white muscle AEC was not significantly different to that immediately after capture. Our results show that the liver is most sensitive to metabolic stress and white muscle offers a practical method to sample animals non-lethally for determination of the AEC. The AEC is a highly informative indicator of stress and unlike current indicators, it can directly measure the change in available energy and thus the metabolic stress experienced by a given tissue. Cellular metabolism is highly conserved across organisms and, therefore, we think the AEC can also provide a standardised form of measuring capture stress in many chondrichthyan species.
Collapse
|
36
|
Araújo JP, Neto GR, Loenneke JP, Bemben MG, Laurentino GC, Batista G, Silva JCG, Freitas EDS, Sousa MSC. The effects of water-based exercise in combination with blood flow restriction on strength and functional capacity in post-menopausal women. AGE (DORDRECHT, NETHERLANDS) 2015; 37:110. [PMID: 26527466 PMCID: PMC5005855 DOI: 10.1007/s11357-015-9851-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/27/2015] [Indexed: 05/09/2023]
Abstract
Water-based exercise and low-intensity exercise in combination with blood flow restriction (BFR) are two methods that have independently been shown to improve muscle strength in those of advancing age. The objective of this study was to assess the long-term effect of water-based exercise in combination with BFR on maximum dynamic strength and functional capacity in post-menopausal women. Twenty-eight women underwent an 8-week water-based exercise program. The participants were randomly allocated to one of the three groups: (a) water exercise only, (b) water exercise + BFR, or (c) a non-exercise control group. Functional capacity (chair stand test, timed up and go test, gait speed, and dynamic balance) and strength testing were tested before and after the 8-week aquatic exercise program. The main findings were as follows: (1) water-based exercise in combination with BFR significantly increased the lower limb maximum strength which was not observed with water-based exercise alone and (2) water-based exercise, regardless of the application of BFR, increased functional performance measured by the timed up and go test over a control group. Although we used a healthy population in the current study, these findings may have important implications for those who may be contraindicated to using traditional resistance exercise. Future research should explore this promising modality in these clinical populations.
Collapse
Affiliation(s)
- Joamira P Araújo
- Department of Physical Education, Associate Graduate Program in Physical Education, UPE/UFPB, João Pessoa, Paraíba, Brazil
- Department of Physical Education, Kinanthropometry and Human Development Laboratory, UFPB, João Pessoa, Paraíba, Brazil
| | - Gabriel R Neto
- Department of Physical Education, Associate Graduate Program in Physical Education, UPE/UFPB, João Pessoa, Paraíba, Brazil
- Department of Physical Education, Kinanthropometry and Human Development Laboratory, UFPB, João Pessoa, Paraíba, Brazil
| | - Jeremy P Loenneke
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
| | - Michael G Bemben
- Department of Health and Exercise Science, Neuromuscular Research Laboratory, University of Oklahoma, Norman, OK, USA
| | | | - Gilmário Batista
- Department of Physical Education, Associate Graduate Program in Physical Education, UPE/UFPB, João Pessoa, Paraíba, Brazil
- Department of Physical Education, Kinanthropometry and Human Development Laboratory, UFPB, João Pessoa, Paraíba, Brazil
| | - Júlio C G Silva
- Department of Physical Education, Kinanthropometry and Human Development Laboratory, UFPB, João Pessoa, Paraíba, Brazil
| | - Eduardo D S Freitas
- Department of Physical Education, Associate Graduate Program in Physical Education, UPE/UFPB, João Pessoa, Paraíba, Brazil
- Department of Physical Education, Kinanthropometry and Human Development Laboratory, UFPB, João Pessoa, Paraíba, Brazil
| | - Maria S C Sousa
- Department of Physical Education, Associate Graduate Program in Physical Education, UPE/UFPB, João Pessoa, Paraíba, Brazil
- Department of Physical Education, Kinanthropometry and Human Development Laboratory, UFPB, João Pessoa, Paraíba, Brazil
| |
Collapse
|
37
|
Lixandrão ME, Ugrinowitsch C, Laurentino G, Libardi CA, Aihara AY, Cardoso FN, Tricoli V, Roschel H. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol 2015; 115:2471-80. [DOI: 10.1007/s00421-015-3253-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
|
38
|
Loenneke JP, Kim D, Fahs CA, Thiebaud RS, Abe T, Larson RD, Bemben DA, Bemben MG. Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle Nerve 2015; 51:713-21. [DOI: 10.1002/mus.24448] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jeremy P. Loenneke
- Department of Health; Exercise Science; and Recreation Management; The University of Mississippi; Oxford Mississippi USA
| | - Daeyeol Kim
- Department of Health and Exercise Science; University of Oklahoma; Norman Oklahoma USA
| | - Christopher A. Fahs
- Department of Exercise and Sports Science; Fitchburg State University; Fitchburg Massachusetts USA
| | - Robert S. Thiebaud
- Department of Kinesiology; Texas Wesleyan University; Fort Worth Texas USA
| | - Takashi Abe
- Department of Health; Exercise Science; and Recreation Management; The University of Mississippi; Oxford Mississippi USA
| | - Rebecca D. Larson
- Department of Health and Exercise Science; University of Oklahoma; Norman Oklahoma USA
| | - Debra A. Bemben
- Department of Health and Exercise Science; University of Oklahoma; Norman Oklahoma USA
| | - Michael G. Bemben
- Department of Health and Exercise Science; University of Oklahoma; Norman Oklahoma USA
| |
Collapse
|
39
|
Loenneke J, Thiebaud R, Fahs C, Rossow L, Abe T, Bemben M. Blood flow restriction: Effects of cuff type on fatigue and perceptual responses to resistance exercise. ACTA ACUST UNITED AC 2014; 101:158-66. [DOI: 10.1556/aphysiol.101.2014.2.4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Loenneke JP, Thiebaud RS, Abe T, Bemben MG. Blood flow restriction pressure recommendations: the hormesis hypothesis. Med Hypotheses 2014; 82:623-6. [PMID: 24636784 DOI: 10.1016/j.mehy.2014.02.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/23/2014] [Indexed: 11/28/2022]
Abstract
Blood flow restriction (BFR) alone or in combination with exercise has been shown to result in favorable effects on skeletal muscle form and function. The pressure applied should be high enough to occlude venous return from the muscle but low enough to maintain arterial inflow into the muscle. The optimal pressure for beneficial effects on skeletal muscle are currently unknown; however, preliminary data from our laboratory suggests that there may be a point where greater pressure may not augment the response (e.g. metabolic accumulation, cell swelling) but may actually result in decrements (e.g. muscle activation). This led us to wonder if BFR elicits somewhat of a hormesis effect. The purpose of this manuscript is to discuss whether pressure may be modulated to maximize skeletal muscle adaptation with resistance training in combination with BFR. Furthermore, the potential safety issues that could arise from increasing pressure too high are also briefly reviewed. We hypothesize that with BFR there is likely a moderate (∼ 50% estimated arterial occlusion pressure) pressure that maximizes the anabolic response to skeletal muscle without producing the potential negative consequences of higher pressures. Thus, BFR may follow the hormesis theory to some degree, in that a low/moderate dose of BFR produces beneficial effects while higher pressures (at or near arterial occlusion) may decrease the benefits of exercise and increase the health risk. This hypothesis requires long term studies investigating chronic training adaptations to differential pressures. In addition, how differences in load interact with differences in pressure should also be investigated.
Collapse
Affiliation(s)
- J P Loenneke
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, USA.
| | - R S Thiebaud
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, USA
| | - T Abe
- Department of Kinesiology, Indiana University, USA
| | - M G Bemben
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, USA
| |
Collapse
|
41
|
Yasuda T, Loenneke J, Ogasawara R, Abe T. Influence of continuous or intermittent blood flow restriction on muscle activation during low-intensity multiple sets of resistance exercise. ACTA ACUST UNITED AC 2013; 100:419-26. [DOI: 10.1556/aphysiol.100.2013.4.6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Loenneke JP, Thiebaud RS, Fahs CA, Rossow LM, Abe T, Bemben MG. Blood flow restriction does not result in prolonged decrements in torque. Eur J Appl Physiol 2012; 113:923-31. [DOI: 10.1007/s00421-012-2502-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/14/2012] [Indexed: 11/28/2022]
|
43
|
Sakamaki-Sunaga M, Loenneke J, Thiebaud R, Abe T. Onset of blood lactate accumulation and peak oxygen uptake during graded walking test combined with and without restricted leg blood flow. COMPARATIVE EXERCISE PHYSIOLOGY 2012. [DOI: 10.3920/cep12007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to compare the peak oxygen uptake (VO2peak) and lactate threshold / onset of blood lactate accumulation (LT/OBLA) during an incremental exercise test with and without blood flow restriction (BFR). Six male subjects performed a graded walking test on a treadmill with and without BFR in random order, and oxygen uptake (VO2), minute ventilation (VE), and blood lactate concentration were measured during each test. During the BFR test, the subjects wore pressure cuff belts on the most proximal portion of each thigh. At a given workload (e.g. during walking at 100 m/min) VO2 was 17% higher in BFR than in free-flow. Exercise time to exhaustion during BFR was shorter compared with free-flow despite the ratings of perceived exertion being similar between both conditions. Peak heart rate did not reach same level in the BFR test as it did in free-flow, with the heart rate 5 beats lower with BFR. VO2peak and VE peak were also 17% and 9%, respectively, lower in BFR than in free-flow. Compared with the control, O2 pulse (an index of stroke volume) was 14% lower in BFR. During BFR, VO2 at LT and OBLA were lower compared with free-flow. However, percentages of VO2peak at LT and OBLA were similar between BFR and free-flow. Our results suggest that the BFR-induced decrease in VO2peak may be associated with reductions in venous return and stroke volume. Additionally, these results suggest that increased muscle fiber recruitment with BFR may relate to the earlier LT/OBLA observed at lower intensities.
Collapse
Affiliation(s)
- M. Sakamaki-Sunaga
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
- Women's Junior College of Nippon Sports Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo 158-8508, Japan
| | - J.P. Loenneke
- Department of Health and Exercise Science, University of Oklahoma, 1405 Asp Avenue, Norman OK 73019, USA
| | - R.S. Thiebaud
- Department of Health and Exercise Science, University of Oklahoma, 1405 Asp Avenue, Norman OK 73019, USA
| | - T. Abe
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
- Department of Health and Exercise Science, University of Oklahoma, 1405 Asp Avenue, Norman OK 73019, USA
| |
Collapse
|
44
|
|
45
|
Loenneke JP, Fahs CA, Rossow LM, Sherk VD, Thiebaud RS, Abe T, Bemben DA, Bemben MG. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol 2011; 112:2903-12. [PMID: 22143843 DOI: 10.1007/s00421-011-2266-8] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/23/2011] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to determine the difference in cuff pressure which occludes arterial blood flow for two different types of cuffs which are commonly used in blood flow restriction (BFR) research. Another purpose of the study was to determine what factors (i.e., leg size, blood pressure, and limb composition) should be accounted for when prescribing the restriction cuff pressure for this technique. One hundred and sixteen (53 males, 63 females) subjects visited the laboratory for one session of testing. Mid-thigh muscle (mCSA) and fat (fCSA) cross-sectional area of the right thigh were assessed using peripheral quantitative computed tomography. Following the mid-thigh scan, measurements of leg circumference, ankle brachial index, and brachial blood pressure were obtained. Finally, in a randomized order, arterial occlusion pressure was determined using both narrow and wide restriction cuffs applied to the most proximal portion of each leg. Significant differences were observed between cuff type and arterial occlusion (narrow: 235 (42) mmHg vs. wide: 144 (17) mmHg; p = 0.001, Cohen's D = 2.52). Thigh circumference or mCSA/fCSA with ankle blood pressure, and diastolic blood pressure, explained the most variance in the cuff pressure required to occlude arterial flow. Wide BFR cuffs restrict arterial blood flow at a lower pressure than narrow BFR cuffs, suggesting that future studies account for the width of the cuff used. In addition, we have outlined models which indicate that restrictive cuff pressures should be largely based on thigh circumference and not on pressures previously used in the literature.
Collapse
Affiliation(s)
- Jeremy P Loenneke
- Department of Health and Exercise Science, Neuromuscular Research Laboratory, The University of Oklahoma, 1401 Asp Avenue, Room 104, Norman, OK 73019-0615, USA.
| | | | | | | | | | | | | | | |
Collapse
|