1
|
Channar A, Naqvi SAA, Khan MA, Bibi A, Saxena A, Tripathi N, Iftikhar A, Raina A, Khakwani KZR, Riaz IB, Husnain M. Efficacy and Safety of Quadruplet Therapy in Newly Diagnosed Transplant-Eligible Multiple Myeloma: A Systematic Review and Meta-Analysis. Cancer Rep (Hoboken) 2025; 8:e70171. [PMID: 40176408 PMCID: PMC11965703 DOI: 10.1002/cnr2.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND The treatment landscape for multiple myeloma continues to evolve. Recently, the addition of anti-CD38 monoclonal antibodies (mAbs) to the triplet regimen, comprising a proteasome inhibitor, an immunomodulatory agent, and a steroid, for transplant-eligible newly diagnosed multiple myeloma (TENDMM) has shown promising results. AIMS To evaluate the overall efficacy and safety of quadruplet therapy with an anti-CD38 mAb compared to a triplet regimen. METHODS A systematic search of Medline, Scopus, and EMBASE databases from inception to July 2024 identified relevant randomized controlled trials (RCTs). Efficacy and safety outcomes were derived using random-effects meta-analysis. Summarized outcomes include hazard ratios (HR) for progression-free survival (PFS) and overall survival (OS), odds ratios (OR) for response rates, measurable residual disease (MRD) negativity rate, and grade 3 or higher adverse events (G ≥ 3 AEs). RESULTS Five RCTs involving 2963 patients were included. A statistically significant PFS was observed for quadruplet therapy when compared to the triplet regimen (HR 0.44; 95% Confidence Interval [CI] 0.35-0.56). PFS benefit was consistent for the standard risk (SR) group (HR 0.38; 95% CI 0.27-0.52) and high risk (HiR) group (HR 0.62; 95% CI 0.41-0.92). No statistically significant benefit was observed for OS (HR 0.55; 95% CI 0.28-1.08). A statistically significant benefit was observed for the overall response rate (OR 1.77; 95% CI 1.02-3.06) and MRD negativity rate (OR 2.67; 95% CI 1.79-3.99). No significant differences were observed for G ≥ 3 AE (OR 1.21; 95% CI 0.92-1.58), lymphopenia (OR 1.09; 95% CI 0.62-1.89), and anemia (OR 1.06; 95% CI 0.83-1.37). However, a significantly increased risk was observed for all-grade thrombocytopenia (OR 1.64; 95% CI 1.37-1.97), neutropenia (OR 2.24; 95% CI 1.67-3.02) and infections (OR 1.88; 95% CI 1.07-3.31). CONCLUSION Quadruplet therapy demonstrated a favorable efficacy and safety profile, with consistent benefit across subgroups. The findings support its potential as the new standard of care for TENDMM.
Collapse
Affiliation(s)
- Aneeta Channar
- Division of Hematology and Medical OncologyMayo ClinicPhoenixArizonaUSA
| | | | - Muhammad Ali Khan
- Division of Hematology and Medical OncologyMayo ClinicPhoenixArizonaUSA
| | - Arifa Bibi
- Division of Hematology and Medical OncologyMayo ClinicPhoenixArizonaUSA
| | - Akshat Saxena
- Division of Hematology and Medical OncologyMayo ClinicPhoenixArizonaUSA
| | - Nikita Tripathi
- Division of Hematology and Medical OncologyMayo ClinicPhoenixArizonaUSA
| | | | - Ammad Raina
- Canyon Vista Medical CenterSierra VistaArizonaUSA
| | | | - Irbaz Bin Riaz
- Division of Hematology and Medical OncologyMayo ClinicPhoenixArizonaUSA
| | | |
Collapse
|
2
|
Yu H, Wu C, He J, Zhang Y, Cao Q, Lan H, Li H, Xu C, Chen C, Li R, Zheng B. Metabolic reprogramming induced by PSMA4 overexpression facilitates bortezomib resistance in multiple myeloma. Ann Hematol 2025; 104:1023-1037. [PMID: 39755751 PMCID: PMC11971155 DOI: 10.1007/s00277-024-06163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established. Seahorse XF analyzer was applied to detect the metabolism reprogramming associated with the hub gene. The metabolic relevance and the underlying mechanism of the hub gene in myeloma resistance were explored via in vitro experiments. A total of 1310 DEGs were used to construct five co-expression modules. Gene function enrichment analysis demonstrated that candidate hub genes were closely related to oxidative phosphorylation. We performed prognostic analysis and identified PSMA4 as the key hub gene related to the extramedullary invasion of myeloma. The in vitro experiments demonstrated bortezomib resistant myeloma cell lines exhibited high PSMA4 expression, improved oxidative phosphorylation activity with increased ROS level. PSMA4 knockdown re-sensitize resistant myeloma cells via suppressing oxidative phosphorylation activity. Further investigation revealed that PSMA4 induced a hypoxia state which activated the HIF-1α signaling pathway. PSMA4 induces metabolic reprogramming by improving oxidative phosphorylation activity which accounts for the hypoxia state in myeloma cell. The activated HIF-1α signaling pathway causes bortezomib resistance via promoting anti-apoptotic activity in myeloma.
Collapse
Affiliation(s)
- Han Yu
- Department of Oncology, Navy No.905 Hospital of PLA, Naval Medical University, Shanghai, 200052, China
| | - Chengli Wu
- Department of Oncology, Navy No.905 Hospital of PLA, Naval Medical University, Shanghai, 200052, China
| | - Jie He
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Yajun Zhang
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Qiqi Cao
- Department of Oncology, 971 Hospital of PLA Navy, Qingdao, 266071, China
| | - Hongyan Lan
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Hongshan Li
- Department of Oncology, Navy No.905 Hospital of PLA, Naval Medical University, Shanghai, 200052, China
| | - Chengyang Xu
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Chen Chen
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Rong Li
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
| | - Bo Zheng
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
| |
Collapse
|
3
|
Zhang SC, Ballas LK. Radiation for Multiple Myeloma in the Era of Novel Agents: Indications, Safety, and Dose Selection. Semin Radiat Oncol 2025; 35:87-98. [PMID: 39672645 DOI: 10.1016/j.semradonc.2024.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Survival outcomes for multiple myeloma (MM) have drastically improved over the past two decades with the advent of highly effective biologic agents and integration of autologous stem cell transplant (ASCT) for select patients. Despite these advances, MM remains an incurable disease and duration of remission decreases with each relapse. Palliative radiotherapy (RT) for MM, including treatment of pain, relief of compression, and prevention of fracture, is highly effective and generally well tolerated. Though RT can be delivered concurrently with biologic agents, caution should be exercised for potential added hematologic toxicity that may disrupt systemic therapy, especially in heavily pretreated patients, who have limited bone marrow reserve. In this review, we discuss the safety of RT with biologic agents (proteasome inhibitors, immunomodulators, monoclonal antibodies), review indications for palliative RT in MM, and present a framework for how to personalize RT based on goals of treatment, classification of uncomplicated versus complicated lesions, and patient and lesion characteristics. Additionally, we discuss the emerging role of bridging RT prior to chimeric antigen receptor (CAR) T-cell therapy.
Collapse
Affiliation(s)
- Samuel C Zhang
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Leslie K Ballas
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
4
|
Dimopoulos MA, Migkou M, Bhutani M, Ailawadhi S, Kalff A, Walcott FL, Pore N, Brown M, Wang F, Cheng LI, Kagiampakis I, Williams M, Kinneer K, Wu Y, Jiang Y, Kubiak RJ, Zonder JA, Larsen J, Sirdesai S, Yee AJ, Kumar S. Phase 1 first-in-human study of MEDI2228, a BCMA-targeted ADC, in patients with relapsed refractory multiple myeloma. Leuk Lymphoma 2024; 65:1789-1800. [PMID: 39404476 DOI: 10.1080/10428194.2024.2373331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/23/2024] [Indexed: 11/27/2024]
Abstract
MEDI2228 is an antibody drug conjugate (ADC) comprised of a fully human B-cell maturation antigen (BCMA) antibody conjugated to a pyrrolobenzodiazepine (PBD) dimer. This phase 1 trial evaluated MEDI2228 in patients with relapsed/refractory (R/R) multiple myeloma (MM), who received prior treatment with approved agents from 3 classes of antimyeloma drugs (proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies). Primary endpoint was safety and tolerability; secondary endpoints included efficacy, pharmacokinetics, and immunogenicity. A total of 107 patients were treated and the maximum tolerated dose (MTD) was 0.14 mg/kg Q3W. Two patients had dose-limiting toxicities (DLTs; thrombocytopenia; 0.20 mg/kg Q3W). The most frequent treatment-related adverse events were photophobia (43.9%), rash (29.0%), and thrombocytopenia (19.6%). In MTD cohort A (n = 41), the objective response rate (ORR) was 56.1%, with 1 stringent complete response, 9 very good partial responses, and 13 partial responses. ORR was 53.3% in triple refractory patients. In cohort B (n=25), ORR was 32%. Although MEDI2228 demonstrated efficacy in R/R MM, ocular toxicity precluded further development of this drug.
Collapse
MESH Headings
- Humans
- Multiple Myeloma/drug therapy
- Multiple Myeloma/pathology
- Male
- Middle Aged
- Aged
- Female
- B-Cell Maturation Antigen/antagonists & inhibitors
- B-Cell Maturation Antigen/immunology
- Adult
- Aged, 80 and over
- Immunoconjugates/therapeutic use
- Immunoconjugates/adverse effects
- Immunoconjugates/administration & dosage
- Immunoconjugates/pharmacokinetics
- Maximum Tolerated Dose
- Drug Resistance, Neoplasm
- Treatment Outcome
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Retreatment
Collapse
Affiliation(s)
- Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Anna Kalff
- The Alfred Hospital, Melbourne, Australia
| | - Farzana L Walcott
- Early Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Nabendu Pore
- Early Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Miranda Brown
- Early Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Fujun Wang
- Early Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Lily I Cheng
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | | | - Marna Williams
- Translational Medicine, AstraZeneca, Gaithersburg, MD, USA
| | - Krista Kinneer
- Translational Medicine, AstraZeneca, Gaithersburg, MD, USA
| | - Yuling Wu
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Yu Jiang
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Robert J Kubiak
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | | | | | | | | | | |
Collapse
|
5
|
Yan Y, Tu Y, Cheng Q, Zhang J, Wang E, Deng Z, Yu Y, Wang L, Liu R, Chu L, Kang L, Liu J, Li X. BCMA CAR-T therapy combined with pomalidomide is a safe and effective treatment for relapsed/refractory multiple myeloma. J Transl Med 2024; 22:1087. [PMID: 39614361 DOI: 10.1186/s12967-024-05772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/16/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor T-cell (CAR T-cell) therapy has exhibited remarkable efficacy in refractory or relapsed multiple myeloma (R/R MM), but recurrence and rapid progression of disease are still observed within a short time after treatment. Long-term pomalidomide therapy, which potentiates T-cell functionality, might enhance the efficacy of BCMA CAR T-cell therapy. METHODS We performed a single-center retrospective clinical study. Patients with relapsed or refractory multiple myeloma who received BCMA CAR T-cell infusion were enrolled in our study, and were followed by long-term pomalidomide treatment (4 mg/day) or not one month after infusion. The response and adverse events were assessed after infusion. The effect of pomalidomide on BCMA CAR T-cells was assessed in vitro. RESULTS The objective response rate (ORR) of BCMA-CART was 100%. Three months following CAR T-cell infusion, of the 8 patients receiving pomalidomide, except for 2 patients who stopped maintenance therapy and were lost to follow-up, all patients (6/6) achieved VGPR (very good partial response) or CR (complete response), while only 5 patients (5/8) who did not receive pomalidomide treatment achieved VGPR or better. At a median follow-up of 27 months, for the 8 patients who did not receive pomalidomide administration, the median TTP (time to progression) was 5.85 (1-14) months, while the OS (overall survival) was 10.7 (1.2-16) months. Of the 8 patients who received pomalidomide therapy after CAR T-cell infusion, the median TTP was 13 (7-13) months, while the OS was not reached. Moreover, neither long-term hematological toxicity nor drug-induced liver damage was observed during the follow-up period. Mechanistically, pomalidomide promotes antimyeloma efficacy of BCMA CAR T-cells by inhibiting cell apoptosis and enhancing cytoxicity. CONCLUSIONS Our results confirmed that BCMA CAR T-cell therapy combined with long-term pomalidomide had a low recurrence rate and manageable therapy-related side effects, providing a promising option for treating R/R MM.
Collapse
Affiliation(s)
- Yuhan Yan
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yixuan Tu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qian Cheng
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jian Zhang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Erhua Wang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zuqun Deng
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yan Yu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Liwen Wang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rui Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ling Chu
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Liqing Kang
- Shanghai Unicar-Therapy Bio-Medicine Technology Co, Shanghai, 201612, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xin Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
6
|
Gangur HA, Trivedi H, Chamarthy U, Al-Janadi A, Srkalovic G. A Short Course of Standard Velcade/Dexamethasone Followed by Unlimited Weekly Maintenance Therapy Is an Effective Treatment in Relapsed/Refractory Multiple Myeloma. Cancers (Basel) 2024; 16:3805. [PMID: 39594761 PMCID: PMC11592814 DOI: 10.3390/cancers16223805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Bortezomib (B), known as Velcade, is a reversible proteasome inhibitor approved for relapsed/refractory multiple myeloma (RRMM) patients (pts). The standard of care protocol includes eight cycles of intravenous push (IVP) injections of B and oral dexamethasone (D), which increases the toxicity. Here, we describe the results of an open-label, phase II clinical trial employing only four cycles of B/D. METHODS RRMM pts treated with at least one previous therapy qualified for the trial. Pts were treated with B 1.3 mg/m2 IVP or subcutaneous (SC) on day 1, 4, 8, and 11, followed by a 10-day rest, Q21 days for four cycles; followed by maintenance therapy with once weekly B 1.6 mg/m2 IVP or SC on day 1, 8, 15, and 22, followed by 13 days' rest, repeated Q36 day. Pts received D 20 mg on the days of and days after B. Pts with a complete response (CR) were removed. Those with a partial response (PR) or stable disease (SD) were placed on maintenance therapy until progressive disease (PD), unacceptable toxicity, or pts' decision to stop. RESULTS A total of 24 pts were enrolled. CR was observed in six pts (25%), PR in eight pts (33%), and SD in nine pts (37.5%). Moreover, 14 of the 24 pts (58.3%) had PR or better. Four pts had PD during induction. The grade 3 toxicities included fatigue (58%), sensory neuropathy (54%), and thrombocytopenia (50%); the grade 4 toxicities were thrombocytopenia (12.5%), fatigue (12.5%), and sensory neuropathy (12.5%). CONCLUSIONS A short course of B/D, plus maintenance with B, is well tolerated in RRMM pts. Long-term maintenance with B/D could become an alternative to new agents.
Collapse
Affiliation(s)
- Harini Acharya Gangur
- School of Medicine, Lake Erie College of Osteopathic Medicine—Bradenton, Bradenton, FL 34211, USA;
| | - Harsha Trivedi
- Herbert-Herman Cancer Center, University of Michigan Health-Sparrow, Lansing, MI 48912, USA;
| | - UshaSree Chamarthy
- Sparrow Regional Cancer Center Lansing, Sparrow Health System, Lansing, MI 48912, USA;
| | - Anas Al-Janadi
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48823, USA;
| | - Gordan Srkalovic
- Herbert-Herman Cancer Center, University of Michigan Health-Sparrow, Lansing, MI 48912, USA;
| |
Collapse
|
7
|
Bocuzzi V, Bridoux J, Pirotte M, Withofs N, Hustinx R, D'Huyvetter M, Caers J, Marcion G. CD38 as theranostic target in oncology. J Transl Med 2024; 22:998. [PMID: 39501292 PMCID: PMC11539646 DOI: 10.1186/s12967-024-05768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
CD38 is a multifunctional transmembrane glycoprotein found in multiple tissues and overexpressed in many cancer cells, notably in hematological malignancies such as leukemia and multiple myeloma (MM). Therefore, targeting CD38 remains an attractive strategy for cancer treatment in hematological malignancies as well as in solid tumors. It plays a critical role in the progression of these diseases through its ADP-ribosyl cyclase and cADPR-hydrolase activities. Its importance has led to the development of various anti-CD38 monoclonal antibodies (mAbs), including daratumumab and isatuximab, approved for MM treatment. These mAbs exert their anti-tumor effects through Fc-dependent immune mechanisms and immunomodulation, enhancing T-cell and NK-cell-mediated responses. However, resistance mechanisms arise during the treatment with daratumumab, creating the necessity for new therapies. This review explains current knowledge about the role of CD38 as a target in oncology and aims to delineate the use of single domain antibodies (sdAbs) as innovative theranostic tools in nuclear medicine. For diagnostic purposes, PET radionuclides like 68 Ga, 64Cu, and SPECT radionuclides like 99mTc and 111In, are commonly used. Significant progress has been made in anti-CD38 radioligand therapy (RLT), with anti-CD38 antibodies providing insights into tumor biology and treatment efficacy. In terms of therapy, RLT is a promising approach that offers precise targeting of malignant cells while minimizing exposure to healthy tissue. This involves the use of radionuclides emitting α particles, like 225Ac, 212Pb or 211At, and β--particles like 90Y, 131I, or 177Lu, to exert cytotoxic effects. Derived from Camelidae heavy chain antibodies, sdAbs offer advantages over conventional mAbs such as small size, high stability, specificity, and ability to recognize hidden epitopes. CD38-specific sdAbs, such as sdAb 2F8, characterized by our laboratory, showing excellent tumor targeting and their engineered constructs, such as biparatopic antibodies and chimeric antibodies, represent a new generation of theranostic agents for diagnosis and treatment CD38-expressing malignancies.
Collapse
Affiliation(s)
- Valentina Bocuzzi
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
- Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Jessica Bridoux
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Nadia Withofs
- Department of Nuclear Medicine and Oncology, CHU de Liège, Liège, Belgium
| | - Roland Hustinx
- Department of Nuclear Medicine, CHU de Liège, Liège, Belgium
| | - Matthias D'Huyvetter
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jo Caers
- Department of Hematology, CHU de Liège, Liège, Belgium.
| | - Guillaume Marcion
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
- Center for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
8
|
Tagami N, Yuda J, Goto Y. Current status of BAFF targeting immunotherapy in B-cell neoplasm. Int J Clin Oncol 2024; 29:1676-1683. [PMID: 39222149 PMCID: PMC11511695 DOI: 10.1007/s10147-024-02611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
B-cell activating factor belonging to the TNF family (BAFF), also known as B-lymphocyte stimulator (BLyS), plays a crucial role in B-cell development. It has multiple receptors, including BCMA, TACI, and BAFF-R, with diverse roles in different cell types. BAFF induces B-cell proliferation and immunoglobulin secretion, and acts as a survival factor for immature, naive, and activated B cells. Consequently, BAFF-deficient mice often show suppressed humoral responses, while BAFF-overexpressing mice show the higher number of mature B cells and may develop autoimmune-like manifestations and B-cell lymphoproliferative diseases. Elevated BAFF levels are also associated with various hematological malignancies, and its expression correlates with disease progression in some cases. Therefore, BAFF-targeted therapies, such as belimumab, atacicept, and tabalumab, are being explored in clinical trials for conditions like chronic lymphocytic leukemia (CLL) and multiple myeloma. Belimumab, an anti-BAFF monoclonal antibody, is being investigated in combination with rituximab/venetoclax for CLL. Atacicept, a decoy receptor for BAFF and APRIL, showed tolerability in a phase 1b trial for CLL. Tabalumab, another monoclonal antibody targeting BAFF, did not demonstrate significant efficacy in a phase 2 study for relapsed/refractory multiple myeloma. BAFF ligand-based CAR-T cells are designed to target BAFF receptors and show promise in preclinical studies, particularly for B-cell malignancies. The review emphasizes the importance of understanding the roles of BAFF and its receptors in the microenvironment of hematologic malignancies. Targeting BAFF and its receptors presents potential therapeutic avenues, and ongoing clinical trials provide valuable insights.
Collapse
MESH Headings
- Humans
- B-Cell Activating Factor
- Animals
- Antibodies, Monoclonal, Humanized/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- B-Cell Activation Factor Receptor/metabolism
- Immunotherapy/methods
- Multiple Myeloma/drug therapy
- Multiple Myeloma/therapy
- Multiple Myeloma/immunology
- Mice
- Recombinant Fusion Proteins/therapeutic use
- B-Lymphocytes/immunology
- B-Cell Maturation Antigen/immunology
- Molecular Targeted Therapy
Collapse
Affiliation(s)
- Nami Tagami
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Junichiro Yuda
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
9
|
Rajkumar SV. Multiple myeloma: 2024 update on diagnosis, risk-stratification, and management. Am J Hematol 2024; 99:1802-1824. [PMID: 38943315 PMCID: PMC11404783 DOI: 10.1002/ajh.27422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
DISEASE OVERVIEW Multiple myeloma accounts for approximately 10% of hematologic malignancies. DIAGNOSIS The diagnosis requires ≥10% clonal bone marrow plasma cells or a biopsy proven plasmacytoma plus evidence of one or more multiple myeloma defining events (MDE): CRAB (hypercalcemia, renal failure, anemia, or lytic bone lesions) attributable to the plasma cell disorder, bone marrow clonal plasmacytosis ≥60%, serum involved/uninvolved free light chain (FLC) ratio ≥100 (provided involved FLC is ≥100 mg/L and urine monoclonal protein is ≥200 mg/24 h), or >1 focal lesion on magnetic resonance imaging. RISK STRATIFICATION The presence of del(17p), t(4;14), t(14;16), t(14;20), gain 1q, del 1p, or p53 mutation is considered high-risk multiple myeloma. Presence of any two high risk factors is considered double-hit myeloma; three or more high risk factors is triple-hit myeloma. RISK-ADAPTED INITIAL THERAPY In patients who are candidates for autologous stem cell transplantation, induction therapy consists of anti-CD38 monoclonal antibody plus bortezomib, lenalidomide, dexamethasone (VRd) followed by autologous stem cell transplantation (ASCT). Selected standard risk patients can delay transplant until first relapse. Frail patients who not candidates for transplant are treated with VRd for approximately 8-12 cycles followed by maintenance or alternatively with daratumumab, lenalidomide, dexamethasone (DRd) until progression. MAINTENANCE THERAPY Standard risk patients need lenalidomide maintenance, while bortezomib plus lenalidomide maintenance is needed for high-risk myeloma. MANAGEMENT OF RELAPSED DISEASE A triplet regimen is usually needed at relapse, with the choice of regimen varying with each successive relapse. Chimeric antigen receptor T (CAR-T) cell therapy and bispecific antibodies are additional options.
Collapse
|
10
|
Soloveva M, Solovev M, Risinskaya N, Nikulina E, Yakutik I, Biderman B, Obukhova T, Chabaeva Y, Kulikov S, Sudarikov A, Mendeleeva L. Loss of Heterozygosity and Mutations in the RAS-ERK Pathway Genes in Tumor Cells of Various Loci in Multiple Myeloma. Int J Mol Sci 2024; 25:9426. [PMID: 39273371 PMCID: PMC11394882 DOI: 10.3390/ijms25179426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Multiple myeloma (MM) is a disease characterized by spatiotemporal heterogeneity of tumor clones. Different genetic aberrations can be observed simultaneously in tumor cells from different loci, and as the disease progresses, new subclones may appear. The role of liquid biopsy, which is based on the analysis of tumor DNA circulating in the blood plasma, continues to be explored in MM. Here, we present an analysis of the STR profiles and mutation status of the KRAS, NRAS, and BRAF genes, evaluated in plasma free circulating tumor DNA (ctDNA), CD138+ bone marrow cells, and plasmacytomas. The prospective single-center study included 97 patients, with a median age of 55 years. Of these, 94 had newly diagnosed symptomatic MM, and three had primary plasma cell leukemia. It should be noted that if mutations were detected only in ctDNA, "non-classical" codons were more often affected. A variety of adverse laboratory and clinical factors have been associated with the detection of rare KRAS or NRAS gene mutations in bone marrow or ctDNA, suggesting that these mutations may be factors of an unfavorable prognosis for MM. Liquid biopsy studies provide undeniable fundamental information about tumor heterogeneity and clonal evolution in MM. Moreover, we focus on using liquid biopsy to identify new high-risk factors for MM.
Collapse
Affiliation(s)
- Maiia Soloveva
- National Medical Research Center for Hematology, Novy Zykovski Lane, 4a, 125167 Moscow, Russia (N.R.); (I.Y.); (B.B.); (Y.C.); (A.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Peng P, Chavel C, Liu W, Carlson LM, Cao S, Utley A, Olejniczak SH, Lee KP. Pro-survival signaling regulates lipophagy essential for multiple myeloma resistance to stress-induced death. Cell Rep 2024; 43:114445. [PMID: 38968073 PMCID: PMC11318075 DOI: 10.1016/j.celrep.2024.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Pro-survival metabolic adaptations to stress in tumorigenesis remain less well defined. We find that multiple myeloma (MM) is unexpectedly dependent on beta-oxidation of long-chain fatty acids (FAs) for survival under both basal and stress conditions. However, under stress conditions, a second pro-survival signal is required to sustain FA oxidation (FAO). We previously found that CD28 is expressed on MM cells and transduces a significant pro-survival/chemotherapy resistance signal. We now find that CD28 signaling regulates autophagy/lipophagy that involves activation of the Ca2+→AMPK→ULK1 axis and regulates the translation of ATG5 through HuR, resulting in sustained lipophagy, increased FAO, and enhanced MM survival. Conversely, blocking autophagy/lipophagy sensitizes MM to chemotherapy in vivo. Our findings link a pro-survival signal to FA availability needed to sustain the FAO required for cancer cell survival under stress conditions and identify lipophagy as a therapeutic target to overcome treatment resistance in MM.
Collapse
Affiliation(s)
- Peng Peng
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Colin Chavel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Wensheng Liu
- Department of Pediatrics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Louise M Carlson
- Indiana University Simon Comprehensive Cancer Center, and the Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adam Utley
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Scott H Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kelvin P Lee
- Indiana University Simon Comprehensive Cancer Center, and the Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Saltarella I, Link A, Lamanuzzi A, Reichen C, Robinson J, Altamura C, Melaccio A, Solimando AG, Ria R, Mariggiò MA, Vacca A, Frassanito MA, Desaphy JF. Improvement of daratumumab- or elotuzumab-mediated NK cell activity by the bi-specific 4-1BB agonist, DARPin α-FAPx4-1BB: A preclinical study in multiple myeloma. Biomed Pharmacother 2024; 176:116877. [PMID: 38850654 DOI: 10.1016/j.biopha.2024.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Multiple myeloma (MM) progression is closely dependent on cells in the bone marrow (BM) microenvironment, including fibroblasts (FBs) and immune cells. In their BM niche, MM cells adhere to FBs sustaining immune evasion, drug resistance and the undetectable endurance of tumor cells known as minimal residual disease (MRD). Here, we describe the novel bi-specific designed ankyrin repeat protein (DARPin) α-FAPx4-1BB (MP0310) with FAP-dependent 4-1BB agonistic activity. The α-FAPx4-1BB DARPin simultaneously binds to FAP and 4-1BB overexpressed by activated FBs and immune cells, respectively. Although flow cytometry analysis showed that T and NK cells from MM patients were not activated and did not express 4-1BB, stimulation with daratumumab or elotuzumab, monoclonal antibodies (mAbs) currently used for the treatment of MM, significantly upregulated 4-1BB both in vitro and in MM patients following mAb-based therapy. The mAb-induced 4-1BB overexpression allowed the engagement of α-FAPx4-1BB that acted as a bridge between FAP+FBs and 4-1BB+NK cells. Therefore, α-FAPx4-1BB enhanced both the adhesion of daratumumab-treated NK cells on FBs as well as their activation by improving release of CD107a and perforin, hence MM cell killing via antibody-mediated cell cytotoxicity (ADCC). Interestingly, α-FAPx4-1BB significantly potentiated daratumumab-mediated ADCC in the presence of FBs, suggesting that it may overcome the BM FBs' immunosuppressive effect. Overall, we speculate that treatment with α-FAPx4-1BB may represent a valuable strategy to improve mAb-induced NK cell activity fostering MRD negativity in MM patients through the eradication of latent MRD cells.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Multiple Myeloma/drug therapy
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Humans
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal/pharmacology
- Cell Line, Tumor
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Membrane Proteins/metabolism
- Membrane Proteins/agonists
- Endopeptidases
Collapse
Affiliation(s)
- Ilaria Saltarella
- Section of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | | | - Aurelia Lamanuzzi
- Section of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | | | | | - Concetta Altamura
- Section of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | | | - Antonio Giovanni Solimando
- Section of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Roberto Ria
- Section of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Maria Addolorata Mariggiò
- Section of Clinical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Vacca
- Section of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy.
| | - Maria Antonia Frassanito
- Section of Clinical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Jean-François Desaphy
- Section of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
13
|
An G, Ge Z, Jing H, Liu J, Yang G, Feng R, Xu Z, Qi M, Wang J, Song J, Zhou W, Sun B, Zhu D, Chen X, Cui C, Qiu L. Subcutaneous daratumumab in Chinese patients with relapsed or refractory multiple myeloma: an open-label, multicenter, phase 1 study (MMY1010). BLOOD SCIENCE 2024; 6:e00193. [PMID: 38832105 PMCID: PMC11146469 DOI: 10.1097/bs9.0000000000000193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
Despite recent progress in multiple myeloma (MM) treatments, most patients will relapse and require additional treatment. Intravenous daratumumab, a human IgGκ monoclonal antibody targeting CD38, has shown good efficacy in the treatment of MM. A subcutaneous version of daratumumab was formulated to reduce the burden of intravenous infusions. We aimed to investigate the efficacy and safety of subcutaneous daratumumab in Chinese patients with relapsed/refractory MM based on the demonstrated noninferiority of subcutaneous daratumumab to intravenous daratumumab, with a shorter administration time and reduced infusion-related reaction rate in global studies. This phase 1, multicenter study (MMY1010; ClinicalTrials.gov Identifier: NCT04121260) evaluated subcutaneous daratumumab in Chinese patients with relapsed/refractory MM after 1 prior line (n = 1) or ≥2 prior lines (n = 20) of therapy, including a proteasome inhibitor and an immunomodulatory drug. Primary endpoints were pharmacokinetics and safety. Mean (standard deviation) maximum trough concentration of daratumumab was 826 (335) μg/mL, which was consistent with prior studies of subcutaneous daratumumab and intravenous daratumumab. Safety was consistent with safety profiles observed in other daratumumab studies, with no new safety concerns identified. Incidences of infusion-related reactions and injection-site reactions were low and consistent with other subcutaneous daratumumab studies. At a median follow-up of 7.5 months, the overall response rate was 57.1%, with a very good partial response or better rate of 38.1% and complete response or better rate of 19.0%. Our results demonstrate a favorable benefit/risk profile of subcutaneous daratumumab in Chinese patients with relapsed/refractory MM, potentially impacting clinical administration of daratumumab in this population.
Collapse
Affiliation(s)
- Gang An
- National Clinical Research Center for Hematological Disorders, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Hongmei Jing
- Peking University Third Hospital, Beijing 100191, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Guoping Yang
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Zhongyuan Xu
- Phase 1 Clinical Trial Department, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Ming Qi
- Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Jianping Wang
- Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Juanjuan Song
- Janssen Research & Development, LLC, Beijing 100025, China
| | - Wei Zhou
- Janssen Research & Development, LLC, Beijing 100025, China
| | - Binbin Sun
- Janssen Research & Development, LLC, Shanghai 200231, China
| | - Dian Zhu
- Janssen Research & Development, LLC, Shanghai 200231, China
| | - Xi Chen
- Janssen Research & Development, LLC, Shanghai 200231, China
| | - Canchan Cui
- Janssen Research & Development, LLC, Beijing 100025, China
| | - Lugui Qiu
- National Clinical Research Center for Hematological Disorders, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
14
|
Barton BE, Collins MK, Chau CH, Choo-Wosoba H, Venzon DJ, Steinebach C, Garchitorena KM, Shah B, Sarin EL, Gütschow M, Figg WD. Preclinical Evaluation of a Novel Series of Polyfluorinated Thalidomide Analogs in Drug-Resistant Multiple Myeloma. Biomolecules 2024; 14:725. [PMID: 38927128 PMCID: PMC11201495 DOI: 10.3390/biom14060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Immunomodulatory imide drugs (IMiDs) play a crucial role in the treatment landscape across various stages of multiple myeloma. Despite their evident efficacy, some patients may exhibit primary resistance to IMiD therapy, and acquired resistance commonly arises over time leading to inevitable relapse. It is critical to develop novel therapeutic options to add to the treatment arsenal to overcome IMiD resistance. We designed, synthesized, and screened a new class of polyfluorinated thalidomide analogs and investigated their anti-cancer, anti-angiogenic, and anti-inflammatory activity using in vitro and ex vivo biological assays. We identified four lead compounds that exhibit potent anti-myeloma, anti-angiogenic, anti-inflammatory properties using three-dimensional tumor spheroid models, in vitro tube formation, and ex vivo human saphenous vein angiogenesis assays, as well as the THP-1 inflammatory assay. Western blot analyses investigating the expression of proteins downstream of cereblon (CRBN) reveal that Gu1215, our primary lead candidate, exerts its activity through a CRBN-independent mechanism. Our findings demonstrate that the lead compound Gu1215 is a promising candidate for further preclinical development to overcome intrinsic and acquired IMiD resistance in multiple myeloma.
Collapse
Affiliation(s)
- Blaire E. Barton
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew K. Collins
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyoyoung Choo-Wosoba
- Biostatics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J. Venzon
- Biostatics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Kathleen M. Garchitorena
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bhruga Shah
- Inova Heart and Vascular Institute, Inova Health System, Falls Church, VA 22042, USA
| | - Eric L. Sarin
- Inova Heart and Vascular Institute, Inova Health System, Falls Church, VA 22042, USA
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - William D. Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Ailawadhi S, Cheng M, Cherepanov D, DerSarkissian M, Stull DM, Hilts A, Chun J, Duh MS, Sanchez L. Comparative effectiveness of lenalidomide/dexamethasone-based triplet regimens for treatment of relapsed and/or refractory multiple myeloma in the United States: An analysis of real-world electronic health records data. Curr Probl Cancer 2024; 50:101078. [PMID: 38547609 DOI: 10.1016/j.currproblcancer.2024.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND This retrospective longitudinal study compared the effectiveness of dexamethasone+lenalidomide (Rd)-based triplet regimens containing proteasome inhibitors (PIs) ixazomib (IRd), carfilzomib (KRd), and bortezomib (VRd) or monoclonal antibodies (MABs) elotuzumab (ERd) and daratumumab (DRd) in patients with relapsed/refractory multiple myeloma (RRMM)-including those with high cytogenetic risk-primarily treated at community oncology clinics in the United States. METHODS Electronic health records of adult RRMM patients in a deidentified real-world database (01/01/2014-09/30/2020) who initiated IRd, KRd, VRd, ERd, or DRd in the second or later line of therapy (LOT) were analyzed. The index date was the date of initiation of each LOT and baseline was the 6-month pre-index period. Duration of therapy (DOT), time to next therapy (TTNT), progression-free survival (PFS), and overall survival (OS) were compared across regimens with multivariable Cox proportional hazards models. RESULTS Of the 1,185 patients contributing 1,332 LOTs, 985 had standard cytogenetic risk (median age, 71 years) and 180 had high risk (median age, 69 years). Compared with other regimens, DRd was associated with longer DOT overall (adjusted hazard ratio [95 % confidence interval]: 1.84 [1.42, 2.38] vs. KRd, 1.65 [1.20, 2.28] vs. ERd, 1.58 [1.23, 2.04] vs. IRd, and 1.54 [1.18, 2.00] vs. VRd), and longer TTNT and PFS. KRd was associated with shorter OS compared with DRd (1.45 [1.01, 2.08]) and VRd (1.32 [1.01, 1.73]). High-risk patients had similar outcomes with all triplet regimens. CONCLUSION Although DRd improved clinical outcomes overall, Rd-based triplet regimens containing a PI or MAB are similarly effective in high-risk RRMM.
Collapse
Affiliation(s)
| | - Mu Cheng
- Analysis Group, Inc., Boston, MA 02199, USA.
| | - Dasha Cherepanov
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | | | - Dawn Marie Stull
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | | | | | | | - Larysa Sanchez
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Khan WJ, Ali M, Hashim S, Nawaz H, Hashim SN, Safi D, Inayat A. Use of venetoclax in t(11;14) positive relapsed/refractory multiple myeloma: A systematic review. J Oncol Pharm Pract 2024; 30:552-561. [PMID: 38113108 DOI: 10.1177/10781552231218999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND The plasma cell malignancy, multiple myeloma (MM), remains incurable despite advanced treatment protocols. Overexpression of Bcl-2 (an anti-apoptotic protein), in MM harboring the translocation (11;14), contributes to resistance to prior therapy. Venetoclax, a selective oral inhibitor of BCL-2 is a novel agent that shows promise as a therapeutic agent. AIMS The objective of this systematic review is to address how the use of venetoclax, alone or as a combination regimen, contributed to the treatment of patients with t(11:14) positive relapsed/refractory multiple myeloma (RRMM). DATA SOURCES This systematic review was conducted in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was done on 5th June 2022. A literature search was conducted on PubMed and Scopus, 145 articles were screened and 10 studies were included. Risk of bias assessment was performed using the Methodological Index for Non-Randomized Studies (MINORS) criteria. DATA SUMMARY Across the studies reviewed, a total of 311 patients were identified with t(11;14) positive RRMM. The overall response rate achieved ranged between 33% and 95.5%. Furthermore, the use of venetoclax has exhibited a favorable adverse effect profile. Side effects included hematological side effects, nausea, vomiting, and diarrhea. CONCLUSION Venetoclax demonstrates promising results. When given with drugs like dexamethasone, daratumumab and carfilzomib, a synergistic effect is seen in treating translocation (11:14) positive relapsed/refractory MM. The use of venetoclax in clinical practice can potentially improve outcomes and quality of life in RRMM patients, and future research should continue to explore this promising treatment option.
Collapse
MESH Headings
- Humans
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/adverse effects
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 14/genetics
- Drug Resistance, Neoplasm
- Multiple Myeloma/drug therapy
- Multiple Myeloma/genetics
- Neoplasm Recurrence, Local/drug therapy
- Sulfonamides/therapeutic use
- Sulfonamides/administration & dosage
- Translocation, Genetic
Collapse
Affiliation(s)
- Wardah Javed Khan
- Demonstrator (Teaching Faculty) Pharmacology and Therapeutics, Northwest School of Medicine, Peshawar, Pakistan
| | - Mubeen Ali
- Demonstrator (Teaching Faculty) Pharmacology and Therapeutics, Northwest School of Medicine, Peshawar, Pakistan
| | - Sana Hashim
- Batterjee Medical College, Jeddah, Saudi Arabia
| | - Huma Nawaz
- Demonstrator (Teaching Faculty) Pharmacology and Therapeutics, Northwest School of Medicine, Peshawar, Pakistan
| | | | - Danish Safi
- Hematology and Oncology, West Virginia University Cancer Center, Morgantown, WV, USA
| | - Arslan Inayat
- Internal Medicine, HSHS St Mary's Hospital, Decatur, IL, USA
| |
Collapse
|
17
|
Zhou H, Wang Y, Chen J, He A, Jin J, Lu Q, Zhao Y, Li J, Hou M, Su L, Lai X, Wang W, Liu L, Ma Y, Gao D, Lai W, Zhou X, Jing H, Zhang J, Yang W, Ran X, Lin C, Hao J, Xiao T, Huang Z, Zhu Z, Wang Q, Fang B, Wang B, Song Y, Cai Z, Liu B, Zhu Y, Yang X, Kang X, Li J, Chen W. Efficacy and safety of generic pomalidomide plus low-dose dexamethasone in relapsed or refractory multiple myeloma: a multicenter, open-label, single-arm trial. Ann Hematol 2024; 103:855-868. [PMID: 38112795 PMCID: PMC10866745 DOI: 10.1007/s00277-023-05558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
This multicenter, open-label, single-arm trial (ClinicalTrials.gov, NCT05236621) was conducted to confirm the efficacy and safety of generic pomalidomide plus dexamethasone in Chinese patients with relapsed or refractory multiple myeloma (RRMM). Total 79 eligible RRMM patients were planned to be included. Patients were treated with generic pomalidomide (4 mg daily on days 1-21, orally) and low-dose dexamethasone (40 mg/day on days 1, 8, 15, and 22, orally; 20 mg for patients aged > 75 years) in 28-day cycles until disease progression with a maximum treatment duration of 2 years. The primary endpoint is the overall response rate (ORR) assessed by the independent review committee per the 2016 International Myeloma Working Group guidelines. A total of 85 eligible patients were included in this study from 32 centers in China, with a median age of 62.0 (range, 39-76) years, a median prior line of therapy of 4 (range, 1-16), and 41.2% patients with high-risk cytogenetics. The ORR was 38.8% (95% confidence interval (CI), 28.44-50.01). The disease control rate was 67.1% (95% CI, 56.02-76.87), meanwhile, the median progression-free survival was 5.55 months (95% CI, 3.68-7.52). Among the treatment-related adverse events (TRAEs), infective pneumonia (17.6%) was the most frequent non-hematologic adverse event, while a decrease in neutrophil count (52.9%) was the most common grade ≥ 3 TRAE. The study results indicated that the generic pomalidomide demonstrated consistent efficacy and a safety profile similar to the branded pomalidomide when combined with low-dose dexamethasone in Chinese RRMM patients.Registration number ClinicalTrials.gov NCT05236621, retrospectively registered on February 11, 2022.
Collapse
Affiliation(s)
- Huixing Zhou
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, #8, the South Road of Workers Stadium of Chaoyang District, Beijing, 100020, China
| | - Yafei Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiao Chen
- Department of Hematology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Quanyi Lu
- Department of Hematology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Ying Zhao
- Department of Hematology, The First People's Hospital of Foshan, Guangzhou, China
| | - Junjun Li
- Department of Hematology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Liping Su
- Department of Hematology, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Wei Wang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lihong Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanping Ma
- Department of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Da Gao
- Department of Hematology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wenhong Lai
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xin Zhou
- Department of Hematology, Wuxi People's Hospital, Wuxi, China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Jinqiao Zhang
- Department of Hematology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuehong Ran
- Department of Hematology, Weifang People's Hospital, Weifang, China
| | - Congmeng Lin
- Department of Hematology, Zhangzhou Municicap Hospital of Fujian Province, Zhangzhou, China
| | - Jianping Hao
- Department of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, China
| | - Taiwu Xiao
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Zhenqian Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhigang Zhu
- Department of Geriatric Hematologic Oncology, Guangzhou First People's Hospital, Guangzhou, China
| | - Qing Wang
- Department of Hematopathology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Baijun Fang
- Department of Hematology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhenghzou University, Zhengzhou, China
| | - Binghua Wang
- Department of Hemolymph, Weihai Central Hospital, Weihai, China
| | - Yanping Song
- Department of Hematology, Xi'an Central Hospital, Xi'an, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Liu
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, China
| | - Yanan Zhu
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, China
| | - Xinai Yang
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, China
| | - Xiaoyan Kang
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, China
| | - Juan Li
- Department of Hematology, First Affiliated Hospital of Sun Yat-Sen University, #58, The 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510062, China.
| | - Wenming Chen
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, #8, the South Road of Workers Stadium of Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
18
|
Yeşilaltay A, Muz D, Erdal B. Oncolytic Myxoma virus Increases Autophagy in Multiple Myeloma. Turk J Haematol 2024; 41:16-25. [PMID: 38258554 PMCID: PMC10918390 DOI: 10.4274/tjh.galenos.2024.2023.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/23/2024] [Indexed: 01/24/2024] Open
Abstract
Objective Multiple myeloma, which affects plasma cells, is the second most common hematological malignancy. Despite the development of new drugs and treatment protocols, patient survival has not reached the desired level. In this study, we investigated the effects of Myxoma virus (MYXV), an oncolytic virus, on autophagy in myeloma cells. Materials and Methods We analyzed protein expressions of ATG-5, p62, Beclin-1, LC3B, and the apoptosis marker Bcl-2 as autophagy markers in human U-266 and mouse MOPC-315 myeloma cell lines subjected to different doses of MYXV. In addition, autophagic images of myeloma cells were investigated using transmission electron microscopy (TEM). Results In the first 24 h, which is the early stage of autophagy, ATG-5 and Beclin-1 expression levels were increased in the U-266 and MOPC-315 cell lines in the groups that had received MYXV at a multiplicity of infection of 15. At 48 h, a significant increase was detected in the expression of LC3B, which is a late indicator. Autophagosomes were observed in myeloma cells by TEM. Conclusion MYXV shows an antimyeloma effect by increasing autophagy in myeloma cells.
Collapse
Affiliation(s)
- Alpay Yeşilaltay
- Başkent University İstanbul Hospital, Department of Hematology, İstanbul, Türkiye
| | - Dilek Muz
- Tekirdağ Namık Kemal University Faculty of Veterinary Medicine, Department of Virology, Tekirdağ, Türkiye
| | - Berna Erdal
- Tekirdağ Namık Kemal University Faculty of Medicine, Department of Microbiology, Tekirdağ, Türkiye
| |
Collapse
|
19
|
Martin TG, Moreau P, Usmani SZ, Garfall A, Mateos MV, San-Miguel JF, Oriol A, Nooka AK, Rosinol L, Chari A, Karlin L, Krishnan A, Bahlis N, Popat R, Besemer B, Martínez-López J, Delforge M, Trancucci D, Pei L, Kobos R, Fastenau J, Gries KS, van de Donk NWCJ. Teclistamab Improves Patient-Reported Symptoms and Health-Related Quality of Life in Relapsed or Refractory Multiple Myeloma: Results From the Phase II MajesTEC-1 Study. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:194-202. [PMID: 38052709 DOI: 10.1016/j.clml.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Patients with relapsed or refractory multiple myeloma (RRMM) report significantly lower HRQoL compared with patients with newly diagnosed MM and experience further deterioration in HRQoL with each relapse and subsequent treatment. Therefore, consideration of the impact of treatment on HRQoL in addition to clinical outcomes is vital. PATIENTS AND METHODS In the phase I/II MajesTEC-1 (NCT03145181, NCT04557098) study, patients with RRMM who received teclistamab, an off-the-shelf, T-cell redirecting BCMA × CD3 bispecific antibody, had deep and durable responses with manageable safety. HRQoL was assessed using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire core 30-item and the EuroQol 5 Dimension 5 Level descriptive questionnaire. Changes over time from baseline were measured with a repeated measures mixed-effects model. Proportions of patients with clinically meaningful improvement after starting treatment and time to clinically meaningful worsening were assessed. RESULTS Compliance was maintained throughout the study. Compared with baseline, positive changes were observed for pain, global health status, and emotional functioning with treatment; other assessments were largely unchanged from baseline. Post hoc analysis showed patients with deeper clinical response generally reported improved HRQoL outcomes. Following an initial decline in HRQoL in some scales, the proportion of patients reporting clinically meaningful improvements increased, while the proportion reporting clinically meaningful worsening decreased over time. Clinically meaningful improvements in pain were reported in ≥40% of patients at most assessment time points. CONCLUSIONS These results complement previously reported clinical benefits and support teclistamab as a promising therapeutic option for patients with RRMM.
Collapse
Affiliation(s)
| | - Philippe Moreau
- Hematology Clinic, University Hospital Hôtel-Dieu, Nantes, France
| | - Saad Z Usmani
- Levine Cancer Institute/Atrium Health, Charlotte, NC
| | - Alfred Garfall
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Jesús F San-Miguel
- Clínica Universidad de Navarra (CCUN), CIMA, CIBERONC, IDISNA, Pamplona, Spain
| | - Albert Oriol
- Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Ajay K Nooka
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Laura Rosinol
- Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Ajai Chari
- Mount Sinai School of Medicine, New York, NY
| | - Lionel Karlin
- Service d'Hématologie Clinique, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | | | - Nizar Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Rakesh Popat
- University College London Hospitals, NHS Foundation Trust, London, UK
| | | | - Joaquín Martínez-López
- Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre Universidad Complutense, CNIO, CIBERONC, Madrid, Spain
| | | | | | - Lixia Pei
- Janssen Research & Development, Raritan, NJ
| | | | | | | | - Niels W C J van de Donk
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Thongon N, Ma F, Baran N, Lockyer P, Liu J, Jackson C, Rose A, Furudate K, Wildeman B, Marchesini M, Marchica V, Storti P, Todaro G, Ganan-Gomez I, Adema V, Rodriguez-Sevilla JJ, Qing Y, Ha MJ, Fonseca R, Stein C, Class C, Tan L, Attanasio S, Garcia-Manero G, Giuliani N, Berrios Nolasco D, Santoni A, Cerchione C, Bueso-Ramos C, Konopleva M, Lorenzi P, Takahashi K, Manasanch E, Sammarelli G, Kanagal-Shamanna R, Viale A, Chesi M, Colla S. Targeting DNA2 overcomes metabolic reprogramming in multiple myeloma. Nat Commun 2024; 15:1203. [PMID: 38331987 PMCID: PMC10853245 DOI: 10.1038/s41467-024-45350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover mechanisms through which MM cells overcome DNA damage, we investigate how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting Interleukin enhancer binding factor 2 (ILF2), a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo adaptive metabolic rewiring to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identify the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage. Our study reveals a mechanism of vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation.
Collapse
Affiliation(s)
- Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela Lockyer
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jintan Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Jackson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashley Rose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Furudate
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bethany Wildeman
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Marchesini
- IRCCS Instituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy
| | | | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giannalisa Todaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Yun Qing
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Caleb Stein
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Caleb Class
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergio Attanasio
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - David Berrios Nolasco
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Santoni
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudio Cerchione
- IRCCS Instituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy
| | - Carlos Bueso-Ramos
- Department of Hemopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elisabet Manasanch
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Rashmi Kanagal-Shamanna
- Department of Hemopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Chesi
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Yu M, Ming H, Xia M, Fu J, Cai Z, Cui X. Identification of an angiogenesis-related risk score model for survival prediction and immunosubtype screening in multiple myeloma. Aging (Albany NY) 2024; 16:2657-2678. [PMID: 38319724 PMCID: PMC10911366 DOI: 10.18632/aging.205502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable B-cell malignancy, but with the emergence of immunotherapy, a potential cure is hopeful. The individualized interaction between the tumor and bone marrow (BM) microenvironment determines the response to immunotherapy. Angiogenesis is a constant hallmark of the BM microenvironment in MM. However, little is known about the potency ability of angiogenesis-associated genes (AAGs) to regulate the immune microenvironment of MM patients. METHODS We comprehensively dissected the associations between angiogenesis and genomic landscapes, prognosis, and the immune microenvironment by integrating 36 AAGs. Immunohistochemistry was performed to verify the correlation between angiogenic factor expression and patient prognosis. Single-sample gene set enrichment analysis was applied to quantify the relative abundance of 28 infiltrating cells. The AAG score was constructed using the least absolute shrinkage and selection operator Cox regression model. RESULTS Angiogenesis was closely correlated with MM patient prognosis, and the mutation intensity of the AAGs was low. Immunohistochemistry confirmed that high microvessel density predicted poor prognosis. Three AAG clusters and two gene clusters with distinct clinical outcomes and immune characteristics were identified. The established AAG_score model performed well in predicting patient prognosis and active immunotherapy response. The high-AAG_score subgroup was characterized by reduced immune cell infiltration, poor prognosis, and inactive immunotherapy response. Multivariate analyses indicated that the AAG_score was strongly robust and independent among the prognostic variables. CONCLUSION This study revealed that angiogenesis is significantly related to MM patient prognosis and immune phenotype. Evaluating the AAG signature was conducive to predicting patient response to immunotherapy and guiding more efficacious immunotherapy strategies.
Collapse
Affiliation(s)
- Manya Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Hongquan Ming
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Mengting Xia
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Jiaqi Fu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Zhiguo Cai
- Department of Quality Control, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xing Cui
- Department of Oncology and Hematology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, China
| |
Collapse
|
22
|
Li X, Wang Y, Yang Q, Song L, Kang L, Hu Z, Wang Z. Microarray-Based CD38 Peptide Probe Screening for Multiple Myeloma Imaging. Mol Pharm 2024; 21:245-254. [PMID: 38096423 DOI: 10.1021/acs.molpharmaceut.3c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2024]
Abstract
Assessing CD38 expression in vivo has become a significant element in multiple myeloma (MM) therapy, as it can be used to detect lesions and forecast the effectiveness of treatment. Accurate diagnosis requires a multifunctional, high-throughput probe screening platform to develop molecular probes for tumor-targeted multimodal imaging and treatment. Here, we investigated a microarray chip-based strategy for high-throughput screening of peptide probes for CD38. We obtained two new target peptides, CA-1 and CA-2, from a 105 peptide library with a dissociation constant (KD) of 10-7 M. The specificity and affinity of the target peptides were confirmed at the molecular and cellular levels. Peptide probes were labeled with indocyanine green (ICG) dye and 68Ga-DOTA, which were injected into a CD38-positive Ramos tumor-bearing mouse via its tail vein, and small animal fluorescence and positron emission tomography (PET) imaging showed that the peptide probes could show specific enrichment in the tumor tissue. Our study shows that a microchip-based screening of peptide probes can be used as a promising imaging tool for MM diagnosis.
Collapse
Affiliation(s)
- Xuejie Li
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuanzhuo Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Zhiyuan Hu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| |
Collapse
|
23
|
Yamamoto C, Minakata D, Yokoyama D, Furuki S, Noguchi A, Koyama S, Oyama T, Murahashi R, Nakashima H, Ikeda T, Kawaguchi SI, Hyodo K, Toda Y, Ito S, Nagayama T, Umino K, Morita K, Ashizawa M, Ueda M, Hatano K, Sato K, Ohmine K, Fujiwara SI, Kanda Y. Cost-Effectiveness of Anti-BCMA Chimeric Antigen Receptor T Cell Therapy in Relapsed/Refractory Multiple Myeloma. Transplant Cell Ther 2024; 30:118.e1-118.e15. [PMID: 37802181 DOI: 10.1016/j.jtct.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Despite its promising outcomes, anti-BCMA chimeric antigen receptor T cell therapy (CAR-T) is the most expensive myeloma treatment developed to date, and its cost-effectiveness is an important issue. This study aimed to assess the cost-effectiveness of anti-BCMA CAR-T compared to standard antimyeloma therapy in patients with relapsed/refractory multiple myeloma. The model included myeloma patients in Japan and the United States who have received ≥3 prior lines of antimyeloma therapy, including immunomodulatory drugs, proteasome inhibitors, and anti-CD38 monoclonal antibodies. A Markov model was constructed to compare the CAR-T strategy, in which patients receive either idecabtagene vicleucel (ide-cel) or ciltacabtagene autoleucel (cilta-cel) followed by 3 lines of multiagent chemotherapy after relapse, and the no CAR-T strategy, in which patients receive only chemotherapy. Data from the LocoMMotion, KarMMa, and CARTITUDE-1 trials were extracted. Several assumptions were made regarding long-term progression-free survival (PFS) with CAR-T. Extensive scenario analyses were made regarding regimens for no CAR-T strategies. The outcome was an incremental cost-effectiveness ratio (ICER) with willingness-to-pay thresholds of ¥7,500,000 in Japan and $150,000 in the United States. When a 5-year PFS of 40% with cilta-cel was assumed, the ICER of the CAR-T strategy versus the no CAR-T strategy was ¥7,603,823 per QALY in Japan and $112,191 per QALY in the United States over a 10-year time horizon. When a 5-year PFS of 15% with ide-cel was assumed, the ICER was ¥20,388,711 per QALY in Japan and $261,678 per QALY in the United States over a 10-year time horizon. The results were highly dependent on the PFS assumption with CAR-T and were robust to changes in most other parameters and scenarios. Although anti-BCMA CAR-T can be cost-effective even under current pricing, a high long-term PFS is necessary.
Collapse
Affiliation(s)
- Chihiro Yamamoto
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Daisuke Minakata
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Daizo Yokoyama
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shuka Furuki
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Atsuto Noguchi
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shunsuke Koyama
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Takashi Oyama
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Rui Murahashi
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hirotomo Nakashima
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Takashi Ikeda
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichiro Kawaguchi
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazuki Hyodo
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yumiko Toda
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shoko Ito
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Takashi Nagayama
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kento Umino
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kaoru Morita
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Masahiro Ashizawa
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Masuzu Ueda
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kaoru Hatano
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazuya Sato
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Ken Ohmine
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichiro Fujiwara
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan; Division of Cell Transplantation and Transfusion, Jichi Medical University, Tochigi, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
24
|
Pfeiffer C, Grandits AM, Asnagli H, Schneller A, Huber J, Zojer N, Schreder M, Parker AE, Bolomsky A, Beer PA, Ludwig H. CTPS1 is a novel therapeutic target in multiple myeloma which synergizes with inhibition of CHEK1, ATR or WEE1. Leukemia 2024; 38:181-192. [PMID: 37898670 DOI: 10.1038/s41375-023-02071-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
Targeting nucleotide biosynthesis is a proven strategy for the treatment of cancer but is limited by toxicity, reflecting the fundamental nucleotide requirement of dividing cells. The rate limiting step in de novo pyrimidine synthesis is of interest, being catalyzed by two homologous enzymes, CTP synthase 1 (CTPS1) and CTPS2, that could be differentially targeted. Herein, analyses of publicly available datasets identified an essential role for CTPS1 in multiple myeloma (MM), linking high expression of CTPS1 (but not CTPS2) with advanced disease and poor outcomes. In cellular experiments, CTPS1 knockout induced apoptosis of MM cell lines. Exposure of MM cells to STP-B, a novel and highly selective pharmacological inhibitor of CTPS1, inhibited proliferation, induced S phase arrest and led to cell death by apoptosis. Mechanistically, CTPS1 inhibition by STP-B activated DNA damage response (DDR) pathways and induced double-strand DNA breaks which accumulated in early S phase. Combination of STP-B with pharmacological inhibitors of key components of the DDR pathway (ATR, CHEK1 or WEE1) resulted in synergistic growth inhibition and early apoptosis. Taken together, these findings identify CTPS1 as a promising new target in MM, either alone or in combination with DDR pathway inhibition.
Collapse
Affiliation(s)
- Christina Pfeiffer
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Alexander M Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Anja Schneller
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Julia Huber
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Niklas Zojer
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
- Department of Medicine I, Center for Oncology and Hematology, Klinik Ottakring, Vienna, Austria
| | - Martin Schreder
- Department of Medicine I, Center for Oncology and Hematology, Klinik Ottakring, Vienna, Austria
| | | | - Arnold Bolomsky
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | | | - Heinz Ludwig
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria.
| |
Collapse
|
25
|
Steinhart J, Möller P, Kull M, Krönke J, Barth TFE. CDK6 protein expression is associated with disease progression and treatment resistance in multiple myeloma. Hemasphere 2024; 8:e32. [PMID: 38434534 PMCID: PMC10878183 DOI: 10.1002/hem3.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/13/2023] [Indexed: 03/05/2024] Open
Abstract
Multiple myeloma (MM) is a heterogeneous malignancy of plasma cells. Despite improvement in the prognosis of MM patients after the introduction of many new drugs in the past decades, MM remains incurable since most patients become treatment-resistant. Cyclin-dependent kinase 6 (CDK6) is activated in many types of cancer and has been associated with drug resistance in MM. However, its association with disease stage, genetic alterations, and outcome has not been systematically investigated in large cohorts. Here, we analyzed CDK6 expression using immunohistochemistry in 203 formalin-fixed paraffin-embedded samples of 146 patients and four healthy individuals. We found that 61.5% of all MM specimens express CDK6 at various levels. CDK6 expression increased with the progression of disease with a median of 0% of CDK6-positive plasma cells in monoclonal gammopathy of undetermined significance (MGUS) (n = 10) to 30% in newly diagnosed MM (n = 78) and up to 70% in relapsed cases (n = 55). The highest median CDK6 was observed in extramedullary myeloma (n = 12), a highly aggressive manifestation of MM. Longitudinal analyses revealed that CDK6 is significantly increased in lenalidomide-treated patients but not in those who did not receive lenalidomide. Furthermore, we observed that patients who underwent lenalidomide-comprising induction therapy had significantly shorter progression-free survival when their samples were CDK6 positive. These data support that CDK6 protein expression is a marker for aggressive and drug-resistant disease and describes a potential drug target in MM.
Collapse
Affiliation(s)
- Johannes Steinhart
- Department of PathologyUlm University HospitalUlmGermany
- Department of Internal Medicine IIIUlm University HospitalUlmGermany
| | - Peter Möller
- Department of PathologyUlm University HospitalUlmGermany
| | - Miriam Kull
- Department of Internal Medicine IIIUlm University HospitalUlmGermany
| | - Jan Krönke
- Department of Internal Medicine IIIUlm University HospitalUlmGermany
- Department of Hematology, Oncology and Cancer Immunology, Charité ‐ Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK) partner site Berlin and German Cancer Research Center (DKFZ)HeidelbergGermany
| | | |
Collapse
|
26
|
Chang S, Xiao W, Xie Y, Xu Z, Li B, Wang G, Hu K, Zhang Y, Zhou J, Song D, Zhu H, Wu X, Lu Y, Shi J, Zhu W. TI17, a novel compound, exerts anti-MM activity by impairing Trip13 function of DSBs repair and enhancing DNA damage. Cancer Med 2023; 12:21321-21334. [PMID: 37942576 PMCID: PMC10726904 DOI: 10.1002/cam4.6706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/08/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Thyroid hormone receptor interacting protein 13 (Trip13) is an AAA-ATPase that regulates the assembly or disassembly protein complexes and mediates Double-strand breaks (DSBs) repair. Overexpression of Trip13 has been detected in many cancers and is associated with myeloma progression, disease relapse and poor prognosis inmultiple myeloma (MM). METHODS We have identified a small molecular, TI17, through a parallel compound-centric approach, which specifically targets Trip13. To identify whether TI17 targeted Trip13, pull-down and nuclear magnetic resonance spectroscopy (NMR) assays were performed. Cell counting kit-8, clone formation, apoptosis and cell cycle assays were applied to investigate the effects of TI17. We also utilized a mouse model to investigate the effects of TI17 in vivo. RESULTS TI17 effectively inhibited the proliferation of MM cells, and induced the cycle arrest and apoptosis of MM cells. Furthermore, treatment with TI17 abrogates tumor growth and has no apparent side effects in mouse xenograft models. TI17 specifically impaired Trip13 function of DSBs repair and enhanced DNA damage responses in MM. Combining with melphalan or HDAC inhibitor panobinostat triggers synergistic anti-MM effect. CONCLUSIONS Our study suggests that TI17 could be acted as a specific inhibitor of Trip13 and supports a preclinical proof of concept for therapeutic targeting of Trip13 in MM.
Collapse
Affiliation(s)
- Shuaikang Chang
- Department of Hematology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Wenqin Xiao
- Department of Gastroenterology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yongsheng Xie
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Bo Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Guanli Wang
- Department of Hematology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Ke Hu
- Department of Hematology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yong Zhang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Jinfeng Zhou
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Huabin Zhu
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yumeng Lu
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jumei Shi
- Department of Hematology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| |
Collapse
|
27
|
Fan H, Yan W, Li L, Xu J, Liu J, Xu Y, Sui W, Deng S, Du C, Yi S, Zou D, Qiu L, An G. The prognostic utility of dynamic risk stratification at disease progression in patients with multiple myeloma. Hematology 2023; 28:2182156. [PMID: 36815749 DOI: 10.1080/16078454.2023.2182156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES There may be a shift in risk stratification at progression compared to that at diagnosis in patients with multiple myeloma (MM). We aimed to evaluate whether re-staging and stage migration is of prognostic impact. METHODS Real-world data from the National Longitudinal Cohort of Hematologic Diseases-multiple myeloma were collected; 263 consecutive patients demonstrating disease progression were finally included. Staging at diagnosis and re-staging at progression were performed using the International Staging System (ISS) and Revised International Staging System (RISS). RESULTS Based on ISS re-staging, the median post-progression survival (mPPS) of patients with stage I, II, and III was 44.2, 21.7, and 11.6 months, respectively (P < 0.0001). Based on RISS re-staging, the mPPS of patients with stage I, II, and III was 50.3, 22.2, and 11.4 months, respectively (P < 0.0001). The mPPS in patients with improved, maintained, and deteriorated ISS stage migration from diagnosis was 33.6, 20.9, and 16 months, respectively (P = 0.0051) and that with improved, maintained, and deteriorated RISS stage migration was 48.4, 23.1, and 13.9 months, respectively (P < 0.001). Compared to patients with maintained or improved disease stage, those with deteriorated ISS/RISS migration showed significantly higher incidence of Del(17P) at progression and worse PPS. Multivariate analyses indicated both re-staging and stage migration by ISS/RISS at progression were independent predictors for PPS. CONCLUSIONS We demonstrated that ISS/RISS re-staging showed superior prognostic utility over ISS/RISS staging in predicting PPS. Patients with deteriorated stage migration or maintained advanced stage at progression may need more individualized treatment.
Collapse
Affiliation(s)
- Huihsou Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Qingdao University, Shandong, China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| | - Wenqiang Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| | - Lingna Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| | - Jingyu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| | - Jiahui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| | - Chenxing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China.,Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| |
Collapse
|
28
|
He W, He F, Hu H. Efficacy and safety of Venetoclax-based regimens in relapsed or refractory multiple myeloma: a systematic review and meta-analysis of prospective clinical trials. Ann Med 2023; 55:1029-1036. [PMID: 36911885 PMCID: PMC10795640 DOI: 10.1080/07853890.2023.2186480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable malignancy. Venetoclax (VEN) shows a meaningful effect in MM patients who are relapsed or refractory (RR) to previous standard therapies. OBJECTIVE This study aimed to assess the efficacy and safety of VEN-based treatments in RR MM patients. MATERIALS AND METHODS Comprehensive studies were searched in PubMed, Embase, Web of Science and Cochrane library. Efficacy was assessed by overall response rate (ORR), strict complete response rate (sCR), complete response rate (CR), very good partial response rate (VGPR) and partial response rate (PR). RESULTS Seven studies containing 482 subjests were included. The pooled ORR, ≥ CR (sCR + CR), VGPR and PR were 68% (51%-85%), 24% (13%-35%), 25% (17%-34%) and 17% (11%-24%) respectively. Multi-drug treatments were superior to VEN ± dexamethasone (Dex) treatments in ORR (82% vs 42%, p = .003) and ≥ CR (36% vs 7%, p < 0.00001). Subgroup analysis indicated patients achieve higher ORR who harboring t(11;14) translocation or containing high BCL-2 expression. CONCLUSIONS VEN-containing regimens could be suggested as effective and safe treatments to RR MM patients with t(11;14) or high BCL-2 levels.
Collapse
Affiliation(s)
- Wei He
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, People’s Republic of China
| | - Fang He
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, People’s Republic of China
| | - Huixian Hu
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, People’s Republic of China
| |
Collapse
|
29
|
Ríos-Tamayo R, Soler JA, García-Sánchez R, Pérez Persona E, Arnao M, García-Guiñón A, Domingo A, González-Pardo M, de la Rubia J, Mateos MV. A glimpse into relapsed refractory multiple myeloma treatment in real-world practice in Spain: the GeminiS study. Hematology 2023; 28:2178997. [PMID: 36803194 DOI: 10.1080/16078454.2023.2178997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVES To describe the incorporation of monoclonal antibodies (mAb) in real-world (RW) practice for the treatment of patients with relapsed refractory multiple myeloma (RRMM) in a setting with other treatment alternatives. METHODS This was an observational, multicenter, ambispective study of RRMM treated with or without a mAb. RESULTS A total of 171 patients were included. For the group treated without mAb, the median (95% CI) progression-free survival (PFS) to relapse was 22.4 (17.8-27.0) months; partial response or better (≥PR) and complete response or better (≥CR) was observed in 74.1% and 24.1% of patients, respectively; and median time to first response in first relapse was 2.0 months and in second relapse was 2.5 months. For the group of patients treated with mAb in first or second relapse, the median PFS was 20.9 (95% CI, could not be evaluated) months; the ≥ PR and ≥ CR rates were 76,2% and 28.6%, respectively; and the median time to first response in first relapse was 1.2 month and in second relapse was 1.0 months. The safety profiles for the combinations were consistent with those expected. CONCLUSIONS The incorporation of mAb in RW practice for the treatment of RRMM has shown good quality and speed of response with a similar safety profile shown in randomized clinical trials.
Collapse
Affiliation(s)
- Rafael Ríos-Tamayo
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Juan Alfons Soler
- Department of Hematology, Hospital Universitari Parc Taulí de Sabadell, Catalonia, Spain
| | | | | | - Mario Arnao
- Department of Hematology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Antoni García-Guiñón
- Department of Hematology, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Abel Domingo
- Department of Hematology, Hospital General de Granollers, Spain
| | | | - Javier de la Rubia
- Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Hematology Department, Universidad Católica "San Vicente Mártir", Valencia, Spain.,CIBERONC CB16/12/00284, Valencia, Spain
| | - María Victoria Mateos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), Hospital Universitario de Salamanca, Salamanca, Spain
| | -
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| |
Collapse
|
30
|
Burger KL, Fernandez MR, Meads MB, Sudalagunta P, Oliveira PS, Renatino Canevarolo R, Alugubelli RR, Tungsevik A, De Avila G, Silva M, Graeter AI, Dai HA, Vincelette ND, Prabhu A, Magaletti D, Yang C, Li W, Kulkarni A, Hampton O, Koomen JM, Roush WR, Monastyrskyi A, Berglund AE, Silva AS, Cleveland JL, Shain KH. CK1δ and CK1ε Signaling Sustains Mitochondrial Metabolism and Cell Survival in Multiple Myeloma. Cancer Res 2023; 83:3901-3919. [PMID: 37702657 PMCID: PMC10690099 DOI: 10.1158/0008-5472.can-22-2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/09/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Multiple myeloma remains an incurable malignancy due to acquisition of intrinsic programs that drive therapy resistance. Here we report that casein kinase-1δ (CK1δ) and CK1ε are therapeutic targets in multiple myeloma that are necessary to sustain mitochondrial metabolism. Specifically, the dual CK1δ/CK1ε inhibitor SR-3029 had potent in vivo and ex vivo anti-multiple myeloma activity, including against primary multiple myeloma patient specimens. RNA sequencing (RNA-seq) and metabolic analyses revealed inhibiting CK1δ/CK1ε disables multiple myeloma metabolism by suppressing genes involved in oxidative phosphorylation (OxPhos), reducing citric acid cycle intermediates, and suppressing complexes I and IV of the electron transport chain. Finally, sensitivity of multiple myeloma patient specimens to SR-3029 correlated with elevated expression of mitochondrial genes, and RNA-seq from 687 multiple myeloma patient samples revealed that increased CSNK1D, CSNK1E, and OxPhos genes correlate with disease progression and inferior outcomes. Thus, increases in mitochondrial metabolism are a hallmark of multiple myeloma progression that can be disabled by targeting CK1δ/CK1ε. SIGNIFICANCE CK1δ and CK1ε are attractive therapeutic targets in multiple myeloma whose expression increases with disease progression and connote poor outcomes, and that are necessary to sustain expression of genes directing OxPhos.
Collapse
Affiliation(s)
- Karen L. Burger
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Mario R. Fernandez
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Mark B. Meads
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Praneeth Sudalagunta
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Paula S. Oliveira
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Rafael Renatino Canevarolo
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Alexandre Tungsevik
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Gabe De Avila
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Maria Silva
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Allison I. Graeter
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Nicole D. Vincelette
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Antony Prabhu
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Dario Magaletti
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Chunying Yang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Weimin Li
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | | | - John M. Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Andrii Monastyrskyi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Ariosto S. Silva
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - John L. Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Kenneth H. Shain
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
31
|
Liu Z, Xu X, Liu H, Zhao X, Yang C, Fu R. Immune checkpoint inhibitors for multiple myeloma immunotherapy. Exp Hematol Oncol 2023; 12:99. [PMID: 38017516 PMCID: PMC10685608 DOI: 10.1186/s40164-023-00456-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Multiple myeloma (MM) is related to immune disorders, recent studys have revealed that immunotherapy can greatly benefit MM patients. Immune checkpoints can negatively modulate the immune system and are closely associated with immune escape. Immune checkpoint-related therapy has attracted much attention and research in MM. However, the efficacy of those therapies need further improvements. There need more thoughts about the immune checkpoint to translate their use in clinical work. In our review, we aggregated the currently known immune checkpoints and their corresponding ligands, further more we propose various ways of potential translation applying treatment based on immune checkpoints for MM patients.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xintong Xu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chun Yang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
32
|
Dachs LR, Gaisán CM, Bustamante G, López SG, García EG, Persona EP, González-Calle V, Auzmendi MS, Pérez JMA, González Montes Y, Ríos Tamayo R, de Miguel Llorente D, Bernal LP, Mayol AS, Caro CC, Grande M, Fernández-Nistal A, Naves A, Miguel EMOS. Assessment of the psychometric properties of the Spanish version of EORTC QLQ-MY20 and evaluation of health-related quality of Life outcomes in patients with relapsed and/or refractory multiple myeloma in the real-world setting in Spain: results from the CharisMMa study. Leuk Lymphoma 2023; 64:1847-1856. [PMID: 37539698 DOI: 10.1080/10428194.2023.2240922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
We evaluated the psychometric properties of the Spanish version of the European Organization for Research and Treatment of Multiple Myeloma (MM) specific quality-of-life (QoL) questionnaire module (QLQ-MY20) in relapsed/refractory MM (RRMM) patients. This was an observational, cross-sectional, multicenter study using EORTC QLQ-C30 and QLQ-MY20 in RRMM patients (ClinicalTrials.gov ID NCT03188536). We assessed the non-response rate, ceiling/floor effects, internal consistency, test-retest reliability, and validity. The study included 276 patients (53.3% males, mean [SD] age of 67.4 [10.5] years). The EORTC QLQ-MY20 showed a low non-response rate, very low ceiling and floor effects, and good internal consistency. The test-retest reliability assessment revealed good temporary stability, the construct validity analysis stated four main factors similar to the ones of the original version, and the criterion validity assessment showed no differences between groups. In conclusion, the Spanish version of EORTC QLQ-MY20 is a reliable and valid tool for assessing QoL in RRMM patients.
Collapse
Affiliation(s)
| | - Carmen Montes Gaisán
- Hospital Universitario Marqués de Valdecilla (IDIVAL). Universidad de Cantabria. Santander, Spain
| | | | | | | | - Ernesto Pérez Persona
- Instituto de Investigación Sanitaria Bioaraba, Vitoria-Gasteiz, Spain
- Osakidetza. Hospital Universitario de Álava. Vitoria-Gasteiz, Spain
| | - Verónica González-Calle
- Hospital Universitario de Salamanca (HUS/IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Spain
- Instituto Universitario de Biología Molecular y Celular del Cáncer - IBMCC (USAL-CSIC), Salamanca, Spain
| | | | | | | | | | | | | | | | | | - Marta Grande
- Takeda Farmacéutica España, Madrid, Spain
- Universidad de Alcalá, Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Xia Z, Leng Y, Fang B, Liang Y, Li W, Fu C, Yang L, Ke X, Jiang H, Weng J, Liu L, Zhao Y, Zhang X, Huang Z, Liu A, Shi Q, Gao Y, Chen X, Pan L, Cai Z, Wang Z, Wang Y, Fan Y, Hou M, Ma Y, Hu J, Liu J, Zhou J, Zhang X, Meng H, Lu X, Li F, Ren H, Huang B, Shao Z, Zhou H, Hu Y, Yang S, Zheng X, Wei P, Pang H, Yu W, Liu Y, Gao S, Yan L, Ma Y, Jing H, Du J, Ling W, Zhang J, Sui W, Wang F, Li X, Chen W. Aponermin or placebo in combination with thalidomide and dexamethasone in the treatment of relapsed or refractory multiple myeloma (CPT-MM301): a randomised, double-blinded, placebo-controlled, phase 3 trial. BMC Cancer 2023; 23:980. [PMID: 37838670 PMCID: PMC10576321 DOI: 10.1186/s12885-023-11489-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Aponermin, a circularly permuted tumor necrosis factor-related apoptosis-inducing ligand, is a potential death receptor 4/5-targeted antitumour candidate. Previous phase 1/2 studies have demonstrated the efficacy of aponermin in patients with relapsed or refractory multiple myeloma (RRMM). To confirm the superiority of aponermin plus thalidomide and dexamethasone (aponermin group) over placebo plus thalidomide and dexamethasone (placebo group) in RRMM, a randomized, double-blinded, placebo controlled phase 3 trial was performed. METHODS Four hundred seventeen patients with RRMM who had previously received at least two regimens were randomly assigned (2:1) to receive aponermin, thalidomide, and dexamethasone or placebo, thalidomide, and dexamethasone. The primary endpoint was progression-free survival (PFS). Key secondary endpoints included overall survival (OS) and overall response rate (ORR). RESULTS A total of 415 patients received at least one dose of trial treatment (276 vs. 139). The median PFS was 5.5 months in the aponermin group and 3.1 months in the placebo group (hazard ratio, 0.62; 95% confidence interval [CI], 0.49-0.78; P < 0.001). The median OS was 22.4 months for the aponermin group and 16.4 months for the placebo group (hazard ratio, 0.70; 95% CI, 0.55-0.89; P = 0.003). Significantly higher rates of ORR (30.4% vs. 13.7%, P < 0.001) and very good partial response or better (14.1% vs. 2.2%, P < 0.0001) were achieved in the aponermin group than in the placebo group. Treatment with aponermin caused hepatotoxicity in some patients, as indicated by the elevated alanine transaminase, aspartate transaminase, or lactate dehydrogenase levels (52.2% vs. 24.5%, 51.1% vs. 19.4% and 44.9% vs. 21.6%, respectively), mostly grade 1/2, transient and reversible. The main grade 3/4 adverse events included neutropenia, pneumonia and hyperglycemia. The incidence of serious adverse events was similar between the two groups (40.6% vs. 37.4%). There was no evidence that aponermin leads to hematological toxicity, nephrotoxicity, cardiotoxicity, or secondary tumors. CONCLUSIONS Aponermin plus thalidomide and dexamethasone significantly improved PFS, OS and ORR with manageable side effects in RRMM patients who had received at least two prior therapies. These results support the use of aponermin, thalidomide, and dexamethasone as a treatment option for RRMM patients. TRIAL REGISTRATION The trial was registered at http://www.chictr.org.cn as ChiCTR-IPR-15006024, 17/11/2014.
Collapse
Affiliation(s)
- Zhongjun Xia
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yun Leng
- Department of Hematology, Beijing Chao-Yang Hospital Capital Medical University, Beijing, China
| | - Baijun Fang
- Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yang Liang
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Chengcheng Fu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology National Clinical Research Center for Hematologic Diseases, Suzhou, China
| | - Linhua Yang
- Department of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Hua Jiang
- Department of Hematology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yaozhong Zhao
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xuejun Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongxia Huang
- Department of Hematology, Beijing Chao-Yang Hospital Capital Medical University, Beijing, China
| | - Aichun Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qingzhi Shi
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuhuan Gao
- Department of Hematology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiequn Chen
- Department of Hematology, XiJing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ling Pan
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yafei Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yaqun Fan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Medical College of Xiamen University, Xiamen, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Yigai Ma
- Department of Hematology, China-Japan Friendship Hospital, Beijing, China
| | - Jianda Hu
- Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Province Key Laboratory of Hematology, Fuzhou, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Zhang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haitao Meng
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuzhang Lu
- Department of Hematology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Fei Li
- Department of Hematology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Bintao Huang
- Department of Hematology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zonghong Shao
- Department of Hematology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Hebing Zhou
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wunan, China
| | - Shifang Yang
- Beijing Sunbio Biotech Co., Ltd., Beijing, China
| | | | - Peng Wei
- Beijing Sunbio Biotech Co., Ltd., Beijing, China
| | - Hongyan Pang
- Beijing Sunbio Biotech Co., Ltd., Beijing, China
| | - Wei Yu
- Beijing Sunbio Biotech Co., Ltd., Beijing, China
| | - Yuzhang Liu
- Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Lingzhi Yan
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology National Clinical Research Center for Hematologic Diseases, Suzhou, China
| | - Yanping Ma
- Department of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongmei Jing
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Juan Du
- Department of Hematology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Ling
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingyi Zhang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Weiwei Sui
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Fuxu Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Li
- Department of Hematology, Beijing Chao-Yang Hospital Capital Medical University, Beijing, China
| | - Wenming Chen
- Department of Hematology, Beijing Chao-Yang Hospital Capital Medical University, Beijing, China.
| |
Collapse
|
34
|
Yang L, Ma L, Gong Q, Chen J, Huang Q. Inhibition of CARM1 suppresses proliferation of multiple myeloma cells through activation of p53 signaling pathway. Mol Biol Rep 2023; 50:7457-7469. [PMID: 37477799 PMCID: PMC10460731 DOI: 10.1007/s11033-023-08645-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Multiple myeloma (MM) is a malignant proliferative disease of plasma cells, the incidence of which is increasing every year and remains incurable. The enzyme co-activator-associated arginine methyltransferase 1 (CARM1) is highly expressed in a variety of cancers, such as Hodgkin's lymphoma and acute myeloid leukemia, and CARM1 is closely associated with tumor cell proliferation. However, the role of CARM1 in MM has not been elucidated. METHODS AND RESULTS In this study, we found that CARM1 is overexpressed in MM and closely associated with poor prognosis in MM. CCK-8 and colony formation assays showed that the proliferation of MM cell lines was downregulated when CARM1 expression was knockdown by specific shRNA. Knockdown of CARM1 reduced the proportion of MM cell lines in the S phase and increased the proportion in G0/G1 phase. RNA-seq analysis of the CARM1-KD cell line revealed that it was closely associated with apoptosis and activated the p53 pathway. CCK-8 and apoptosis results showed that CARM1 knockdown made MM cells more sensitive to standard-of-care drugs. CONCLUSION This study provides an experimental basis for elucidating the pathogenesis of multiple myeloma and searching for potential therapeutic targets.
Collapse
Affiliation(s)
- Lan Yang
- Medical College of Guizhou University, Guiyang City, 550025, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University), Third Military Medical University, Chongqing, 400038, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Road Street, Shapingba District, 400038, China.
| | - JiePing Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Road Street, Shapingba District, 400038, China.
| | - Qilin Huang
- Medical College of Guizhou University, Guiyang City, 550025, China.
- Department of Neurosurgery, Guiqian International General Hospital, Changpo Road, Wudang District, Guiyang City, 550000, China.
| |
Collapse
|
35
|
Ochiai M, Fierstein S, XsSali F, DeVito N, Purkey LR, May R, Correa-Medina A, Kelley M, Page TD, DeCicco-Skinner K. Unlocking Drug Resistance in Multiple Myeloma: Adipocytes as Modulators of Treatment Response. Cancers (Basel) 2023; 15:4347. [PMID: 37686623 PMCID: PMC10486466 DOI: 10.3390/cancers15174347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy characterized by the clonal proliferation of malignant plasma cells. Despite the development of a diverse array of targeted drug therapies over the last decade, patients often relapse and develop refractory disease due to multidrug resistance. Obesity is a growing public health threat and a risk factor for multiple myeloma, although the mechanisms by which obesity contributes to MM growth and progression have not been fully elucidated. In the present study, we evaluated whether crosstalk between adipocytes and MM cells promoted drug resistance and whether this was amplified by obesity. Human adipose-derived stem cells (ASCs) from nineteen normal (BMI = 20-25 kg/m2), overweight (25-30 kg/m2), or obese (30-35 kg/m2) patients undergoing elective liposuction were utilized. Cells were differentiated into adipocytes, co-cultured with RPMI 8226 or U266B1 multiple myeloma cell lines, and treated with standard MM therapies, including bortezomib or a triple combination of bortezomib, dexamethasone, and lenalidomide. We found that adipocytes from overweight and obese individuals increased cell adhesion-mediated drug resistance (CAM-DR) survival signals in MM cells, and P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) drug transporter expression. Further, co-culture enhanced in vitro angiogenesis, MMP-2 activity, and protected MM cells from drug-induced decreases in viability. In summary, we provide an underlying mechanism by which obesity can impair the drug response to MM and allow for recurrence and/or disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kathleen DeCicco-Skinner
- Department of Biology, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| |
Collapse
|
36
|
Aghaee M, Ledzewicz U, Robbins M, Bezman N, Jay Cho H, Moore H. Determining Optimal Combination Regimens for Patients with Multiple Myeloma. Eur J Pharm Sci 2023:106492. [PMID: 37302768 DOI: 10.1016/j.ejps.2023.106492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/04/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
While many novel therapies have been approved in recent years for treating patients with multiple myeloma, there is still no established curative regimen, especially for patients with high-risk disease. In this work, we use a mathematical modeling approach to determine combination therapy regimens that maximize healthy lifespan for patients with multiple myeloma. We start with a mathematical model for the underlying disease and immune dynamics, which was presented and analyzed previously. We add the effects of three therapies to the model: pomalidomide, dexamethasone, and elotuzumab. We consider multiple approaches to optimizing combinations of these therapies. We find that optimal control combined with approximation outperforms other methods, in that it can quickly produce a combination regimen that is clinically-feasible and near-optimal. Implications of this work can be used to optimize doses and advance the scheduling of drugs.
Collapse
Affiliation(s)
- Mahya Aghaee
- Laboratory for Systems Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Urszula Ledzewicz
- Institute of Mathematics, Lodz University of Technology, Lodz, Poland; Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | | | - Natalie Bezman
- Oncology Research and Development, Pfizer, La Jolla, California, USA
| | - Hearn Jay Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen Moore
- Laboratory for Systems Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
37
|
Shi H, Wei W, Peng R, Chen H, Zhou N, Wu L, Yu W, Zhao W, Hou J, Zhou F. Continuous low-dose cyclophosphamide plus prednisone in the treatment of relapsed and refractory multiple myeloma with severe complications. Front Oncol 2023; 13:1185991. [PMID: 37284198 PMCID: PMC10240086 DOI: 10.3389/fonc.2023.1185991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Background/objective We retrospectively analyzed the effective and safety of continuous low-dose cyclophosphamide combined with prednisone (CP) in relapsed and refractory multiple myeloma (RRMM) patients with severe complications. Methods A total of 130 RRMM patients with severe complications were enrolled in this study, among which 41 patients were further given bortezomib, lenalidomide, thalidomide or ixazomib on the basis of CP regimen (CP+X group). The response to therapy, adverse events (AEs), overall survival (OS) and progression-free survival (PFS) were recorded. Results Among the 130 patients, 128 patients received therapeutic response assessment, with a complete remission rate (CRR) and objective response rate (ORR) of 4.7% and 58.6%, respectively. The median OS and PFS time were (38.0 ± 3.6) and (22.9±5.2) months, respectively. The most common AEs were hyperglycemia (7.7%), pneumonia (6.2%) and Cushing's syndrome (5.4%). In addition, we found the pro-BNP/BNP level was obviously decreased while the LVEF (left ventricular ejection fraction) was increased in RRMM patients following CP treatment as compared with those before treatment. Furthermore, CP+X regimen further improved the CRR compared with that before receiving the CP+X regimen (24.4% vs. 2.4%, P=0.007). Also, both the OS and PFS rates were significantly elevated in patients received CP+X regimen following CP regimen as compared with the patients received CP regimen only. Conclusion This study demonstrates the metronomic chemotherapy regimen of CP is effective to RRMM patients with severe complications.
Collapse
Affiliation(s)
- Haotian Shi
- Department of Hematologic Oncology, Zhabei Central Hospital in Shanghai Jing’an District, Shanghai, China
| | - Wei Wei
- Department of Hematologic Oncology, Zhabei Central Hospital in Shanghai Jing’an District, Shanghai, China
| | - Rong Peng
- Department of Hematologic Oncology, Zhabei Central Hospital in Shanghai Jing’an District, Shanghai, China
| | - Haimin Chen
- Department of Hematologic Oncology, Zhabei Central Hospital in Shanghai Jing’an District, Shanghai, China
| | - Nian Zhou
- Department of Hematologic Oncology, Zhabei Central Hospital in Shanghai Jing’an District, Shanghai, China
| | - Lixia Wu
- Department of Hematologic Oncology, Zhabei Central Hospital in Shanghai Jing’an District, Shanghai, China
| | - Wenjun Yu
- Department of Hematologic Oncology, Zhabei Central Hospital in Shanghai Jing’an District, Shanghai, China
| | - Wenhao Zhao
- Department of Hematologic Oncology, Zhabei Central Hospital in Shanghai Jing’an District, Shanghai, China
| | - Jian Hou
- Department of Hematology, Renji Hospital Affiliated to the School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fan Zhou
- Department of Hematologic Oncology, Zhabei Central Hospital in Shanghai Jing’an District, Shanghai, China
| |
Collapse
|
38
|
Park SS, Lee JC, Byun JM, Choi G, Kim KH, Lim S, Dingli D, Jeon YW, Yahng SA, Shin SH, Min CK, Koo J. ML-based sequential analysis to assist selection between VMP and RD for newly diagnosed multiple myeloma. NPJ Precis Oncol 2023; 7:46. [PMID: 37210456 DOI: 10.1038/s41698-023-00385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/03/2023] [Indexed: 05/22/2023] Open
Abstract
Optimal first-line treatment that enables deeper and longer remission is crucially important for newly diagnosed multiple myeloma (NDMM). In this study, we developed the machine learning (ML) models predicting overall survival (OS) or response of the transplant-ineligible NDMM patients when treated by one of the two regimens-bortezomib plus melphalan plus prednisone (VMP) or lenalidomide plus dexamethasone (RD). Demographic and clinical characteristics obtained during diagnosis were used to train the ML models, which enabled treatment-specific risk stratification. Survival was superior when the patients were treated with the regimen to which they were low risk. The largest difference in OS was observed in the VMP-low risk & RD-high risk group, who recorded a hazard ratio of 0.15 (95% CI: 0.04-0.55) when treated with VMP vs. RD regimen. Retrospective analysis showed that the use of the ML models might have helped to improve the survival and/or response of up to 202 (39%) patients among the entire cohort (N = 514). In this manner, we believe that the ML models trained on clinical data available at diagnosis can assist the individualized selection of optimal first-line treatment for transplant-ineligible NDMM patients.
Collapse
Affiliation(s)
- Sung-Soo Park
- Catholic Research Network for Multiple Myeloma, Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jong Cheol Lee
- Department of Otorhinolaryngology, GangNeung Asan Hospital, University of Ulsan College of Medicine, Gangneung-si, Gangwon-do, 25440, Republic of Korea
| | - Ja Min Byun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gyucheol Choi
- ImpriMedKorea, Inc., Seoul, 08507, Republic of Korea
| | - Kwan Hyun Kim
- ImpriMedKorea, Inc., Seoul, 08507, Republic of Korea
| | - Sungwon Lim
- ImpriMedKorea, Inc., Seoul, 08507, Republic of Korea
- ImpriMed, Inc., Palo Alto, CA, 94303, USA
| | - David Dingli
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Young-Woo Jeon
- Catholic Research Network for Multiple Myeloma, Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Hematology, Yeoido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, Republic of Korea
| | - Seung-Ah Yahng
- Catholic Research Network for Multiple Myeloma, Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Hematology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, 22711, Republic of Korea
| | - Seung-Hwan Shin
- Catholic Research Network for Multiple Myeloma, Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Hematology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 03312, Republic of Korea
| | - Chang-Ki Min
- Catholic Research Network for Multiple Myeloma, Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Jamin Koo
- ImpriMedKorea, Inc., Seoul, 08507, Republic of Korea.
- ImpriMed, Inc., Palo Alto, CA, 94303, USA.
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
| |
Collapse
|
39
|
Maouche N, Srinivasan A, Leary H, Collings F, Tseu B, Vallance GD, Ramasamy K, Kothari J. Daratumumab Monotherapy for Heavily Pre-treated and Refractory Myeloma: Results from a UK Multicentre Real World Cohort. J Oncol Pharm Pract 2023; 29:299-304. [PMID: 34939868 DOI: 10.1177/10781552211067780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Daratumumab is the first anti-CD38 targeting monoclonal antibody approved as monotherapy in multiply relapsed myeloma patients who progressed following prior treatment with proteasome inhibitors (PIs) and immunomodulatory agents (IMiDs). We present real world data on the efficacy of single agent daratumumab in a cohort of 55 multiply relapsed patients treated in the UK.The median age was 72 years, the majority (96%) received ≥ 3 previous lines of treatment; 54.5% were PI-refractory, 76.4% were IMiD-refractory and 47.2% were double refractory; 20% of patients had high-risk (HR) disease.The overall response rate was 49%. After a median follow up of 9.2 months, the median progression-free survival (PFS) for the total cohort was 5.1 months. Patients who achieved a partial response or better (≥PR) demonstrated a significantly longer PFS compared to those with <PR; 9.8 versus 2.7 months, p < 0.001. Double-refractory patients had an inferior PFS compared to single-refractory patients; 2.7 versus 7.4 months, p = 0.084. High-risk disease was associated with significantly shorter PFS compared to standard-risk (SR); 2.3 versus 6.7 months, p = 0.001. The median overall survival (OS) was 15.9 months. Despite a relatively short PFS seen in the double-refractory and high-risk patients; a favourable median overall survival of 12.9 months was achieved in these groups. Patients who achieved ≥PR, those with a previous objective response to PIs or IMiDs and those with SR disease, all benefited from a significantly longer OS which was not reached. A clear benefit in survival is encouraging in this setting of unmet clinical need and limited treatment options.
Collapse
Affiliation(s)
- Nadjoua Maouche
- Department of Pharmacy, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anandagopal Srinivasan
- Department of Haematology, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Heather Leary
- Department of Haematology, 5489Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, UK
| | - Freya Collings
- Department of Haematology, 7766Great Western Hospitals NHS Foundation Trust, Swindon, UK
| | - Bing Tseu
- Department of Haematology, 1174Buckinghamshire Healthcare NHS Trust, Bucks, UK
| | - Grant D Vallance
- Department of Haematology, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Karthik Ramasamy
- Department of Haematology, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jaimal Kothari
- Department of Haematology, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
40
|
Thongon N, Ma F, Lockyer P, Baran N, Liu J, Jackson C, Rose A, Wildeman B, Marchesini M, Marchica V, Storti P, Giuliani N, Ganan-Gomez I, Adema V, Qing Y, Ha M, Fonseca R, Class C, Tan L, Kanagal-Shamanna R, Nolasco DB, Cerchione C, Montalban-Bravo G, Santoni A, Bueso-Ramos C, Konopleva M, Lorenzi P, Garcia-Manero G, Manasanch E, Viale A, Chesi M, Colla S. Targeting DNA2 Overcomes Metabolic Reprogramming in Multiple Myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529457. [PMID: 36865225 PMCID: PMC9980056 DOI: 10.1101/2023.02.22.529457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover novel mechanisms through which MM cells overcome DNA damage, we investigated how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting ILF2, a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo an adaptive metabolic rewiring and rely on oxidative phosphorylation to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identified the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage and maintaining mitochondrial respiration. Our study revealed a novel vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation. STATEMENT OF SIGNIFICANCE Metabolic reprogramming is a mechanism through which cancer cells maintain survival and become resistant to DNA-damaging therapy. Here, we show that targeting DNA2 is synthetically lethal in myeloma cells that undergo metabolic adaptation and rely on oxidative phosphorylation to maintain survival after DNA damage activation.
Collapse
|
41
|
Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: phase 1 UNIVERSAL trial interim results. Nat Med 2023; 29:422-429. [PMID: 36690811 DOI: 10.1038/s41591-022-02182-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/12/2022] [Indexed: 01/25/2023]
Abstract
ALLO-715 is a first-in-class, allogeneic, anti-BCMA CAR T cell therapy engineered to abrogate graft-versus-host disease and minimize CAR T rejection. We evaluated escalating doses of ALLO-715 after lymphodepletion with an anti-CD52 antibody (ALLO-647)-containing regimen in 43 patients with relapsed/refractory multiple myeloma as part A of the ongoing first-in-human phase 1 UNIVERSAL trial. Primary objectives included determination of the safety and tolerability of ALLO-715 and the safety profile of the ALLO-647-containing lymphodepletion regimen. Key secondary endpoints were response rate and duration of response. Grade ≥3 adverse events were reported in 38 (88.0%) of patients. Cytokine release syndrome was observed in 24 patients (55.8%), with 1 grade ≥3 event (2.3%) and neurotoxicity in 6 patients (14%), with no grade ≥3 events. Infections occurred in 23 patients (53.5%), with 10 (23.3%) of grade ≥3. Overall, 24 patients (55.8%) had a response. Among patients treated with 320 × 106 CAR+ T cells and a fludarabine-, cyclophosphamide- and ALLO-647-based lymphodepletion regimen (n = 24), 17 (70.8%) had a response including 11 (45.8%) with very good partial response or better and 6 (25%) with a complete response/stringent complete response. The median duration of response was 8.3 months. These initial results support the feasibility and safety of allogeneic CAR T cell therapy for myeloma.
Collapse
|
42
|
Ailawadhi S, Ogbonnaya A, Murty S, Cherepanov D, Schroader BK, Romanus D, Farrelly E, Chari A. Duration of frontline therapy and impact on clinical outcomes in newly diagnosed multiple myeloma patients not receiving frontline stem cell transplant. Cancer Med 2023; 12:3145-3159. [PMID: 36151787 PMCID: PMC9939178 DOI: 10.1002/cam4.5239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/06/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Extended first-line therapy (1LT) has improved clinical outcomes in newly diagnosed multiple myeloma (NDMM). This retrospective study of NDMM patients evaluated the relationship between dose-attenuation of 1LT and duration of therapy (DOT) and DOT on outcomes. METHODS Adults with NDMM not undergoing stem cell transplant (SCT) from January 1, 2012 toMarch 31, 2018 from the Integrated Oncology Network were included; 300 were randomly selected for chart review. 1LT DOT, time to next treatment (TTNT), progression-free survival (PFS), and overall survival (OS) were estimated using Kaplan-Meier analysis. Marginal structural models evaluated relationships between DOT and TTNT, PFS, and OS at 2 years accounting for confounders and survival bias from the time-dependent nature of DOT. RESULTS Of 300 chart-reviewed patients, 93 were excluded for incomplete data or meeting exclusion criteria. Among 207 NDMM patients, median age was 74 years; 146 (70.5%) did not receive dose-attenuation during 1LT. Patients with short DOT were older, frailer, with a higher comorbidity burden, and a significantly lower proportion had an Eastern Cooperative Oncology Group PS = 0. As DOT increased, more patients underwent dose-attenuation (p < 0.0001). The median 1LT DOT was 20.9 (95% confidence interval [CI]: 13.9, 26.4) versus 4.2 months (95% CI: 3.2, 4.9) for patients receiving versus not receiving dose-attenuation, respectively (p < 0.0001). After accounting for survival bias, confounder-adjusted TTNT was prolonged with each additional month of 1LT (odds ratio [OR]: 0.76 [95% CI: 0.75, 0.78]); likelihoods of risks of disease progression (OR: 0.87 [95% CI: 0.86, 0.88]) and death at 2 years (OR: 0.72 [95% CI: 0.70, 0.74]) were reduced with each month of 1LT (p < 0.0001 for all outcomes). CONCLUSIONS Dose-attenuated 1LT was associated with longer DOT among patients with non-SCT NDMM. Each additional month of 1LT was associated with a reduced adjusted likelihood of disease progression and death at 2 years. Dose-attenuation of 1LT can extend DOT; longer DOT may improve clinical outcomes.
Collapse
Affiliation(s)
- Sikander Ailawadhi
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida, United States
| | | | | | - Dasha Cherepanov
- Takeda Development Center Americas, Inc (TDCA), Lexington, Massachusetts, United States
| | | | - Dorothy Romanus
- Takeda Development Center Americas, Inc (TDCA), Lexington, Massachusetts, United States
| | | | - Ajai Chari
- Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
43
|
Shah B, Gray J, Abraham I, Chang M. Pharmacy considerations: Use of anti-CD38 monoclonal antibodies in relapsed and/or refractory multiple myeloma. J Oncol Pharm Pract 2023; 29:170-182. [PMID: 35726199 DOI: 10.1177/10781552221107850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This article reviews current evidence for the approved anti-CD38 monoclonal antibodies, isatuximab and daratumumab, for the treatment of patients with relapsed and/or refractory multiple myeloma (RRMM) and the implications for pharmacists. DATA SOURCES We conducted a literature search on PubMed/Medline and other sources using the drug names and the terms CD38, multiple myeloma, and pharmacists. DATA SUMMARY Monoclonal antibodies targeting the CD38 transmembrane glycoprotein offer a promising treatment approach for patients with RRMM. Isatuximab and daratumumab bind to different epitopes on CD38. In this review, we describe the similarities and differences in their mechanism of action, regulatory labeling, and the current guidelines for isatuximab and daratumumab use in RRMM. We review the current evidence for the efficacy and safety of these agents in combination with pomalidomide or carfilzomib and dexamethasone from the landmark phase 3 clinical trials that led to their approval. We discuss key differences in the eligibility criteria between the clinical trials, and differences in dosing, administration, available formulations, and pre- and post-infusion medications for the two agents. We outline recent data from pharmacoeconomic analyses comparing the cost-effectiveness of isatuximab-based regimens with that of daratumumab-based regimens. A brief overview of other anti-CD38 agents in the pipeline for the treatment of patients with RRMM is presented. CONCLUSIONS Given that pharmacists play an integral role in driving cost-effective use of drugs without compromising efficacy and safety for the end user, educating pharmacists on the key differences between isatuximab and daratumumab can guide the selection of the appropriate anti-CD38 antibody.
Collapse
Affiliation(s)
- Bhavesh Shah
- 1836Boston Medical Center, One Boston Medical Center Place, Boston, MA, USA
| | - Joy Gray
- Tennessee Cancer Specialists, Knoxville, TN, USA
| | - Ivo Abraham
- University of Arizona Cancer Center and Center for Health Outcomes and PharmacoEconomic Research, Tucson, AZ, USA
| | | |
Collapse
|
44
|
Cobimetinib Alone and Plus Venetoclax With/Without Atezolizumab in Patients With Relapsed/Refractory Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:e59-e70. [PMID: 36450626 DOI: 10.1016/j.clml.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Mitogen-activated protein kinase pathway mutations are present in >50% of patients with relapsed/refractory (R/R) multiple myeloma (MM). MEK inhibitors show limited single-agent activity in R/R MM; combination with B-cell lymphoma-2 (BCL-2) and programmed death-ligand 1 inhibition may improve efficacy. This phase Ib/II trial (NCT03312530) evaluated safety and efficacy of cobimetinib (cobi) alone and in combination with venetoclax (ven) with/without atezolizumab (atezo) in patients with R/R MM. PATIENTS AND METHODS Forty-nine patients were randomized 1:2:2 to cobi 60 mg/day on days 1-21 (n = 6), cobi 40 mg/day on days 1-21 + ven 800 mg/day on days 1-28 with/without atezo 840 mg on days 1 and 15 of 28-day cycles (cobi-ven, n = 22; cobi-ven-atezo, n = 21). Safety run-in cohorts evaluated cobi-ven and cobi-ven-atezo dose levels. RESULTS Any-grade common adverse events (AEs) with cobi, cobi-ven, and cobi-ven-atezo, respectively, included diarrhea (33.3%, 81.8%, 90.5%) and nausea (16.7%, 50.0%, 66.7%); common grade ≥3 AEs included anemia (0%, 22.7%, 23.8%), neutropenia (0%, 13.6%, 38.1%), and thrombocytopenia (0%, 18.2%, 23.8%). The overall response rate for all-comers was 0% (cobi), 27.3% (cobi-ven), and 28.6% (cobi-ven-atezo), and 0%, 50.0%, and 100%, respectively, in patients with t(11;14)+. Biomarker analysis demonstrated non-t(11;14) patient selection with NRAS/KRAS/BRAF mutation or high BCL-2/BCL-2-L1 ratio (>52% of the study population) could enrich for responders to the cobi-ven combination. CONCLUSIONS Cobi-ven and cobi-ven-atezo demonstrated manageable safety with moderate activity in all-comers, and higher activity in patients with t(11;14)+ MM, supporting a biomarker-driven approach for ven in MM.
Collapse
|
45
|
Chari A, Minnema MC, Berdeja JG, Oriol A, van de Donk NWCJ, Rodríguez-Otero P, Askari E, Mateos MV, Costa LJ, Caers J, Verona R, Girgis S, Yang S, Goldsmith RB, Yao X, Pillarisetti K, Hilder BW, Russell J, Goldberg JD, Krishnan A. Talquetamab, a T-Cell-Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N Engl J Med 2022; 387:2232-2244. [PMID: 36507686 DOI: 10.1056/nejmoa2204591] [Citation(s) in RCA: 325] [Impact Index Per Article: 108.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND G protein-coupled receptor, family C, group 5, member D (GPRC5D) is an orphan receptor expressed in malignant plasma cells. Talquetamab, a bispecific antibody against CD3 and GPRC5D, redirects T cells to mediate killing of GPRC5D-expressing myeloma cells. METHODS In a phase 1 study, we evaluated talquetamab administered intravenously weekly or every other week (in doses from 0.5 to 180 μg per kilogram of body weight) or subcutaneously weekly, every other week, or monthly (5 to 1600 μg per kilogram) in patients who had heavily pretreated relapsed or refractory multiple myeloma that had progressed with established therapies (a median of six previous lines of therapy) or who could not receive these therapies without unacceptable side effects. The primary end points - the frequency and type of dose-limiting toxic effects (study part 1 only), adverse events, and laboratory abnormalities - were assessed in order to select the recommended doses for a phase 2 study. RESULTS At the data-cutoff date, 232 patients had received talquetamab (102 intravenously and 130 subcutaneously). At the two subcutaneous doses recommended for a phase 2 study (405 μg per kilogram weekly [30 patients] and 800 μg per kilogram every other week [44 patients]), common adverse events were cytokine release syndrome (in 77% and 80% of the patients, respectively), skin-related events (in 67% and 70%), and dysgeusia (in 63% and 57%); all but one cytokine release syndrome event were of grade 1 or 2. One dose-limiting toxic effect of grade 3 rash was reported in a patient who had received talquetamab at the 800-μg dose level. At median follow-ups of 11.7 months (in patients who had received talquetamab at the 405-μg dose level) and 4.2 months (in those who had received it at the 800-μg dose level), the percentages of patients with a response were 70% (95% confidence interval [CI], 51 to 85) and 64% (95% CI, 48 to 78), respectively. The median duration of response was 10.2 months and 7.8 months, respectively. CONCLUSIONS Cytokine release syndrome, skin-related events, and dysgeusia were common with talquetamab treatment but were primarily low-grade. Talquetamab induced a substantial response among patients with heavily pretreated relapsed or refractory multiple myeloma. (Funded by Janssen Research and Development; MonumenTAL-1 ClinicalTrials.gov number, NCT03399799.).
Collapse
Affiliation(s)
- Ajai Chari
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Monique C Minnema
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Jesus G Berdeja
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Albert Oriol
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Niels W C J van de Donk
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Paula Rodríguez-Otero
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Elham Askari
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - María-Victoria Mateos
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Luciano J Costa
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Jo Caers
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Raluca Verona
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Suzette Girgis
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Shiyi Yang
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Rachel B Goldsmith
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Xiang Yao
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Kodandaram Pillarisetti
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Brandi W Hilder
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Jeffery Russell
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Jenna D Goldberg
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Amrita Krishnan
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| |
Collapse
|
46
|
Nikolaou A, Hogea C, Samyshkin Y, Maiese EM, Sansbury L, Oguz M, Cid-Ruzafa J, Kapoor R, Wang F. An Epidemiology Model for Estimating the Numbers of US Patients With Multiple Myeloma by Line of Therapy and Treatment Exposure. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2022; 25:1977-1985. [PMID: 35963840 DOI: 10.1016/j.jval.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/09/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Estimates on the distribution of patients with multiple myeloma (MM) by line of therapy (LOT) are scarce and get outdated quickly as new treatments become available. The objective of this study was to estimate the number of patients with MM by LOT and the number of patients who have received at least 4 previous LOTs including proteasome inhibitors, immunomodulatory agents, and anti-CD38 monoclonal antibodies (mAbs). METHODS A compartmental model was developed to calculate the number of patients by LOT. Two pathways were considered based on stem cell transplant eligibility, and at each pathway, treatments were stratified in 2 types: anti-CD38 mAbs or other. The model population was stratified into 4 subgroups based on age and cytogenetic risk. Model inputs were informed from real-world evidence. RESULTS The model estimated that, in 2020, 126 869 patients were living with MM in the United States. Of these, 105 701 received treatment in any LOT, with 56 959, 27 252, 11 258, and 5217 in lines 1 to 4, respectively, and 5015 in line 5 or beyond. The model estimated that 3497 patients received at least 4 previous LOTs including proteasome inhibitors, immunomodulatory agents, and anti-CD38 mAbs. The model overall prevalence predictions aligned well with publicly available estimates. CONCLUSIONS This study proposes a novel framework to estimate MM prevalence. It can assist clinicians to understand future trends in MM epidemiology, healthcare systems to plan for future resource use allocation, and payers to quantify the budget impact of new treatments.
Collapse
Affiliation(s)
| | - Cosmina Hogea
- Value Evidence and Outcomes, GlaxoSmithKline, Upper Providence, PA, USA
| | - Yevgeniy Samyshkin
- Value Evidence and Outcomes, GlaxoSmithKline, Brentford, Middlesex, England, UK
| | - Eric M Maiese
- Value Evidence and Outcomes, GlaxoSmithKline, Philadelphia, PA, USA
| | - Leah Sansbury
- Value Evidence and Outcomes, GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Mustafa Oguz
- Real-World Evidence, Evidera, London, England, UK
| | | | - Ritika Kapoor
- Modelling and Simulation, Evidera, London, England, UK
| | - Feng Wang
- Value Evidence and Outcomes, GlaxoSmithKline, Upper Providence, PA, USA
| |
Collapse
|
47
|
Yang Y, Wu Z, Wang M, Wu Z, Sun Z, Liu M, Li G. MicroRNA-429 Regulates Invasion and Migration of Multiple Myeloma Cells via Bmi1/AKT Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: miR-429-mediated progression of multiple myeloma (MM) was studied through mediating B cell-specific Moloney murine leukemia virus integration site 1 (Bmi1)/protein kinase B (AKT) pathway. Methods: miRNA or siRNA was delivered into MM cell lines to alter cellular
proliferation, apoptosis, invasion and migration. Measurements of miR-429 and Bmi1 levels were performed. AKT and p-AKT expression change was measured after regulating miR-429. The interaction between miR-429 and Bmi1 was analyzed. Results: miR-429 elevation disrupted proliferation,
anti-apoptosis, migration and invasion properties of MM cells, and inactivated AKT pathway. Bmi1 was a targeting partner of miR-429, which was highly expressed in MM. Bmi1 knockdown phenotyped the effects of overexpressed miR-429 on MM cells. AKT agonist SC70 reversed miR-429-regulated inhibition
of MM cell growth. Conclusion: miR-429 suppresses the activation of Bmi1/AKT pathway to down-regulate the malignant functions of MM cells.
Collapse
Affiliation(s)
- YongMing Yang
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - ZhiFeng Wu
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - Ming Wang
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - ZuTong Wu
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - ZhenZheng Sun
- Department of Pediatrics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - Man Liu
- Department of Operating Room, The first Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - GuangBao Li
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| |
Collapse
|
48
|
Wang G, Fan F, Sun C, Hu Y. Looking into Endoplasmic Reticulum Stress: The Key to Drug-Resistance of Multiple Myeloma? Cancers (Basel) 2022; 14:5340. [PMID: 36358759 PMCID: PMC9654020 DOI: 10.3390/cancers14215340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/22/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, resulting from the clonal proliferation of malignant plasma cells within the bone marrow. Despite significant advances that have been made with novel drugs over the past two decades, MM patients often develop therapy resistance, especially to bortezomib, the first-in-class proteasome inhibitor that was approved for treatment of MM. As highly secretory monoclonal protein-producing cells, MM cells are characterized by uploaded endoplasmic reticulum stress (ERS), and rely heavily on the ERS response for survival. Great efforts have been made to illustrate how MM cells adapt to therapeutic stresses through modulating the ERS response. In this review, we summarize current knowledge on the mechanisms by which ERS response pathways influence MM cell fate and response to treatment. Moreover, based on promising results obtained in preclinical studies, we discuss the prospect of applying ERS modulators to overcome drug resistance in MM.
Collapse
Affiliation(s)
- Guangqi Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Fengjuan Fan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Chunyan Sun
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
49
|
Jing H, Yang L, Qi J, Qiu L, Fu C, Li J, Yang M, Qi M, Fan N, Ji J, Lu J, Li Y, Jin J. Safety and efficacy of daratumumab in Chinese patients with relapsed or refractory multiple myeloma: a phase 1, dose-escalation study (MMY1003). Ann Hematol 2022; 101:2679-2690. [PMID: 36301338 PMCID: PMC9646544 DOI: 10.1007/s00277-022-04951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
Abstract
Daratumumab monotherapy demonstrated favorable safety and efficacy in relapsed/refractory multiple myeloma (RRMM) patients in the global phase 1/2 GEN501 and phase 2 SIRIUS studies. MMY1003 evaluated daratumumab monotherapy specifically in Chinese patients with RRMM. This 3-part, open-label, phase 1, dose-escalation study included patients with ≥ 2 prior lines of therapy. Part 3 included patients who had received a proteasome inhibitor (PI) and immunomodulatory drug (IMiD) and experienced disease progression on their last regimen. Patients received intravenous daratumumab 8 mg/kg or 16 mg/kg in part 1 and 16 mg/kg in parts 2 + 3. Primary endpoints were dose-limiting toxicity (DLT; part 1), pharmacokinetics (parts 1 + 2), and adverse events (AEs). Fifty patients enrolled. The first 3 patients in part 1 received daratumumab 8 mg/kg; remaining patients in parts 1–3 received daratumumab 16 mg/kg. In the daratumumab 16 mg/kg group (n = 47), patients received a median of 4 prior lines of therapy; 32% were refractory to a PI and IMiD, and 79% were refractory to their last prior therapy. No DLTs occurred. Thirty-six (77%) patients reported grade 3/4 treatment-emergent AEs. Thirteen (28%) patients experienced infusion-related reactions. At an 18.5-month median follow-up, overall response rate was 43%. Median progression-free survival (PFS) and overall survival (OS) were 6.7 months and not reached, respectively; 12-month PFS and OS rates were 35% and 70%. Pharmacokinetic results (n = 22) were consistent with other studies. Safety, pharmacokinetics, and efficacy of daratumumab monotherapy were confirmed in Chinese patients with RRMM. This trial is registered on ClinicalTrials.gov (NCT02852837).
Collapse
Affiliation(s)
- Hongmei Jing
- Peking University Third Hospital, Beijing, China
| | - Li Yang
- Peking University Third Hospital, Beijing, China
| | - Junyuan Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chengcheng Fu
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Junmin Li
- Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yang
- The First Affiliated Hospital of Zhejiang University College of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Ming Qi
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Ni Fan
- Janssen Research & Development, LLC, Shanghai, China
| | - Jia Ji
- Janssen Research & Development, LLC, Beijing, China
| | - Jiajia Lu
- Janssen Research & Development, LLC, Shanghai, China
| | - Yunan Li
- Janssen Research & Development, LLC, Beijing, China
| | - Jie Jin
- The First Affiliated Hospital of Zhejiang University College of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China.
| |
Collapse
|
50
|
Hu Y, Li J, Ni F, Yang Z, Gui X, Bao Z, Zhao H, Wei G, Wang Y, Zhang M, Hong R, Wang L, Wu W, Mohty M, Nagler A, Chang AH, van den Brink MRM, Li MD, Huang H. CAR-T cell therapy-related cytokine release syndrome and therapeutic response is modulated by the gut microbiome in hematologic malignancies. Nat Commun 2022; 13:5313. [PMID: 36085303 PMCID: PMC9461447 DOI: 10.1038/s41467-022-32960-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Immunotherapy utilizing chimeric antigen receptor T cell (CAR-T) therapy holds promise for hematologic malignancies, however, response rates and associated immune-related adverse effects widely vary among patients. Here we show, by comparing diversity and composition of the gut microbiome during different CAR-T therapeutic phases in the clinical trial ChiCTR1800017404, that the gut flora characteristically differs among patients and according to treatment stages, and might also reflect patient response to therapy in relapsed/refractory multiple myeloma (MM; n = 43), acute lympholastic leukemia (ALL; n = 23) and non-Hodgkin lymphoma (NHL; n = 12). We observe significant temporal differences in diversity and abundance of Bifidobacterium, Prevotella, Sutterella, and Collinsella between MM patients in complete remission (n = 24) and those in partial remission (n = 11). Furthermore, we find that patients with severe cytokine release syndrome present with higher abundance of Bifidobacterium, Leuconostoc, Stenotrophomonas, and Staphylococcus, which is reproducible in an independent cohort of 38 MM patients. This study has important implications for understanding the biological role of the microbiome in CAR-T treatment responsiveness of hematologic malignancy patients, and may guide therapeutic intervention to increase efficacy. The success rate of CAR-T cell therapy is high in blood cancers, yet individual patient characteristics might reduce therapeutic benefit. Here we show that therapeutic response in MM, ALL and NHL, and occurrence of severe cytokine release syndrome in multiple myeloma are associated with specific gut microbiome alterations.
Collapse
Affiliation(s)
- Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Fang Ni
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Xiaohua Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhiwei Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Houli Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Mohamad Mohty
- Department of Hematology, Sorbonne University, Hospital Saint Antoine, Paris, France
- INSERM UMRs 938, and EBMT Paris Study office/CEREST-TC, Paris, France
| | - Arnon Nagler
- Hematology and Bone Marrow Transplantation Division, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Alex H Chang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Marcel R M van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.
| |
Collapse
|