1
|
Yang Y, Gao Y, Yi X, Hu Y, Zhao L, Chen L, Sui W, Zhang S, Ma S. The impact of ultra-processed foods and unprocessed or minimally processed foods on the quality of life among adolescents: a longitudinal study from China. Front Nutr 2024; 11:1489067. [PMID: 39634553 PMCID: PMC11614671 DOI: 10.3389/fnut.2024.1489067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The purpose of this study was to explore the associations between ultra-processed foods (UPF), unprocessed or minimally processed foods (UMFs) with the quality of life (QoL) in Chinese adolescents. Methods The study included a baseline survey in 2021 (T1) and a follow-up survey in 2022 (T2), with a total of 3,206 participants, including 1,510 males (Age ± SE: 13.62 ± 1.69) and 1,696 females (Age ± SE: 14.09 ± 1.85). QoL was measured using the Quality of Life Scale for Children and Adolescents. All adolescents were asked to recall the foods they had eaten in the past week, which was classified using the NOVA system. Results Instant noodles, sugary drinks, and fried foods had a negative impact on adolescents' QoL. Snacks or desserts only had a negative impact on the girls' QoL. However, processed meats had a positive impact on the QoL of all adolescents. Fast food was beneficial for girls' QoL. Fruits had a positive impact on the QoL of all adolescents. Green leafy vegetables, red and orange vegetables, fish, shrimp, or other seafood had a positive impact on the QoL of girls. Fresh poultry, pork, beef, and other meats had a positive impact on boys' QoL. Soy products were detrimental to girls' QoL. Tubers had a negative impact on boys' QoL. Potatoes had a negative effect on the all adolescents' QoL. Discussion This study further expands the understanding of the relationship between UPF, UMFs, and QoL. It provides new insights and evidence for improving the QoL of adolescents.
Collapse
Affiliation(s)
| | - Yan Gao
- School of Physical Education, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Moya B, Dieguez MC, Crespo JF, Cabanillas B. Food Allergens of Plant and Animal Origin: Classification, Characteristics, and Properties. Methods Mol Biol 2024; 2717:1-14. [PMID: 37737974 DOI: 10.1007/978-1-0716-3453-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Food allergy is an adverse immune response to specific foods that can be either IgE-mediated or non-IgE mediated. The causes of IgE-mediated food allergy are multifactorial and involve genetic, dietary, and environmental factors. The prevalence of food allergy has increased over the last few decades, especially in urbanized, industrialized, and Westernized countries, and the epithelial barrier hypothesis has been recently suggested as a possible explanation for this increase. Food allergens of plant and animal origin are classified into a few families and superfamilies that are widely distributed and conserved. While it is known that food allergens share common properties, such as stability to enzymes and solubility, they also exhibit differential properties, and exceptions to the common characteristics exist. In recent years, novel characteristics of food allergens have been proposed based on their immunological properties and their ability to act as adjuvants or enhancers of the immune system.This chapter provides an overview of the current knowledge of food allergy, covering their prevalence, classification of food allergens from plant and animal origins, and recent advancements in the characterization of the properties of these allergens.
Collapse
Affiliation(s)
- Beatriz Moya
- Department of Allergy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Maria Carmen Dieguez
- Department of Allergy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jesus F Crespo
- Department of Allergy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
3
|
Huang HJ, Sarzsinszky E, Vrtala S. House dust mite allergy: The importance of house dust mite allergens for diagnosis and immunotherapy. Mol Immunol 2023; 158:54-67. [PMID: 37119758 DOI: 10.1016/j.molimm.2023.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
House dust mite (HDM) allergy belongs to the most important allergies and affects approximately 65-130 million people worldwide. Additionally, untreated HDM allergy may lead to the development of severe disease manifestations such as atopic dermatitis or asthma. Diagnosis and immunotherapy of HDM allergic patients are well established but are often hampered by the use of mite extracts that are of bad quality and lack important allergens. The use of individual allergens seems to be a promising alternative to natural allergen extracts, since they represent well-defined components that can easily be produced and quantified. However, a thorough characterization of the individual allergens is required to determine their clinical relevance and to identify those allergens that are required for correct diagnosis of HDM allergy and for successful immunotherapy. This review gives an update on the individual HDM allergens and their benefits for diagnosis and immunotherapy of HDM allergic patients.
Collapse
Affiliation(s)
- Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Eszter Sarzsinszky
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Mostafa NA, Abdel-Ghaffar F, Fayed HO, Hassan AA. Morphological and molecular identification of third-stage larvae of Anisakis typica (Nematoda: Anisakidae) from Red Sea coral trout, Plectropomus areolatus. Parasitol Res 2023; 122:705-715. [PMID: 36650313 PMCID: PMC9988787 DOI: 10.1007/s00436-022-07776-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Anisakidosis is a foodborne zoonotic infection induced by members of the family Anisakidae via the consumption of raw or undercooked fish such as sushi and sashimi. Identifying anisakid larval species is critical for the epidemiology and diagnosis of diseases caused by them. This study aimed at identifying Anisakis larvae collected from marine fish in Egyptian waters based on morphological characteristics and molecular analysis. Thirty marine fish coral trout, Plectropomus areolatus, were collected from Hurghada, Red Sea, Egypt, to investigate larval nematodes of the genus Anisakis. The larvae were detected encapsulated in the peritoneal cavity and muscle of the fish host. This examination revealed that anisakid larvae naturally infected 19 fish specimens with a prevalence of 63.33% and a mean intensity of 4.1 ± 0.40. Most of them (68 larvae: 71.57%) were found in the musculature. Morphological and morphometric analyses using light and scanning electron microscopy revealed a head region with a prominent boring tooth, inconspicuous lips, and a characteristic protruded cylindrical mucron. All larvae in this study possessed the same morphology as Anisakis Larval type I. Molecular analysis based on ITS region using maximum likelihood and Bayesian phylogenetic methods confirmed them as Anisakis typica. This is the first study to identify A. typica larvae from the commercial fish coral trout P. areolatus in Egyptian waters using morphological and molecular methods.
Collapse
Affiliation(s)
| | | | - Hamed Omar Fayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ayat Adel Hassan
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Kumar R, Gaur S, Agarwal M, Menon B, Goel N, Mrigpuri P, Spalgais S, Priya A, Kumar K, Meena R, Sankararaman N, Verma A, Gupta V, Sonal, Prakash A, Safwan MA, Behera D, Singh A, Arora N, Prasad R, Padukudru M, Kant S, Janmeja A, Mohan A, Jain V, Nagendra Prasad K, Nagaraju K, Goyal M. Indian Guidelines for diagnosis of respiratory allergy. INDIAN JOURNAL OF ALLERGY, ASTHMA AND IMMUNOLOGY 2023. [DOI: 10.4103/0972-6691.367373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Detection of Fish Allergens in Foods Using an In-House Real-Time PCR Targeting the Ribosomal 18S rRNA Gene. Foods 2022; 11:foods11223686. [PMID: 36429277 PMCID: PMC9689354 DOI: 10.3390/foods11223686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Fish is one of the major food allergens which, in sensitised individuals, can cause life-threatening allergic reactions, even when present in small amounts. To protect consumers' health, the correct labeling of foods is important. The objective of the present study was to validate an in-house real-time PCR method targeting the ribosomal 18S rRNA gene as universal DNA marker for the detection of fish in foods. The specificity of the primers was assessed on 20 fish species commonly marketed in the Mediterranean basin and other species of molluscs and crustaceans and foods of animal and plant origin. The absolute detection of the method was assessed using DNA extracted from a fish mixture and the SureFood® QUANTARD Allergen 40 reference material. The relative amount was assessed on a fish and béchamel sauce blend. Commercial food samples either labelled with or without fish in the ingredient list, were tested for the presence of fish DNA. The primer showed high specificity against the selected fish species. The limit of detection (LOD) and limit of quantification (LOQ) of the in-house method were 0.5 pg/µL and 5 pg/µL, respectively. The relative quantification in fish and béchamel blend samples detected a concentration as low as 0.000025%, corresponding to 0.25 mg/kg of fish, indicating the suitability of the method in a food matrix. The presence of fish DNA was always detected in commercial samples in which the presence of fish was listed in the ingredient list. The method was able to detect the presence of fish DNA also in samples in which the presence of fish was indicated as traces or was not declared on the label. The proposed method was demonstrated to be a reliable, specific, and sensitive method for the detection of fish allergens in foods. Therefore, the proposed real-time PCR method could be used as a useful instrument in the verification of compliance with allergen labelling regulations.
Collapse
|
7
|
Dong X, Raghavan V. A comprehensive overview of emerging processing techniques and detection methods for seafood allergens. Compr Rev Food Sci Food Saf 2022; 21:3540-3557. [PMID: 35676763 DOI: 10.1111/1541-4337.12987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
Abstract
Seafood is rich in nutrients and plays a significant role in human health. However, seafood allergy is a worldwide health issue by inducing adverse reactions ranging from mild to life-threatening in seafood-allergic individuals. Seafood consists of fish and shellfish, with the major allergens such as parvalbumin and tropomyosin, respectively. In the food industry, effective processing techniques are applied to seafood allergens to lower the allergenicity of seafood products. Also, sensitive and rapid allergen-detection methods are developed to identify and assess allergenic ingredients at varying times. This review paper provides an overview of recent advances in processing techniques (thermal, nonthermal, combined [hybrid] treatments) and main allergen-detection methods for seafood products. The article starts with the seafood consumption and classification, proceeding with the prevalence and symptoms of seafood allergy, followed by a description of biochemical characteristics of the major seafood allergens. As the topic is multidisciplinary in scope, it is intended to provide information for further research essential for food security and safety.
Collapse
Affiliation(s)
- Xin Dong
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
8
|
Li X, Deng X, Guo X, Wei Y, Zhao Y, Guo X, Zhu X, Zhang J, Hu L. Two-dimensional gel analysis to investigate the effect of hydroxyl radical oxidation on freshness indicator protein of Coregonus peled during 4 °C storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Improving Polysaccharide-Based Chitin/Chitosan-Aerogel Materials by Learning from Genetics and Molecular Biology. MATERIALS 2022; 15:ma15031041. [PMID: 35160985 PMCID: PMC8839503 DOI: 10.3390/ma15031041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022]
Abstract
Improved wound healing of burnt skin and skin lesions, as well as medical implants and replacement products, requires the support of synthetical matrices. Yet, producing synthetic biocompatible matrices that exhibit specialized flexibility, stability, and biodegradability is challenging. Synthetic chitin/chitosan matrices may provide the desired advantages for producing specialized grafts but must be modified to improve their properties. Synthetic chitin/chitosan hydrogel and aerogel techniques provide the advantages for improvement with a bioinspired view adapted from the natural molecular toolbox. To this end, animal genetics provide deep knowledge into which molecular key factors decisively influence the properties of natural chitin matrices. The genetically identified proteins and enzymes control chitin matrix assembly, architecture, and degradation. Combining synthetic chitin matrices with critical biological factors may point to the future direction with engineering materials of specific properties for biomedical applications such as burned skin or skin blistering and extensive lesions due to genetic diseases.
Collapse
|
10
|
Čelakovská J, Čermákova E, Vaňková R, Andrýs C, Krejsek J. ALEX2 multiplex examination – results of specific IgE to fish and shrimps in patients suffering from atopic dermatitis. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.2005546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- J. Čelakovská
- Department of Dermatology and Venereology Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - E. Čermákova
- Department of Medical Biophysic, Medical Faculty of Charles University, Hradec Králové, Czech republic
| | - R. Vaňková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - C. Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - J. Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
11
|
Thomassen MR, Kamath SD, Bang BE, Nugraha R, Nie S, Williamson NA, Lopata AL, Aasmoe L. Occupational Allergic Sensitization Among Workers Processing King Crab (Paralithodes camtschaticus) and Edible Crab (Cancer pagurus) in Norway and Identification of Novel Putative Allergenic Proteins. FRONTIERS IN ALLERGY 2021; 2:718824. [PMID: 35387003 PMCID: PMC8974837 DOI: 10.3389/falgy.2021.718824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction: Asthma and allergy occur frequently among seafood processing workers, with the highest prevalence seen in the crustacean processing industry. In this study we established for the first time the prevalence of allergic sensitization in the Norwegian king- and edible crab processing industry and characterized the IgE-reactive proteins. Materials and Methods: Two populations of crab processing workers participated; 119 king crab and 65 edible crab workers. The investigation included information on work tasks and health through a detailed questionnaire. Allergic sensitization was investigated by crab-specific IgE quantification and skin prick tests (SPT) to four in-house prepared crab extracts; raw meat, cooked meat, raw intestines and raw shell. Allergen-specific IgE binding patterns were analyzed by IgE immunoblotting to the four allergen extracts using worker serum samples. Total proteins in crab SPT extracts and immunoblot-based IgE binding proteins were identified by mass spectrometric analysis. Results: Positive SPTs were established in 17.5% of king- and 18.1% of edible crab workers, while elevated IgE to crab were demonstrated in 8.9% of king- and 12.2% of edible crab processing workers. There was no significant difference between the king and edible crab workers with respect to self-reported respiratory symptoms, elevated specific IgE to crab or SPT results. Individual workers exhibited differential IgE binding patterns to different crab extracts, with most frequent binding to tropomyosin and arginine kinase and two novel IgE binding proteins, hemocyanin and enolase, identified as king- and edible crab allergens. Conclusions: Occupational exposure to king- and edible crabs may frequently cause IgE mediated allergic sensitization. Future investigations addressing the diagnostic value of crab allergens including tropomyosin and arginine kinase and the less well-known IgE-binding proteins hemocyanin and enolase in a component-resolved diagnostic approach to crab allergy should be encouraged.
Collapse
Affiliation(s)
- Marte R. Thomassen
- Department of Community Medicine, University of Tromsø The Arctic University of Norway, Tromsø, Norway
- Department of Occupational and Environmental Medicine, University Hospital North Norway, Tromsø, Norway
| | - Sandip D. Kamath
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Centre for Food and Allergy Research, Murdoch Childrens Research Institute, Melbourne, VIC, Australia
- *Correspondence: Berit E. Bang
| | - Berit E. Bang
- Department of Community Medicine, University of Tromsø The Arctic University of Norway, Tromsø, Norway
- Department of Medical Biology, University of Tromsø The Arctic University of Norway, Tromsø, Norway
- Sandip D. Kamath
| | - Roni Nugraha
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, Institut Pertanian Bogor University, Bogor, Indonesia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas A. Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas L. Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Centre for Food and Allergy Research, Murdoch Childrens Research Institute, Melbourne, VIC, Australia
| | - Lisbeth Aasmoe
- Department of Community Medicine, University of Tromsø The Arctic University of Norway, Tromsø, Norway
- Department of Medical Biology, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Worm M, Reese I, Ballmer-Weber B, Beyer K, Bischoff SC, Bohle B, Brockow K, Claßen M, Fischer PJ, Hamelmann E, Jappe U, Kleine-Tebbe J, Klimek L, Koletzko B, Lange L, Lau S, Lepp U, Mahler V, Nemat K, Raithel M, Saloga J, Schäfer C, Schnadt S, Schreiber J, Szépfalusi Z, Treudler R, Wagenmann M, Werfel T, Zuberbier T. Update of the S2k guideline on the management of IgE-mediated food allergies. Allergol Select 2021; 5:195-243. [PMID: 34263109 PMCID: PMC8276640 DOI: 10.5414/alx02257e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Margitta Worm
- Allergology and Immunology, Department of Dermatology, Venereology, and Allergology, Charité – Universitätsmedizin Berlin, Germany
| | - Imke Reese
- Nutritional Counseling and Therapy, Focus on Allergology, Munich, Germany
| | - Barbara Ballmer-Weber
- University Hospital Zurich, Department of Dermatology, Zurich, Switzerland, and Cantonal Hospital St. Gallen, Department of Dermatology and Allergology, St. Gallen, Switzerland
| | - Kirsten Beyer
- Clinic of Pediatrics m. S. Pneumology, Immunology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Germany
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine and Prevention, University of Hohenheim, Stuttgart, Germany
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Knut Brockow
- Department of Dermatology and Allergology, Biederstein, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Martin Claßen
- Klinik für Kinder und Jugendmedizin/Päd. Intensivmedizin, Eltern-Kind-Zentrum Prof. Hess Klinikum Bremen-Mitte
| | - Peter J. Fischer
- Practice for Pediatric and Adolescent Medicine m. S. Allergology and Pediatric Pneumology, Schwäbisch Gmünd
| | - Eckard Hamelmann
- University Clinic for Pediatric and Adolescent Medicine, Evangelisches Klinikum Bethel gGmbH, Bielefeld
| | - Uta Jappe
- Research Group Clinical and Molecular Allergology, Research Center Borstel, Airway Research Center North (ARCN), member of the German Center for Lung Research (DZL), Borstel
- Interdisciplinary Allergy Outpatient Clinic, Medical Clinic III, University Hospital Schleswig-Holstein, Lübeck
| | | | | | - Berthold Koletzko
- Pediatric Clinic and Pediatric Polyclinic, Dr. von Haunersches Kinderspital, Department of Metabolic and Nutritional Medicine, Ludwig-Maximilians-University, Munich
| | - Lars Lange
- Pediatric and Adolescent Medicine, St.- Marien-Hospital, Bonn
| | - Susanne Lau
- Clinic of Pediatrics m. S. Pneumology, Immunology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Germany
| | - Ute Lepp
- Practice for Pulmonary Medicine and Allergology, Buxtehude
| | | | - Katja Nemat
- Practice for Pediatric Pneumology/Allergology at the Children’s Center Dresden (Kid), Dresen
| | | | - Joachim Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz
| | - Christiane Schäfer
- Nutritional Therapy, Focus on Allergology and Gastroenterology, Schwarzenbek, Germany
| | - Sabine Schnadt
- German Allergy and Asthma Association, Mönchengladbach, Germany
| | - Jens Schreiber
- Pneumology, University Hospital of Otto von Guericke University, Magdeburg, Germany
| | - Zsolt Szépfalusi
- University Hospital for Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Regina Treudler
- Clinic of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Germany
| | | | - Thomas Werfel
- Clinic of Dermatology, Allergology and Venerology, Hannover Medical School, Germany, and
| | - Torsten Zuberbier
- Department of Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin
| |
Collapse
|
13
|
Davis CM, Gupta RS, Aktas ON, Diaz V, Kamath SD, Lopata AL. Clinical Management of Seafood Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:37-44. [PMID: 31950908 DOI: 10.1016/j.jaip.2019.10.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Seafood plays an important role in human nutrition and health. A good patient workup and sensitive diagnostic analysis of IgE antibody reactivity can distinguish between a true seafood allergy and other adverse reactions generated by toxins or parasites contaminating ingested seafood. The 2 most important seafood groupings include the fish and shellfish. Shellfish, in the context of seafood consumption, constitutes a diverse group of species subdivided into crustaceans and mollusks. The prevalence of shellfish allergy seems to be higher than that of fish allergy, with an estimate of up to 3% in the adult population and fin fish allergy prevalence of approximately 1%. Clinical evaluation of the seafood-allergic patient involves obtaining a detailed history and obtaining in vivo and/or in vitro testing with careful interpretation of results with consideration of cross-reactivity features of the major allergens. Oral food challenge is useful not only for the diagnosis but also for avoiding unnecessary dietary restrictions. In this review, we highlight some of the recent reports to provide solid clinical and laboratory tools for the differentiation of fish allergy from shellfish allergy, enabling best treatment and management of these patients.
Collapse
Affiliation(s)
- Carla M Davis
- Texas Children's Hospital Food Allergy Program, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas.
| | - Ruchi S Gupta
- Center for Food Allergy and Asthma Research, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Ozge N Aktas
- Department of Pediatrics, University of Illinois College of Medicine at Chicago, Chicago, Ill
| | - Veronica Diaz
- Texas Children's Hospital Food Allergy Program, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Sandip D Kamath
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, Molecular Allergy Research Laboratory, James Cook University, Townsville, QLD, Australia
| | - Andreas L Lopata
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, Molecular Allergy Research Laboratory, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
14
|
Classification of patients with esophageal eosinophilia by patterns of sensitization revealed by a diagnostic assay for multiple allergen-specific IgEs. J Gastroenterol 2021; 56:422-433. [PMID: 33591429 DOI: 10.1007/s00535-021-01766-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is considered to be an immunoglobulin E (IgE)-mediated allergic disorder. Our goal was to examine IgE-mediated allergic sensitization patterns in patients with esophageal eosinophilia (EE). METHODS We enrolled subjects with EE who underwent evaluation with a diagnostic panel to document multiple allergen-specific IgEs. Statistically significant groups were identified by cluster analysis. We also defined allergens based on their characteristics including outdoor, indoor, plant, and animal allergens. RESULTS We classified patients with EE into 3 distinct groups, including cluster 1 (n = 62) who were minimally sensitized to most allergens except pollen and house dust, cluster 2 (n = 30) who were hypersensitized to outdoor and plant allergens, and cluster 3 (n = 15) who were hypersensitized to most allergens, most notably to indoor and animal allergens. Dysphagia reported among those in clusters 1, 2, and 3 at 35.5%, 46.7%, and 73.3%, respectively, (p = 0.028) and EoE endoscopic reference scores (EREFS) at 3.0, 6.0, and 8.0, respectively, (p < 0.001) differed significantly between the 3 clusters. Those in cluster 3 had a significantly higher prevalence of dysphagia (35.5% vs. 73.3%, p = 0.030), and higher EREFS with respect to rings (0.3 vs. 0.9, p = 0.003) and strictures (0.0 vs. 0.13, p = 0.011) compared to those in cluster 1. CONCLUSIONS IgE-mediated allergic sensitization patterns are associated with clinical features of patients with EE. Use of a diagnostic panel that detects multiple allergen-specific IgEs can help to explain the heterogeneous phenotype of this patient cohort.
Collapse
|
15
|
Assessment of the effects of a work-related allergy to seafood on the reduction of earning capacity in the context of BK No. 5101. Allergol Select 2021; 5:33-44. [PMID: 33493250 PMCID: PMC7814778 DOI: 10.5414/al0db380e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022] Open
Abstract
Fish, crustaceans, and mollusks are among the most potent allergenic foods of animal origin and are thus important triggers of work-related immediate-food allergies. In Germany, work-related seafood allergies are of great importance in the fishing and processing industries as well as in the areas of food preparation, food control, and food sales. There is no causal therapy of seafood allergy, only the strict and lifelong avoidance of allergens remains. The following recommendations serve to assess the impact of a seafood allergy with regard to the work opportunities ended by it for the assessment of the reduction of earning capacity (MdE (German for Minderung der Erwerbsfähigkeit)) in the context of the occupational disease number 5101 of the Annex to the German regulation for occupational diseases. As a special feature of work-related seafood allergy with regard to insurance law aspects, it must be taken into account that there is a potential risk of systemic reaction with subsequent multi-organ involvement. For the estimation of MdE in the general labor market, the impact of a seafood allergy can therefore be assessed, depending on its clinical severity, as generally “mild” to “severe” in justified individual cases.
Collapse
|
16
|
Karnaneedi S, Huerlimann R, Johnston EB, Nugraha R, Ruethers T, Taki AC, Kamath SD, Wade NM, Jerry DR, Lopata AL. Novel Allergen Discovery through Comprehensive De Novo Transcriptomic Analyses of Five Shrimp Species. Int J Mol Sci 2020; 22:E32. [PMID: 33375120 PMCID: PMC7792927 DOI: 10.3390/ijms22010032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Shellfish allergy affects 2% of the world's population and persists for life in most patients. The diagnosis of shellfish allergy, in particular shrimp, is challenging due to the similarity of allergenic proteins from other invertebrates. Despite the clinical importance of immunological cross-reactivity among shellfish species and between allergenic invertebrates such as dust mites, the underlying molecular basis is not well understood. Here we mine the complete transcriptome of five frequently consumed shrimp species to identify and compare allergens with all known allergen sources. The transcriptomes were assembled de novo, using Trinity, from raw RNA-Seq data of the whiteleg shrimp (Litopenaeus vannamei), black tiger shrimp (Penaeus monodon), banana shrimp (Fenneropenaeus merguiensis), king shrimp (Melicertus latisulcatus), and endeavour shrimp (Metapenaeus endeavouri). BLAST searching using the two major allergen databases, WHO/IUIS Allergen Nomenclature and AllergenOnline, successfully identified all seven known crustacean allergens. The analyses revealed up to 39 unreported allergens in the different shrimp species, including heat shock protein (HSP), alpha-tubulin, chymotrypsin, cyclophilin, beta-enolase, aldolase A, and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Multiple sequence alignment (Clustal Omega) demonstrated high homology with allergens from other invertebrates including mites and cockroaches. This first transcriptomic analyses of allergens in a major food source provides a valuable resource for investigating shellfish allergens, comparing invertebrate allergens and future development of improved diagnostics for food allergy.
Collapse
Affiliation(s)
- Shaymaviswanathan Karnaneedi
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Roger Huerlimann
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Elecia B. Johnston
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Department of Aquatic Product Technology, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Aya C. Taki
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Sandip D. Kamath
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Nicholas M. Wade
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- CSIRO Agriculture and Food, Aquaculture Program, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Dean R. Jerry
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Tropical Futures Institute, James Cook University, 149 Sims Drive, Singapore 387380, Singapore
| | - Andreas L. Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
17
|
|
18
|
Lee SE, Lee SY, Bae BR, Lee HS, Kang HR. A case of anaphylaxis after ingestion of Liparis tanakae. Asia Pac Allergy 2020; 10:e42. [PMID: 33178567 PMCID: PMC7610087 DOI: 10.5415/apallergy.2020.10.e42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
Liparis tanakae is a kind of fish in the northwestern Pacific Ocean and sometimes it is used for broth or frozen fish fillets on markets in Korea. A 45-year-old female patient visited Emergency Department because of facial edema, generalized urticaria, dyspnea, and hypotension after eating L. tanakae broth. She recovered after administration of epinephrine. Seven weeks later, she experienced generalized urticaria again after tasting a spoon of L. tanakae broth. In 2 months after recovery, the patient showed positive response to skin prick tests with L. tanakae extract. She also showed positive response to skin prick test with cod which did not induce any symptoms after oral ingestion. The patient was diagnosed as L. tanakae induced anaphylaxis based on the repeated clinical history and skin prick test results. We herein report the first case of L. tanakae induced anaphylaxis.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Respirology and Allergy Clinic, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Suh-Young Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Bo-Ram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Hyun-Seung Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Expression and functionality of allergenic genes regulated by simulated gastric juice in Anisakis pegreffii. Parasitol Int 2020; 80:102223. [PMID: 33137497 DOI: 10.1016/j.parint.2020.102223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 11/24/2022]
Abstract
To better understand the molecular mechanisms underlying allergens and parasite immunity and discover the stage-enriched gene expression of fish-borne zoonotic nematodes in the stomach, we used RNA-seq to study the transcriptome profiles of Anisakis pegreffii (Nematoda: Anisakidae, AP) in simulated gastric juice. Mobile L3 larvae were incubated in simulated medium at 37 °C in 5% CO2 (AP-GJ) and the control group larvae were collected in PBS under the same conditions (AP-PBS). We found that the sequences of A. pegreffii were highly similar to Toxocara canis sequences. Among the transcripts, there would be 138 up-regulated putative genes and 251 down-regulated putative genes in AP-GJ group. Several lipid binging-related genes were more highly expressed in AP-GJ larvae. Moreover, 17 allergen genes were up-regulated and 29 were down-regulated in AP-GJ larvae. Eleven allergen genes belonged to one or more of the following three categories: biological process, cellular component, and molecular function. According to KEGG analysis, the main pathways that were represented included protein processing in transcription, immune system, cancer, and infectious disease. In particular, the most significant changes in the expression of parasite-derived allergen products occurred in AP-GJ larvae. This study helps us to extend our understanding of the biology of the fish-borne zoonotic parasite A. pegreffii and could be helpful for more precise risk assessment and providing guidelines for allergic consumers.
Collapse
|
20
|
Ruethers T, Taki AC, Khangurha J, Roberts J, Buddhadasa S, Clarke D, Hedges CE, Campbell DE, Kamath SD, Lopata AL, Koeberl M. Commercial fish ELISA kits have a limited capacity to detect different fish species and their products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4353-4363. [PMID: 32356561 DOI: 10.1002/jsfa.10451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/04/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Fish is a major food and allergen source, requiring safety declarations on packages. Enzyme-linked immunosorbent assays (ELISAs) are often used to ensure that the product meets the required standards with regard to the presence of allergens. Over 1000 different fish species are traded and consumed worldwide, and they are increasingly provided by aquaculture. Up to 3% of the general population is at risk of sometimes fatal allergic reactions to fish, requiring strict avoidance of this commodity. The aim of this study is to evaluate the capacity of three commercially available ELISA tests to detect a wide variety of bony and cartilaginous fish and their products, which is essential to ensure reliable and safe food labeling. RESULTS The detection rates for 57 bony fish ranged from 26% to 61%. Common European and North American species, including carp, cod, and salmon species, demonstrated a higher detection rate than those from the Asia-Pacific region, including pangasius and several mackerel and tuna species. Among the 17 canned bony fish products, only 65% to 86% were detected, with tuna showing the lowest rate. None of the cartilaginous fish (n = 9), other vertebrates (n = 8), or shellfish (n = 5) were detected. CONCLUSIONS We demonstrated that three commercial fish ELISA kits had a limited capacity to detect fish and their products. The complexity of fish as a protein source that is increasingly utilized means that there is an urgent need for improved detection methods. This is crucial for the food industry to provide safe seafood products and comply with international legislation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, Faculty of Science and Engineering, James Cook University, Douglas, Australia
| | - Aya C Taki
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, Faculty of Science and Engineering, James Cook University, Douglas, Australia
| | | | - James Roberts
- National Measurement Institute, Port Melbourne, Australia
| | | | - Dean Clarke
- National Measurement Institute, Port Melbourne, Australia
| | | | - Dianne E Campbell
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Australia
- Children's Hospital at Westmead, Allergy and Immunology, Westmead, Australia
- Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Sandip D Kamath
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, Faculty of Science and Engineering, James Cook University, Douglas, Australia
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, Faculty of Science and Engineering, James Cook University, Douglas, Australia
| | | |
Collapse
|
21
|
Jeong SG, Kim SH. Application of commercial kits using DNA-based and immunochemical methods for determination of shrimp allergens in kimchi and its ingredients. J Food Sci 2020; 85:3638-3643. [PMID: 32856293 DOI: 10.1111/1750-3841.15320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Abstract
Shrimps cause a significant part of crustacea-related allergies. It is used in processed foods, including fermented Korean foods, such as kimchi. Even low amounts of shrimp allergens can provoke reactions in consumers allergic to shrimp. Accurate food labeling is the most effective means of preventing the consumption of allergenic ingredients. To validate labeling compliance and minimize the risk of cross-contaminations, the effectiveness of methodologies used for the detection of allergens in foods should be compared. Here, seven commercial kits, based on quantitative real-time polymerase chain reaction (PCR) or enzyme-linked immunosorbent assay (ELISA), were assessed for their ability to detect the presence of shrimp allergens in food. Our results showed that SureFood real-time PCR kit and Ridascreen ELISA kit had the highest recovery, whereas five other kits underperformed in the determination of allergen content of kimchi and its ingredients. The variation in recovery among the kits depended on the limit of detection and reactivity to the shrimp allergens, tropomyosin, and sarcoplasmic calcium-binding protein. PRACTICAL APPLICATION: This research confirms the performance of commercial kits to detect the presence of shrimp allergens in kimchi, and demonstrates that the sensitivity of these kits depends on reactivity to the specific shrimp allergenic proteins. These results can be used to food allergy labeling and can be applied by the food industry to develop allergen test kits for fermented foods with improved performance.
Collapse
Affiliation(s)
- Seul-Gi Jeong
- Research and Development Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Sung Hyun Kim
- Research and Development Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| |
Collapse
|
22
|
Pecoraro L, Tenero L, Pietrobelli A, Dalle Carbonare L, Czernin S, Widhalm K, Alvarez-Perea A, Piacentini G. Canned tuna tolerance in children with IgE-mediated fish allergy: an allergological and nutritional view. Minerva Pediatr 2020; 72:408-415. [PMID: 32686923 DOI: 10.23736/s0026-4946.20.05972-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Scientific research, diagnostic tools and clinical experience have shown that children suffering from IgE-mediated fish allergy do not need to follow a strict exclusion diet. In fact, they could tolerate some species of fish, which could be reintroduced in the diet by verifying their tolerance with an oral food challenge in a clinical setting. Consequently, it is possible to look a new insight on diagnosis and management of IgE-mediated fish allergy in children, considering the use of canned tuna in clinical settings. Authors performed a literature search through the Cochrane Library and Medline/PubMed databases. All quantitative and qualitative pediatric studies involving diagnosis and management of IgE-mediated fish allergy and the use of canned tuna in clinical settings were considered. Articles related to allergological and nutritional features of fish, and especially canned tuna, were selected. This research was conducted on May 2020. Canned tuna shows peculiar allergological and nutritional characteristics. Relating to allergy, canning process, characterized by cooking the fish under pressure for a time equal to about 7 hours, can lead a conformational change in parvalbumin, making it less allergenic. In terms of nutrition, canned tuna contains B, D and A vitamins and, above all, omega-3 fatty acids and shows a favourable and significantly sustainable nutritional profile. Lower allergenicity, adequate nutritional value and its rich availability in markets at reasonable costs, could make the use of canned tuna as a solution with an excellent risk/benefit ratio in the field of IgE-mediated fish allergy.
Collapse
Affiliation(s)
- Luca Pecoraro
- Department of Medicine, University of Verona, Verona, Italy - .,Clinic of Pediatric, ASST Mantova, Mantova, Italy -
| | - Laura Tenero
- , Division of Pediatric, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Angelo Pietrobelli
- , Division of Pediatric, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy.,Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Sarah Czernin
- Division of Nutrition and Metabolism, Department of Pediatrics, Austrian Academic Institute for Clinical Nutrition, Vienna, Austria
| | - Kurt Widhalm
- Division of Nutrition and Metabolism, Department of Pediatrics, Austrian Academic Institute for Clinical Nutrition, Vienna, Austria
| | | | - Giorgio Piacentini
- , Division of Pediatric, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Di LL, Wang LX, Ma X, Wen WL, Gao XP. Allergic sensitization in patients with rhinitis and bronchial asthma in Ningxia region of China. J Eval Clin Pract 2020; 26:1001-1004. [PMID: 31332901 DOI: 10.1111/jep.13239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Allergic rhinitis and bronchial asthma are common allergic diseases. The pattern of dominant allergens depends on the degree of urbanization and the geographic region. The present study characterized the allergens of patients with allergic rhinitis and bronchial asthma in Ningxia region of China. METHODS A total of 309 patients were enrolled in this study. Western blotting assays were performed of the serum samples to evaluate allergen-specific IgE antibody for inhaled and ingested allergens. Statistical analysis was performed to compare the positive rate among different subgroups. RESULTS Among the 309 patients, 221 of them had positive test results. There were 157 positive cases for ingested allergens and 174 positive cases for inhaled allergens. No significant differences in positive rates were found between the ingested and inhaled allergens. Among the inhaled allergens, Artemisia was the most frequent allergen, followed by fungi and dog hair. Cashew was the most common ingested allergen, followed by crab, mango, and beef. Further analysis showed no significant differences in positive rate between males and females. However, significant differences in positive rate of inhaled and ingested allergens were found between children (1-13 years old) and adults (above 18 years old) (P < .05), while no significant differences were found between the children and teenagers (14-18 years old). For the comparison between teenagers and adults, significant difference in positive rate was found only in the ingested allergen. CONCLUSION This study provided the characteristics of allergens in Ningxia population, providing clinical and epidemiological data for prevention and treatment of the diseases in the region.
Collapse
Affiliation(s)
- Ling-Ling Di
- Department of Otorhinolaryngology Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Li-Xin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao Ma
- Department of Otorhinolaryngology Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wu-Lin Wen
- Department of Otorhinolaryngology Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiao-Ping Gao
- Department of Otorhinolaryngology Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
24
|
Suh SM, Kim MJ, Kim HI, Kim HJ, Kim HY. A multiplex PCR assay combined with capillary electrophoresis for the simultaneous detection of tropomyosin allergens from oyster, mussel, abalone, and clam mollusk species. Food Chem 2020; 317:126451. [PMID: 32109655 DOI: 10.1016/j.foodchem.2020.126451] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
Tropomyosin present in mollusk species is the most common allergen in humans and causes excessive immune responses. To simultaneously detect tropomyosin allergens in mollusk species, a multiplex PCR assay combined with capillary electrophoresis was developed for the detection of tropomyosin genes of oyster, mussel, abalone, and clam, and the 18S rRNA gene of eukaryotes. The developed multiplex PCR revealed specific amplicons of four mollusk species [oyster (Crassostrea gigas), 150 bp; mussel (Mytilus edulis), 119 bp; abalone (Haliotis discus hannai), 98 bp; clam (Ruditapes philippinarum), 76 bp] and an amplicon of universal eukaryotic primer (eukaryotes, 190 bp); the detection limit of DNA was confirmed to be 16 pg. This multiplex PCR assay was applied for monitoring commercially processed seafood products, achieving successful detection of tropomyosin genes in 19 processed seafood products in Korea. The developed assay is an efficient and useful method for detecting tropomyosin allergens from mollusk species in seafoods.
Collapse
Affiliation(s)
- Seung-Man Suh
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Mi-Ju Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hee-In Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyun-Joong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
25
|
Pérez-Tavarez R, Carrera M, Pedrosa M, Quirce S, Rodríguez-Pérez R, Gasset M. Reconstruction of fish allergenicity from the content and structural traits of the component β-parvalbumin isoforms. Sci Rep 2019; 9:16298. [PMID: 31704988 PMCID: PMC6841720 DOI: 10.1038/s41598-019-52801-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Most fish-allergic patients have anti-β-parvalbumin (β-PV) immunoglobulin E (IgE), which cross-reacts among fish species with variable clinical effects. Although the β-PV load is considered a determinant for allergenicity, fish species express distinct β-PV isoforms with unknown pathogenic contributions. To identify the role various parameters play in allergenicity, we have taken Gadus morhua and Scomber japonicus models, determined their β-PV isoform composition and analyzed the interaction of the IgE from fish-allergic patient sera with these different conformations. We found that each fish species contains a major and a minor isoform, with the total PV content four times higher in Gadus morhua than in Scomber japonicus. The isoforms showing the best IgE recognition displayed protease-sensitive globular folds, and if forming amyloids, they were not immunoreactive. Of the isoforms displaying stable globular folds, one was not recognized by IgE under any of the conditions, and the other formed highly immunoreactive amyloids. The results showed that Gadus morhua muscles are equipped with an isoform combination and content that ensures the IgE recognition of all PV folds, whereas the allergenic load of Scomber japonicus is under the control of proteolysis. We conclude that the consideration of isoform properties and content may improve the explanation of fish species allergenicity differences.
Collapse
Affiliation(s)
- Raquel Pérez-Tavarez
- Insto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Mónica Carrera
- Insto Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, 36208, Vigo, Spain
| | - María Pedrosa
- Dpto de Alergología, Hospital Universitario La Paz, 28046, Madrid, Spain.,Insto de Investigación Hospital Universitario La Paz (IdiPaz), 28046, Madrid, Spain
| | - Santiago Quirce
- Dpto de Alergología, Hospital Universitario La Paz, 28046, Madrid, Spain.,Insto de Investigación Hospital Universitario La Paz (IdiPaz), 28046, Madrid, Spain
| | - Rosa Rodríguez-Pérez
- Insto de Investigación Hospital Universitario La Paz (IdiPaz), 28046, Madrid, Spain
| | - María Gasset
- Insto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain.
| |
Collapse
|
26
|
Cross-reactivity of sIgE to mite and shrimp induced allergies in different age groups and clinical profiles of shrimp sIgE in vegetarians. Sci Rep 2019; 9:12548. [PMID: 31467382 PMCID: PMC6715687 DOI: 10.1038/s41598-019-49068-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/09/2019] [Indexed: 11/25/2022] Open
Abstract
The sensitization to house dust mites (HDMs) and shrimps affects the development of hypersensitivity with an increase in age. Due to the cross-reactivity between shellfish and HDMs, HDMs were considered as the primary sensitizer for shellfish allergy. Thus, vegetarians might be sensitized to shrimp through the inadvertent inhalation of HDMs. Therefore, we assessed the prevalence of shrimp or mite allergy among different age groups and vegetarians. The serum specific-IgE (sIgE) level of HDMs and shrimp in 60 children/adolescence (un-adults), 30 adults, 30 elderly, and four vegetarian adults patients were measured. The sera with sIgE levels greater than 3.5 kUA/L were cross-reactivity examined. We found that HDMs induced higher sIgE than shrimp in un-adults. In contrast, shrimp-induced sIgE was higher in the adults and elderly patients. Moreover, adults were more frequently sensitized to shrimp and mite at the same time compared with the un-adult or elderly groups. The mite-Der p 10 not only displayed high cross-reactivity to the shrimp-Pen a 1 in all age groups and vegetarians but functioned as the major allergen to sensitize un-adults. Overall, the level of mite or shrimp sIgE is influenced by alterations in age, and vegetarians are at risk of shrimp sensitization via cross-reactivity between shrimp and mite.
Collapse
|
27
|
Fu L, Wang C, Zhu Y, Wang Y. Seafood allergy: Occurrence, mechanisms and measures. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
28
|
Faisal M, Vasiljevic T, Donkor ON. A review on methodologies for extraction, identification and quantification of allergenic proteins in prawns. Food Res Int 2019; 121:307-318. [PMID: 31108753 DOI: 10.1016/j.foodres.2019.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 12/26/2022]
Abstract
Prawn allergy is one of the most common food-borne allergies and current prevention is by avoidance. This review paper summarised different methodologies for the extraction, identification and quantification of prawn protein allergens, reported in various research studies. Following extraction, allergenic components have been analysed using well-established methodologies, such as SDS-PAGE, Immunoblotting, ELISA, CD Spectroscopy, HPLC, DBPCFC, SPT etc. Moreover, the preference towards Aptamer-based technique for allergenicity analysis has also been highlighted in this review paper. The summary of these methodologies will provide a reference platform for present and future research directions.
Collapse
Affiliation(s)
- M Faisal
- Advanced Food Systems Research Unit, Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.
| | - T Vasiljevic
- Advanced Food Systems Research Unit, Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.
| | - O N Donkor
- Advanced Food Systems Research Unit, Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
29
|
Identification and mutational analysis of continuous, immunodominant epitopes of the major oyster allergen Crag 1. Clin Immunol 2019; 201:20-29. [PMID: 30807831 DOI: 10.1016/j.clim.2019.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 01/03/2023]
Abstract
Shellfish, including oysters, often cause allergic reactions in children and adults. Oysters are inevitably consumed because of its delicacy and nutritional benefit, leading to frequent occurrence of severe clinical symptoms observed in patients with oyster hypersensitivity. We aimed to identify the immunodominant epitopes of oyster tropomyosin and crucial amino acids for IgE binding, which will help us to further understand the immunochemical characteristics of Cra g 1. The potential epitopes were predicted by immunoinformatics tools and the resultant immunodominant epitopes were identified by inhibition ELISA with pooled sera and individual serum from oyster allergic patients. Surprisingly, homologous substitution of multiple amino acids led to obviously decrease affinity of IgE antibodies, but this manner did not abrogate binding completely. Five major linear epitopes were evenly distributed on the surface of homology-based Cra g 1 model and hydrophilic residues appeared to be the most important for IgE binding. These results not only offer a better understanding of the molecular mechanism of interaction between Cra g 1 and oyster-specific IgE but also have significance in clinical diagnosis and immunotherapy.
Collapse
|
30
|
D'Auria E, Abrahams M, Zuccotti GV, Venter C. Personalized Nutrition Approach in Food Allergy: Is It Prime Time Yet? Nutrients 2019; 11:E359. [PMID: 30744105 PMCID: PMC6412250 DOI: 10.3390/nu11020359] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of food allergy appears to be steadily increasing in infants and young children. One of the major challenges of modern clinical nutrition is the implementation of individualized nutritional recommendations. The management of food allergy (FA) has seen major changes in recent years. While strict allergen avoidance is still the key treatment principle, it is increasingly clear that the avoidance diet should be tailored according to the patient FA phenotype. Furthermore, new insights into the gut microbiome and immune system explain the rising interest in tolerance induction and immunomodulation by microbiota-targeted dietary intervention. This review article focuses on the nutritional management of IgE mediated food allergy, mainly focusing on different aspects of the avoidance diet. A personalized approach to managing the food allergic individual is becoming more feasible as we are learning more about diagnostic modalities and allergic phenotypes. However, some unmet needs should be addressed to fully attain this goal.
Collapse
Affiliation(s)
- Enza D'Auria
- Department of Pediatrics, Children's Hospital V. Buzzi, University of Milan, Milan 20154, Italy.
| | - Mariette Abrahams
- Faculty of Social Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Children's Hospital V. Buzzi, University of Milan, Milan 20154, Italy.
| | - Carina Venter
- Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
31
|
Keshavarz B, Jiang X, Hsieh YHP, Rao Q. Matrix effect on food allergen detection – A case study of fish parvalbumin. Food Chem 2019; 274:526-534. [DOI: 10.1016/j.foodchem.2018.08.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 11/24/2022]
|
32
|
Fang L, Li G, Gu R, Cai M, Lu J. Influence of thermal treatment on the characteristics of major oyster allergen Cra g 1 (tropomyosin). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5322-5328. [PMID: 29656413 DOI: 10.1002/jsfa.9071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Shellfish, including oysters, often cause allergic reactions in adults. Thermal treatment is one of the most common technologies for dealing with seafood, which may affect biological properties. The present study aimed to evaluate the impact of heating on the conformation and potential allergenicity of oyster-derived tropomyosin (Cra g 1). RESULTS Sodium dodecylsulphate-polyacrylamide gel electrophoresis showed that there was an apparent band at 35 kDa of raw tropomyosin after purification and more significant polymers appeared in the heated protein. Interestingly, obvious changes in the intensity of the circular dichroism signal and 1-anilino-8-naphthalene sulfonate-binding fluorescence were observed especially in the case of the roasted form, which was associated with an increase in antibody reactivity. The degree of immunoglobulin (Ig)E binding of this treatment was demonstrated in the order roasted > boiled > raw. Furthermore, sequence alignment and amino acid composition revealed that Cra g 1 shared relatively high homology to tropomyosins from other shellfish and was also abundant in lysine that was apt to be modified by reducing sugars during heating. CONCLUSION Heated Cra g 1 produces higher IgE reactivity than the raw form as a result of the denaturation and formation of polymers. These findings will benefit the diagnosis and management of potential allergenicity as a result of shellfish. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Fang
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Guoming Li
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Ruizeng Gu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Muyi Cai
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Jun Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| |
Collapse
|
33
|
Determination of a major allergen in fish samples by simple and effective label-free capillary electrophoretic analysis after background suppression in ion-exchange chromatography. Food Chem 2018; 261:124-130. [DOI: 10.1016/j.foodchem.2018.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/28/2018] [Accepted: 04/12/2018] [Indexed: 02/05/2023]
|
34
|
Fu L, Zhou J, Wang C, Li X, Zheng L, Wang Y. Ion-Exchange Chromatography Coupled With Dynamic Coating Capillary Electrophoresis for Simultaneous Determination of Tropomyosin and Arginine Kinase in Shellfish. Front Chem 2018; 6:305. [PMID: 30090807 PMCID: PMC6068269 DOI: 10.3389/fchem.2018.00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/05/2018] [Indexed: 11/13/2022] Open
Abstract
Tropomyosin (TM) and arginine kinase (AK) are known as two major allergens in seafood. For the first time, we demonstrate a newly developed ion-exchange chromatography coupled with dynamic coating capillary electrophoresis (IEC-DCCE) method to simultaneously analyze the TM and AK in shellfish. First, we have optimized the procedure of IEC for simple enrichment of TM and AK crude extract. By using 30 mM borate-borax at pH 9.0 with 0.3% (v/v) Tween-20 as a dynamic coating modifier for capillary electrophoresis (CE) separation, the migration time, separation efficiency and electrophoretic resolution greatly improved. The limits of detection (LOD) were 1.2 μg mL-1 for AK and 1.1 μg mL-1 for TM (S/N = 3), and the limits of quantification (LOQ) were 4.0 μg mL-1 for AK and 3.7 μg mL-1 for TM (S/N = 10). The recovery of AK ranged from 91.5 to 106.1%, while that of TM ranged from 94.0 to 109.5%. We also found that only when the concentrations of AK and TM were above LOD reported here, these proteins can stimulate human mast cell (LAD2) degranulation. Finally, the use of IEC-DCCE to analyze fresh shellfish samples highlights the applicability of this method for the simultaneous detection of these allergens in complex food systems.
Collapse
Affiliation(s)
- Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, China
| | - Jinru Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, China
| | - Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaohui Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Lei Zheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
35
|
Le TTK, Tran TTB, Ho HTM, Vu ATL, Lopata AL. Prevalence of food allergy in Vietnam: comparison of web-based with traditional paper-based survey. World Allergy Organ J 2018; 11:16. [PMID: 30061980 PMCID: PMC6055338 DOI: 10.1186/s40413-018-0195-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/28/2018] [Indexed: 11/17/2022] Open
Abstract
Background Web-based surveys (WBS) are increasingly applied in epidemiological studies as an appealing alternative to traditional survey methods. Rapid data collection, reduced expenditure and ease of access to large populations are some of the clear advantages of online surveys. However, WBS are still subject to limitations in terms of sample size, response rate and other additional biases compared to traditional survey methods. In the present study, we seek to validate data on food allergy (FA) in two independent sample populations collected from a WBS, and compare it to a paper-based survey (PBS). Methods Data collected from two survey modes were compared by hypothesis testing for independent sample population. The WBS included 1185 respondents, while the PBS included 9039 respondents. Results Overall, the data from the WBS were comparable to the PBS conducted over the same period of time in Vietnamese adults. There were no effects of different survey modes on the lifetime prevalence of doctor-diagnosed FA (5.7%; P = 0.7795, β = 0.05) and IgE-mediated FA (5.8%; P = 0.9590, β = 0.05). Both surveys showed the dominance of seafood allergy in this population (up to 2.6%), followed by beef allergy. Close correlation was seen in the patterns of FAs and different clinical symptoms. The contribution of family history of allergic diseases and place of residence to FA were confirmed in both surveys. Conclusions The consistency of the WBS results with the PBS indicates a promising application of online surveys as an economic and validated model for future epidemiological studies, specifically in developing countries. Electronic supplementary material The online version of this article (10.1186/s40413-018-0195-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thu T K Le
- 1Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland Australia.,2Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Townsville, Queensland Australia.,3Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland Australia
| | - Thuy T B Tran
- 4Faculty of Food Technology, Nha Trang University, Khanh Hoa, Vietnam
| | - Huong T M Ho
- Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam
| | - An T L Vu
- 6Faculty of Food Science and Technology, Nong Lam University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Andreas L Lopata
- 1Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland Australia.,2Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Townsville, Queensland Australia.,3Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland Australia
| |
Collapse
|
36
|
Rolland JM, Varese NP, Abramovitch JB, Anania J, Nugraha R, Kamath S, Hazard A, Lopata AL, O'Hehir RE. Effect of Heat Processing on IgE Reactivity and Cross-Reactivity of Tropomyosin and Other Allergens of Asia-Pacific Mollusc Species: Identification of Novel Sydney Rock Oyster Tropomyosin Sac g 1. Mol Nutr Food Res 2018; 62:e1800148. [PMID: 29756679 PMCID: PMC6099307 DOI: 10.1002/mnfr.201800148] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Indexed: 01/24/2023]
Abstract
SCOPE Shellfish allergy is an increasing global health priority, frequently affecting adults. Molluscs are an important shellfish group causing food allergy but knowledge of their allergens and cross-reactivity is limited. Optimal diagnosis of mollusc allergy enabling accurate advice on food avoidance is difficult. Allergens of four frequently ingested Asia-Pacific molluscs are characterized: Sydney rock oyster (Saccostrea glomerata), blue mussel (Mytilus edulis), saucer scallop (Amusium balloti), and southern calamari (Sepioteuthis australis), examining cross-reactivity between species and with blue swimmer crab tropomyosin, Por p 1. METHODS AND RESULTS IgE ELISA showed that cooking increased IgE reactivity of mollusc extracts and basophil activation confirmed biologically relevant IgE reactivity. Immunoblotting demonstrated strong IgE reactivity of several proteins including one corresponding to heat-stable tropomyosin in all species (37-40 kDa). IgE-reactive Sydney rock oyster proteins were identified by mass spectrometry, and the novel major oyster tropomyosin allergen was cloned, sequenced, and designated Sac g 1 by the IUIS. Oyster extracts showed highest IgE cross-reactivity with other molluscs, while mussel cross-reactivity was weakest. Inhibition immunoblotting demonstrated high cross-reactivity between tropomyosins of mollusc and crustacean species. CONCLUSION These findings inform novel approaches for reliable diagnosis and improved management of mollusc allergy.
Collapse
Affiliation(s)
- Jennifer M. Rolland
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Nirupama P. Varese
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Jodie B. Abramovitch
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Jessica Anania
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Roni Nugraha
- Centre for Biodiscovery and Molecular Development of TherapeuticsMolecular Allergy Research LaboratoryJames Cook UniversityTownsvilleAustralia,Department of Aquatic Product TechnologyBogor Agricultural UniversityBogorIndonesia
| | - Sandip Kamath
- Centre for Biodiscovery and Molecular Development of TherapeuticsMolecular Allergy Research LaboratoryJames Cook UniversityTownsvilleAustralia
| | - Anita Hazard
- Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Andreas L. Lopata
- Centre for Biodiscovery and Molecular Development of TherapeuticsMolecular Allergy Research LaboratoryJames Cook UniversityTownsvilleAustralia
| | - Robyn E. O'Hehir
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
37
|
Fu L, Song J, Wang C, Fu S, Wang Y. Bifidobacterium infantis Potentially Alleviates Shrimp Tropomyosin-Induced Allergy by Tolerogenic Dendritic Cell-Dependent Induction of Regulatory T Cells and Alterations in Gut Microbiota. Front Immunol 2017; 8:1536. [PMID: 29176981 PMCID: PMC5686061 DOI: 10.3389/fimmu.2017.01536] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022] Open
Abstract
Shellfish is one of the major allergen sources worldwide, and tropomyosin (Tm) is the predominant allergic protein in shellfish. Probiotics has been appreciated for its beneficial effects on the host, including anti-allergic and anti-inflammatory effects, although the underlying mechanisms were not fully understood. In this study, oral administration of probiotic strain Bifidobacterium infantis 14.518 (Binf) effectively suppressed Tm-induced allergic response in a mouse model by both preventive and therapeutic strategies. Further results showed that Binf stimulated dendritic cells (DCs) maturation and CD103+ tolerogenic DCs accumulation in gut-associated lymphoid tissue, which subsequently induced regulatory T cells differentiation for suppressing Th2-biased response. We also found that Binf regulates the alterations of gut microbiota composition. Specifically, the increase of Dorea and decrease of Ralstonia is highly correlated with Th2/Treg ratio and may contribute to alleviating Tm-induced allergic responses. Our findings provide molecular insight into the application of Binf in alleviating food allergy and even gut immune homeostasis.
Collapse
Affiliation(s)
- Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.,Laboratory of Mucosal Immunology and Food Research, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jinyu Song
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.,Laboratory of Mucosal Immunology and Food Research, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shujie Fu
- Laboratory of Mucosal Immunology and Food Research, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.,Laboratory of Mucosal Immunology and Food Research, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
38
|
Mejrhit N, Azdad O, El Kabbaoui M, Ouahidi I, Tazi A, Aarab L. Sensitivity of Moroccans to sardine parvalbumin and effect of heating and enzymatic treatments. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1343804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Najlae Mejrhit
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Ouarda Azdad
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Mohamed El Kabbaoui
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Ibtissam Ouahidi
- High Institute of Nursing and Technical Health, Ministry of Health, Fez, Morocco
| | - Abdelali Tazi
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Lotfi Aarab
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
39
|
Asnoussi A, Aibinu IE, Gasser RB, Lopata AL, Smooker PM. Molecular and immunological characterisation of tropomyosin from Anisakis pegreffii. Parasitol Res 2017; 116:3291-3301. [DOI: 10.1007/s00436-017-5642-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
|
40
|
Giusti A, Armani A, Sotelo CG. Advances in the analysis of complex food matrices: Species identification in surimi-based products using Next Generation Sequencing technologies. PLoS One 2017; 12:e0185586. [PMID: 28968423 PMCID: PMC5624605 DOI: 10.1371/journal.pone.0185586] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/17/2017] [Indexed: 11/21/2022] Open
Abstract
The Next Generation Sequencing (NGS) technologies represent a turning point in the food inspection field, particularly for species identification in matrices composed of a blend of two or more species. In this study NGS technologies were applied by testing the usefulness of the Ion Torrent Personal Genome Machine (PGM) in seafood traceability. Sixteen commercial surimi samples produced both in EU and non-EU countries were analysed. Libraries were prepared using a universal primer pair able to amplify a short 16SrRNA fragment from a wide range of fish and cephalopod species. The mislabelling rate of the samples was also evaluated. Overall, DNA from 13 families, 19 genera and 16 species of fish, and from 3 families, 3 genera and 3 species of cephalopods was found with the analysis. Samples produced in non-EU countries exhibited a higher variability in their composition. 37.5% of the surimi products were found to be mislabelled. Among them, 25% voluntary declared a species different from those identified and 25% (all produced in non-EU countries) did not report the presence of molluscs on the label, posing a potential health threat for allergic consumers. The use of vulnerable species was also proved. Although the protocol should be further optimized, PGM platform proved to be a useful tool for the analysis of complex, highly processed products.
Collapse
Affiliation(s)
- Alice Giusti
- FishLab, Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Andrea Armani
- FishLab, Department of Veterinary Sciences, University of Pisa, Pisa, Italy
- * E-mail: (AA); (CGS)
| | - Carmen G. Sotelo
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
- * E-mail: (AA); (CGS)
| |
Collapse
|
41
|
Moonesinghe H, Mackenzie H, Venter C, Kilburn S, Turner P, Weir K, Dean T. Prevalence of fish and shellfish allergy: A systematic review. Ann Allergy Asthma Immunol 2017; 117:264-272.e4. [PMID: 27613460 DOI: 10.1016/j.anai.2016.07.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/09/2016] [Accepted: 07/11/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Accurate information on the prevalence of food allergy facilitates a more evidence-based approach to planning of allergy services and can identify important geographic variations. OBJECTIVE To conduct a systematic review to assess the age-specific prevalence of fish and shellfish allergy worldwide. METHODS Searches were conducted using Web of Science and PubMed. Population-based cross-sectional studies and cohort studies that examined the prevalence of fish and shellfish allergy (IgE mediated and non-IgE mediated) at an identifiable point in time were eligible for inclusion in the study. Reviewers extracted general study information and study design, type of food allergy considered, food(s) assessed, method of diagnosis, sampling strategy, and sample characteristics. Raw data were extracted and percentage prevalence and 95% confidence intervals calculated. RESULTS A total of 7,333 articles were identified of which 61 studies met the inclusion criteria and were included in this review. The prevalence of fish allergy ranged from 0% to 7% and the prevalence of shellfish allergy from 0% to 10.3%, depending on the method of diagnosis. Where food challenges were used, the prevalence for fish allergy was found to be 0% to 0.3% and for shellfish allergy was 0% to 0.9%. CONCLUSION Few studies have established the prevalence of fish or shellfish allergy using the gold standard double-blind, placebo-controlled challenge criteria, with most instead relying on self-reported questionnaire-based methods. The limited data available suggest that fish allergy prevalence is similar worldwide; however, shellfish allergy prevalence may be higher in the Southeast Asia region.
Collapse
Affiliation(s)
| | | | - Carina Venter
- University of Portsmouth, Portsmouth, United Kingdom; David Hide Asthma and Allergy Centre, Isle of Wight, United Kingdom
| | - Sally Kilburn
- University of Portsmouth, Portsmouth, United Kingdom
| | - Paul Turner
- Imperial College London, London, United Kingdom
| | - Kellyn Weir
- University of Portsmouth, Portsmouth, United Kingdom
| | - Taraneh Dean
- University of Portsmouth, Portsmouth, United Kingdom; David Hide Asthma and Allergy Centre, Isle of Wight, United Kingdom
| |
Collapse
|
42
|
Fu L, Wang C, Wang Y. Seafood allergen-induced hypersensitivity at the microbiota-mucosal site: Implications for prospective probiotic use in allergic response regulation. Crit Rev Food Sci Nutr 2017; 58:1512-1525. [DOI: 10.1080/10408398.2016.1269719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Linglin Fu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chong Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanbo Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
43
|
Mejrhit N, Azdad O, Chda A, El Kabbaoui M, Bousfiha A, Bencheikh R, Tazi A, Aarab L. Evaluation of the sensitivity of Moroccans to shrimp tropomyosin and effect of heating and enzymatic treatments. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1323187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Najlae Mejrhit
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Ouarda Azdad
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Alae Chda
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Mohamed El Kabbaoui
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Amal Bousfiha
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Rachid Bencheikh
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Abdelali Tazi
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Lotfi Aarab
- Faculty of Sciences & Techniques, Laboratory of Bioactive Molecules (LMBSF), University Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
44
|
Mohammadi M, Mokhtarian K, Kardar GA, Farrokhi S, Sadroddiny E, Khorramizadeh MR, Falak R. Expression of recombinant parvalbumin from wolf-herring fish and determination of its IgE-binding capability. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1306493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mohsen Mohammadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Islamic Republic of Iran
| | - Kobra Mokhtarian
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Gholam Ali Kardar
- Asthma, Allergy and Immunology Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Shokrollah Farrokhi
- The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Islamic Republic of Iran
- Department of Allergy and Immunology, Bushehr University of Medical Sciences, Bushehr, Islamic Republic of Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Reza Khorramizadeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Bio-sensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
45
|
Stephen JN, Sharp MF, Ruethers T, Taki A, Campbell DE, Lopata AL. Allergenicity of bony and cartilaginous fish - molecular and immunological properties. Clin Exp Allergy 2017; 47:300-312. [PMID: 28117510 DOI: 10.1111/cea.12892] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Allergy to bony fish is common and probably increasing world-wide. The major heat-stable pan-fish allergen, parvalbumin (PV), has been identified and characterized for numerous fish species. In contrast, there are very few reports of allergic reactions to cartilaginous fish despite widespread consumption. The molecular basis for this seemingly low clinical cross-reactivity between these two fish groups has not been elucidated. PV consists of two distinct protein lineages, α and β. The α-lineage of this protein is predominant in muscle tissue of cartilaginous fish (Chondrichthyes), while β-PV is abundant in muscle tissue of bony fish (Osteichthyes). The low incidence of allergic reactions to ingested rays and sharks is likely due to the lack of molecular similarity, resulting in reduced immunological cross-reactivity between the two PV lineages. Structurally and physiologically, both protein lineages are very similar; however, the amino acid homology is very low with 47-54%. Furthermore, PV from ancient fish species such as the coelacanth demonstrates 62% sequence homology to leopard shark α-PV and 70% to carp β-PV. This indicates the extent of conservation of the PV isoforms lineages across millennia. This review highlights prevalence data on fish allergy and sensitization to fish, and details the molecular diversity of the two protein lineages of the major fish allergen PV among different fish groups, emphasizing the immunological and clinical differences in allergenicity.
Collapse
Affiliation(s)
- J N Stephen
- Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| | - M F Sharp
- Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| | - T Ruethers
- Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| | - A Taki
- Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| | - D E Campbell
- Clinical Immunology and Allergy, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - A L Lopata
- Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| |
Collapse
|
46
|
D'Amelio C, Gastaminza G, Vega O, Bernad A, Madamba RC, Martínez-Aranguren R, Ferrer M, Goikoetxea MJ. Induction of tolerance to different types of fish through desensitization with hake. Pediatr Allergy Immunol 2017; 28:96-99. [PMID: 27671208 DOI: 10.1111/pai.12662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- C D'Amelio
- Department of Allergology and Clinical Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - G Gastaminza
- Department of Allergology and Clinical Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - O Vega
- Department of Allergology and Clinical Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - A Bernad
- Department of Allergology and Clinical Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - R C Madamba
- Department of Allergology and Clinical Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - R Martínez-Aranguren
- Department of Allergology and Clinical Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - M Ferrer
- Department of Allergology and Clinical Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - M J Goikoetxea
- Department of Allergology and Clinical Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
47
|
Mahajan A, Youssef LA, Cleyrat C, Grattan R, Lucero SR, Mattison CP, Erasmus MF, Jacobson B, Tapia L, Hlavacek WS, Schuyler M, Wilson BS. Allergen Valency, Dose, and FcεRI Occupancy Set Thresholds for Secretory Responses to Pen a 1 and Motivate Design of Hypoallergens. THE JOURNAL OF IMMUNOLOGY 2016; 198:1034-1046. [PMID: 28039304 DOI: 10.4049/jimmunol.1601334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/30/2016] [Indexed: 11/19/2022]
Abstract
Ag-mediated crosslinking of IgE-FcεRI complexes activates mast cells and basophils, initiating the allergic response. Of 34 donors recruited having self-reported shrimp allergy, only 35% had significant levels of shrimp-specific IgE in serum and measurable basophil secretory responses to rPen a 1 (shrimp tropomyosin). We report that degranulation is linked to the number of FcεRI occupied with allergen-specific IgE, as well as the dose and valency of Pen a 1. Using clustered regularly interspaced palindromic repeat-based gene editing, human RBLrαKO cells were created that exclusively express the human FcεRIα subunit. Pen a 1-specific IgE was affinity purified from shrimp-positive plasma. Cells primed with a range of Pen a 1-specific IgE and challenged with Pen a 1 showed a bell-shaped dose response for secretion, with optimal Pen a 1 doses of 0.1-10 ng/ml. Mathematical modeling provided estimates of receptor aggregation kinetics based on FcεRI occupancy with IgE and allergen dose. Maximal degranulation was elicited when ∼2700 IgE-FcεRI complexes were occupied with specific IgE and challenged with Pen a 1 (IgE epitope valency of ≥8), although measurable responses were achieved when only a few hundred FcεRI were occupied. Prolonged periods of pepsin-mediated Pen a 1 proteolysis, which simulates gastric digestion, were required to diminish secretory responses. Recombinant fragments (60-79 aa), which together span the entire length of tropomyosin, were weak secretagogues. These fragments have reduced dimerization capacity, compete with intact Pen a 1 for binding to IgE-FcεRI complexes, and represent a starting point for the design of promising hypoallergens for immunotherapy.
Collapse
Affiliation(s)
- Avanika Mahajan
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Lama A Youssef
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, Damascus University, Damascus, Syria.,National Commission for Biotechnology, Damascus, Syria
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Rachel Grattan
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Shayna R Lucero
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Christopher P Mattison
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, LA 70124
| | - M Frank Erasmus
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Bruna Jacobson
- Department of Computer Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Lydia Tapia
- Department of Computer Sciences, University of New Mexico, Albuquerque, NM 87131
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545.,Theoretical Biology and Biophysics Group, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - Mark Schuyler
- Department of Medicine, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131;
| |
Collapse
|
48
|
McKenna OE, Asam C, Araujo GR, Roulias A, Goulart LR, Ferreira F. How relevant is panallergen sensitization in the development of allergies? Pediatr Allergy Immunol 2016; 27:560-8. [PMID: 27129102 PMCID: PMC5006871 DOI: 10.1111/pai.12589] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 12/21/2022]
Abstract
Panallergens comprise various protein families of plant as well as animal origin and are responsible for wide IgE cross-reactivity between related and unrelated allergenic sources. Such cross-reactivities include reactions between various pollen sources, pollen and plant-derived foods as well as invertebrate-derived inhalants and foodstuff. Here, we provide an overview on the most clinically relevant panallergens from plants (profilins, polcalcins, non-specific lipid transfer proteins, pathogenesis-related protein family 10 members) and on the prominent animal-derived panallergen family, tropomyosins. In addition, we explore the role of panallergens in the sensitization process and progress of the allergic disease. Emphasis is given on epidemiological aspects of panallergen sensitization and clinical manifestations. Finally, the issues related to diagnosis and therapy of patients sensitized to panallergens are outlined, and the use of panallergens as predictors for cross-reactive allergy and as biomarkers for disease severity is discussed.
Collapse
Affiliation(s)
- Olivia E. McKenna
- Department of Molecular BiologyUniversity of SalzburgSalzburgAustria
| | - Claudia Asam
- Department of Molecular BiologyUniversity of SalzburgSalzburgAustria
| | - Galber R. Araujo
- Department of Molecular BiologyUniversity of SalzburgSalzburgAustria
- Laboratory of NanobiotechnologyInstitute of Genetics and BiochemistryFederal University of UberlandiaUberlandiaBrazil
| | - Anargyros Roulias
- Department of Molecular BiologyUniversity of SalzburgSalzburgAustria
| | - Luiz R. Goulart
- Laboratory of NanobiotechnologyInstitute of Genetics and BiochemistryFederal University of UberlandiaUberlandiaBrazil
- Department of Medical Microbiology and ImmunologyUniversity of CaliforniaDavisCAUSA
| | - Fatima Ferreira
- Department of Molecular BiologyUniversity of SalzburgSalzburgAustria
| |
Collapse
|
49
|
Baird FJ, Su X, Aibinu I, Nolan MJ, Sugiyama H, Otranto D, Lopata AL, Cantacessi C. The Anisakis Transcriptome Provides a Resource for Fundamental and Applied Studies on Allergy-Causing Parasites. PLoS Negl Trop Dis 2016; 10:e0004845. [PMID: 27472517 PMCID: PMC4966942 DOI: 10.1371/journal.pntd.0004845] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
Background Food-borne nematodes of the genus Anisakis are responsible for a wide range of illnesses (= anisakiasis), from self-limiting gastrointestinal forms to severe systemic allergic reactions, which are often misdiagnosed and under-reported. In order to enhance and refine current diagnostic tools for anisakiasis, knowledge of the whole spectrum of parasite molecules transcribed and expressed by this parasite, including those acting as potential allergens, is necessary. Methodology/Principal Findings In this study, we employ high-throughput (Illumina) sequencing and bioinformatics to characterise the transcriptomes of two Anisakis species, A. simplex and A. pegreffii, and utilize this resource to compile lists of potential allergens from these parasites. A total of ~65,000,000 reads were generated from cDNA libraries for each species, and assembled into ~34,000 transcripts (= Unigenes); ~18,000 peptides were predicted from each cDNA library and classified based on homology searches, protein motifs and gene ontology and biological pathway mapping. Using comparative analyses with sequence data available in public databases, 36 (A. simplex) and 29 (A. pegreffii) putative allergens were identified, including sequences encoding ‘novel’ Anisakis allergenic proteins (i.e. cyclophilins and ABA-1 domain containing proteins). Conclusions/Significance This study represents a first step towards providing the research community with a curated dataset to use as a molecular resource for future investigations of the biology of Anisakis, including molecules putatively acting as allergens, using functional genomics, proteomics and immunological tools. Ultimately, an improved knowledge of the biological functions of these molecules in the parasite, as well as of their immunogenic properties, will assist the development of comprehensive, reliable and robust diagnostic tools. Nematodes within the genus Anisakis (i.e. A. simplex and A. pegreffii, also known as herring worms) are the causative agents of the fish-borne gastrointestinal illness known as ‘anisakiasis’, with infections resulting in symptoms ranging from mild gastric forms to severe allergic reactions leading to urticaria, gastrointestinal and/or respiratory signs and/or anaphylaxis (‘allergic anisakiasis’). Despite significant advances in knowledge of the pathobiology of allergic anisakiasis, thus far, the exact number and nature of parasite molecules acting as potential allergens are currently unknown; filling this gap is necessary to the development of robust and reliable diagnostics for allergic anisakiasis which, in turn, underpins the implementation of effective therapeutic strategies. Here, we use RNA-Seq and bioinformatics to sequence and annotate the transcriptomes of A. simplex and A. pegreffii, and, as an example application of these resources, mine this data to identify and characterise putative novel parasite allergens based on comparisons with known allergen sequence data from other parasites and other organisms.
Collapse
Affiliation(s)
- Fiona J. Baird
- Centre for Biodiscovery & Molecular Development of Therapeutics, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- * E-mail: (FJB); (CC)
| | - Xiaopei Su
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ibukun Aibinu
- School of Applied Sciences, RMIT University, Bundoora, Australia
| | - Matthew J. Nolan
- Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Andreas L. Lopata
- Centre for Biodiscovery & Molecular Development of Therapeutics, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (FJB); (CC)
| |
Collapse
|
50
|
Abstract
Food allergy is receiving increased attention in recent years. Because there is currently no known cure for food allergy, avoiding the offending food is the best defense for sensitive individuals. Type I food allergy is mediated by food proteins, and thus, theoretically, any food protein is a potential allergen. Variability of an individual's immune system further complicates attempts to understand allergen-antibody interaction. In this article, we briefly review food allergy occurrence, prevalence, mechanisms, and detection. Efforts aimed at reducing/eliminating allergens through food processing are discussed. Future research needs are addressed.
Collapse
Affiliation(s)
- Shridhar K Sathe
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| | - Changqi Liu
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| | - Valerie D Zaffran
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| |
Collapse
|