1
|
Centorame G, Warrington NM, Hemani G, Wang G, Davey Smith G, Evans DM. No Evidence of Interaction Between FADS2 Genotype and Breastfeeding on Cognitive or Other Traits in the UK Biobank. Behav Genet 2025; 55:86-102. [PMID: 39652205 PMCID: PMC11882634 DOI: 10.1007/s10519-024-10210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/11/2024] [Indexed: 03/06/2025]
Abstract
Breastfeeding is hypothesised to benefit child health and cognitive functioning by providing long-chain polyunsaturated fatty acids, which are essential for brain development. In 2007, Caspi et al. found evidence in two cohorts for an interaction between genetic variation in the FADS2 gene (a gene involved in fatty acid metabolism) and breastfeeding on IQ. However, subsequent studies have provided mixed evidence for the existence of an interaction. We investigated the relationship between genetic variation in the FADS2 region, breastfeeding, and their interaction in up to 335,650 individuals from the UK Biobank. We tested for the interaction over a range of cognitive functioning tests, as well as educational attainment and other traits thought to be influenced by breastfeeding, including cardiometabolic traits, number of offspring, and atopic allergy. FADS2 alleles associated with an increase in docosahexaenoic acid in blood serum (the C allele of rs174575) were associated with decreased verbal-numerical reasoning ( p = 2.28 × 10 - 5 ) and triglycerides ( p = 1.40 × 10 - 41 ), increased number of offspring ( p = 3.40 × 10 - 5 ), total cholesterol ( p = 5.28 × 10 - 36 ), HDL ( p = 1.42 × 10 - 51 ), and LDL cholesterol ( p = 1.46 × 10 - 21 ). We observed no evidence of an interaction in any of the traits, regardless of the modelling strategy on any cognitive or non-cognitive traits. We postulate that the previous positive findings are likely to be spurious, perhaps due to lack of appropriate control for latent population structure.
Collapse
Affiliation(s)
- Giulio Centorame
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, 306 Carmody Road, St Lucia, QLD, 4072, Australia.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Nicole M Warrington
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, 306 Carmody Road, St Lucia, QLD, 4072, Australia
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Public Health and Nursing, K. G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Geng Wang
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, 306 Carmody Road, St Lucia, QLD, 4072, Australia
| | | | - David M Evans
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, 306 Carmody Road, St Lucia, QLD, 4072, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
2
|
Soni S, W. AJ, Kurian C, Chakraborty P, Paari KA. Food additives and contaminants in infant foods: a critical review of their health risk, trends and recent developments. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:63. [DOI: 10.1186/s43014-024-00238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/25/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe infant food market has expanded rapidly over the past two decades. However, the industry faces significant challenges, including concerns over the health effects of infant food additives and issues with food safety. However, new evidences suggest that certain food additives, such as those used to preserve and transport infant formula to keep it fresh for longer, should be avoided. Science into the effects of additives on human behavior makes up a sizable sector of the additives market. Problems such as hypernatremic dehydration, malnutrition, and obesity in infants are directly linked to faulty formula production. The Food and Drug Administration (FDA) has established the toxicity types and chemical tests necessary for evaluating the safety of food additives and GRAS (Generally Recognized as Safe) compounds. These tests are crucial in understanding the food safety aspects of food additives. The health effects of different types of food additives on infants are discussed in this context. The article gives an outline of various national and global agencies that provides recommendations and standards to gauge the quality of baby food. The immunological responses, allergic reaction pathways and other related health hazards among the infants and young children caused by the food additive are discussed in this article.
Graphical Abstract
Collapse
|
3
|
Hellström A, Kermorvant-Duchemin E, Johnson M, Sáenz de Pipaón M, Smith LE, Hård AL. Nutritional interventions to prevent retinopathy of prematurity. Pediatr Res 2024; 96:905-911. [PMID: 38684884 PMCID: PMC11502481 DOI: 10.1038/s41390-024-03208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 05/02/2024]
Abstract
Very preterm infants are at high risk of growth failure. Poor weight gain is a prominent risk factor for retinopathy of prematurity (ROP) and optimizing nutrition could potentially promote growth and reduce ROP. Most infants at risk of ROP need parenteral nutrition initially and studies of enhanced parenteral provision of lipids and amino acids have suggested a beneficial effect on ROP. Higher amino acid intake was associated with lower incidence of hyperglycemia, a risk factor for ROP. For very preterm infants, providing unpasteurized fortified raw maternal breast milk appears to have a dose-dependent preventive effect on ROP. These infants become deficient in arachidonic acid (ArA) and docosahexaenoic acid (DHA) after birth when the maternal supply is lost. Earlier studies have investigated the impact of omega-3 fatty acids on ROP with mixed results. In a recent study, early enteral supplementation of ArA 100 mg/kg/d and DHA 50 mg/kg/d until term equivalent age reduced the incidence of severe ROP by 50%. IMPACT: Previous reviews of nutritional interventions to prevent morbidities in preterm infants have mainly addressed bronchopulmonary dysplasia, brain lesions and neurodevelopmental outcome. This review focusses on ROP. Neonatal enteral supplementation with arachidonic acid and docosahexaenoic acid, at levels similar to the fetal accretion rate, has been found to reduce severe ROP by 50% in randomized controlled trials.
Collapse
Affiliation(s)
- Ann Hellström
- Department of Clinical Neuroscience, Institution of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Elsa Kermorvant-Duchemin
- Université Paris Cité, AP-HP, Hôpital Necker-Enfants Malades, Department of Neonatal Medicine, Paris, 75015, France
| | - Mark Johnson
- Department of Neonatal Medicine, University Hospital Southampton NHS Trust, Southampton, UK
- National Institute for Health Research Biomedical Research Centre Southampton, University Hospital Southampton NHS Trust and University of Southampton, Southampton, UK
| | - Miguel Sáenz de Pipaón
- Neonatology Hospital La Paz Institute for Health Research - IdiPAZ, (Universidad Autónoma de Madrid), Madrid, Spain
| | - Lois E Smith
- The Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna-Lena Hård
- Department of Clinical Neuroscience, Institution of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Purkiewicz A, Pietrzak-Fiećko R. Changes in the Fatty Acid Profile of Lactating Women Living in Poland-A Comparison with the Fatty Acid Profile of Selected Infant Formulas. Nutrients 2024; 16:2411. [PMID: 39125292 PMCID: PMC11314165 DOI: 10.3390/nu16152411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The present study examined the fatty acid content of human milk from Polish women living in the Warmia and Mazury region with regard to different lactation periods and compared it with the fatty acid content of selected infant formulas. The analysis included samples of breast milk-colostrum (n = 21), transitional milk (n = 26), and mature milk (n = 22). Fat was extracted using the Rose-Gottlieb method, and the fatty acid profile was determined by gas chromatography with a flame ionization detector (FID). The proportion of SFAs (saturated fatty acids) > MUFAs (monounsaturated fatty acids) > PUFAs (polyunsaturated fatty acids) was determined in each fraction of breast milk and infant formula. Palmitic, oleic, and linoleic acids predominated in breast milk and infant formulas. Colostrum contained lower contents of selected SFAs (caprylic, capric, lauric) and higher contents of selected MUFAs (ercucic) and PUFAs (arachidonic and docosahexaenoic) (p < 0.05) relative to transitional and mature milk. Infant formulas were distinguished from human milk in terms of their SFA (caproic, caprylic, lauric, arachidic), MUFA (oleic), and PUFA (linoleic, α-linoleic) content. It should be noted that infant formulas contained significantly lower trans fatty acid (TFA) content-more than thirty-six and more than nineteen times lower than in human milk. Furthermore, human milk contained branched-chain fatty acids (BCFAs) at 0.23-0.28%, while infant formulas contained only trace amounts of these acids. The average ratio of n-6 to n-3 fatty acids for human milk was 6.59:1 and was close to the worldwide ratio of 6.53 ± 1.72:1. Both principal component analysis (PCA) and cluster analysis (CA) indicated significant differences in the fatty acid profile relative to lactation and a different profile of infant formulas relative to breast milk.
Collapse
Affiliation(s)
- Aleksandra Purkiewicz
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718 Olsztyn, Poland;
| | | |
Collapse
|
5
|
Holzapfel LF, Unger JP, Gordon P, Yang H, Cluette-Brown JE, Gollins LA, Hair AB, Martin CR. Fatty acid concentrations in preterm infants fed the exclusive human milk diet: a prospective cohort study. J Perinatol 2024; 44:680-686. [PMID: 38082071 PMCID: PMC11090710 DOI: 10.1038/s41372-023-01841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Quantify blood fatty acids and growth outcomes in preterm infants fed the exclusive human milk diet. METHODS A prospective cohort study of 30 infants 24-34 weeks gestation and ≤1250 g fed the exclusive human milk diet. Blood fatty acids were quantified at two time points. Comparisons were made using two-sample t-tests and Wilcoxon rank sum. RESULTS Donor human milk-fed (n = 12) compared to mother's own milk-fed infants (n = 18) from birth to after 28 days of life, had an increased interval change of linoleic to docosahexaenoic acid ratio (5.5 vs. -1.1 mole percent ratio, p = 0.034). Docosahexaenoic and eicosapentaenoic acid interval changes were similar between groups. The arachidonic acid change was similar between groups (-2.3 vs. -0.9 mole percent, p = 0.37), however, both experienced a negative change across time. At 36 weeks postmenstrual age, growth velocities were similar for groups. CONCLUSION An exclusive human milk diet maintains birth docosahexaenoic and eicosapentaenoic acid concentrations. However, the postnatal deficit in arachidonic acid was not prevented.
Collapse
Affiliation(s)
- Lindsay F Holzapfel
- Department of Pediatrics, Division of Neonatology, McGovern Medical School at the University of Texas Health Science Center at Houston, Children's Memorial Hermann Hospital, Houston, TX, USA.
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Jana P Unger
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Pam Gordon
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- Clinical Research Nutrition Center, Texas Children's Hospital, Houston, TX, USA
| | - Heeju Yang
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Joanne E Cluette-Brown
- Department of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Laura A Gollins
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Amy B Hair
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Camilia R Martin
- Division of Neonatology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Lapillonne A, Lembo C, Moltu SJ. Evidence on docosahexaenoic acid and arachidonic acid supplementation for preterm infants. Curr Opin Clin Nutr Metab Care 2024; 27:283-289. [PMID: 38547330 DOI: 10.1097/mco.0000000000001035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW For many decades, docosahexaenoic acid (DHA) supplementation was tested in premature infants to achieve an intake equivalent to the average level in breast milk, but this approach has led to conflicting results in terms of development and health outcomes. Higher doses of DHA closer to fetal accumulation may be needed. RECENT FINDINGS The efficacy of DHA supplementation for preterm infants at a dose equivalent to the estimated fetal accumulation rate is still under investigation, but this may be a promising approach, especially in conjunction with arachidonic acid supplementation. Current data suggest benefit for some outcomes, such as brain maturation, long-term cognitive function, and the prevention of retinopathy of prematurity. The possibility that supplementation with highly unsaturated oils increases the risk of neonatal morbidities should not be ruled out, but current meta-analyzes do not support a significant risk. SUMMARY The published literature supports a DHA intake in preterm infants that is closer to the fetal accumulation rate than the average breast milk content. Supplementation with DHA at this level in combination with arachidonic acid is currently being investigated and appears promising.
Collapse
Affiliation(s)
- Alexandre Lapillonne
- Department of Neonatology, APHP, Necker-Enfants Malades University Hospital
- EHU 7328 PACT, Paris Cite University, Paris, France
- CNRC Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Chiara Lembo
- Department of Neonatology, APHP, Necker-Enfants Malades University Hospital
| | - Sissel J Moltu
- Department of Neonatal Intensive Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Kopecky BJ, Lavine KJ. Cardiac macrophage metabolism in health and disease. Trends Endocrinol Metab 2024; 35:249-262. [PMID: 37993313 PMCID: PMC10949041 DOI: 10.1016/j.tem.2023.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Cardiac macrophages are essential mediators of cardiac development, tissue homeostasis, and response to injury. Cell-intrinsic shifts in metabolism and availability of metabolites regulate macrophage function. The human and mouse heart contain a heterogeneous compilation of cardiac macrophages that are derived from at least two distinct lineages. In this review, we detail the unique functional roles and metabolic profiles of tissue-resident and monocyte-derived cardiac macrophages during embryonic development and adult tissue homeostasis and in response to pathologic and physiologic stressors. We discuss the metabolic preferences of each macrophage lineage and how metabolism influences monocyte fate specification. Finally, we highlight the contribution of cardiac macrophages and derived metabolites on cell-cell communication, metabolic health, and disease pathogenesis.
Collapse
Affiliation(s)
- Benjamin J Kopecky
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Hörnell A, Lagström H. Infant feeding-a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10456. [PMID: 38370110 PMCID: PMC10870977 DOI: 10.29219/fnr.v68.10456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/11/2022] [Accepted: 12/20/2023] [Indexed: 02/20/2024] Open
Abstract
The 2012 edition of the Nordic Nutrition Recommendations (NNR) included recommendations on breastfeeding, based on the most recent guidelines and recommendations from major national food and health authorities and organizations, systematic reviews, and some original research. For NNR 2023, the scope has been expanded and also includes formula feeding and the introduction of solid food. The main focus in this scoping review is on infants aged 0-12 months but also considers parts both before and beyond the first year, as the concept of 'the first 1000 days' emphasizes the importance of factors during pregnancy and the first 2 years of life for immediate and later health: physical as well as emotional and mental health. Breastmilk is the natural and sustainable way to feed an infant during the first months of life. Numerous studies have indicated immediate as well as long-term beneficial effects of breastfeeding on health for both the infant and the breastfeeding mother, and from a public health perspective, it is therefore important to protect, support, and promote breastfeeding. For full-term, normal weight infants, breastmilk is sufficient as the only form of nutrition for the first 6 months, except for vitamin D that needs to be given as supplement. The World Health Organization (WHO) and several other authoritative bodies therefore recommend exclusive breastfeeding during the first 6 months. Starting solids at about 6 months is necessary for both nutritional and developmental reasons. According to the European Food Safety Authority (EFSA) and the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN), solid foods are safe to give from 4 months although exclusive breastfeeding until 6 months is the desirable goal. Breastfeeding can continue together with complementary foods as long as it is mutually desired by the mother and child. If breastfeeding is not enough or for some reason discontinued before the infant is 4 months of age, the infant should be fed infant formula, and, when possible, breastfeeding should be continued alongside the formula feeding. If the infant is 4 months or older, starting with solids together with continued breastfeeding and/or formula feeding is an option. Infant formulas have been developed for infants who are not breastfed or do not get enough breastmilk. Home-made formula should not be given.
Collapse
Affiliation(s)
- Agneta Hörnell
- Department of Food, Nutrition and Culinary Science, Umeå University, Umeå, Sweden
| | - Hanna Lagström
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
9
|
Richard C, Monk JM. Docosahexaenoic acid. Adv Nutr 2024; 15:100161. [PMID: 38048908 PMCID: PMC10776907 DOI: 10.1016/j.advnut.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023] Open
Affiliation(s)
- Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Jennifer M Monk
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Moltu SJ, Nordvik T, Rossholt ME, Wendel K, Chawla M, Server A, Gunnarsdottir G, Pripp AH, Domellöf M, Bratlie M, Aas M, Hüppi PS, Lapillonne A, Beyer MK, Stiris T, Maximov II, Geier O, Pfeiffer H. Arachidonic and docosahexaenoic acid supplementation and brain maturation in preterm infants; a double blind RCT. Clin Nutr 2024; 43:176-186. [PMID: 38061271 DOI: 10.1016/j.clnu.2023.11.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are important structural components of neural cellular membranes and possess anti-inflammatory properties. Very preterm infants are deprived of the enhanced placental supply of these fatty acids, but the benefit of postnatal supplementation on brain development is uncertain. The aim of this study was to test the hypothesis that early enteral supplementation with ARA and DHA in preterm infants improves white matter (WM) microstructure assessed by diffusion-weighted MRI at term equivalent age. METHODS In this double-blind, randomized controlled trial, infants born before 29 weeks gestational age were allocated to either 100 mg/kg ARA and 50 mg/kg DHA (ARA:DHA group) or medium chain triglycerides (control). Supplements were started on the second day of life and provided until 36 weeks postmenstrual age. The primary outcome was brain maturation assessed by diffusion tensor imaging (DTI) using Tract-Based Spatial Statistics (TBSS) analysis. RESULTS We included 120 infants (60 per group) in the trial; mean (range) gestational age was 26+3 (22+6 - 28+6) weeks and postmenstrual age at scan was 41+3 (39+1 - 47+0) weeks. Ninety-two infants underwent MRI imaging, and of these, 90 had successful T1/T2 weighted MR images and 74 had DTI data of acceptable quality. TBSS did not show significant differences in mean or axial diffusivity between the groups, but demonstrated significantly higher fractional anisotropy in several large WM tracts in the ARA:DHA group, including corpus callosum, the anterior and posterior limb of the internal capsula, inferior occipitofrontal fasciculus, uncinate fasciculus, and the inferior longitudinal fasciculus. Radial diffusivity was also significantly lower in several of the same WM tracts in the ARA:DHA group. CONCLUSION This study suggests that supplementation with ARA and DHA at doses matching estimated fetal accretion rates improves WM maturation compared to control treatment, but further studies are needed to ascertain any functional benefit. CLINICAL TRIAL REGISTRATION www. CLINICALTRIALS gov; ID:NCT03555019.
Collapse
Affiliation(s)
- Sissel J Moltu
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway.
| | - Tone Nordvik
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway
| | - Madelaine E Rossholt
- Department of Pediatrics and Adolescence Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristina Wendel
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway
| | - Maninder Chawla
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Andres Server
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | | | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Magnus Domellöf
- Department of Clinical Sciences, Pediatrics, Umeå University, 90185 Umeå, Sweden
| | - Marianne Bratlie
- Department of Pediatrics and Adolescence Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Marlen Aas
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway
| | - Petra S Hüppi
- Department of Woman, Child and Adolescent Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Alexandre Lapillonne
- Department of Neonatal Intensive Care, APHP Necker-Enfants Malades Hospital, Paris University, 75015 Paris, France
| | - Mona K Beyer
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom Stiris
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ivan I Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Oliver Geier
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norwary
| | - Helle Pfeiffer
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway; Department of Pediatric Neurology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
11
|
Verduci E, Tosi M, Montanari C, Gambino M, Eletti F, Bosetti A, Di Costanzo M, Carbone MT, Biasucci G, Fiori L, Zuccotti G. Are Phe-Free Protein Substitutes Available in Italy for Infants with PKU All the Same? Nutrients 2023; 16:30. [PMID: 38201860 PMCID: PMC10780432 DOI: 10.3390/nu16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Breastfeeding or standard infant formulas, alongside phenylalanine (Phe)-free protein substitutes, constitute the dietary management for infants with PKU to guarantee protein requirements are met in compliance with metabolic tolerance. This work aims to analyse the nutritional composition of Phe-free infant protein substitutes, in terms of macronutrients, micronutrients and functional components, available for PKU dietary management in Italy. A total of seven infant Phe-free protein substitutes were included in this review, six powder and one liquid. A second analysis was conducted to compare them to the composition of formulas intended for healthy infants, taking into consideration the Commission Delegated Regulation (EU) 2016/127 and Commission Delegated Regulation (EU) 2016/128 for micronutrients. The analysis revealed heterogeneity among protein substitutes suitable for infants with PKU. The energy and protein equivalents (P.Eq.) content are different; all of the substitutes contain docosahexaenoic acid (DHA) and arachidonic acid (ARA), while eicosapentaenoic acid (EPA), fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), human milk oligosaccharides (HMOs) and nucleotides are not present in all the substitutes. More attention should be paid to these infant products to ensure metabolic control of PKU, and also promote proper growth, cognitive neurodevelopment, favourable gut microbiota composition, and immune system health, while reducing the risk for non-communicable diseases (NCDs).
Collapse
Affiliation(s)
- Elvira Verduci
- Metabolic Diseases Unit, Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Martina Tosi
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Mirko Gambino
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Francesca Eletti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Alessandra Bosetti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Margherita Di Costanzo
- U.O.C. Pediatrics and Neonatology, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (M.D.C.); (G.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Giacomo Biasucci
- U.O.C. Pediatrics and Neonatology, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (M.D.C.); (G.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Laura Fiori
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| |
Collapse
|
12
|
Albertos I, Romero J, Piqueras‐Picón A, García S, López M, Jiménez JM, Alija MJC. Market research of infant formula milks in Spain. Food Sci Nutr 2023; 11:7957-7966. [PMID: 38107113 PMCID: PMC10724587 DOI: 10.1002/fsn3.3712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023] Open
Abstract
There are circumstances in which breastfeeding is not possible and formula milk feeding has to be resorted to. In these cases, it is difficult to choose among the multitude of brands on the market for infant feeding. Although the composition of formula milk is largely regulated by legislation, there are certain nutrients whose presence in breast milk is beneficial. This circumstance will help us to establish some criteria to choose formula milk for a healthy infant. Among all the formula milks which can be found in different shops (pharmacies, supermarkets, etc.), market research has been carried out based on the nutritional criteria: the lipid and protein profile, certain carbohydrates, amino acids, and vitamins, as well as the presence of nucleotides, prebiotics, and probiotics. Based on these results, it can be established which formula milk we would give to a healthy infant. Thus, within the analyzed formula milks, it has been concluded that the most complete milk in this would be formula milk D and the least formula milk J. Although more studies are needed to confirm this, it is foreseeable that, as the scientific evidence is greater, the legislation will be updated and considering these nutrients for a correct formula milk.
Collapse
Affiliation(s)
- Irene Albertos
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles of the University of ValladolidValladolidSpain
| | - Janira Romero
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles of the University of ValladolidValladolidSpain
| | | | - Sara García
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles of the University of ValladolidValladolidSpain
| | - María López
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles of the University of ValladolidValladolidSpain
| | - José María Jiménez
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles of the University of ValladolidValladolidSpain
| | - María José Castro Alija
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles of the University of ValladolidValladolidSpain
| |
Collapse
|
13
|
Mitguard S, Doucette O, Miklavcic J. Human milk polyunsaturated fatty acids are related to neurodevelopmental, anthropometric, and allergic outcomes in early life: a systematic review. J Dev Orig Health Dis 2023; 14:763-772. [PMID: 38254254 DOI: 10.1017/s2040174423000454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Polyunsaturated fatty acids are critically important for newborn nutrition and in the trajectory of growth and developmental processes throughout early life. This systematic review (PROSPERO ID: CRD42023400059) critically analyzes literature pertaining to how omega-3 and omega-6 fatty acids in human milk are related to health outcomes in early life. Literature selected for the review were published between 2005 and 2020 and included assessments in healthy term children between 0 and 5 years of age. The studies reported the relation between human milk fatty acids docosahexaenoic acid (C22:6n-3, DHA), eicosapentaenoic acid (C20:5n-3, EPA), alpha-linolenic acid (C18:3n-3, ALA), arachidonic acid (C20:4n-6, AA), and linoleic acid (C18:2n-6, LA) with three domains of health outcomes: neurodevelopment, body composition, and allergy, skin & eczema. Results from the 21 studies consistently suggested better health outcomes across the three domains for infants consuming milk with higher concentrations of total n-3, DHA, EPA, and ALA. Negative health outcomes across the three domains were associated with higher levels of total n-6, AA, and LA in milk. N-3 and n-6 content of milk were related to neurodevelopmental, body composition, and allergy, skin & eczema outcomes with moderate certainty. Maternal diet impacting milk fatty acid content and fatty acid desaturase genotype modifying physiologic responses to fatty acid intake were prominent gaps identified in the review using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies and GRADE approach. This research study can inform baby nutrition product development, and fatty acid intake recommendations or dietary interventions for mothers and children.
Collapse
Affiliation(s)
- Saori Mitguard
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Olivia Doucette
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - John Miklavcic
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
- School of Pharmacy, Chapman University, Irvine, CA, USA
| |
Collapse
|
14
|
Bednarek A, Bodys-Cupak I, Serwin A, Cipora E. Mothers' Attitudes Towards Breastfeeding in Terms of Health Safety and Professional Lactation Education: A National Survey of Women. J Multidiscip Healthc 2023; 16:3273-3286. [PMID: 37942283 PMCID: PMC10629448 DOI: 10.2147/jmdh.s431576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction and Objective An important role in building opinions and attitudes regarding breastfeeding by mothers is played by the medical staff taking care of the mother woman expecting a baby. Breastfeeding is a standard in infant nutrition. The knowledge and support of the medical staff can help a woman make the decision to breastfeed. At the same time, it creates conditions for an optimal working environment for medical staff, affecting the quality of care. The aim of the study was identify mothers' attitudes towards breastfeeding in the context of health safety and professional lactation education. Materials and Methods Data for the study were obtained on the basis of a proprietary questionnaire and a standardized research tool, which was the questionnaire for assessing knowledge and attitudes towards breastfeeding The Iowa Infant Feeding Attitude Scale designed by Arlene De la Mora (IIFAS). The study involved 439 women who gave birth to a child in the last 5 years. Results Extensive knowledge about the benefits of breastfeeding for the child's body is declared by 67.9% of women. The vast majority of respondents (94.1%) pointed to supporting the development of the immune system. Most women (85%) obtained information on breastfeeding from the Internet, and 58.5% from medical personnel. Most respondents (88.8%) assessed their partner's attitude towards breastfeeding as positive. The result, The Iowa Infant Feeding Attitude Scale was equal to 50.97, which proves the positive attitude of women to breastfeeding. Conclusion Promoting the best way to feed children, which is breastfeeding, plays an important role in building mothers' opinions and attitudes about breastfeeding.
Collapse
Affiliation(s)
- Anna Bednarek
- Department of Health Promotion, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Iwona Bodys-Cupak
- Department of Nursing Fundamentals, Institute of Nursing and Midwifery, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Adrianna Serwin
- Department of Health Promotion, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Elżbieta Cipora
- Medical Institute, Jan Grodek State University in Sanok, Sanok, Poland
| |
Collapse
|
15
|
Silveira RC, Corso AL, Procianoy RS. The Influence of Early Nutrition on Neurodevelopmental Outcomes in Preterm Infants. Nutrients 2023; 15:4644. [PMID: 37960297 PMCID: PMC10648100 DOI: 10.3390/nu15214644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Premature infants, given their limited reserves, heightened energy requirements, and susceptibility to nutritional deficits, require specialized care. AIM To examine the complex interplay between nutrition and neurodevelopment in premature infants, underscoring the critical need for tailored nutritional approaches to support optimal brain growth and function. DATA SOURCES PubMed and MeSH and keywords: preterm, early nutrition, macronutrients, micronutrients, human milk, human milk oligosaccharides, probiotics AND neurodevelopment or neurodevelopment outcomes. Recent articles were selected according to the authors' judgment of their relevance. Specific nutrients, including macro (amino acids, glucose, and lipids) and micronutrients, play an important role in promoting neurodevelopment. Early and aggressive nutrition has shown promise, as has recognizing glucose as the primary energy source for the developing brain. Long-chain polyunsaturated fatty acids, such as DHA, contribute to brain maturation, while the benefits of human milk, human milk oligosaccharides, and probiotics on neurodevelopment via the gut-brain axis are explored. This intricate interplay between the gut microbiota and the central nervous system highlights human milk oligosaccharides' role in early brain maturation. CONCLUSIONS Individualized nutritional approaches and comprehensive nutrient strategies are paramount to enhancing neurodevelopment in premature infants, underscoring human milk's potential as the gold standard of nutrition for preterm infants.
Collapse
Affiliation(s)
| | | | - Renato S. Procianoy
- Department of Pediatrics, Newborn Section, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 3452925, RS, Brazil
| |
Collapse
|
16
|
Pauline ML, Huynh C, Wizzard PR, Nation PN, Field CJ, Wales PW, Turner JM. In parenteral nutrition-fed piglets, fatty acids vary by lipid emulsion and tissue sampled. JPEN J Parenter Enteral Nutr 2023; 47:1038-1046. [PMID: 37416983 DOI: 10.1002/jpen.2547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Children with intestinal failure without liver disease may be given soy-based lipid emulsion (SLE) or mixed lipid emulsion (MLE; containing soy, medium-chain triglyceride, olive, and/or fish oils). Both differ in essential fatty acid content: MLE has added arachidonic acid (AA) and docosahexaenoic acid (DHA). The aim of this study, in neonatal piglets, was to compare serum and tissue fatty acid composition when the emulsions were given at unrestricted doses. METHODS We compared SLE (n = 15) and MLE (n = 15) at doses of 10-15 g/kg/day in parenteral nutrition (PN). On day 14 we collected serum and tissues. Using gas-liquid chromatography, percentage fatty acids were measured in serum, brain, and liver phospholipid. Comparisons were made to reference values from litter-matched controls (n = 8). RESULTS Comparing median values, linoleic acid (LA) was lower for MLE vs SLE in serum (-27%), liver (-45%), and brain (-33%) (P < 0.001). AA was lower for MLE in serum (-25%), liver (-40%), and brain (-10%). DHA was higher for MLE in serum (+50%), liver (+200%), and brain (+10%). AA levels were lower for MLE vs control piglets in serum (-81%), liver (-63%), and brain (-9%). DHA levels were higher in serum (+41%), liver (+38%), and brain (+19%). CONCLUSION This study in piglets has shown that, at unrestricted doses, MLE treatment is associated with low serum and tissue AA compared with SLE and healthy litter-matched controls. Although not yet proven, low tissue AA levels may have functional consequences, and these data support current practice avoiding MLE dose restriction.
Collapse
Affiliation(s)
- Mirielle L Pauline
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Caitlin Huynh
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela R Wizzard
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick N Nation
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Paul W Wales
- Department of Surgery, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| | - Justine M Turner
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Lundgren P, Jacobson L, Gränse L, Hård AL, Sävman K, Hansen-Pupp I, Ley D, Nilsson AK, Pivodic A, Smith LE, Hellström A. Visual outcome at 2.5 years of age in ω-3 and ω-6 long-chain polyunsaturated fatty acid supplemented preterm infants: a follow-up of a randomized controlled trial. THE LANCET REGIONAL HEALTH. EUROPE 2023; 32:100696. [PMID: 37671123 PMCID: PMC10477038 DOI: 10.1016/j.lanepe.2023.100696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 09/07/2023]
Abstract
Background We investigated ophthalmological outcomes at 2.5 years of corrected age in children born extremely preterm (EPT) to evaluate the effects of postnatal enteral supplementation with ω-3 and ω-6 long-chain polyunsaturated fatty acids. Methods In the Mega Donna Mega clinical trial, EPT infants born at less than 28 weeks of gestation were randomized to receive an enteral supplementation of docosahexaenoic acid (DHA) and arachidonic acid (AA) from birth to 40 weeks postmenstrual age. In this exploratory follow-up at 2.5 years of corrected age, we assessed visual acuity (VA), refraction, manifest strabismus, and nystagmus. Satisfactory VA was defined as ≥20/63. Multiple imputation (MI) was used to address the issue of missing data. Findings Of 178 children in the trial, 115 (with median gestational age (GA) of 25 + 4/7 weeks and median birth weights of 790 g) were ophthalmologically assessed at a median corrected age of 2.7 years (range 2.0-3.9 years). VA assessment was missing in 42.1% (75/178), in 41.7% (35/84) of the AA/DHA supplemented infants, and in 42.6% (40/94) of the control infants. After MI and adjustments for GA, study center, plurality, and corrected age at VA exam, no significant effect of AA/DHA supplementation was detected in VA outcome (≥20/63) (odds ratio 2.16, confidence interval 95% 0.99-4.69, p = 0.053). Interpretation In this randomized controlled trial follow-up, postnatal supplementation with enteral AA/DHA to EPT children did not significantly alter VA at 2.5 years of corrected age. Due to the high loss to follow-up rate and the limited statistical power, additional studies are needed. Funding The Swedish Medical Research Council #2020-01092, The Gothenburg Medical Society, Government grants under the ALF agreement ALFGBG-717971 and ALFGBG-971188, De Blindas Vänner, Knut and Alice Wallenberg Foundation - Wallenberg Clinical Scholars, NIHEY017017, EY030904BCHIDDRC (1U54HD090255 Massachusetts Lions Eye Foundation) supported the study.
Collapse
Affiliation(s)
- Pia Lundgren
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Jacobson
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Lotta Gränse
- Department of Clinical Sciences, Ophthalmology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Anna-Lena Hård
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sävman
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Neonatology, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingrid Hansen-Pupp
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders K Nilsson
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Aldina Pivodic
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois E Smith
- The Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Wei L, Zeng B, Zhang S, Guo W, Li F, Zhao J, Li Y. Hybridization altered the gut microbiota of pigs. Front Microbiol 2023; 14:1177947. [PMID: 37465027 PMCID: PMC10350513 DOI: 10.3389/fmicb.2023.1177947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Mammalian gut microbiota plays an important role in the host's nutrient metabolism, growth, and immune regulation. Hybridization can enable a progeny to acquire superior traits of the parents, resulting in the hybridization advantage. However, studies on the effects of hybridization on the pigs' gut microbiota are lacking. Therefore, this study used multi-omics technologies to compare and analyze the gut microbiota of the primary wild boar and its offspring. The 16S rRNA gene sequencing results revealed that the gut microbiota of F4 exhibited a host-like dominance phenomenon with a significant increase in the abundance of Lactobacillus and Bifidobacterium. The beta diversity of Duroc was significantly different from those of F0, F2, and F4; after the host hybridization, the similarity of the beta diversity in the progeny decreased with the decrease in the similarity of the F0 lineage. The metagenomic sequencing results showed that the significantly enriched metabolic pathways in F4, such as environmental, circulatory system, fatty acid degradation adaptation, and fatty acid biosynthesis, were similar to those in F0. Moreover, it also exhibited similar significantly enriched metabolic pathways as those in Duroc, such as carbohydrate metabolism, starch and sucrose metabolism, starch-degrading CAZymes, lactose-degrading CAZymes, and various amino acid metabolism pathways. However, the alpha-amylase-related KOs, lipid metabolism, and galactose metabolism in F4 were significantly higher than those in Duroc and F0. Non-targeted metabolome technology analysis found that several metabolites, such as docosahexaenoic acid, arachidonic acid, and citric acid were significantly enriched in the F4 pigs as compared to those in F0. Based on Spearman correlation analysis, Lactobacillus and Bifidobacterium were significantly positively correlated with these metabolites. Finally, the combined metagenomic and metabolomic analysis suggested that the metabolic pathways, such as valine, leucine, and isoleucine biosynthesis and alanine aspartate and glutamate metabolism were significantly enriched in F4 pigs. In conclusion, the gut microbiota of F4 showed a similar host "dominance" phenomenon, which provided reference data for the genetics and evolution of microbiota and the theory of microbial-assisted breeding.
Collapse
Affiliation(s)
- Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Wei Guo
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
19
|
Morissette R, Mihalov J, Carlson SJ, Kaneko KJ. Trends in ingredients added to infant formula: FDA's experiences in the GRAS notification program. Food Chem Toxicol 2023:113876. [PMID: 37286029 DOI: 10.1016/j.fct.2023.113876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
While human milk is considered the optimal source of nutrition for infants for the first six and twelve months of age, with continued benefit of breastfeeding with complementary foods, a safe alternative, nutritionally adequate to support infant growth and development, is necessary. In the United States, the Food and Drug Administration (FDA) establishes the requirements necessary to demonstrate the safety of infant formula within the framework of the Federal Food, Drug, and Cosmetic Act. FDA's Center for Food Safety and Applied Nutrition/Office of Food Additive Safety evaluates the safety and lawfulness of individual ingredients used in infant formula, whereas the Office of Nutrition and Food Labeling oversees the safety of infant formula. Most infant formula ingredients are either from sources with history of safe consumption by infants or are like components in human milk. Information demonstrating the regulatory status of all ingredients is required in submissions for new infant formulas, and ingredient manufacturers often use the Generally Recognized as Safe (GRAS) Notification program to establish ingredient regulatory status. We provide an overview of ingredients used in infant formula evaluated through the GRAS Notification program to highlight trends and discuss the data and information used to reach these GRAS conclusions.
Collapse
Affiliation(s)
- Rachel Morissette
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Jeremy Mihalov
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Susan J Carlson
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Kotaro J Kaneko
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA.
| |
Collapse
|
20
|
Decsi T, Marosvölgyi T, Szabó É. Docosahexaenoic Acid in Formulas for Term Infants: The Way from Pioneer Idea to Mandatory Dietary Recommendation. Life (Basel) 2023; 13:1326. [PMID: 37374109 DOI: 10.3390/life13061326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a novel mandatory constituent of breast-milk-substitute infant formula in Europe. The aim of the present narrative review was to summarize available data in connection with the background of the novel European mandatory dietary recommendation to add at least 20 mg/100 kcal (4.8 mg/100 kJ) DHA to infant formula. The literature search with the expression "docosahexaenoic acid with (infant or human milk or formula)" revealed nearly 2000 papers, including more than 400 randomized controlled trials (RCTs). DHA is a persistent constituent of human milk (HM) with a worldwide mean level of 0.37% (standard deviation: 0.11%) of all fatty acids in HM. RCTs on supplementing DHA to lactating women showed some indications, though no direct evidence of the beneficial effect of enhanced HM DHA on the development of breastfed infants. The most-recent Cochrane review of RCTs investigating the effect of DHA supplementation to infant formula for full-term infants reported no evidence for recommending supplementation. The controversy between the Cochrane view and the actual recommendation may be related to the numerous hurdles in organizing high-quality studies in this field. On the basis of the official food composition recommendation, today in Europe, DHA should be considered as a fatty acid essential for infants.
Collapse
Affiliation(s)
- Tamás Decsi
- Department of Pediatrics, Medical School and Clinical Centre, University of Pécs, 7623 Pécs, Hungary
- Cochrane Hungary, Clinical Centre, University of Pécs, 7623 Pécs, Hungary
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
21
|
Harwood JL. Polyunsaturated Fatty Acids: Conversion to Lipid Mediators, Roles in Inflammatory Diseases and Dietary Sources. Int J Mol Sci 2023; 24:ijms24108838. [PMID: 37240183 DOI: 10.3390/ijms24108838] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important components of the diet of mammals. Their role was first established when the essential fatty acids (EFAs) linoleic acid and α-linolenic acid were discovered nearly a century ago. However, most of the biochemical and physiological actions of PUFAs rely on their conversion to 20C or 22C acids and subsequent metabolism to lipid mediators. As a generalisation, lipid mediators formed from n-6 PUFAs are pro-inflammatory while those from n-3 PUFAs are anti-inflammatory or neutral. Apart from the actions of the classic eicosanoids or docosanoids, many newly discovered compounds are described as Specialised Pro-resolving Mediators (SPMs) which have been proposed to have a role in resolving inflammatory conditions such as infections and preventing them from becoming chronic. In addition, a large group of molecules, termed isoprostanes, can be generated by free radical reactions and these too have powerful properties towards inflammation. The ultimate source of n-3 and n-6 PUFAs are photosynthetic organisms which contain Δ-12 and Δ-15 desaturases, which are almost exclusively absent from animals. Moreover, the EFAs consumed from plant food are in competition with each other for conversion to lipid mediators. Thus, the relative amounts of n-3 and n-6 PUFAs in the diet are important. Furthermore, the conversion of the EFAs to 20C and 22C PUFAs in mammals is rather poor. Thus, there has been much interest recently in the use of algae, many of which make substantial quantities of long-chain PUFAs or in manipulating oil crops to make such acids. This is especially important because fish oils, which are their main source in human diets, are becoming limited. In this review, the metabolic conversion of PUFAs into different lipid mediators is described. Then, the biological roles and molecular mechanisms of such mediators in inflammatory diseases are outlined. Finally, natural sources of PUFAs (including 20 or 22 carbon compounds) are detailed, as well as recent efforts to increase their production.
Collapse
Affiliation(s)
- John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
22
|
Alshaikh BN, Reyes Loredo A, Yusuf K, Maarouf A, Fenton TR, Momin S. Enteral long-chain polyunsaturated fatty acids and necrotizing enterocolitis: A systematic review and meta-analysis. Am J Clin Nutr 2023; 117:918-929. [PMID: 37137615 DOI: 10.1016/j.ajcnut.2023.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Preterm infants are at risk of long-chain polyunsaturated fatty acid (LCPUFA) deficiency. Recent studies on high-dose DHA; n-3 LCPUFA in preterm infants suggested potential positive effects on cognitive outcomes but raised concerns about some increased neonatal morbidities. These studies and recent recommendations for DHA supplementation generated controversy owing to the lack of balance between DHA and arachidonic acid (ARA; n-6 LCPUFA). OBJECTIVES To identify the effect of enteral supplementation of DHA, with and without ARA, on necrotizing enterocolitis (NEC) in very preterm infants. METHODS A systematic review of randomized and controlled trials compared enteral LCPUFAs with placebo or no supplementation in very preterm infants. We searched PubMed, Ovid-MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and CINHAL databases from inception to July 2022. Data were extracted in duplicate using a structured proforma. A meta-analysis and metaregression with random-effects models were used. The interventions evaluated were DHA alone vs. that combined with ARA, source of DHA, dose, and supplement delivery methods. Methodological qualities and risk of bias were assessed using the Cochrane risk-of-bias tool. RESULTS Fifteen randomized clinical trials (RCTs) included 3963 very preterm infants with 217 cases of NEC. Supplementation with DHA alone increased NEC (2620 infants; RR: 1.56; 95% CI: 1.02, 2.39) with no evidence of heterogeneity (I2 = 0.0%, P = 0.46). Multiple metaregression revealed significant reduction in NEC when ARA was supplemented with DHA (aRR 0.42; 95% CI: 0.21, 0.88). The source of DHA, dose, and feeding type revealed no associations with NEC. Two RCTs supplemented high-dose DHA to lactating mothers. There was a significant increase in risk of NEC with this approach (1148 infants; RR: 1.92; 95% CI: 1.02, 3.61) with no evidence of heterogeneity (I2 = 0.0, P = 0.81). CONCLUSIONS Supplementation with DHA alone may increase risk of NEC. Concurrent supplementation with ARA needs to be considered when adding DHA to preterm infants' diet.
Collapse
Affiliation(s)
- Belal N Alshaikh
- Neonatal Nutrition and Gastroenterology Program, Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary AB, Canada.
| | - Adriana Reyes Loredo
- Neonatal Nutrition and Gastroenterology Program, Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Kamran Yusuf
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Ahmed Maarouf
- Neonatal Nutrition and Gastroenterology Program, Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Tanis R Fenton
- Community Health Sciences, Institute of Public Health, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Nutrition Services, Alberta Health Services, Calgary AB, Canada
| | - Sarfaraz Momin
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| |
Collapse
|
23
|
Plaza-Diaz J, Ruiz-Ojeda FJ, Morales J, Martín-Masot R, Climent E, Silva Á, Martinez-Blanch JF, Enrique M, Tortajada M, Ramon D, Alvarez B, Chenoll E, Gil Á. Innova 2020: A Follow-Up Study of the Fecal Microbiota of Infants Using a Novel Infant Formula between 6 Months and 12 Months of Age. Int J Mol Sci 2023; 24:7392. [PMID: 37108555 PMCID: PMC10139017 DOI: 10.3390/ijms24087392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The World Health Organization recommends exclusive breastfeeding on demand until at least the sixth month of life. Breast milk or infant formula is the infant's primary food source until the age of one year, followed by the gradual introduction of other foods. During weaning, the intestinal microbiota evolves to a profile close to that of the adult, and its disruption can result in an increased incidence of acute infectious diseases. We aimed to determine whether a novel starting formula (INN) provides gut microbiota compositions more similar to those of breastfed (BF) infants from 6 to 12 months of age compared to a standard formula (STD). This study included 210 infants (70 per group) who completed the intervention until they reached the age of 12 months. In the intervention period, infants were divided into three groups. Group 1 received an INN formula with a lower protein content, a casein to whey protein ratio of approximately 70/30, twice as much docosahexaenoic acid as the STD formula, a thermally inactivated postbiotic (Bifidobacterium animalis subsp. lactis, BPL1TM HT), and twice as much arachidonic acid as the STD formula contained. The second group received the STD formula, while the third group was exclusively BF for exploratory purposes. In the course of the study, visits were conducted at 6 months and 12 months of age. Compared to the BF and STD groups, the Bacillota phylum levels in the INN group were significantly reduced after 6 months. At the end of 6 months, the alpha diversity indices of the BF and INN groups differed significantly from those of the STD group. At 12 months, the Verrucomicrobiota phylum levels in the STD group were significantly lower than those in the BF and INN groups. Based on the comparison between 6 and 12 months, the Bacteroidota phylum levels in the BF group were significantly higher than those in the INN and STD groups. When comparing the INN group with the BF and STD groups, Clostridium sensu stricto 1 was significantly higher in the INN group. The STD group had higher levels of calprotectin than the INN and BF groups at 6 months. The immunoglobulin A levels in the STD group were significantly lower than those in the INN and BF groups after 6 months. Both formulas had significantly higher levels of propionic acid than the BF group at 6 months. At 6 months, the STD group showed a higher quantification of all metabolic pathways than the BF group. The INN formula group exhibited similar behavior to the BF group, except for the superpathway of phospholipid biosynthesis (E. coli). We hypothesize that the novel INN formula may promote an intestinal microbiota that is more similar to the microbiota of an infant who consumes only human milk before the weaning period.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, 85764 Munich, Germany
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain
| | - Javier Morales
- Product Development Department, Alter Farmacia SA, 28880 Madrid, Spain
| | - Rafael Martín-Masot
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Eric Climent
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 València, Spain
| | - Ángela Silva
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 València, Spain
| | | | - María Enrique
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 València, Spain
| | - Marta Tortajada
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 València, Spain
| | - Daniel Ramon
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 València, Spain
| | - Beatriz Alvarez
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 València, Spain
| | - Empar Chenoll
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 València, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, 85764 Munich, Germany
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
24
|
Strzalkowski A, Black G, Young BE. Iron and DHA in Infant Formula Purchased in the US Fails to Meet European Nutrition Requirements. Nutrients 2023; 15:nu15081812. [PMID: 37111031 PMCID: PMC10143847 DOI: 10.3390/nu15081812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Requirements for iron and docosahexaenoic acid (DHA) content of infant formula varies by country. Powdered full-term infant formula purchase data from all major physical stores in the US between 2017-2019 were obtained from CIRCANA, Inc. Iron and DHA composition and scoop sizes for each formula were obtained from manufacturers. The equivalent liquid ounces of prepared formula were calculated. Average iron and DHA content were compared between formula types and to both US and European formula composition requirements. These data represent 55.8 billion ounces of formula. The average iron content of all formula purchased was: 1.80 mg/100 kcal. This iron concentration is within the FDA regulations. However, it exceeds the maximum allowable iron concentration of infant formula (Stage 1) set by the European Commission of 1.3 mg/100 kcal. A total of 96% of formula purchased had an iron concentration of >1.3 mg/100 kcal. DHA is not a required ingredient in US formulas. The average DHA content of all formula purchased was: 12.6 mg/100 kcal. This DHA concentration is far below the minimum required DHA concentrations of infant formula (Stage 1) and follow-on formula (Stage 2) set by the European Commission of 20 mg/100 kcal. These are novel insights into the iron and DHA intake of formula-fed infants in the US. As international infant formulas have entered the US market due to the formula shortage, parents and providers need to be aware of regulatory differences in formula nutrient composition.
Collapse
Affiliation(s)
- Alexander Strzalkowski
- Department of Pediatrics, Complex Care Service, Boston Children's Hospital, Boston, MA 02115, USA
| | - Grace Black
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bridget E Young
- Department of Pediatrics, Breastfeeding and Lactation Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
25
|
Abrams SA, Bergner EM. Is It Time to Revise the Current Nutrient Requirements for Infant Formulas Principally Established in 1980? Adv Nutr 2023; 14:426-431. [PMID: 36878358 DOI: 10.1016/j.advnut.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Because of the production of nutrient-deficient infant formulas (IFs), the United States Congress passed regulations on the composition and production of IF, referred to as the Infant Formula Act (IFA), in 1980, which was amended in 1986. More detailed FDA rules have been created since then, specifying the ranges or minimum intakes of nutrients and providing details for the safe production and evaluation of infant formulas. Although generally effective in ensuring safe IF, recent events have made it clear that a re-evaluation of aspects of all the nutrient composition regulations for IF is needed, including consideration of adding requirements related to bioactive nutrients not mentioned in the IFA. We propose that, as principal examples, the requirement for iron content needs to be re-evaluated and that DHA and AA should be considered for addition to the nutrient requirements after scientific review by a panel such as those established by the National Academies of Sciences, Engineering, and Medicine. Additionally, there is no specific requirement in current FDA regulations for the energy density of IF, and this should be added alongside potential revisions of the protein requirement. It would also be ideal to have specific FDA rules on nutrient intakes for premature infants as these are exempted from the specific nutrient regulations of the amended IFA.
Collapse
Affiliation(s)
- Steven A Abrams
- Department of Pediatrics, Dell Medical School at the University of Texas, Austin, TX, United States.
| | - Erynn M Bergner
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| |
Collapse
|
26
|
Ruiz-Ojeda FJ, Plaza-Diaz J, Morales J, Álvarez-Calatayud G, Climent E, Silva Á, Martinez-Blanch JF, Enrique M, Tortajada M, Ramon D, Alvarez B, Chenoll E, Gil Á. Effects of a Novel Infant Formula on the Fecal Microbiota in the First Six Months of Life: The INNOVA 2020 Study. Int J Mol Sci 2023; 24:3034. [PMID: 36769356 PMCID: PMC9917896 DOI: 10.3390/ijms24033034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Exclusive breastfeeding is highly recommended for infants for at least the first six months of life. However, for some mothers, it may be difficult or even impossible to do so. This can lead to disturbances in the gut microbiota, which in turn may be related to a higher incidence of acute infectious diseases. Here, we aimed to evaluate whether a novel starting formula versus a standard formula provides a gut microbiota composition more similar to that of breastfed infants in the first 6 months of life. Two hundred and ten infants (70/group) were enrolled in the study and completed the intervention until 12 months of age. For the intervention period, infants were divided into three groups: Group 1 received formula 1 (INN) with a lower amount of protein, a proportion of casein to whey protein ratio of about 70/30 by increasing the content of α-lactalbumin, and with double the amount of docosahexaenoic acid/arachidonic acid than the standard formula; INN also contained a thermally inactivated postbiotic (Bifidobacterium animalis subsp. lactis). Group 2 received the standard formula (STD) and the third group was exclusively breastfed (BF) for exploratory analysis. During the study, visits were made at 21 days, 2, 4, and 6 months of age, with ±3 days for the visit at 21 days of age, ±1 week for the visit at 2 months, and ±2 weeks for the others. Here, we reveal how consuming the INN formula promotes a similar gut microbiota composition to those infants that were breastfed in terms of richness and diversity, genera, such as Bacteroides, Bifidobacterium, Clostridium, and Lactobacillus, and calprotectin and short-chain fatty acid levels at 21 days, 2 and 6 months. Furthermore, we observed that the major bacteria metabolic pathways were more alike between the INN formula and BF groups compared to the STD formula group. Therefore, we assume that consumption of the novel INN formula might improve gut microbiota composition, promoting a healthier intestinal microbiota more similar to that of an infant who receives exclusively human milk.
Collapse
Affiliation(s)
- Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, 85764 Munich, Germany
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Spain
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Javier Morales
- Product Development Department, Alter Farmacia SA, 28880 Madrid, Spain
| | | | - Eric Climent
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 Paterna, Spain
| | - Ángela Silva
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 Paterna, Spain
| | | | - María Enrique
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 Paterna, Spain
| | - Marta Tortajada
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 Paterna, Spain
| | - Daniel Ramon
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 Paterna, Spain
| | - Beatriz Alvarez
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 Paterna, Spain
| | - Empar Chenoll
- ADM-BIOPOLIS, Scientific Park Universitat de València, 46980 Paterna, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Spain
- CIBEROBN, CIBER Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
27
|
Belyaeva IA, Namazova-Baranova LS, Bombardirova EP, Turti TV. World Trends in Infant Formulas Composition Enhancement. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i6.2479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This article provides the overview of the major strategies for infant formulas composition enhancement via modern technologies and trends in minimizing technology-related loads on the environment. Potential modifications of quantitative and qualitative characteristics of milk formulas nutrients have been determined. We also covered product contents changing over age, as well as the perspectives of using animal milk in formulas. The relevance of adding biologically active substances and living microorganisms (probiotics), their safety, and efficacy are discussed.
Collapse
Affiliation(s)
- Irina A. Belyaeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Morozovskaya Children’s City Hospital
| | - Leyla S. Namazova-Baranova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| | - Elena P. Bombardirova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Tatiana V. Turti
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Research Institute for Healthcare Organization and Medical Management
| |
Collapse
|
28
|
Karadayi R, Pallot C, Cabaret S, Mazzocco J, Gabrielle PH, Semama DS, Chantegret C, Ternoy N, Martin D, Donier A, Gregoire S, Creuzot-Garcher CP, Bron AM, Bretillon L, Berdeaux O, Acar N. Modification of erythrocyte membrane phospholipid composition in preterm newborns with retinopathy of prematurity: The omegaROP study. Front Cell Dev Biol 2022; 10:921691. [PMID: 36158214 PMCID: PMC9504055 DOI: 10.3389/fcell.2022.921691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
N-3 polyunsaturated fatty acids (PUFAs) may prevent retinal vascular abnormalities observed in oxygen-induced retinopathy, a model of retinopathy of prematurity (ROP). In the OmegaROP prospective cohort study, we showed that preterm infants who will develop ROP accumulate the n-6 PUFA arachidonic acid (ARA) at the expense of the n-3 PUFA docosahexaenoic acid (DHA) in erythrocytes with advancing gestational age (GA). As mice lacking plasmalogens -That are specific phospholipids considered as reservoirs of n-6 and n-3 PUFAs- Display a ROP-like phenotype, the aim of this study was to determine whether plasmalogens are responsible for the changes observed in subjects from the OmegaROP study. Accordingly, preterm infants aged less than 29 weeks GA were recruited at birth in the Neonatal Intensive Care Unit of University Hospital Dijon, France. Blood was sampled very early after birth to avoid any nutritional influence on its lipid composition. The lipid composition of erythrocytes and the structure of phospholipids including plasmalogens were determined by global lipidomics using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). LC-HRMS data confirmed our previous observations by showing a negative association between the erythrocyte content in phospholipid esterified to n-6 PUFAs and GA in infants without ROP (rho = -0.485, p = 0.013 and rho = -0.477, p = 0.015 for ethanolamine and choline total phospholipids, respectively). Phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) species with ARA, namely PtdCho16:0/20:4 (rho = -0.511, p < 0.01) and PtdEtn18:1/20:4 (rho = -0.479, p = 0.015), were the major contributors to the relationship observed. On the contrary, preterm infants developing ROP displayed negative association between PtdEtn species with n-3 PUFAs and GA (rho = -0.380, p = 0.034). They were also characterized by a positive association between GA and the ratio of ethanolamine plasmalogens (PlsEtn) with n-6 PUFA to PlsEtn with n-3 PUFAs (rho = 0.420, p = 0.029), as well as the ratio of PlsEtn with ARA to PlsEtn with DHA (rho = 0.843, p = 0.011). Altogether, these data confirm the potential accumulation of n-6 PUFAs with advancing GA in erythrocytes of infants developing ROP. These changes may be partly due to plasmalogens.
Collapse
Affiliation(s)
- Rémi Karadayi
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | - Charlotte Pallot
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
- University Hospital, Department of Ophthalmology, Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, ChemoSens Platform, Dijon, France
| | - Julie Mazzocco
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | | | - Denis S. Semama
- University Hospital, Neonatal Intensive Care Unit, Dijon, France
| | | | - Ninon Ternoy
- University Hospital, Neonatal Intensive Care Unit, Dijon, France
| | - Delphine Martin
- University Hospital, Neonatal Intensive Care Unit, Dijon, France
| | - Aurélie Donier
- University Hospital, Neonatal Intensive Care Unit, Dijon, France
| | - Stéphane Gregoire
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | - Catherine P. Creuzot-Garcher
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
- University Hospital, Department of Ophthalmology, Dijon, France
| | - Alain M. Bron
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
- University Hospital, Department of Ophthalmology, Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, ChemoSens Platform, Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| |
Collapse
|
29
|
Li T, Samuel TM, Zhu Z, Howell B, Cho S, Baluyot K, Hazlett H, Elison JT, Wu D, Hauser J, Sprenger N, Zhu H, Lin W. Joint analyses of human milk fatty acids, phospholipids, and choline in association with cognition and temperament traits during the first 6 months of life. Front Nutr 2022; 9:919769. [PMID: 36091236 PMCID: PMC9449418 DOI: 10.3389/fnut.2022.919769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Early dietary exposure via human milk nutrients offers a window of opportunity to support cognitive and temperament development. While several studies have focused on associations of few pre-selected human milk nutrients with cognition and temperament, it is highly plausible that human milk nutrients synergistically and jointly support cognitive and behavioral development in early life. We aimed to discern the combined associations of three major classes of human milk nutrients with cognition and temperament during the first 6 months of life when human milk is the primary source of an infant’s nutrition and explore whether there were persistent effects up to 18 months old. The Mullen Scales of Early Learning and Infant Behavior Questionnaires—Revised were used to assess cognition and temperament, respectively, of 54 exclusively/predominantly breastfed infants in the first 6 months of life, whose follow-ups were conducted at 6–9, 9–12, and 12–18 months old. Human milk samples were obtained from the mothers of the participants at less than 6 months of age and analyzed for fatty acids [total monounsaturated fatty acids, polyunsaturated fatty acid, total saturated fatty acid (TSFA), arachidonic acid (ARA), docosahexaenoic acid (DHA), ARA/DHA, omega-6/omega-3 polyunsaturated fatty acids ratio (n-6/n-3)], phospholipids [phosphatidylcholine, phosphatidylethanolamine (PE), phosphatidylinositol (PI), sphingomyelin], and choline [free choline, phosphocholine (PCho), glycerophosphocholine]. Feature selection was performed to select nutrients associated with cognition and temperament. The combined effects of selected nutrients were analyzed using multiple regression. A positive association between the arachidonic acid (ARA) and surgency was observed (p = 0.024). A significant effect of DHA, n-6/n-3, PE, and TSFA concentrations on receptive language (R2 = 0.39, p = 0.025) and the elevated ARA, PCho, and PI with increased surgency (R2 = 0.43, p = 0.003) was identified, suggesting that DHA and ARA may have distinct roles for temperament and language functions. Furthermore, the exploratory association analyses suggest that the effects of human milk nutrients on R.L. and surgency may persist beyond the first 6 months of life, particularly surgency at 12–18 months (p = 0.002). Our study highlighted that various human milk nutrients work together to support the development of cognition and temperament traits during early infancy.
Collapse
Affiliation(s)
- Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tinu M. Samuel
- Nestlé Product Technology Center-Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brittany Howell
- Department of Human Development and Family Science, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Seoyoon Cho
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristine Baluyot
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Heather Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jed T. Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, United States
| | - Di Wu
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonas Hauser
- Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Hongtu Zhu
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Weili Lin
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Weili Lin,
| |
Collapse
|
30
|
Decsi T, Marosvölgyi T, Muszil E, Bódy B, Szabó É. Long-Chain Polyunsaturated Fatty Acid Status at Birth and Development of Childhood Allergy: A Systematic Review. Life (Basel) 2022; 12:526. [PMID: 35455017 PMCID: PMC9030843 DOI: 10.3390/life12040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
The associations of fetal fatty acids status to immune-related health parameters later in life are unclear. Our aim is to collect all available information on the relationship between fatty acid status at birth and allergy in childhood. Systematic literature search was performed on Ovid MEDLINE, Cochrane Library, and Embase. The search retrieved 897 articles without duplicates; 14 articles remained after excluding those that did not fit into our inclusion criteria. When the dichotomous parameter of suffering or not from allergic condition in childhood was analyzed, cord blood eicosapentaenoic acid (EPA) values proved to be significantly lower in allergic than non-allergic children in four comparisons from three studies. When the linear parameters of odds ratios and relative risks for allergy were taken into consideration, high cord blood EPA, but also high docosahexaenoic acid (DHA) and high total n-3 long-chain polyunsaturated fatty acid values were associated to clinically relevant reduction (at least 38%) in eight comparisons from five studies. Within the cord blood samples, higher EPA, docosapentaenoic acid, and DHA values were significantly and negatively associated in eight correlation analyses from three studies with laboratory parameters considered to reflect allergic trait. The data reported here may provide information for defining optimal fatty acid intakes for pregnant women.
Collapse
Affiliation(s)
- Tamás Decsi
- Department of Pediatrics, Clinical Centre, University of Pécs, 7623 Pécs, Hungary; (T.D.); (E.M.); (B.B.)
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Eszter Muszil
- Department of Pediatrics, Clinical Centre, University of Pécs, 7623 Pécs, Hungary; (T.D.); (E.M.); (B.B.)
| | - Blanka Bódy
- Department of Pediatrics, Clinical Centre, University of Pécs, 7623 Pécs, Hungary; (T.D.); (E.M.); (B.B.)
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
31
|
Martinot P, Adjibade M, Taine M, Davisse-Paturet C, Lioret S, Charles MA, de Lauzon-Guillain B, Bernard JY. LC-PUFA enrichment in infant formula and neurodevelopment up to age 3.5 years in the French nationwide ELFE birth cohort. Eur J Nutr 2022; 61:2979-2991. [PMID: 35318492 DOI: 10.1007/s00394-022-02863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE For decades, consistent associations between breastfeeding and children's neurodevelopment have been attributed to breastmilk content in long-chain polyunsaturated fatty acids (LC-PUFAs). However, the beneficial effect of LC-PUFA enrichment of infant formula on neurodevelopment remains controversial. This study examined the association of LC-PUFA enrichment of infant formulas with neurodevelopment up to age 3.5 years. METHODS Analyses were based on 9372 children from the French nationwide ELFE birth cohort. Monthly from 2 to 10 months, parents declared their infant's feeding mode, including breastfeeding and the name of the infant formula, which allowed for identifying formulas enriched in arachidonic (ARA), eicosapentaenoic (EPA) and/or docosahexaenoic (DHA) acids. Neurodevelopment was assessed at age 1 and 3.5 years with the Child Development Inventory (CDI-1 and CDI-3.5); at 2 years with the MacArthur-Bates Communicative Development Inventories (MB-2); and at 3.5 years with the Picture Similarities subtest of the British Ability Scale (BAS-3.5). Associations were assessed by linear regression adjusted for any breastfeeding duration and main confounding factors, including socioeconomic characteristics. RESULTS One-third of formula-fed infants consumed LC-PUFA-enriched formulas. Most of these formulas were enriched in both DHA and ARA, and about 10% of infants consumed formula further enriched in EPA. LC-PUFA enrichment of infant formula was not associated with neurodevelopmental scores at age 1 (CDI-1, - 0.16 [- 0.39, 0.07]), age 2 (MB-2, 0.78 [- 0.33, 1.89]), or age 3.5 (CDI-3.5, - 0.05 [- 0.27, 0.17]; BAS-3.5, - 0.93 [- 2.85, 0.98]). CONCLUSION In the ELFE study, LC-PUFA enrichment of infant formula was not associated with neurodevelopmental scores up to 3.5 years.
Collapse
Affiliation(s)
- Pauline Martinot
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), Inserm, INRAE, 75004, Paris, France
| | - Moufidath Adjibade
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), Inserm, INRAE, 75004, Paris, France
| | - Marion Taine
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), Inserm, INRAE, 75004, Paris, France
| | - Camille Davisse-Paturet
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), Inserm, INRAE, 75004, Paris, France
| | - Sandrine Lioret
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), Inserm, INRAE, 75004, Paris, France
| | - Marie-Aline Charles
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), Inserm, INRAE, 75004, Paris, France.,Unité mixte Inserm-Ined-EFS ELFE, Ined, 93322, Aubervilliers, France
| | - Blandine de Lauzon-Guillain
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), Inserm, INRAE, 75004, Paris, France.
| | - Jonathan Y Bernard
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), Inserm, INRAE, 75004, Paris, France.,Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences (SICS), Singapore, Singapore
| |
Collapse
|
32
|
de la Rocha C, Rodríguez-Ríos D, Ramírez-Chávez E, Molina-Torres J, de Jesús Flores-Sierra J, Orozco-Castellanos LM, Galván-Chía JP, Sánchez AV, Zaina S, Lund G. Cumulative Metabolic and Epigenetic Effects of Paternal and/or Maternal Supplementation with Arachidonic Acid across Three Consecutive Generations in Mice. Cells 2022; 11:cells11061057. [PMID: 35326508 PMCID: PMC8947399 DOI: 10.3390/cells11061057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
Apart from the known associations between arachidonic acid (AA), weight gain, and neurological and immune function, AA exposure leads to alterations in global and gene-specific DNA methylation (DNAm) and fatty acid (FA) content in human cultured cells. However, it is unknown as to whether the latter effects occur in vivo and are maintained over extended periods of time and across generations. To address this issue, we asked whether AA supplementation for three consecutive generations (prior to coitus in sires or in utero in dams) affected offspring growth phenotypes, in addition to liver DNAm and FA profiles in mice. Twelve-week-old BALB/c mice were exposed daily to AA dissolved in soybean oil (vehicle, VH), or VH only, for 10 days prior to mating or during the entire pregnancy (20 days). On average, 15 mice were supplemented per generation, followed by analysis of offspring body weight and liver traits (x average = 36 and 10 per generation, respectively). Body weight cumulatively increased in F2 and F3 offspring generations and positively correlated with milligrams of paternal or maternal offspring AA exposure. A concomitant increase in liver weight was observed. Notably, akin to AA-challenged cultured cells, global DNAm and cis-7-hexadecenoic acid (16:1n-9), an anti-inflammatory FA that is dependent on stearoyl-CoA desaturase 1 (SCD1) activity, increased with milligrams of AA exposure. In accordance, liver Scd1 promoter methylation decreased with milligrams of germline AA exposure and was negatively correlated with liver weight. Our results show that mice retain cellular memories of AA exposure across generations that could potentially be beneficial to the innate immune system.
Collapse
Affiliation(s)
- Carmen de la Rocha
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato 36500, Mexico; (C.d.l.R.); (D.R.-R.); (A.V.S.)
| | - Dalia Rodríguez-Ríos
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato 36500, Mexico; (C.d.l.R.); (D.R.-R.); (A.V.S.)
| | - Enrique Ramírez-Chávez
- Department of Biotechnology and Biochemistry, CINVESTAV Irapuato Unit, Irapuato 36500, Mexico; (E.R.-C.); (J.M.-T.)
| | - Jorge Molina-Torres
- Department of Biotechnology and Biochemistry, CINVESTAV Irapuato Unit, Irapuato 36500, Mexico; (E.R.-C.); (J.M.-T.)
| | - José de Jesús Flores-Sierra
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, León 37000, Mexico; (J.d.J.F.-S.); (S.Z.)
| | - Luis M. Orozco-Castellanos
- Department of Pharmacology, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Guanajuato 36000, Mexico; (L.M.O.-C.); (J.P.G.-C.)
| | - Juan P. Galván-Chía
- Department of Pharmacology, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Guanajuato 36000, Mexico; (L.M.O.-C.); (J.P.G.-C.)
| | - Atenea Vázquez Sánchez
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato 36500, Mexico; (C.d.l.R.); (D.R.-R.); (A.V.S.)
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, León 37000, Mexico; (J.d.J.F.-S.); (S.Z.)
| | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato 36500, Mexico; (C.d.l.R.); (D.R.-R.); (A.V.S.)
- Correspondence: ; Tel.: +52-462-623-9664
| |
Collapse
|
33
|
Nieto-Ruiz A, García-Santos JA, Verdejo-Román J, Diéguez E, Sepúlveda-Valbuena N, Herrmann F, Cerdó T, De-Castellar R, Jiménez J, Bermúdez MG, Pérez-García M, Miranda MT, López-Sabater MC, Catena A, Campoy C. Infant Formula Supplemented With Milk Fat Globule Membrane, Long-Chain Polyunsaturated Fatty Acids, and Synbiotics Is Associated With Neurocognitive Function and Brain Structure of Healthy Children Aged 6 Years: The COGNIS Study. Front Nutr 2022; 9:820224. [PMID: 35356726 PMCID: PMC8959863 DOI: 10.3389/fnut.2022.820224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/01/2022] [Indexed: 12/25/2022] Open
Abstract
Background Adequate nutrient intake during the first few months of life plays a critical role on brain structure and function development. Objectives To analyze the long-term effects of an experimental infant formula (EF) on neurocognitive function and brain structure in healthy children aged 6 years compared to those fed with a standard infant formula or breastfed. Methods The current study involved 108 healthy children aged 6 years and participating in the COGNIS Study. At 0-2 months, infants were randomized to receive up to 18 months of life a standard infant formula (SF) or EF enriched with milk fat globule membrane (MFGM), long-chain polyunsaturated fatty acids (LC-PUFAs) and synbiotics. Furthermore, a reference group of breastfed (BF) infants were also recruited. Children were assessed using neurocognitive tests and structural Magnetic Resonance Imaging (MRI) at 6 years old. Results Experimental infant formula (EF) children showed greater volumes in the left orbital cortex, higher vocabulary scores and IQ, and better performance in an attention task than BF children. EF children also presented greater volumes in parietal regions than SF kids. Additionally, greater cortical thickness in the insular, parietal, and temporal areas were found in children from the EF group than those fed with SF or BF groups. Further correlation analyses suggest that higher volumes and cortical thickness of different parietal and frontal regions are associated with better cognitive development in terms of language (verbal comprehension) and executive function (working memory). Finally, arachidonic acid (ARA), adrenic acid (AdA), docosahexaenoic acid (DHA) levels in cheek cell glycerophospholipids, ARA/DHA ratio, and protein, fatty acid, and mineral intake during the first 18 months of life seem to be associated with changes in the brain structures at 6 years old. Conclusions Supplemented infant formula with MFGM components, LC-PUFAs, and synbiotics seems to be associated to long-term effects on neurocognitive development and brain structure in children at 6 years old. Clinical Trial Registration https://www.clinicaltrials.gov/, identifier: NCT02094547.
Collapse
Affiliation(s)
- Ana Nieto-Ruiz
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - José A. García-Santos
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Juan Verdejo-Román
- Department of Personality, Assessment & Psychological Treatment, School of Psychology, University of Granada, Granada, Spain
| | - Estefanía Diéguez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Natalia Sepúlveda-Valbuena
- Nutrition and Biochemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Florian Herrmann
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Tomás Cerdó
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
- Carlos III Health Institute, Madrid, Spain
| | | | | | - Mercedes G. Bermúdez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Miguel Pérez-García
- Department of Personality, Assessment & Psychological Treatment, School of Psychology, University of Granada, Granada, Spain
- Mind, Brain and Behavior Research Centre—CIMCYC, University of Granada, Granada, Spain
| | - M. Teresa Miranda
- Department of Biostatistics, School of Medicine, University of Granada, Granada, Spain
| | - M. Carmen López-Sabater
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària de la UB (INSA-UB), Barcelona, Spain
- National Network of Research in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (Barcelona's Node), Madrid, Spain
| | - Andrés Catena
- Mind, Brain and Behavior Research Centre—CIMCYC, University of Granada, Granada, Spain
- Department of Experimental Psychology, School of Psychology, University of Granada, Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
- National Network of Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III (Granada's Node), Madrid, Spain
| |
Collapse
|
34
|
Najafi F, Kavoosi G, Siahbalaei R, Kariminia A. Anti-oxidative and anti-hyperglycemic properties of Agastache foeniculum essential oil and oily fraction in hyperglycemia-stimulated and lipopolysaccharide-stimulated macrophage cells: In vitro and in silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114814. [PMID: 34775034 DOI: 10.1016/j.jep.2021.114814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/19/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperglycemia (HG) and lipopolysaccharide (LPS) often promote superoxide accumulation, which may increase oxidative stress. Reducing superoxide production in hyperglycemia and the inflammatory condition is an emerging way to reduce protein and lipid oxidation and diabetes complication. AIM OF STUDY To examine the effect of Agastache foeniculum essential oil (AFEO) and oil fraction (AFoil) on HG- and LPS-stimulated oxidative stress, the pathogenicity of AFEO and AFoil on oxidative stress was assessed. METHODS The stimulatory effects of AFEO and AFoil on the activity and expression of NADH oxide (NOX), catalase (CAT), superoxide dismutase (SOD), and the expression of nuclear respiratory factor 2 (NRF2) and nuclear factor-kappa B (NF-kB) in the stimulated macrophage cell line, J774.A1, was studied. The interaction patterns of AFEO and AFoil components with NOX, SOD, CAT, NRF2, and NF-kB proteins were also deduced using molecular docking. RESULTS Estragole was the main ingredient in AFEO (97%). Linolenic acid (32.10%), estragole (16.22%), palmitic acid (12.62%), linoleic acid (12.04%), and oleic acid (8.73%) were the major chemical components of the AFoil. NOX activation was stimulated in macrophage cells by HG and LPS. At 20 μg/mL, AFEO and AFoil decreased NOX activity while increased SOD and CAT activities in stimulated macrophages. AFoil with estragole and omega-3 fatty acids was better than AFEO with estragole in anti-hyperglycemic and anti-oxidative activity. According to molecular docking research, estragole, linoleic acid, and linolenic acid bind to different hydrophobic pockets of NOX, SOD, CAT, NFR2, and NF-kB using hydrogen bonds, van der Waals bonds, pi-alkyl, and pi-anion interactions, with different binding energies. CONCLUSION AFEO and AFoil showed antioxidant and anti-diabetic activity. The mechanisms in lowering oxidative stress markers depended on down-regulating superoxide-producing enzymes and up-regulating superoxide-removing enzymes at gene and protein levels. The AFoil emulsion can be used to reduce the detrimental impacts of hyperglycemia and oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Najafi
- Department of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Gholamreza Kavoosi
- Department of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Roghayeh Siahbalaei
- Department of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Amina Kariminia
- British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Bernhard W, Raith M, Shunova A, Lorenz S, Böckmann K, Minarski M, Poets CF, Franz AR. Choline Kinetics in Neonatal Liver, Brain and Lung-Lessons from a Rodent Model for Neonatal Care. Nutrients 2022; 14:nu14030720. [PMID: 35277079 PMCID: PMC8837973 DOI: 10.3390/nu14030720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Choline requirements are high in the rapidly growing fetus and preterm infant, mainly serving phosphatidylcholine (PC) synthesis for parenchymal growth and one-carbon metabolism via betaine. However, choline metabolism in critical organs during rapid growth is poorly understood. Therefore, we investigated the kinetics of D9-choline and its metabolites in the liver, plasma, brain and lung in 14 d old rats. Animals were intraperitoneally injected with 50 mg/kg D9-choline chloride and sacrificed after 1.5 h, 6 h and 24 h. Liver, plasma, lungs, cerebrum and cerebellum were analyzed for D9-choline metabolites, using tandem mass spectrometry. In target organs, D9-PC and D9-betaine comprised 15.1 ± 1.3% and 9.9 ± 1.2% of applied D9-choline at 1.5 h. D9-PC peaked at 1.5 h in all organs, and decreased from 1.5-6 h in the liver and lung, but not in the brain. Whereas D9-labeled PC precursors were virtually absent beyond 6 h, D9-PC increased in the brain and lung from 6 h to 24 h (9- and 2.5-fold, respectively) at the expense of the liver, suggesting PC uptake from the liver via plasma rather than local synthesis. Kinetics of D9-PC sub-groups suggested preferential hepatic secretion of linoleoyl-PC and acyl remodeling in target organs. D9-betaine showed rapid turnover and served low-level endogenous (D3-)choline synthesis. In conclusion, in neonatal rats, exogenous choline is rapidly metabolized to PC by all organs. The liver supplies the brain and lung directly with PC, followed by organotypic acyl remodeling. A major fraction of choline is converted to betaine, feeding the one-carbon pool and this must be taken into account when calculating choline requirements.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
- Correspondence:
| | - Marco Raith
- Max-Planck-Institut für Psychiatrie, 80804 Munich, Bavaria, Germany;
| | - Anna Shunova
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Stephan Lorenz
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Katrin Böckmann
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Michaela Minarski
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Christian F. Poets
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Axel R. Franz
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
- Center for Pediatric Clinical Studies, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany
| |
Collapse
|
36
|
Heath RJ, Klevebro S, Wood TR. Maternal and Neonatal Polyunsaturated Fatty Acid Intake and Risk of Neurodevelopmental Impairment in Premature Infants. Int J Mol Sci 2022; 23:ijms23020700. [PMID: 35054885 PMCID: PMC8775484 DOI: 10.3390/ijms23020700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
The N3 and N6 long chain polyunsaturated fatty acids (LCPUFA) docosahexaenoic acid (DHA) and arachidonic acid (AA) are essential for proper neurodevelopment in early life. These fatty acids are passed from mother to infant via the placenta, accreting into fetal tissues such as brain and adipose tissue. Placental transfer of LCPUFA is highest in the final trimester, but this transfer is abruptly severed with premature birth. As such, efforts have been made to supplement the post-natal feed of premature infants with LCPUFA to improve neurodevelopmental outcomes. This narrative review analyzes the current body of evidence pertinent to neurodevelopmental outcomes after LCPUFA supplementation in prematurely born infants, which was identified via the reference lists of systematic and narrative reviews and PubMed search engine results. This review finds that, while the evidence is weakened by heterogeneity, it may be seen that feed comprising 0.3% DHA and 0.6% AA is associated with more positive neurodevelopmental outcomes than LCPUFA-deplete feed. While no new RCTs have been performed since the most recent Cochrane meta-analysis in 2016, this narrative review provides a wider commentary; the wider effects of LCPUFA supplementation in prematurely born infants, the physiology of LCPUFA accretion into preterm tissues, and the physiological effects of LCPUFA that affect neurodevelopment. We also discuss the roles of maternal LCPUFA status as a modifiable factor affecting the risk of preterm birth and infant neurodevelopmental outcomes. To better understand the role of LCPUFAs in infant neurodevelopment, future study designs must consider absolute and relative availabilities of all LCPUFA species and incorporate the LCPUFA status of both mother and infant in pre- and postnatal periods.
Collapse
Affiliation(s)
- Rory J. Heath
- Emergency Medicine Department, Derriford Hospital, University Hospitals Plymouth NHS Foundation Trust, Plymouth PL68DH, UK;
| | - Susanna Klevebro
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
- Correspondence:
| |
Collapse
|
37
|
Hortensius LM, Hellström W, Sävman K, Heckemann RA, Björkman-Burtscher IM, Groenendaal F, Andersson MX, Nilsson AK, Tataranno ML, van Elburg RM, Hellström A, Benders MJNL. Serum docosahexaenoic acid levels are associated with brain volumes in extremely preterm born infants. Pediatr Res 2021; 90:1177-1185. [PMID: 34392310 DOI: 10.1038/s41390-021-01645-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for fetal brain growth and development. Our aim was to evaluate the association between serum DHA and AA levels and brain volumes in extremely preterm infants. METHODS Infants born at <28 weeks gestational age in 2013-2015, a cohort derived from a randomized controlled trial comparing two types of parenteral lipid emulsions, were included (n = 90). Serum DHA and AA levels were measured at postnatal days 1, 7, 14, and 28, and the area under the curve was calculated. Magnetic resonance (MR) imaging was performed at term-equivalent age (n = 66), and volumes of six brain regions were automatically generated. RESULTS After MR image quality assessment and area under the curve calculation, 48 infants were included (gestational age mean [SD] 25.5 [1.4] weeks). DHA levels were positively associated with total brain (B = 7.966, p = 0.012), cortical gray matter (B = 3.653, p = 0.036), deep gray matter (B = 0.439, p = 0.014), cerebellar (B = 0.932, p = 0.003), and white matter volume (B = 3.373, p = 0.022). AA levels showed no association with brain volumes. CONCLUSIONS Serum DHA levels during the first 28 postnatal days were positively associated with volumes of several brain structures in extremely preterm infants at term-equivalent age. IMPACT Higher serum levels of DHA in the first 28 postnatal days are positively associated with brain volumes at term-equivalent age in extremely preterm born infants. Especially the most immature infants suffer from low DHA levels in the first 28 postnatal days, with little increase over time. Future research is needed to explore whether postnatal fatty acid supplementation can improve brain development and may serve as a nutritional preventive and therapeutic treatment option in extremely preterm infants.
Collapse
Affiliation(s)
- Lisa M Hortensius
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - William Hellström
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sävman
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Department of Neonatology, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rolf A Heckemann
- Department of Medical Radiation Sciences, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mats X Andersson
- Department of Biology and Environmental Sciences, The Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Anders K Nilsson
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Luisa Tataranno
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ruurd M van Elburg
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. .,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Skinner AM, Narchi H. Preterm nutrition and neurodevelopmental outcomes. World J Methodol 2021; 11:278-293. [PMID: 34888181 PMCID: PMC8613713 DOI: 10.5662/wjm.v11.i6.278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Survival of preterm infants has been steadily improving in recent years because of many recent advances in perinatal and neonatal medicine. Despite these advances, the growth of survivors does not reach the ideal target level of the normal fetus of the same gestational age. Postnatal weight gain is often not achieved because extrauterine growth has higher energy requirements than intrauterine growth, due to the intensive care environment, illness and inadequate nutrition. Although many other factors influence infant brain development, including family socioeconomic and educational background, the role of nutrition is considerable and fortunately, amenable to intervention. In the preterm neonate, the brain is the most metabolically demanding organ, consuming the largest proportions of energy and nutrient intake for its function and programmed growth and maturation. Weight gain, linear and head circumference growth are all markers of nutritional status and are independently associated with long-term neurodevelopment. Brain development is not only the result of nutrients intake, but in addition, of the interaction with growth factors which depend on adequate nutrient supply and overall health status. This explains why conditions such as sepsis, necrotizing enterocolitis and chronic lung disease alter the distribution and accretion of nutrients thereby suppressing growth factor synthesis. In this review, we will focus on the direct role of nutrition on neurodevelopment, emphasizing why it should be started without delay. The nutritional requirements of the preterm infant will be discussed, followed by the effects of general nutritional interventions and specific nutrients, as well as the role of nutritional supplements on neurodevelopment. The primordial role of human breast milk, breast milk fortifiers and human milk oligosaccharides will be discussed in detail. We will also examine the role of nutrition in preventing neonatal complications which can affect neurodevelopment in their own right.
Collapse
Affiliation(s)
- Alyson Margaret Skinner
- Department of Paediatrics, Manor Hospital, Walsall Healthcare NHS Trust, Walsall WS2 9PS, West Midlands, United Kingdom
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain PO Box 17666, United Arab Emirates
| | - Hassib Narchi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain PO Box 17666, United Arab Emirates
| |
Collapse
|
39
|
Ladino L, Sánchez N, Vázquez-Frias R, Koletzko B. Latin American Considerations for Infant and Young Child Formulae. Nutrients 2021; 13:nu13113942. [PMID: 34836196 PMCID: PMC8620542 DOI: 10.3390/nu13113942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Infant formula is the only acceptable substitute for breastmilk from 0 to 6 months old when human milk cannot be provided in sufficient amounts. Manufacturers have developed options that intend to meet the changing needs of the child aged from six to twelve months (follow-on formulae) and after the age of one year (young child formulae). The international code for marketing breast milk substitute stipulates standards for marketing practices of these products. In Latin America there are local variations of marketing practices. Novel marketing strategies such as advertising through social media and influencers pose new threats for breastfeeding success in Latin America. This review aims to examine variations in local regulations for marketing of infant formulae and to analyze the emerging phenomenon of influencer advertising. We reviewed the local norms for Latin American countries and examined differences and possible gaps. Emerging evidence of influencer marketing was explored. The results indicate that national regulations differ among Latin American countries, particularly with respect to product labelling and the requirement to use a local native language, highlighting the cost of the product, and different regulations prohibiting certain messages and illustrations. Regarding new marketing strategies, there is limited evidence on advertising infant formula through social media influencers, where different categories of marketing strategies can be described. More transparent reporting of social marketing by formula providers and more independent research on novel marketing strategies are needed.
Collapse
Affiliation(s)
- Liliana Ladino
- Faculty of Medicine, Research Institute on Nutrition, Genetics and Metabolism IINGM, Universidad El Bosque, Bogotá 110121, Colombia;
- Nutrition Working Group, Latin-American Society for Pediatric Gastroenterology Hepatology and Nutrition LASPGHAN, Mexico City 11560, Mexico;
| | - Nathalia Sánchez
- Research and Education Center on Nutrition, CIENutrition, Bogotá 110221, Colombia;
| | - Rodrigo Vázquez-Frias
- Nutrition Working Group, Latin-American Society for Pediatric Gastroenterology Hepatology and Nutrition LASPGHAN, Mexico City 11560, Mexico;
- Department of Gastroenterology and Nutrition, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Berthold Koletzko
- Department Pediatrics, Medical Centre of LMU Munich, Ludwig Maximilians University of Munich, Dr. von Hauner Children’s Hospital, 80539 München, Germany
- Correspondence: ; Tel.: +49-89-4400-52811
| |
Collapse
|
40
|
Demmelmair H, Koletzko B. Perinatal Polyunsaturated Fatty Acid Status and Obesity Risk. Nutrients 2021; 13:3882. [PMID: 34836138 PMCID: PMC8625539 DOI: 10.3390/nu13113882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
High obesity rates in almost all regions of the world prompt an urgent need for effective obesity prevention. Very good scientific evidence from cell culture and rodent studies show that the availability of essential polyunsaturated fatty acids (PUFA) and their long-chain polyunsaturated derivatives, namely, arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, influence adipogenesis; for this reason, early life status may influence later obesity risk. The respective PUFA effects could be mediated via their eicosanoid derivatives, their influence on cell membrane properties, the browning of white adipose tissue, changes to the offspring gut microbiome, their influence on developing regulatory circuits, and gene expression during critical periods. Randomized clinical trials and observational studies show divergent findings in humans, with mostly null findings but also the positive and negative effects of an increased n-3 to n-6 PUFA ratio on BMI and fat mass development. Hence, animal study findings cannot be directly extrapolated to humans. Even though the mechanistic data basis for the effects of n-3 PUFA on obesity risk appears promising, no recommendations for humans can be derived at present.
Collapse
Affiliation(s)
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department Pediatrics, Dr. von Hauner Children’s Hospital, University of Munich Medical Centre, LMU—Ludwig-Maximilians-Universität Munich, D-80337 Munich, Germany;
| |
Collapse
|
41
|
Monnard C, Fleith M. Total Fat and Fatty Acid Intake among 1-7-Year-Old Children from 33 Countries: Comparison with International Recommendations. Nutrients 2021; 13:3547. [PMID: 34684548 PMCID: PMC8537778 DOI: 10.3390/nu13103547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/27/2022] Open
Abstract
This work reviews available data on dietary intakes of total fat, saturated fatty acids (SFA) and individual polyunsaturated fatty acids (PUFA) in children in different countries worldwide and for the first time, compares them with recent international recommendations. Studies published before June 2021 reporting total fat, total SFA and individual PUFA intakes in children aged 1-7 y were included. Observed intakes were evaluated against FAO/WHO and EFSA recommendations. 65 studies from 33 countries were included. Fat intake was too low in 88% of studies in young children (1-3 y). SFA intake was >10%E in 69-73% of children, especially in Europe. Linoleic acid intake was <3%E in 24% of studies in 1-2 y olds and within FAO/WHO recommendations among all other ages. Alpha-linolenic acid intake was <0.5%E in almost half of studies. Docosahexaenoic acid (DHA) or eicosapentaenoic acid + DHA intakes were below recommendations in most studies. In summary, while total fat intake was too low among younger children, SFA intake was above, especially in Europe and n-3 PUFA intake, especially DHA, were below recommendations for all ages. Intake of n-3 PUFA, especially DHA, is generally suboptimal. More data, particularly from developing countries, are required to refine these findings and guide implementation of adapted nutrition policies.
Collapse
Affiliation(s)
- Cathriona Monnard
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland;
| | | |
Collapse
|
42
|
A Comprehensive Review of the Composition, Nutritional Value, and Functional Properties of Camel Milk Fat. Foods 2021; 10:foods10092158. [PMID: 34574268 PMCID: PMC8472115 DOI: 10.3390/foods10092158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, camel milk (CM) has been considered as a health-promoting icon due to its medicinal and nutritional benefits. CM fat globule membrane has numerous health-promoting properties, such as anti-adhesion and anti-bacterial properties, which are suitable for people who are allergic to cow's milk. CM contains milk fat globules with a small size, which accounts for their rapid digestion. Moreover, it also comprises lower amounts of cholesterol and saturated fatty acids concurrent with higher levels of essential fatty acids than cow milk, with an improved lipid profile manifested by reducing cholesterol levels in the blood. In addition, it is rich in phospholipids, especially plasmalogens and sphingomyelin, suggesting that CM fat may meet the daily nutritional requirements of adults and infants. Thus, CM and its dairy products have become more attractive for consumers. In view of this, we performed a comprehensive review of CM fat's composition and nutritional properties. The overall goal is to increase knowledge related to CM fat characteristics and modify its unfavorable perception. Future studies are expected to be directed toward a better understanding of CM fat, which appears to be promising in the design and formulation of new products with significant health-promoting benefits.
Collapse
|
43
|
Hahn K, Hardimon JR, Caskey D, Jost DA, Roady PJ, Brenna JT, Dilger RN. Safety and Efficacy of Sodium and Potassium Arachidonic Acid Salts in the Young Pig. Nutrients 2021; 13:nu13051482. [PMID: 33925724 PMCID: PMC8145490 DOI: 10.3390/nu13051482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Arachidonic acid (ARA; 20:4n6) and docosahexaenoic acid (DHA; 22:6n3) are polyunsaturated fatty acids (FA) naturally present in breast milk and added to most North American infant formulas (IF). We investigated the safety and efficacy of novel sodium and potassium salts of arachidonic acid as bioequivalent to support tissue levels of ARA comparable to the parent oil; M. alpina oil (Na-ARA and K-ARA) and including a Na-DHA group. Pigs of both sexes were randomized to one of five dietary treatments (n = 16 per treatment; 8 male and 8 female) from postnatal day 2 to 23. ARA and DHA were included as either triglyceride (TG) or salt. Target dietary ARA/DHA concentrations as percent of total FA by weight were as follows: TT (0.47 TG/0.32 TG), NaT (0.47 Na-salt/0.32 TG), KT (0.47 K-salt/0.32 TG), and Na0 (0.47 Na-salt/0.00), NaNa (0.47 Na-salt/0.32 Na-salt). The primary outcome in this study was bioequivalence of ARA brain accretion. Growth performance; blood and tissue fatty acid levels; liver histology; complete blood cell counts; and serum chemistries were all evaluated. Overall, diets containing test sources of ARA and DHA did not affect growth performance; liver histology; or substantially influence hematological outcomes as compared with TT. The results confirm that the use of Na and K salt forms of ARA yield bioequivalent ARA accretion in the cerebral cortex and retinal tissue compared to TG-ARA. These findings confirm that use of Na-ARA and K-ARA salts in the young pig was safe and nutritionally bioequivalent to TG-ARA for critical neural tissues.
Collapse
Affiliation(s)
- Kaylee Hahn
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | | | - Doug Caskey
- Jost Chemical Co, St., Louis, MO 63114, USA; (J.R.H.); (D.C.); (D.A.J.)
| | - Douglas A. Jost
- Jost Chemical Co, St., Louis, MO 63114, USA; (J.R.H.); (D.C.); (D.A.J.)
| | - Patrick J. Roady
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - J. Thomas Brenna
- Dell Pediatric Research Institute, Department of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, Austin, TX 78723, USA;
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ryan N. Dilger
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
44
|
Martinat M, Rossitto M, Di Miceli M, Layé S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021; 13:1185. [PMID: 33918517 PMCID: PMC8065891 DOI: 10.3390/nu13041185] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
n-3 and n-6 polyunsaturated fatty acids (PUFAs) are essential fatty acids that are provided by dietary intake. Growing evidence suggests that n-3 and n-6 PUFAs are paramount for brain functions. They constitute crucial elements of cellular membranes, especially in the brain. They are the precursors of several metabolites with different effects on inflammation and neuron outgrowth. Overall, long-chain PUFAs accumulate in the offspring brain during the embryonic and post-natal periods. In this review, we discuss how they accumulate in the developing brain, considering the maternal dietary supply, the polymorphisms of genes involved in their metabolism, and the differences linked to gender. We also report the mechanisms linking their bioavailability in the developing brain, their transfer from the mother to the embryo through the placenta, and their role in brain development. In addition, data on the potential role of altered bioavailability of long-chain n-3 PUFAs in the etiologies of neurodevelopmental diseases, such as autism, attention deficit and hyperactivity disorder, and schizophrenia, are reviewed.
Collapse
|
45
|
Van Dael P. Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: review of recent studies and recommendations. Nutr Res Pract 2021; 15:137-159. [PMID: 33841720 PMCID: PMC8007408 DOI: 10.4162/nrp.2021.15.2.137] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/13/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Long-chain (LC) n-3 polyunsaturated fatty acids (n-3 PUFAs), in particular docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are nutrients involved in many metabolic and physiological processes, and are referred to as n-3 LCPUFA. They have been extensively studied for their effects in human nutrition and health. This paper provides an overview on metabolism, sources, dietary intake, and status of n-3 LCPUFA. A summary of the dietary recommendations for n-3 LCPUFAs for different age groups as well as specific physiological conditions is provided. Evidence for n-3 LCPUFA in cardiovascular diseases, including new studies, is reviewed. Expert recommendations generally support a beneficial effect of n-3 LCPUFA on cardiovascular health and recommend a daily intake of 500 mg as DHA and EPA, or 1-2 servings of fish per week. The role of n-3 LCPUFA on brain health, in particular neurodegenerative disorders and depression, is reviewed. The evidence for beneficial effects of n-3 LCPUFA on neurodegenerative disorders is non-conclusive despite mechanistic support and observational data. Hence, no definite n-3 LCPUFA expert recommendations are made. Data for the beneficial effect of n-3 LCPUFA on depression are generally compelling. Expert recommendations have been established: 200-300 mg/day for depression; up to 1-2 g/day for major depressive disorder. Recent studies support a beneficial role of n-3 LCPUFAs in reducing the risk for premature birth, with a daily intake of 600-800 mg of DHA during pregnancy. Finally, international experts recently reviewed the scientific evidence on DHA and arachidonic acid (ARA) in infant nutrition and concluded that the totality of data support that infant and follow-on formulas should provide both DHA and ARA at levels similar to those in breast milk. In conclusion, the available scientific data support that dietary recommendations for n-3 LCPUFA should be established for the general population and for subjects with specific physiological conditions.
Collapse
Affiliation(s)
- Peter Van Dael
- Nutrition Science & Advocacy, DSM Nutritional Products, 4303 Kaiseraugst, Switzerland
| |
Collapse
|
46
|
Brink LR, Chichlowski M, Pastor N, Thimmasandra Narayanappa A, Shah N. In the Age of Viral Pandemic, Can Ingredients Inspired by Human Milk and Infant Nutrition Be Repurposed to Support the Immune System? Nutrients 2021; 13:870. [PMID: 33800961 PMCID: PMC7999376 DOI: 10.3390/nu13030870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
In 2020, with the advent of a pandemic touching all aspects of global life, there is a renewed interest in nutrition solutions to support the immune system. Infants are vulnerable to infection and breastfeeding has been demonstrated to provide protection. As such, human milk is a great model for sources of functional nutrition ingredients, which may play direct roles in protection against viral diseases. This review aims to summarize the literature around human milk (lactoferrin, milk fat globule membrane, osteopontin, glycerol monolaurate and human milk oligosaccharides) and infant nutrition (polyunsaturated fatty acids, probiotics and postbiotics) inspired ingredients for support against viral infections and the immune system more broadly. We believe that the application of these ingredients can span across all life stages and thus apply to both pediatric and adult nutrition. We highlight the opportunities for further research in this field to help provide tangible nutrition solutions to support one's immune system and fight against infections.
Collapse
Affiliation(s)
- Lauren R. Brink
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | - Maciej Chichlowski
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | - Nitida Pastor
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | | | - Neil Shah
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Slough SL1 3UH, UK;
- University College London, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
47
|
Bernabe-García M, Calder PC, Villegas-Silva R, Rodríguez-Cruz M, Chávez-Sánchez L, Cruz-Reynoso L, Mateos-Sánchez L, Lara-Flores G, Aguilera-Joaquín AR, Sánchez-García L. Efficacy of Docosahexaenoic Acid for the Prevention of Necrotizing Enterocolitis in Preterm Infants: A Randomized Clinical Trial. Nutrients 2021; 13:nu13020648. [PMID: 33671220 PMCID: PMC7922869 DOI: 10.3390/nu13020648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is an inflammatory bowel disease and a leading cause of morbidity and mortality in preterm infants. In this study, a randomized double-blind parallel-group (1:1) trial was carried out in two neonatal intensive care units of two tertiary hospitals. Two hundred and twenty-five preterm newborns with an expected functional gastrointestinal tract were recruited and received an enteral dose of 75 mg of docosahexaenoic acid (DHA)/kg body weight or high-oleic sunflower oil daily for 14 days from the first enteral feed after birth. Confirmed NEC was evaluated with Bell’s scale from stage ≥ IIa. Two hundred and fourteen randomized infants were analyzed in terms of the intent-to-treat (DHA-group: n = 105; control-group: n = 109); data for two hundred infants were analysed per protocol. Confirmed NEC was lower in infants from the DHA-group compared with the control-group (0/100 vs. 7/100; p = 0.007), with RR = 0.93 (95% CI 0.881 to 0.981), risk difference = −7%, (95% CI −12.00 to −1.99), and number needed-to-treat = 15 (95% CI 8.3 to 50). Intent-to-treat analysis showed a lower level of treatment failure in the DHA-group compared with the control-group (6/105 (6%) vs. 16/109 (15%); p = 0.03, RR = 0.905, (95% CI 0.826 to 0.991)). The results after multivariate-regression analysis remained significant. Adverse events (apart from the incidence of NEC) were not different between groups. A daily dose of DHA for 14 days starting with the first enteral feed may prevent NEC in preterm infants.
Collapse
Affiliation(s)
- Mariela Bernabe-García
- Unidad de Investigación Médica en Nutrición, UMAE Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social, México City 06720, Mexico; (M.B.-G.); (M.R.-C.)
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
- Correspondence:
| | - Raúl Villegas-Silva
- Neonatología, Hospital Infantil de México Federico Gómez, México City 06720, Mexico;
| | - Maricela Rodríguez-Cruz
- Unidad de Investigación Médica en Nutrición, UMAE Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social, México City 06720, Mexico; (M.B.-G.); (M.R.-C.)
| | - Luis Chávez-Sánchez
- Unidad de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social, México City 06720, Mexico;
| | - Leonardo Cruz-Reynoso
- Unidad de Cuidados Intensivos Neonatales, UMAE Hospital de Gineco-Obstetricia No.3, CMN La Raza, Instituto Mexicano del Seguro Social, México City 02990, Mexico; (L.C.-R.); (A.R.A.-J.); (L.S.-G.)
| | - Leovigildo Mateos-Sánchez
- Unidad de Cuidados Intensivos Neonatales, UMAE Hospital de Gineco-Obstetricia N° 4 “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, México City 01090, Mexico; (L.M.-S.); (G.L.-F.)
| | - Gabriel Lara-Flores
- Unidad de Cuidados Intensivos Neonatales, UMAE Hospital de Gineco-Obstetricia N° 4 “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, México City 01090, Mexico; (L.M.-S.); (G.L.-F.)
| | - Augusto R. Aguilera-Joaquín
- Unidad de Cuidados Intensivos Neonatales, UMAE Hospital de Gineco-Obstetricia No.3, CMN La Raza, Instituto Mexicano del Seguro Social, México City 02990, Mexico; (L.C.-R.); (A.R.A.-J.); (L.S.-G.)
| | - Luisa Sánchez-García
- Unidad de Cuidados Intensivos Neonatales, UMAE Hospital de Gineco-Obstetricia No.3, CMN La Raza, Instituto Mexicano del Seguro Social, México City 02990, Mexico; (L.C.-R.); (A.R.A.-J.); (L.S.-G.)
| |
Collapse
|
48
|
Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem 2021; 64:401-421. [PMID: 32618335 PMCID: PMC7517362 DOI: 10.1042/ebc20190082] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The chemistry, biochemistry, pharmacology and molecular biology of oxylipins (defined as a family of oxygenated natural products that are formed from unsaturated fatty acids by pathways involving at least one step of dioxygen-dependent oxidation) are complex and occasionally contradictory subjects that continue to develop at an extraordinarily rapid rate. The term includes docosanoids (e.g. protectins, resolvins and maresins, or specialized pro-resolving mediators), eicosanoids and octadecanoids and plant oxylipins, which are derived from either the omega-6 (n-6) or the omega-3 (n-3) families of polyunsaturated fatty acids. For example, the term eicosanoid is used to embrace those biologically active lipid mediators that are derived from C20 fatty acids, and include prostaglandins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and related oxygenated derivatives. The key enzymes for the production of prostanoids are prostaglandin endoperoxide H synthases (cyclo-oxygenases), while lipoxygenases and oxidases of the cytochrome P450 family produce numerous other metabolites. In plants, the lipoxygenase pathway from C18 polyunsaturated fatty acids yields a variety of important products, especially the jasmonates, which have some comparable structural features and functions. Related oxylipins are produced by non-enzymic means (isoprostanes), while fatty acid esters of hydroxy fatty acids (FAHFA) are now being considered together with the oxylipins from a functional perspective. In all kingdoms of life, oxylipins usually act as lipid mediators through specific receptors, have short half-lives and have functions in innumerable biological contexts.
Collapse
|
49
|
Schaefer E, Demmelmair H, Horak J, Holdt L, Grote V, Maar K, Neuhofer C, Teupser D, Thiel N, Goeckeler-Leopold E, Maggini S, Koletzko B. Multiple Micronutrients, Lutein, and Docosahexaenoic Acid Supplementation during Lactation: A Randomized Controlled Trial. Nutrients 2020; 12:E3849. [PMID: 33339438 PMCID: PMC7765837 DOI: 10.3390/nu12123849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/28/2023] Open
Abstract
Breastfed infants require an adequate supply of critical nutrients for growth, tissue functions, and health. Recommended intakes for several nutrients are considerably higher in lactating than non-lactating women but are not always met with habitual diets. We report a randomized, double-blind clinical trial in 70 healthy lactating women in Germany evaluating the effects of supplementation with multiple micronutrients, lutein, and docosahexaenoic acid (DHA) compared to placebo on maternal nutrient status and milk composition. The primary endpoint was the effect on the change of human milk DHA content (as a proportion of total milk fatty acids) during 12 weeks of supplementation. Maternal blood and milk biomarkers were measured as secondary endpoints. Supplementation increased maternal milk DHA by 30% compared to a decline in the placebo group. Supplementation also increased maternal blood DHA (17%), eicosapentaenoic acid (4%), 25-OH-vitamin D (24%), vitamin B12 (12%), lutein (4%), and beta carotene (49%), while homocysteine decreased. No significant difference in the number of adverse events was observed between supplementation and placebo groups. In conclusion, multi-micronutrient supplementation was safe and increased maternal blood and milk concentrations of selected nutrients in healthy women.
Collapse
Affiliation(s)
- Ella Schaefer
- Bayer Consumer Care AG, Peter-Merian-Straße 84, 4002 Basel, Switzerland;
| | - Hans Demmelmair
- Department Paediatrics, Division Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, LMU University Hospitals, Ludwig-Maximilians-Universität Munich, Lindwurmstraße 4, 80337 Munich, Germany; (H.D.); (J.H.); (V.G.); (B.K.)
| | - Jeannie Horak
- Department Paediatrics, Division Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, LMU University Hospitals, Ludwig-Maximilians-Universität Munich, Lindwurmstraße 4, 80337 Munich, Germany; (H.D.); (J.H.); (V.G.); (B.K.)
| | - Lesca Holdt
- Institute of Laboratory Medicine, LMU University Hospitals, Ludwig-Maximilians-Universität Munich, Marchioninistraße 15, 81377 Munich, Germany; (L.H.); (D.T.)
| | - Veit Grote
- Department Paediatrics, Division Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, LMU University Hospitals, Ludwig-Maximilians-Universität Munich, Lindwurmstraße 4, 80337 Munich, Germany; (H.D.); (J.H.); (V.G.); (B.K.)
| | - Karoline Maar
- Gynecology & Obstetrics Specialist, Schloßstraße 2, 13507 Berlin, Germany;
| | - Christoph Neuhofer
- Gynecology & Obstetrics Specialist, Marienplatz 4, 85354 Freising, Germany; (C.N.); (N.T.)
| | - Daniel Teupser
- Institute of Laboratory Medicine, LMU University Hospitals, Ludwig-Maximilians-Universität Munich, Marchioninistraße 15, 81377 Munich, Germany; (L.H.); (D.T.)
| | - Nadja Thiel
- Gynecology & Obstetrics Specialist, Marienplatz 4, 85354 Freising, Germany; (C.N.); (N.T.)
| | | | - Silvia Maggini
- Bayer Consumer Care AG, Peter-Merian-Straße 84, 4002 Basel, Switzerland;
| | - Berthold Koletzko
- Department Paediatrics, Division Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, LMU University Hospitals, Ludwig-Maximilians-Universität Munich, Lindwurmstraße 4, 80337 Munich, Germany; (H.D.); (J.H.); (V.G.); (B.K.)
| |
Collapse
|
50
|
Nüsken E, Voggel J, Fink G, Dötsch J, Nüsken KD. Impact of early-life diet on long-term renal health. Mol Cell Pediatr 2020; 7:17. [PMID: 33269431 PMCID: PMC7710776 DOI: 10.1186/s40348-020-00109-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
In the last years, great advances have been made in the effort to understand how nutritional influences can affect long-term renal health. Evidence has accumulated that maternal nutrition before and during pregnancy and lactation as well as early postnatal nutrition is of special significance. In this review, we summarize epidemiologic and experimental data on the renal effects of perinatal exposure to energy restriction, low-protein diet, high-fat diet, high-fructose diet, and high- and low-salt diet as well as micronutrient deficiencies. Interestingly, different modifications during early-life diet may end up with similar sequelae for the offspring. On the other hand, molecular pathways can be influenced in opposite directions by different dietary interventions during early life. Importantly, postnatal nutrition significantly modifies the phenotype induced by maternal diet. Sequelae of altered macro- or micronutrient intakes include altered nephron count, blood pressure dysregulation, altered sodium handling, endothelial dysfunction, inflammation, mitochondrial dysfunction, and oxidative stress. In addition, renal prostaglandin metabolism as well as renal AMPK, mTOR, and PPAR signaling can be affected and the renin-angiotensin-aldosterone system may be dysregulated. Lately, the influence of early-life diet on gut microbiota leading to altered short chain fatty acid profiles has been discussed in the etiology of arterial hypertension. Against this background, the preventive and therapeutic potential of perinatal nutritional interventions regarding kidney disease is an emerging field of research. Especially individuals at risk (e.g., newborns from mothers who suffered from malnutrition during gestation) could disproportionately benefit from well-targeted dietary interventions.
Collapse
Affiliation(s)
- Eva Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Jenny Voggel
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|