1
|
Zhang H, Nie J, Bao Z, Shi Y, Gong J, Li H. FOXC1 promotes EMT and colorectal cancer progression by attracting M2 macrophages via the TGF-β/Smad2/3/snail pathway. Cell Signal 2025; 130:111680. [PMID: 39978609 DOI: 10.1016/j.cellsig.2025.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Colorectal cancer is a highly prevalent and deadly malignancy worldwide. Current treatment strategies, including surgery, chemotherapy, and targeted therapy, still face limitations due to recurrence and metastasis. By conducting a weighted gene coexpression network analysis on gene expression data from The Cancer Genome Atlas, we pinpointed critical genes linked to M2 macrophages and tumor metastasis. Among these, FOXC1 emerged as a significant prognostic indicator within our predictive model. Clinical sample analysis further confirmed that FOXC1 is upregulated in colorectal cancer tissues and associated with an unfavorable patient outcome. Both in vivo and in vitro experimental results revealed that FOXC1 promotes CRC cell migration, invasion and proliferation by regulating the expression of Snail and TGF-β/Smad2/3 pathways, thereby facilitating the epithelial-mesenchymal transition process. Additionally, FOXC1 recruits M2 macrophages to the tumor microenvironment by regulating CXCL2 expression through Snail. The TGF-β factor secreted by M2 macrophages further activates the TGF-β/Smad2/3 pathway, forming a positive feedback loop. In these processes, FOXC1 plays a critical regulatory role. In summary, this study highlights the critical significance of FOXC1 in CRC progression and indicates its viability as a therapeutic target, offering a novel theoretical foundation for the development of future CRC treatment strategies.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Jinlin Nie
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China; Department of Hepatobiliary Pancreatic Hernia Surgery, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China
| | - Zhen Bao
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Yangdong Shi
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Jin Gong
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China.
| | - Hailiang Li
- Department of Hepatobiliary Pancreatic Hernia Surgery, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China.
| |
Collapse
|
2
|
Margalit S, Tulpová Z, Michaeli Y, Zur T, Deek J, Louzoun-Zada S, Nifker G, Grunwald A, Scher Y, Schütz L, Weinhold E, Gnatek Y, Omer D, Dekel B, Friedman E, Ebenstein Y. Optical genome and epigenome mapping of clear cell renal cell carcinoma. NAR Cancer 2025; 7:zcaf008. [PMID: 40061565 PMCID: PMC11886815 DOI: 10.1093/narcan/zcaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Cancer cells display complex genomic aberrations that include large-scale genetic rearrangements and epigenetic modulation that are not easily captured by short-read sequencing. This study presents a novel approach for simultaneous profiling of long-range genetic and epigenetic changes in matched cancer samples, focusing on clear cell renal cell carcinoma (ccRCC). ccRCC is a common kidney cancer subtype frequently characterized by a 3p deletion and the inactivation of the von Hippel-Lindau (VHL) gene. We performed integrated genetic, cytogenetic, and epigenetic analyses on paired tumor and adjacent nontumorous tissue samples. Optical genome mapping identified genomic aberrations as structural and copy number variations, complementing exome-sequencing findings. Single-molecule methylome and hydroxymethylome mapping revealed a significant global reduction in 5hmC level in both sample pairs, and a correlation between both epigenetic signals and gene expression was observed. The single-molecule epigenetic analysis identified numerous differentially modified regions, some implicated in ccRCC pathogenesis, including the genes VHL, PRCC, and PBRM1. Notably, pathways related to metabolism and cancer development were significantly enriched among these differential regions. This study demonstrates the feasibility of integrating optical genome and epigenome mapping for comprehensive characterization of matched tumor and adjacent tissue, uncovering both established and novel somatic aberrations.
Collapse
Affiliation(s)
- Sapir Margalit
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Zuzana Tulpová
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Yael Michaeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Tahir Detinis Zur
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Jasline Deek
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Sivan Louzoun-Zada
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Gil Nifker
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Assaf Grunwald
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yuval Scher
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Leonie Schütz
- Institute of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- Pediatric Nephrology Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel
| | - Eitan Friedman
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel
- The Susanne Levy Gertner Oncogenetics Unit, The Danek Gertner Institute of Human Genetics, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Yuval Ebenstein
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
3
|
Afridi MI, Tu H. The Roles of Distinct Transcriptional Factors in the Innate Immunity of C. elegans. Cells 2025; 14:327. [PMID: 40072056 PMCID: PMC11899719 DOI: 10.3390/cells14050327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Deleterious molecules or factors produced by pathogens can hinder the normal physiological functioning of organisms. In response to these survival challenges, organisms rely on innate immune signaling as their first line of defense, which regulates immune-responsive genes and antimicrobial peptides to protect against pathogenic infections. These genes are under the control of transcription factors, which are known to regulate the transcriptional activity of genes after binding to their regulatory sequences. Previous studies have employed Caenorhabditis elegans as a host-pathogen interaction model to demonstrate the essential role of different transcription factors in the innate immunity of worms. In this review, we summarize the advances made regarding the functioning of distinct transcription factors in the innate immune response upon pathogen infection. Finally, we discuss the open questions in the field, whose resolutions have the potential to expand our understanding of the mechanisms underlying the innate immunity of organisms.
Collapse
Affiliation(s)
- Muhammad Irfan Afridi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China;
| | - Haijun Tu
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| |
Collapse
|
4
|
Koch S. The transcription factor FOXQ1 in cancer. Cancer Metastasis Rev 2025; 44:22. [PMID: 39777582 PMCID: PMC11711781 DOI: 10.1007/s10555-025-10240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
FOXQ1 is a member of the large forkhead box (FOX) family of transcription factors that is involved in all aspects of mammalian development, physiology, and pathobiology. FOXQ1 has emerged as a major regulator of epithelial-to-mesenchymal transition and tumour metastasis in cancers, especially carcinomas of the digestive tract. Accordingly, FOXQ1 induction is recognised as an independent prognostic factor for worse overall survival in several types of cancer, including gastric and colorectal cancer. In this review article, I summarise new evidence on the role of FOXQ1 in cancer, with a focus on molecular mechanisms that control FOXQ1 levels and the regulation of FOXQ1 target genes. Unravelling the functions of FOXQ1 has the potential to facilitate the development of targeted treatments for metastatic cancers.
Collapse
Affiliation(s)
- Stefan Koch
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden.
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, BKV/MMV - Plan 13, Lab 1, 581 85, Linköping, Sweden.
| |
Collapse
|
5
|
Pozzobon D, Bellezza A, Giorgi FM. Pan-Cancer Upregulation of the FOXM1 Transcription Factor. Genes (Basel) 2025; 16:56. [PMID: 39858603 PMCID: PMC11765198 DOI: 10.3390/genes16010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The human FOXM1 transcription factor controls cell cycle progression and genome stability, and it has been correlated to the onset and progression of many tumor types. METHODS In our study, we collected all recent sequence and quantitative transcriptomics data about FOXM1, testing its presence across vertebrate evolution and its upregulation in cancer, both in bulk tissue contexts (by comparing the TCGA tumor dataset and the GTEx normal tissue dataset) and in single-cell contexts. RESULTS FOXM1 is significantly and consistently upregulated in all tested tumor types, as well as in tumor cells within a cancer microenvironment. Its upregulation reverberates in the upregulation of its target genes and can be used as a biomarker for poor cancer outcome in at least four tumor types. CONCLUSIONS Despite its lack of cancer-related mutations and amplifications, the recurring upregulation of FOXM1 in all tumors puts a focusing lens on this gene as a candidate pan-cancer master regulator.
Collapse
Affiliation(s)
- Daniele Pozzobon
- Department of Computer Science, Free University, 1081 HV Amsterdam, The Netherlands;
| | - Arianna Bellezza
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy;
| | - Federico M. Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
6
|
Perumal CM, Thulo M, Buthelezi S, Naicker P, Stoychev S, Lakhi A, Fanucchi S. Unraveling the interplay between the leucine zipper and forkhead domains of FOXP2: Implications for DNA binding, stability and dynamics. Proteins 2024; 92:1177-1189. [PMID: 38747678 DOI: 10.1002/prot.26699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 10/26/2024]
Abstract
FOXP2 is a transcription factor associated with speech and language. Like other FOX transcription factors, it has a DNA binding region called the forkhead domain (FHD). This domain can exist as a monomer or a domain swapped dimer. In addition to the FHD, the leucine zipper region (LZ) of FOXP2 is also believed to be associated with both DNA binding and oligomerization. To better understand the relationship between DNA binding and oligomerization of FOXP2, we investigated its structure, stability and dynamics, focusing specifically on the FHD and the LZ. We did this by using two constructs: one containing the isolated FHD and one containing both the LZ and the FHD (LZ-END). We demonstrate in this work, that while the FHD maintains a monomeric form that is capable of binding DNA, the LZ-END undergoes a dynamic transition between oligomeric states in the presence of DNA. Our findings suggest that FOXP2's LZ domain influences DNA binding affinity through a change in oligomeric state. We show through hydrogen exchange mass spectroscopy that certain parts of the FHD and interlinking region become less dynamic when in the presence of DNA, confirming DNA binding and oligomerization in these regions. Moreover, the detection of a stable equilibrium intermediate state during LZ-END unfolding supports the idea of cooperation between these two domains. Overall, our study sheds light on the interplay between two FOXP2 domains, providing insight into the protein's ability to respond dynamically to DNA, and enriching our understanding of FOXP2's role in gene regulation.
Collapse
Affiliation(s)
- Cardon Maria Perumal
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Monare Thulo
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | | | | | | | - Aasiya Lakhi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
7
|
Lotfi M, Maharati A, Hamidi AA, Taghehchian N, Moghbeli M. MicroRNA-532 as a probable diagnostic and therapeutic marker in cancer patients. Mutat Res 2024; 829:111874. [PMID: 38986233 DOI: 10.1016/j.mrfmmm.2024.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Krishnan N. Endocrine Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782869 DOI: 10.1007/5584_2024_807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lipids are essential in insects and play pleiotropic roles in energy storage, serving as a fuel for energy-driven processes such as reproduction, growth, development, locomotion, flight, starvation response, and diapause induction, maintenance, and termination. Lipids also play fundamental roles in signal transduction, hormone synthesis, forming components of the cell membrane, and thus are essential for maintenance of normal life functions. In insects, the neuroendocrine system serves as a master regulator of most life activities, including growth and development. It is thus important to pay particular attention to the regulation of lipid metabolism through the endocrine system, especially when considering the involvement of peptide hormones in the processes of lipogenesis and lipolysis. In insects, there are several lipogenic and lipolytic hormones that are involved in lipid metabolism such as insulin-like peptides (ILPs), adipokinetic hormone (AKH), 20-hydroxyecdysone (20-HE), juvenile hormone (JH), and serotonin. Other neuropeptides such as diapause hormone-pheromone biosynthesis activating neuropeptide (DH-PBAN), CCHamide-2, short neuropeptide F, and the cytokines Unpaired 1 and 2 may play a role in inducing lipogenesis. On the other hand, neuropeptides such as neuropeptide F, allatostatin-A, corazonin, leukokinin, tachykinins, limostatins, and insulin-like growth factor (ILP6) stimulate lipolysis. This chapter briefly discusses the current knowledge of the endocrine regulation of lipid metabolism in insects that could be utilized to reveal differences between insects and mammalian lipid metabolism which may help understand human diseases associated with dysregulation of lipid metabolism. Physiological similarities of insects to mammals make them valuable model systems for studying human diseases characterized by disrupted lipid metabolism, including conditions like diabetes, obesity, arteriosclerosis, and various metabolic syndromes.
Collapse
Affiliation(s)
- Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
9
|
Liu X, Min S, Zhang Q, Liu Y, Zou Z, Wang N, Zhou B. Prognostic and clinicopathological significance of FOXD1 in various cancers: a meta and bioinformation analysis. Future Sci OA 2024; 10:FSO901. [PMID: 38827805 PMCID: PMC11140636 DOI: 10.2144/fsoa-2023-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: To examine both predictive and clinicopathological importance underlying FOXD1 in malignant tumors, our study adopts meta-analysis. Methods: We searched from PubMed, Embase, WOS, Wanfang and CNKI. Stata SE15.1 was used to calculate the risk ratio (HR) as well as relative risk (RR) with 95% of overall CIs to assess FOXD1 and overall survival rate (OS), disease-free survival rate as well as clinicopathological parameters. Results: 3808 individuals throughout 17 trials showed high FOXD1 expression was linked to disadvantaged OS (p < 0.001) and disease-free survival (p < 0.001) and higher TNM stage (p < 0.001). Conclusion: Elevated FOXD1 had worse predictions and clinicopathological parameters in most cancers. The GEPIA database findings also support our results.
Collapse
Affiliation(s)
- Xiaohan Liu
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shengyun Min
- Department of general surgery, Changzheng Hospital, Nanchang, Jiangxi, 330100, P.R. China
| | - Qin Zhang
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yan Liu
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhenhong Zou
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Nanye Wang
- Department of ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Bin Zhou
- Department of orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
López-Martínez A, Santos-Álvarez JC, Velázquez-Enríquez JM, Ramírez-Hernández AA, Vásquez-Garzón VR, Baltierrez-Hoyos R. lncRNA-mRNA Co-Expression and Regulation Analysis in Lung Fibroblasts from Idiopathic Pulmonary Fibrosis. Noncoding RNA 2024; 10:26. [PMID: 38668384 PMCID: PMC11054336 DOI: 10.3390/ncrna10020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease marked by abnormal accumulation of extracellular matrix (ECM) due to dysregulated expression of various RNAs in pulmonary fibroblasts. This study utilized RNA-seq data meta-analysis to explore the regulatory network of hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in IPF fibroblasts. The meta-analysis unveiled 584 differentially expressed mRNAs (DEmRNA) and 75 differentially expressed lncRNAs (DElncRNA) in lung fibroblasts from IPF. Among these, BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA were identified as hub mRNAs, while AC008708.1, AC091806.1, AL442071.1, FAM111A-DT, and LINC01989 were designated as hub lncRNAs. Functional characterization revealed involvement in TGF-β, PI3K, FOXO, and MAPK signaling pathways. Additionally, this study identified regulatory interactions between sequences of hub mRNAs and lncRNAs. In summary, the findings suggest that AC008708.1, AC091806.1, FAM111A-DT, LINC01989, and AL442071.1 lncRNAs can regulate BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA mRNAs in fibroblasts bearing IPF and contribute to fibrosis by modulating crucial signaling pathways such as FoxO signaling, chemical carcinogenesis, longevity regulatory pathways, non-small cell lung cancer, and AMPK signaling pathways.
Collapse
Affiliation(s)
- Armando López-Martínez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico
| | - Rafael Baltierrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico
| |
Collapse
|
11
|
Riedhammer KM, Nguyen TMT, Koşukcu C, Calzada-Wack J, Li Y, Assia Batzir N, Saygılı S, Wimmers V, Kim GJ, Chrysanthou M, Bakey Z, Sofrin-Drucker E, Kraiger M, Sanz-Moreno A, Amarie OV, Rathkolb B, Klein-Rodewald T, Garrett L, Hölter SM, Seisenberger C, Haug S, Schlosser P, Marschall S, Wurst W, Fuchs H, Gailus-Durner V, Wuttke M, Hrabe de Angelis M, Ćomić J, Akgün Doğan Ö, Özlük Y, Taşdemir M, Ağbaş A, Canpolat N, Orenstein N, Çalışkan S, Weber RG, Bergmann C, Jeanpierre C, Saunier S, Lim TY, Hildebrandt F, Alhaddad B, Basel-Salmon L, Borovitz Y, Wu K, Antony D, Matschkal J, Schaaf CW, Renders L, Schmaderer C, Rogg M, Schell C, Meitinger T, Heemann U, Köttgen A, Arnold SJ, Ozaltin F, Schmidts M, Hoefele J. Implication of transcription factor FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT). Kidney Int 2024; 105:844-864. [PMID: 38154558 PMCID: PMC10957342 DOI: 10.1016/j.kint.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.
Collapse
Affiliation(s)
- Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Thanh-Minh T Nguyen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Türkiye
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nurit Assia Batzir
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Seha Saygılı
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Vera Wimmers
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gwang-Jin Kim
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Marialena Chrysanthou
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zeineb Bakey
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Efrat Sofrin-Drucker
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Haug
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, Germany
| | - Jasmina Ćomić
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Özlem Akgün Doğan
- Department of Pediatrics, Division of Pediatric Genetics, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Türkiye
| | - Yasemin Özlük
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Mehmet Taşdemir
- Department of Pediatric Nephrology, Istinye University Faculty of Medicine, Istanbul, Türkiye
| | - Ayşe Ağbaş
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Nur Canpolat
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Salim Çalışkan
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany; Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Cecile Jeanpierre
- Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris Cité, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris Cité, INSERM UMR 1163, Paris, France
| | - Tze Y Lim
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bader Alhaddad
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Lina Basel-Salmon
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Raphael Recanati Genetics Institute, Rabin Medical Center, Petah Tikva, Israel; Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Yael Borovitz
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Nephrology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Kaman Wu
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dinu Antony
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Julia Matschkal
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Christian W Schaaf
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Manuel Rogg
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Fatih Ozaltin
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Türkiye; Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Türkiye; Nephrogenetics Laboratory, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Türkiye; Center for Genomics and Rare Diseases, Hacettepe University, Sihhiye, Ankara, Türkiye.
| | - Miriam Schmidts
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany.
| |
Collapse
|
12
|
Mei W, Mei B, Chang J, Liu Y, Zhou Y, Zhu N, Hu M. Role and regulation of FOXO3a: new insights into breast cancer therapy. Front Pharmacol 2024; 15:1346745. [PMID: 38505423 PMCID: PMC10949727 DOI: 10.3389/fphar.2024.1346745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Breast cancer is the most common malignancy in the world, particularly affecting female cancer patients. Enhancing the therapeutic strategies for breast cancer necessitates identifying molecular drug targets that effectively eliminate tumor cells. One of these prominent targets is the forkhead and O3a class (FOXO3a), a member of the forkhead transcription factor subfamily. FOXO3a plays a pivotal role in various cellular processes, including apoptosis, proliferation, cell cycle regulation, and drug resistance. It acts as a tumor suppressor in multiple cancer types, although its specific role in cancer remains unclear. Moreover, FOXO3a shows promise as a potential marker for tumor diagnosis and prognosis in breast cancer patients. In addition, it is actively influenced by common anti-breast cancer drugs like paclitaxel, simvastatin, and gefitinib. In breast cancer, the regulation of FOXO3a involves intricate networks, encompassing post-translational modification post-translational regulation by non-coding RNA (ncRNA) and protein-protein interaction. The specific mechanism of FOXO3a in breast cancer urgently requires further investigation. This review aims to systematically elucidate the role of FOXO3a in breast cancer. Additionally, it reviews the interaction of FOXO3a and its upstream and downstream signaling pathway-related molecules to uncover potential therapeutic drugs and related regulatory factors for breast cancer treatment by regulating FOXO3a.
Collapse
Affiliation(s)
- Wenqiu Mei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Bingyin Mei
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Jing Chang
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
13
|
Ishii D, Shindo Y, Arai W, Konno T, Kohno T, Honda K, Miyajima M, Watanabe A, Kojima T. The Roles and Regulatory Mechanisms of Tight Junction Protein Cingulin and Transcription Factor Forkhead Box Protein O1 in Human Lung Adenocarcinoma A549 Cells and Normal Lung Epithelial Cells. Int J Mol Sci 2024; 25:1411. [PMID: 38338691 PMCID: PMC10855320 DOI: 10.3390/ijms25031411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Tight junction (TJ) protein cingulin (CGN) and transcription factor forkhead box protein O1 (FOXO1) contribute to the development of various cancers. Histone deacetylase (HDAC) inhibitors have a potential therapeutic role for some cancers. HDAC inhibitors affect the expression of both CGN and FOXO1. However, the roles and regulatory mechanisms of CGN and FOXO1 are unknown in non-small cell lung cancer (NSCLC) and normal human lung epithelial (HLE) cells. In the present study, to investigate the effects of CGN and FOXO1 on the malignancy of NSCLC, we used A549 cells as human lung adenocarcinoma and primary human lung epithelial (HLE) cells as normal lung tissues and performed the knockdown of CGN and FOXO1 by siRNAs. Furthermore, to investigate the detailed mechanisms in the antitumor effects of HDAC inhibitors for NSCLC via CGN and FOXO1, A549 cells and HLE cells were treated with the HDAC inhibitors trichostatin A (TSA) and Quisinostat (JNJ-2648158). In A549 cells, the knockdown of CGN increased bicellular TJ protein claudin-2 (CLDN-2) via mitogen-activated protein kinase/adenosine monophosphate-activated protein kinase (MAPK/AMPK) pathways and induced cell migration, while the knockdown of FOXO1 increased claudin-4 (CLDN-4), decreased CGN, and induced cell proliferation. The knockdown of CGN and FOXO1 induced cell metabolism in A549 cells. TSA and Quisinostat increased CGN and tricellular TJ protein angulin-1/lipolysis-stimulated lipoprotein receptor (LSR) in A549. In normal HLE cells, the knockdown of CGN and FOXO1 increased CLDN-4, while HDAC inhibitors increased CGN and CLDN-4. In conclusion, the knockdown of CGN via FOXO1 contributes to the malignancy of NSCLC. Both HDAC inhibitors, TSA and Quisinostat, may have potential for use in therapy for lung adenocarcinoma via changes in the expression of CGN and FOXO1.
Collapse
Affiliation(s)
- Daichi Ishii
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (D.I.); (Y.S.); (W.A.); (K.H.); (M.M.); (A.W.)
- Department of Cell Science, Institute of Cancer Research, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (T.K.)
| | - Yuma Shindo
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (D.I.); (Y.S.); (W.A.); (K.H.); (M.M.); (A.W.)
- Department of Cell Science, Institute of Cancer Research, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (T.K.)
| | - Wataru Arai
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (D.I.); (Y.S.); (W.A.); (K.H.); (M.M.); (A.W.)
| | - Takumi Konno
- Department of Cell Science, Institute of Cancer Research, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (T.K.)
| | - Takayuki Kohno
- Department of Cell Science, Institute of Cancer Research, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (T.K.)
| | - Kazuya Honda
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (D.I.); (Y.S.); (W.A.); (K.H.); (M.M.); (A.W.)
- Department of Cell Science, Institute of Cancer Research, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (T.K.)
| | - Masahiro Miyajima
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (D.I.); (Y.S.); (W.A.); (K.H.); (M.M.); (A.W.)
| | - Atsushi Watanabe
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (D.I.); (Y.S.); (W.A.); (K.H.); (M.M.); (A.W.)
| | - Takashi Kojima
- Department of Cell Science, Institute of Cancer Research, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (T.K.)
| |
Collapse
|
14
|
Ebrahimnezhad M, Natami M, Bakhtiari GH, Tabnak P, Ebrahimnezhad N, Yousefi B, Majidinia M. FOXO1, a tiny protein with intricate interactions: Promising therapeutic candidate in lung cancer. Biomed Pharmacother 2023; 169:115900. [PMID: 37981461 DOI: 10.1016/j.biopha.2023.115900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Nowadays, lung cancer is the most common cause of cancer-related deaths in both men and women globally. Despite the development of extremely efficient targeted agents, lung cancer progression and drug resistance remain serious clinical issues. Increasing knowledge of the molecular mechanisms underlying progression and drug resistance will enable the development of novel therapeutic methods. It has been revealed that transcription factors (TF) dysregulation, which results in considerable expression modifications of genes, is a generally prevalent phenomenon regarding human malignancies. The forkhead box O1 (FOXO1), a member of the forkhead transcription factor family with crucial roles in cell fate decisions, is suggested to play a pivotal role as a tumor suppressor in a variety of malignancies, especially in lung cancer. FOXO1 is involved in diverse cellular processes and also has clinical significance consisting of cell cycle arrest, apoptosis, DNA repair, oxidative stress, cancer prevention, treatment, and chemo/radioresistance. Based on the critical role of FOXO1, this transcription factor appears to be an appropriate target for future drug discovery in lung cancers. This review focused on the signaling pathways, and molecular mechanisms involved in FOXO1 regulation in lung cancer. We also discuss pharmacological compounds that are currently being administered for lung cancer treatment by affecting FOXO1 and also point out the essential role of FOXO1 in drug resistance. Future preclinical research should assess combination drug strategies to stimulate FOXO1 and its upstream regulators as potential strategies to treat resistant or advanced lung cancers.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Natami
- Department of Urology,Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhad
- Department of Microbiology, Faculty of Basic Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
15
|
Wang M, Huang W. FOXS1 promotes prostate cancer progression through the Hedgehog/Gli1 pathway. Biochem Pharmacol 2023; 218:115893. [PMID: 37890593 DOI: 10.1016/j.bcp.2023.115893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Prostate cancer (PCa) remains the most common malignant tumor in men, and the clinical treatment still faces many challenges. Several molecular biomarkers of PCa progression have been reported, however, whether FOXS1 can serve as a new biomarker in PCa remains unknown. METHODS FOXS1 and Gli1 expression was assessed by RT-qPCR and western blot. The binding and regulation roles between FOXS1 and Gli1 were confirmed by Co-IP and ubiquitination assays. Cell viability, proliferation, apoptosis, migration, invasion and EMT progress were assessed through CCK-8, colony formation, flow cytometry, wound-healing, transwell and western blot assays, respectively. In vivo nude mice tumorigenesis model was also conducted to verify PCa growth. RESULTS FOXS1 was upregulated in the PCa TCGA dataset and cells. High FOXS1 level was correlated with PCa patients' worse tumor stage and shorter survival. FOXS1 knockdown inhibited PCa cell proliferation, invasion, migration, EMT and tumor growth while increased cell apoptosis. Furthermore, FOXS1 knockdown decreased the inactivation of Hedgehog (Hh) pathway. FOXS1 bind to Gli1 and decreased the ubiquitination of Gli1, which resulted in the upregulation of Gli1. Besides, both Gil1 overexpression and Hh signal activation reversed the suppression function of FOXS1 silencing on PCa growth and metastasis. CONCLUSION FOXS1 bind and stabilized Gli1 by blocking Gli1 ubiquitination, thereby activating Hh signaling to promote PCa cell growth and metastasis.
Collapse
Affiliation(s)
- Minyu Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Wanying Huang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
16
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
17
|
Zhang W, Leng F, Wang X, Ramirez RN, Park J, Benoist C, Hur S. FOXP3 recognizes microsatellites and bridges DNA through multimerization. Nature 2023; 624:433-441. [PMID: 38030726 PMCID: PMC10719092 DOI: 10.1038/s41586-023-06793-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
FOXP3 is a transcription factor that is essential for the development of regulatory T cells, a branch of T cells that suppress excessive inflammation and autoimmunity1-5. However, the molecular mechanisms of FOXP3 remain unclear. Here we here show that FOXP3 uses the forkhead domain-a DNA-binding domain that is commonly thought to function as a monomer or dimer-to form a higher-order multimer after binding to TnG repeat microsatellites. The cryo-electron microscopy structure of FOXP3 in a complex with T3G repeats reveals a ladder-like architecture, whereby two double-stranded DNA molecules form the two 'side rails' bridged by five pairs of FOXP3 molecules, with each pair forming a 'rung'. Each FOXP3 subunit occupies TGTTTGT within the repeats in a manner that is indistinguishable from that of FOXP3 bound to the forkhead consensus motif (TGTTTAC). Mutations in the intra-rung interface impair TnG repeat recognition, DNA bridging and the cellular functions of FOXP3, all without affecting binding to the forkhead consensus motif. FOXP3 can tolerate variable inter-rung spacings, explaining its broad specificity for TnG-repeat-like sequences in vivo and in vitro. Both FOXP3 orthologues and paralogues show similar TnG repeat recognition and DNA bridging. These findings therefore reveal a mode of DNA recognition that involves transcription factor homomultimerization and DNA bridging, and further implicates microsatellites in transcriptional regulation and diseases.
Collapse
Affiliation(s)
- Wenxiang Zhang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Fangwei Leng
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xi Wang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ricardo N Ramirez
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jinseok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Christophe Benoist
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Zhang W, Leng F, Wang X, Ramirez RN, Park J, Benoist C, Hur S. FoxP3 recognizes microsatellites and bridges DNA through multimerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548762. [PMID: 37986949 PMCID: PMC10659269 DOI: 10.1101/2023.07.12.548762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
FoxP3 is a transcription factor (TF) essential for development of regulatory T cells (Tregs), a branch of T cells that suppress excessive inflammation and autoimmunity 1-5 . Molecular mechanisms of FoxP3, however, remain elusive. We here show that FoxP3 utilizes the Forkhead domain--a DNA binding domain (DBD) that is commonly thought to function as a monomer or dimer--to form a higher-order multimer upon binding to T n G repeat microsatellites. A cryo-electron microscopy structure of FoxP3 in complex with T 3 G repeats reveals a ladder-like architecture, where two double-stranded DNA molecules form the two "side rails" bridged by five pairs of FoxP3 molecules, with each pair forming a "rung". Each FoxP3 subunit occupies TGTTTGT within the repeats in the manner indistinguishable from that of FoxP3 bound to the Forkhead consensus motif (FKHM; TGTTTAC). Mutations in the "intra-rung" interface impair T n G repeat recognition, DNA bridging and cellular functions of FoxP3, all without affecting FKHM binding. FoxP3 can tolerate variable "inter-rung" spacings, explaining its broad specificity for T n G repeat-like sequences in vivo and in vitro . Both FoxP3 orthologs and paralogs show similar T n G repeat recognition and DNA bridging. These findings thus reveal a new mode of DNA recognition that involves TF homo-multimerization and DNA bridging, and further implicates microsatellites in transcriptional regulation and diseases.
Collapse
|
19
|
Soleimani M. Not all kidney cysts are created equal: a distinct renal cystogenic mechanism in tuberous sclerosis complex (TSC). Front Physiol 2023; 14:1289388. [PMID: 38028758 PMCID: PMC10663234 DOI: 10.3389/fphys.2023.1289388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) is an autosomal dominant genetic disease caused by mutations in either TSC1 or TSC2 genes. Approximately, two million individuals suffer from this disorder worldwide. TSC1 and TSC2 code for the proteins harmartin and tuberin, respectively, which form a complex that regulates the mechanistic target of rapamycin complex 1 (mTORC1) and prevents uncontrollable cell growth. In the kidney, TSC presents with the enlargement of benign tumors (angiomyolipomas) and cysts whose presence eventually causes kidney failure. The factors promoting cyst formation and tumor growth in TSC are poorly understood. Recent studies on kidney cysts in various mouse models of TSC, including mice with principal cell- or pericyte-specific inactivation of TSC1 or TSC2, have identified a unique cystogenic mechanism. These studies demonstrate the development of numerous cortical cysts that are predominantly comprised of hyperproliferating A-intercalated (A-IC) cells that express both TSC1 and TSC2. An analogous cellular phenotype in cystic epithelium is observed in both humans with TSC and in TSC2+/- mice, confirming a similar kidney cystogenesis mechanism in TSC. This cellular phenotype profoundly contrasts with kidney cysts found in Autosomal Dominant Polycystic Kidney Disease (ADPKD), which do not show any notable evidence of A-IC cells participating in the cyst lining or expansion. RNA sequencing (RNA-Seq) and confirmatory expression studies demonstrate robust expression of Forkhead Box I1 (FOXI1) transcription factor and its downstream targets, including apical H+-ATPase and cytoplasmic carbonic anhydrase 2 (CAII), in the cyst epithelia of Tsc1 (or Tsc2) knockout (KO) mice, but not in Polycystic Kidney Disease (Pkd1) mutant mice. Deletion of FOXI1, which is vital to H+-ATPase expression and intercalated (IC) cell viability, completely inhibited mTORC1 activation and abrogated the cyst burden in the kidneys of Tsc1 KO mice. These results unequivocally demonstrate the critical role that FOXI1 and A-IC cells, along with H+-ATPase, play in TSC kidney cystogenesis. This review article will discuss the latest research into the causes of kidney cystogenesis in TSC with a focus on possible therapeutic options for this devastating disease.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Department of Medicine, New Mexico Veterans Health Care Center, Albuquerque, NM, United States
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
20
|
Benvenuto M, Palumbo P, Di Muro E, Perrotta CS, Mazza T, Mandarà GML, Palumbo O, Carella M. Identification of a Novel FOXP1 Variant in a Patient with Hypotonia, Intellectual Disability, and Severe Speech Impairment. Genes (Basel) 2023; 14:1958. [PMID: 37895307 PMCID: PMC10606110 DOI: 10.3390/genes14101958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The FOXP subfamily includes four different transcription factors: FOXP1, FOXP2, FOXP3, and FOXP4, all with important roles in regulating gene expression from early development through adulthood. Haploinsufficiency of FOXP1, due to deleterious variants (point mutations, copy number variants) disrupting the gene, leads to an emerging disorder known as "FOXP1 syndrome", mainly characterized by intellectual disability, language impairment, dysmorphic features, and multiple congenital abnormalities with or without autistic features in some affected individuals (MIM 613670). Here we describe a 10-year-old female patient, born to unrelated parents, showing hypotonia, intellectual disability, and severe language delay. Targeted resequencing analysis allowed us to identify a heterozygous de novo FOXP1 variant c.1030C>T, p.(Gln344Ter) classified as likely pathogenetic according to the American College of Medical Genetics and Genomics guidelines. To the best of our knowledge, our patient is the first to date to report carrying this stop mutation, which is, for this reason, useful for broadening the molecular spectrum of FOXP1 clinically relevant variants. In addition, our results highlight the utility of next-generation sequencing in establishing an etiological basis for heterogeneous conditions such as neurodevelopmental disorders and providing additional insight into the phenotypic features of FOXP1-related syndrome.
Collapse
Affiliation(s)
- Mario Benvenuto
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (M.B.); (P.P.); (E.D.M.); (O.P.)
- Dipartimento Degli Studi Umanistici, Università Degli Studi di Foggia, 71122 Foggia, Italy
| | - Pietro Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (M.B.); (P.P.); (E.D.M.); (O.P.)
| | - Ester Di Muro
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (M.B.); (P.P.); (E.D.M.); (O.P.)
| | | | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | | | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (M.B.); (P.P.); (E.D.M.); (O.P.)
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (M.B.); (P.P.); (E.D.M.); (O.P.)
| |
Collapse
|
21
|
Tabnak P, Hasanzade Bashkandi A, Ebrahimnezhad M, Soleimani M. Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics. Cancer Cell Int 2023; 23:238. [PMID: 37821870 PMCID: PMC10568859 DOI: 10.1186/s12935-023-03090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nervous system deaths, and is categorized into different subgroups according to its histological characteristics, including astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX) transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cascades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM1 in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression, including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological progress for modulating their expression.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad Ebrahimnezhad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Soleimani
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Li W, Pang H, Xie L. Depletion of circ_0006459 protects human brain microvascular endothelial cells from oxygen-glucose deprivation-induced damage through the miR-940/FOXJ2 pathway. Transpl Immunol 2023; 80:101780. [PMID: 36608833 DOI: 10.1016/j.trim.2022.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Multiple circular RNAs (circRNAs) play important roles in ischemic stroke. The present study aims to reveal the role and the mechanism of circ_0006459 in ischemic stroke. METHODS Human brain microvascular endothelial cells (HBMECs) were treated with oxygen-glucose deprivation (OGD) to mimic an in vitro ischemic stroke model. RNA expression of circ_0006459, microRNA-940 (miR-940), and forkhead box J2 (FOXJ2) was detected by quantitative real-time polymerase chain reaction. Cell proliferation was analyzed by cell counting kit-8 (CCK-8) and 5-Ethynyl-29-deoxyuridine (EdU) assays. Cell apoptotic rate was quantified by flow cytometry analysis. The protein expression of proliferating cell nuclear antigen (PCNA), clusters of differentiation 6 (CDK6), BCL2-associated x protein (Bax), B-cell lymphoma 2 (Bcl2), interleukin-1β (IL-1β), IL-8, IL-18 and tumor necrosis factor-α (TNF-α) was analyzed by Western blotting. The regulatory relationships among circ_0006459, miR-940, and F 《》 OXJ2 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA pull-down assay. RESULTS Circ_0006459 and FOXJ2 expression were significantly upregulated, whereas miR-940 expression was downregulated in HBMECs after OGD. Circ_0006459 depletion assuaged OGD-induced inhibition in cell proliferation and promotion in cell apoptosis and inflammation in HBMECs. Circ_0006459 acted as a sponge for miR-940, and miR-940 targeted FOXJ2 in HBMECs. Besides, miR-940 silencing or FOXJ2 overexpression relieved circ_0006459 knockdown-induced promotion in cell proliferation and inhibition in cell apoptosis and inflammation in OGD-induced HBMECs. Further, circ_0006459 depletion decreased FOXJ2 protein expression by interacting with miR-940. CONCLUSION Depletion of circ_0006459 protected human brain microvascular endothelial cells from oxygen-glucose deprivation-induced damage through miR-940/FOXJ2 pathway, providing a promising therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Wei Li
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, City, 264000, Shandong, China
| | - Hong Pang
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, City, 264000, Shandong, China
| | - Lin Xie
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, City, 264000, Shandong, China.
| |
Collapse
|
23
|
Taghehchian N, Lotfi M, Zangouei AS, Akhlaghipour I, Moghbeli M. MicroRNAs as the critical regulators of Forkhead box protein family during gynecological and breast tumor progression and metastasis. Eur J Med Res 2023; 28:330. [PMID: 37689738 PMCID: PMC10492305 DOI: 10.1186/s40001-023-01329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Gynecological and breast tumors are one of the main causes of cancer-related mortalities among women. Despite recent advances in diagnostic and therapeutic methods, tumor relapse is observed in a high percentage of these patients due to the treatment failure. Late diagnosis in advanced tumor stages is one of the main reasons for the treatment failure and recurrence in these tumors. Therefore, it is necessary to assess the molecular mechanisms involved in progression of these tumors to introduce the efficient early diagnostic markers. Fokhead Box (FOX) is a family of transcription factors with a key role in regulation of a wide variety of cellular mechanisms. Deregulation of FOX proteins has been observed in different cancers. MicroRNAs (miRNAs) as a group of non-coding RNAs have important roles in post-transcriptional regulation of the genes involved in cellular mechanisms. They are also the non-invasive diagnostic markers due to their high stability in body fluids. Considering the importance of FOX proteins in the progression of breast and gynecological tumors, we investigated the role of miRNAs in regulation of the FOX proteins in these tumors. MicroRNAs were mainly involved in progression of these tumors through FOXM, FOXP, and FOXO. The present review paves the way to suggest a non-invasive diagnostic panel marker based on the miRNAs/FOX axis in breast and gynecological cancers.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Liu W, Wang B, Zhou M, Liu D, Chen F, Zhao X, Lu Y. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis. Antioxid Redox Signal 2023; 39:472-490. [PMID: 37002890 DOI: 10.1089/ars.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Significance: Redox dysregulation under pathological conditions results in excessive reactive oxygen species (ROS) accumulation, leading to oxidative stress and cellular oxidative damage. ROS function as a double-edged sword to modulate various types of cancer development and survival. Recent Advances: Emerging evidence has underlined that ROS impact the behavior of both cancer cells and tumor-associated stromal cells in the tumor microenvironment (TME), and these cells have developed complex systems to adapt to high ROS environments during cancer progression. Critical Issues: In this review, we integrated current progress regarding the impact of ROS on cancer cells and tumor-associated stromal cells in the TME and summarized how ROS production influences cancer cell behaviors. Then, we summarized the distinct effects of ROS during different stages of tumor metastasis. Finally, we discussed potential therapeutic strategies for modulating ROS for the treatment of cancer metastasis. Future Directions: Targeting the ROS regulation during cancer metastasis will provide important insights into the design of effective single or combinatorial cancer therapeutic strategies. Well-designed preclinical studies and clinical trials are urgently needed to understand the complex regulatory systems of ROS in the TME. Antioxid. Redox Signal. 39, 472-490.
Collapse
Affiliation(s)
- Wanning Liu
- College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Dan Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Francisco JT, Holt AW, Bullock MT, Williams MD, Poovey CE, Holland NA, Brault JJ, Tulis DA. FoxO3 normalizes Smad3-induced arterial smooth muscle cell growth. Front Physiol 2023; 14:1136998. [PMID: 37693008 PMCID: PMC10483145 DOI: 10.3389/fphys.2023.1136998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Transition of arterial smooth muscle (ASM) from a quiescent, contractile state to a growth-promoting state is a hallmark of cardiovascular disease (CVD), a leading cause of death and disability in the United States and worldwide. While many individual signals have been identified as important mechanisms in this phenotypic conversion, the combined impact of the transcription factors Smad3 and FoxO3 in ASM growth is not known. The purpose of this study was to determine that a coordinated, phosphorylation-specific relationship exists between Smad3 and FoxO3 in the control of ASM cell growth. Using a rat in vivo arterial injury model and rat primary ASM cell lysates and fractions, validated low and high serum in vitro models of respective quiescent and growth states, and adenoviral (Ad-) gene delivery for overexpression (OE) of individual and combined Smad3 and/or FoxO3, we hypothesized that FoxO3 can moderate Smad3-induced ASM cell growth. Key findings revealed unique cellular distribution of Smad3 and FoxO3 under growth conditions, with induction of both nuclear and cytosolic Smad3 yet primarily cytosolic FoxO3; Ad-Smad3 OE leading to cytosolic and nuclear expression of phosphorylated and total Smad3, with almost complete reversal of each with Ad-FoxO3 co-infection in quiescent and growth conditions; Ad-FoxO3 OE leading to enhanced cytosolic expression of phosphorylated and total FoxO3, both reduced with Ad-Smad3 co-infection in quiescent and growth conditions; Ad-FoxO3 inducing expression and activity of the ubiquitin ligase MuRF-1, which was reversed with concomitant Ad-Smad3 OE; and combined Smad3/FoxO3 OE reversing both the pro-growth impact of singular Smad3 and the cytostatic impact of singular FoxO3. A primary takeaway from these observations is the capacity of FoxO3 to reverse growth-promoting effects of Smad3 in ASM cells. Additional findings lend support for reciprocal antagonism of Smad3 on FoxO3-induced cytostasis, and these effects are dependent upon discrete phosphorylation states and cellular localization and involve MuRF-1 in the control of ASM cell growth. Lastly, results showing capacity of FoxO3 to normalize Smad3-induced ASM cell growth largely support our hypothesis, and overall findings provide evidence for utility of Smad3 and/or FoxO3 as potential therapeutic targets against abnormal ASM growth in the context of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David A. Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
26
|
Reinapae A, Ilves I, Jürgens H, Värv S, Kristjuhan K, Kristjuhan A. Interactions between Fkh1 monomers stabilize its binding to DNA replication origins. J Biol Chem 2023; 299:105026. [PMID: 37423303 PMCID: PMC10403728 DOI: 10.1016/j.jbc.2023.105026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Eukaryotic DNA replication is initiated from multiple genomic origins, which can be broadly categorized as firing early or late in the S phase. Several factors can influence the temporal usage of origins to determine the timing of their firing. In budding yeast, the Forkhead family proteins Fkh1 and Fkh2 bind to a subset of replication origins and activate them at the beginning of the S phase. In these origins, the Fkh1/2 binding sites are arranged in a strict configuration, suggesting that Forkhead factors must bind the origins in a specific manner. To explore these binding mechanisms in more detail, we mapped the domains of Fkh1 that were required for its role in DNA replication regulation. We found that a short region of Fkh1 near its DNA binding domain was essential for the protein to bind and activate replication origins. Analysis of purified Fkh1 proteins revealed that this region mediates dimerization of Fkh1, suggesting that intramolecular contacts of Fkh1 are required for efficient binding and regulation of DNA replication origins. We also show that the Sld3-Sld7-Cdc45 complex is recruited to Forkhead-regulated origins already in the G1 phase and that Fkh1 is constantly required to keep these factors bound on origins before the onset of the S phase. Together, our results suggest that dimerization-mediated stabilization of DNA binding by Fkh1 is crucial for its ability to activate DNA replication origins.
Collapse
Affiliation(s)
- Allan Reinapae
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Ivar Ilves
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Henel Jürgens
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Signe Värv
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kersti Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Arnold Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
27
|
Bi X, Zheng D, Cai J, Xu D, Chen L, Xu Z, Cao M, Li P, Shen Y, Wang H, Zheng W, Wu D, Zheng S, Li K. Pan-cancer analyses reveal multi-omic signatures and clinical implementations of the forkhead-box gene family. Cancer Med 2023; 12:17428-17444. [PMID: 37401400 PMCID: PMC10501247 DOI: 10.1002/cam4.6312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Forkhead box (FOX) proteins belong to one of the largest transcription factor families and play crucial roles in the initiation and progression of cancer. Prior research has linked several FOX genes, such as FOXA1 and FOXM1, to the crucial process of carcinogenesis. However, the overall picture of FOX gene family across human cancers is far from clear. METHODS To investigate the broad molecular signatures of the FOX gene family, we conducted study on multi-omics data (including genomics, epigenomics and transcriptomics) from over 11,000 patients with 33 different types of human cancers. RESULTS Pan-cancer analysis reveals that FOX gene mutations were found in 17.4% of tumor patients with a substantial cancer type-dependent pattern. Additionally, high expression heterogeneity of FOX genes across cancer types was discovered, which can be partially attributed to the genomic or epigenomic alteration. Co-expression network analysis reveals that FOX genes may exert functions by regulating the expression of both their own and target genes. For a clinical standpoint, we provided 103 FOX gene-drug target-drug predictions and found FOX gene expression have potential survival predictive value. All of the results have been included in the FOX2Cancer database, which is freely accessible at http://hainmu-biobigdata.com/FOX2Cancer. CONCLUSION Our findings may provide a better understanding of roles FOX genes played in the development of tumors, and help to offer new avenues for uncovering tumorigenesis and unprecedented therapeutic targets.
Collapse
Affiliation(s)
- Xiaoman Bi
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Dehua Zheng
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Jiale Cai
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Dahua Xu
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Liyang Chen
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Zhizhou Xu
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Meng Cao
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Peihu Li
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Yutong Shen
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Hong Wang
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Wuping Zheng
- Department of Breast Thoracic TumorThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Deng Wu
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong KongHong KongChina
| | - Shaojiang Zheng
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical CenterHainan Medical UniversityHaikouChina
| | - Kongning Li
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| |
Collapse
|
28
|
Li X, Lu J, Liu L, Li F, Xu T, Chen L, Yan Z, Li Y, Guo W. FOXK1 regulates malignant progression and radiosensitivity through direct transcriptional activation of CDC25A and CDK4 in esophageal squamous cell carcinoma. Sci Rep 2023; 13:7737. [PMID: 37173384 PMCID: PMC10182098 DOI: 10.1038/s41598-023-34979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a serious malignancy with poor prognosis, necessitating identification of oncogenic mechanisms for novel therapeutic strategies. Recent studies have highlighted the significance of the transcription factor forkhead box K1 (FOXK1) in diverse biological processes and carcinogenesis of multiple malignancies, including ESCC. However, the molecular pathways underlying FOXK1's role in ESCC progression are not fully understood, and its potential role in radiosensitivity remains unclear. Here, we aimed to elucidate the function of FOXK1 in ESCC and explore the underlying mechanisms. Elevated FOXK1 expression levels were found in ESCC cells and tissues, positively correlated with TNM stage, invasion depth, and lymph node metastasis. FOXK1 markedly enhanced the proliferative, migratory and invasive capacities of ESCC cells. Furthermore, silencing FOXK1 resulted in heightened radiosensitivity by impeding DNA damage repair, inducing G1 arrest, and promoting apoptosis. Subsequent studies demonstrated that FOXK1 directly bound to the promoter regions of CDC25A and CDK4, thereby activating their transcription in ESCC cells. Moreover, the biological effects mediated by FOXK1 overexpression could be reversed by knockdown of either CDC25A or CDK4. Collectively, FOXK1, along with its downstream target genes CDC25A and CDK4, may serve as a promising set of therapeutic and radiosensitizing targets for ESCC.
Collapse
Affiliation(s)
- Xiaoxu Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Juntao Lu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Lei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tongxin Xu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Liying Chen
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Zhaoyang Yan
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Yan Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
29
|
Mao K, Borel C, Ansar M, Jolly A, Makrythanasis P, Froehlich C, Iwaszkiewicz J, Wang B, Xu X, Li Q, Blanc X, Zhu H, Chen Q, Jin F, Ankamreddy H, Singh S, Zhang H, Wang X, Chen P, Ranza E, Paracha SA, Shah SF, Guida V, Piceci-Sparascio F, Melis D, Dallapiccola B, Digilio MC, Novelli A, Magliozzi M, Fadda MT, Streff H, Machol K, Lewis RA, Zoete V, Squeo GM, Prontera P, Mancano G, Gori G, Mariani M, Selicorni A, Psoni S, Fryssira H, Douzgou S, Marlin S, Biskup S, De Luca A, Merla G, Zhao S, Cox TC, Groves AK, Lupski JR, Zhang Q, Zhang YB, Antonarakis SE. FOXI3 pathogenic variants cause one form of craniofacial microsomia. Nat Commun 2023; 14:2026. [PMID: 37041148 PMCID: PMC10090152 DOI: 10.1038/s41467-023-37703-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.
Collapse
Affiliation(s)
- Ke Mao
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland
| | - Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland
- Jules-Gonin Eye Hospital, Department of Ophthalmology, University of Lausanne, 1004, Lausanne, Switzerland
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland
- Laboratory of Medical Genetics, Medical School, University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Bingqing Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China
| | - Xiaopeng Xu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Xavier Blanc
- Medigenome, Swiss Institute of Genomic Medicine, 1207, Geneva, Switzerland
| | - Hao Zhu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Qi Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China
| | - Fujun Jin
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Harinarayana Ankamreddy
- Department of Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, Tamilnadu, 603203, India
| | - Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongyuan Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaogang Wang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Peiwei Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Emmanuelle Ranza
- Medigenome, Swiss Institute of Genomic Medicine, 1207, Geneva, Switzerland
| | - Sohail Aziz Paracha
- Anatomy Department, Khyber Medical University Institute of Medical Sciences (KIMS), Kohat, Pakistan
| | - Syed Fahim Shah
- Department of Medicine, KMU Institute of Medical Sciences (KIMS), DHQ Hospital KDA, Kohat, Pakistan
| | - Valentina Guida
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Daniela Melis
- Department of Medicine, Surgery, and Dentistry, Università University degli of Studi di Salerno, Salerno, Italy
| | - Bruno Dallapiccola
- Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | | | - Antonio Novelli
- Sezione di Genetica Medica, Ospedale 'Bambino Gesù', Rome, Italy
| | - Monia Magliozzi
- Sezione di Genetica Medica, Ospedale 'Bambino Gesù', Rome, Italy
| | - Maria Teresa Fadda
- Department of Maxillo-Facial Surgery, Policlinico Umberto I, Rome, Italy
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research, Lausanne University, Epalinges, 1066, Switzerland
| | - Gabriella Maria Squeo
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia, Perugia, Italy
| | - Giorgia Mancano
- Medical Genetics Unit, University of Perugia Hospital SM della Misericordia, Perugia, Italy
| | - Giulia Gori
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Milena Mariani
- Pediatric Department, ASST Lariana, Santa Anna General Hospital, Como, Italy
| | - Angelo Selicorni
- Pediatric Department, ASST Lariana, Santa Anna General Hospital, Como, Italy
| | - Stavroula Psoni
- Laboratory of Medical Genetics, Medical School, University of Athens, Athens, Greece
| | - Helen Fryssira
- Laboratory of Medical Genetics, Medical School, University of Athens, Athens, Greece
| | - Sofia Douzgou
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Sandrine Marlin
- Centre de Référence Surdités Génétiques, Hôpital Necker, Institut Imagine, Paris, France
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tuebingen, Tuebingen, 72076, Germany
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Shouqin Zhao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Timothy C Cox
- Departments of Oral & Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Andrew K Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qingguo Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China.
| | - Yong-Biao Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China.
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland.
- Medigenome, Swiss Institute of Genomic Medicine, 1207, Geneva, Switzerland.
- iGE3 Institute of Genetics and Genomes in Geneva, Geneva, Switzerland.
| |
Collapse
|
30
|
Moparthi L, Koch S. FOX transcription factors are common regulators of Wnt/β-catenin-dependent gene transcription. J Biol Chem 2023; 299:104667. [PMID: 37011861 DOI: 10.1016/j.jbc.2023.104667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The Wnt/β-catenin pathway is a critical regulator of development and stem cell maintenance. Mounting evidence suggests that the outcome of Wnt signaling is determined by the collaborative action of multiple transcription factors, including members of the highly conserved forkhead box (FOX) protein family. However, the contribution of FOX transcription factors to Wnt signaling has not been investigated in a systematic manner. Here, we performed complementary screens of all 44 human FOX proteins to identify new Wnt pathway regulators. By combining β-catenin reporter assays with Wnt pathway-focused qPCR arrays and proximity proteomics of selected candidates, we determine that most FOX proteins are involved in the regulation of Wnt pathway activity. As proof-of-principle, we additionally characterize class D and I FOX transcription factors as physiologically relevant regulators of Wnt/β-catenin signaling. We conclude that FOX proteins are common regulators of the Wnt/β-catenin-dependent gene transcription that may control Wnt pathway activity in a tissue-specific manner.
Collapse
|
31
|
Atyeo N, Chae MY, Toth Z, Sharma A, Papp B. Kaposi's Sarcoma-Associated Herpesvirus Immediate Early Proteins Trigger FOXQ1 Expression in Oral Epithelial Cells, Engaging in a Novel Lytic Cycle-Sustaining Positive Feedback Loop. J Virol 2023; 97:e0169622. [PMID: 36815831 PMCID: PMC10062149 DOI: 10.1128/jvi.01696-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus that can replicate in oral epithelial cells to promote viral transmission via saliva. To identify novel regulators of KSHV oral infection, we performed a transcriptome analysis of KSHV-infected primary human gingival epithelial (HGEP) cells, which identified the gene coding for the host transcription factor FOXQ1 as the top induced host gene. FOXQ1 is nearly undetectable in uninfected HGEP and telomerase-immortalized gingival keratinocytes (TIGK) cells but is highly expressed within hours of KSHV infection. We found that while the FOXQ1 promoter lacks activating histone acetylation marks in uninfected oral epithelial cells, these marks accumulate in the FOXQ1 promoter in infected cells, revealing a rapid epigenetic reprogramming event. To evaluate FOXQ1 function, we depleted FOXQ1 in KSHV-infected TIGK cells, which resulted in reduced accumulation of KSHV lytic proteins and viral DNA over the course of 4 days of infection, uncovering a novel lytic cycle-sustaining role of FOXQ1. A screen of KSHV lytic proteins demonstrated that the immediate early proteins ORF45 and replication and transcription activator (RTA) were both sufficient for FOXQ1 induction in oral epithelial cells, indicating active involvement of incoming and rapidly expressed factors in altering host gene expression. ORF45 is known to sustain extracellular signal-regulated kinase (ERK) p90 ribosomal s6 kinase (RSK) pathway activity to promote lytic infection. We found that an ORF45 mutant lacking RSK activation function failed to induce FOXQ1 in TIGK cells, revealing that ORF45 uses a shared mechanism to rapidly induce both host and viral genes to sustain lytic infection in oral epithelial cells. IMPORTANCE The oral cavity is a primary site of initial contact and entry for many viruses. Viral replication in the oral epithelium promotes viral shedding in saliva, allowing interpersonal transmission, as well as spread to other cell types, where chronic infection can be established. Understanding the regulation of KSHV infection in the oral epithelium would allow for the design of universal strategies to target the first stage of viral infection, thereby halting systemic viral pathogenesis. Overall, we uncover a novel positive feedback loop in which immediate early KSHV factors drive rapid host reprogramming of oral epithelial cells to sustain the lytic cycle in the oral cavity.
Collapse
Affiliation(s)
- Natalie Atyeo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Min Young Chae
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Aria Sharma
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Informatics Institute, University of Florida, Gainesville, Florida, USA
- Center for Orphaned Autoimmune Disorders, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
32
|
Riedhammer KM, Nguyen TMT, Koşukcu C, Calzada-Wack J, Li Y, Saygılı S, Wimmers V, Kim GJ, Chrysanthou M, Bakey Z, Kraiger M, Sanz-Moreno A, Amarie OV, Rathkolb B, Klein-Rodewald T, Garrett L, Hölter SM, Seisenberger C, Haug S, Marschall S, Wurst W, Fuchs H, Gailus-Durner V, Wuttke M, de Angelis MH, Ćomić J, Doğan ÖA, Özlük Y, Taşdemir M, Ağbaş A, Canpolat N, Ćalışkan S, Weber R, Bergmann C, Jeanpierre C, Saunier S, Lim TY, Hildebrandt F, Alhaddad B, Wu K, Antony D, Matschkal J, Schaaf C, Renders L, Schmaderer C, Meitinger T, Heemann U, Köttgen A, Arnold S, Ozaltin F, Schmidts M, Hoefele J. Implication of FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.21.23287206. [PMID: 36993625 PMCID: PMC10055578 DOI: 10.1101/2023.03.21.23287206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Background Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in known disease-associated genes still only explain a proportion of cases. Aim of this study was to unravel the underlying molecular mechanism of syndromic CAKUT in two multiplex families with presumed autosomal recessive inheritance. Methods and Results ES in the index individuals revealed two different rare homozygous variants in FOXD2, a transcription factor not previously implicated in CAKUT in humans: a frameshift in family 1 and a missense variant in family 2 with family segregation patterns consistent with autosomal-recessive inheritance. CRISPR/Cas9-derived Foxd2 knock-out (KO) mice presented with bilateral dilated renal pelvis accompanied by renal papilla atrophy while extrarenal features included mandibular, ophthalmologic, and behavioral anomalies, recapitulating the phenotype of humans with FOXD2 dysfunction. To study the pathomechanism of FOXD2-dysfunction-mediated developmental renal defects, in a complementary approach, we generated CRISPR/Cas9-mediated KO of Foxd2 in ureteric-bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important in renal/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a cell identity shift towards a stromal cell identity. Histology of Foxd2 KO mouse kidneys confirmed increased fibrosis. Further, GWAS data (genome-wide association studies) suggests that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Conclusions In summary, our data implicate that FOXD2 dysfunction is a very rare cause of autosomal recessive syndromic CAKUT and suggest disturbances of the PAX2-WNT4 cell signaling axis contribute to this phenotype.
Collapse
Affiliation(s)
- Korbinian M. Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Thanh-Minh T. Nguyen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, 06100, Türkiye
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Seha Saygılı
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Vera Wimmers
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, 79106, Germany
| | - Gwang-Jin Kim
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Marialena Chrysanthou
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
| | - Zeineb Bakey
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, 79106, Germany
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
- German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Sabine M. Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, 85354, Germany
| | - Claudia Seisenberger
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Stefan Haug
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, 85354, Germany
- Deutsches Institut fur Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, 85354, Germany
| | - Jasmina Ćomić
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Özlem Akgün Doğan
- Department of Pediatric Genetics, Acibadem Mehmet Ali Aydinlar University, Faculty of Medicine, Istanbul, Türkiye
| | - Yasemin Özlük
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Mehmet Taşdemir
- Department of Pediatric Nephrology, Istinye University School of Medicine, Liv Hospital, Istanbul, Türkiye
| | - Ayşe Ağbaş
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Nur Canpolat
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Salim Ćalışkan
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Ruthild Weber
- Department of Human Genetics, Hannover Medical School, Hannover, 30625, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Cecile Jeanpierre
- Inserm U1163, Laboratoire des Maladies Renales Hereditaires Institut Imagine, Université de Paris, Paris, France
| | - Sophie Saunier
- Inserm U1163, Laboratoire des Maladies Renales Hereditaires Institut Imagine, Université de Paris, Paris, France
| | - Tze Y. Lim
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bader Alhaddad
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Kaman Wu
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
| | - Dinu Antony
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Julia Matschkal
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Christian Schaaf
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Fatih Ozaltin
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, 06100, Türkiye
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, 06100, Sihhiye, Ankara, Türkiye
| | - Miriam Schmidts
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, 79106, Germany
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| |
Collapse
|
33
|
Hargadon KM, Strong EW. The FOXC2 Transcription Factor: A Master Regulator of Chemoresistance in Cancer. Technol Cancer Res Treat 2023; 22:15330338231155284. [PMID: 36740986 PMCID: PMC9903043 DOI: 10.1177/15330338231155284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
FOXC2, a member of the forkhead box family of transcription factors, is an emerging oncogene that has been linked to several hallmarks of cancer progression. Among its many oncogenic functions is the promotion of drug resistance, with evidence supporting roles for FOXC2 in escape from broad classes of chemotherapeutics across an array of cancer types. In this Mini-Review, we highlight the current understanding of the mechanisms by which FOXC2 drives cancer chemoresistance, including its roles in the promotion of epithelial-mesenchymal transition, induction of multidrug transporters, activation of the oxidative stress response, and deregulation of cell survival signaling pathways. We discuss the clinical implications of these findings, including strategies for modulating FOXC2-associated chemoresistance in cancer. Particular attention is given to ways in which FOXC2 and its downstream gene products and pathways can be targeted to restore chemosensitivity in cancer cells. In addition, the utility of FOXC2 expression as a predictor of patient response to chemotherapy is also highlighted, with emphasis on the value of FOXC2 as a novel biomarker that can be used to guide therapeutic choice towards regimens most likely to achieve clinical benefit during frontline therapy.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon Laboratory, Hampden-Sydney College, Hampden-Sydney, VA, USA,Kristian M. Hargadon, PhD, Hampden-Sydney College, Brown Student Center, Box 837, Hampden-Sydney, VA 23943, USA.
| | - Elijah W. Strong
- Hargadon Laboratory, Hampden-Sydney College, Hampden-Sydney, VA, USA
| |
Collapse
|
34
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
35
|
Xing X, Liu M, Wang X, Guo Q, Wang H. Promoting effects of calponin 3 on the growth of diffuse large B‑cell lymphoma cells. Oncol Rep 2023; 49:46. [PMID: 36660952 PMCID: PMC9868891 DOI: 10.3892/or.2023.8483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Diffuse large B‑cell lymphoma (DLBCL) is one of the most common types of lymphoma. Calponin 3 (CNN3) is a thin filament‑associated protein previously known to regulate smooth muscle contraction. Recent evidence illustrates its involvement in carcinogenesis; however, its roles in DLBCL remain unknown. CNN3 was found to be highly expressed in DLBCL specimens according to the online Gene Expression Profiling Interactive Analysis data. The aim of the present study was to investigate the roles of CNN3 in the progression of DLBCL. In vitro, the ectopic expression of CNN3 promoted the proliferation and G1/S transition of DLBCL cells, while its silencing led to opposite alterations. A similar tumor‑promoting role of CNN3 was also demonstrated by injecting nude mice with DLBCL cells over‑ or underexpressing CNN3. The results of dual‑luciferase reporter and chromatin immunoprecipitation assays revealed that forkhead box O3 (FOXO3), a known tumor suppressor in DLBCL, bound to the CNN3 promoter at ‑1955/‑1948 and ‑1190/‑1183, and suppressed the transcription of CNN3. The alterations induced by FOXO3 were partly blocked by CNN3 overexpression. On the whole, the present study demonstrates that CNN3, whose transcriptional activity is negatively regulated by FOXO3, contributes to the malignant behavior of DLBCL cells. The findings of the present study may provide novel diagnostic or therapeutic insight for DLBCL in clinical practice.
Collapse
Affiliation(s)
- Xiaojing Xing
- Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, Liaoning 110042, P.R. China,Correspondence to: Dr Xiaojing Xing, Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), 44 Xiaoheyan Road, Shenyang, Liaoning 110042, P.R. China, E-mail:
| | - Meichen Liu
- Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, Liaoning 110042, P.R. China
| | - Xuguang Wang
- Department of Pathology, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Qianxue Guo
- Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, Liaoning 110042, P.R. China
| | - Hongyue Wang
- Department of Scientific Research and Academic, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
36
|
Impact of Fetal Exposure to Endocrine Disrupting Chemical Mixtures on FOXA3 Gene and Protein Expression in Adult Rat Testes. Int J Mol Sci 2023; 24:ijms24021211. [PMID: 36674726 PMCID: PMC9863867 DOI: 10.3390/ijms24021211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
Perinatal exposure to endocrine disrupting chemicals (EDCs) has been shown to affect male reproductive functions. However, the effects on male reproduction of exposure to EDC mixtures at doses relevant to humans have not been fully characterized. In previous studies, we found that in utero exposure to mixtures of the plasticizer di(2-ethylhexyl) phthalate (DEHP) and the soy-based phytoestrogen genistein (Gen) induced abnormal testis development in rats. In the present study, we investigated the molecular basis of these effects in adult testes from the offspring of pregnant SD rats gavaged with corn oil or Gen + DEHP mixtures at 0.1 or 10 mg/kg/day. Testicular transcriptomes were determined by microarray and RNA-seq analyses. A protein analysis was performed on paraffin and frozen testis sections, mainly by immunofluorescence. The transcription factor forkhead box protein 3 (FOXA3), a key regulator of Leydig cell function, was identified as the most significantly downregulated gene in testes from rats exposed in utero to Gen + DEHP mixtures. FOXA3 protein levels were decreased in testicular interstitium at a dose previously found to reduce testosterone levels, suggesting a primary effect of fetal exposure to Gen + DEHP on adult Leydig cells, rather than on spermatids and Sertoli cells, also expressing FOXA3. Thus, FOXA3 downregulation in adult testes following fetal exposure to Gen + DEHP may contribute to adverse male reproductive outcomes.
Collapse
|
37
|
Gao Y, Geng J, Xie Z, Zhou Z, Yang H, Yi H, Han X, Xue S, Li Z. Synthesis and antineoplastic activity of ethylene glycol phenyl aminoethyl ether derivatives as FOXM1 inhibitors. Eur J Med Chem 2022; 244:114877. [DOI: 10.1016/j.ejmech.2022.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
|
38
|
Zhou J, Yang YJ, Gan RH, Wang Y, Li Z, Zhang XJ, Gui JF, Zhou L. Foxl2a and Foxl2b are involved in midbrain-hindbrain boundary development in zebrafish. Gene Expr Patterns 2022; 46:119286. [PMID: 36341978 DOI: 10.1016/j.gep.2022.119286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
Abstract
Foxl2 plays conserved central function in ovarian differentiation and maintenance in several fish species. However, its expression pattern and function in fish embryogenesis are still largely unknown. In this study, we first presented a sequential expression pattern of zebrafish foxl2a and foxl2b during embryo development. They were predominantly expressed in the cranial paraxial mesoderm (CPM) and cranial venous vasculature (CVV) during somitogenesis and subsequently expressed in the pharyngeal arches after 48 h post-fertilization (hpf). Then, we compared the brain structures among zebrafish wildtype (WT) and three homozygous foxl2 mutants (foxl2a-/-, foxl2b-/- and foxl2a-/-;foxl2b-/-) and found the reduction of the fourth ventricle in the three foxl2 mutants, especially in foxl2a-/-;foxl2b-/- mutant. Finally, we detected several key transcription factors involved in the gene regulatory network of midbrain-hindbrain boundary (MHB) patterning, such as wnt1, en1b and pax2a. Their expression levels were obviously downregulated in MHB of foxl2a-/- and foxl2a-/-;foxl2b-/- mutants. Thus, we suggest that Foxl2a and Foxl2b are involved in MHB and the fourth ventricle development in zebrafish. The current study provides insights into the molecular mechanism underlying development of brain ventricular system.
Collapse
Affiliation(s)
- Jian Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Jing Yang
- College of Fisheries, Tianjin Agricultural University, China
| | - Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Grigoryan EN. Cell Sources for Retinal Regeneration: Implication for Data Translation in Biomedicine of the Eye. Cells 2022; 11:cells11233755. [PMID: 36497013 PMCID: PMC9738527 DOI: 10.3390/cells11233755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The main degenerative diseases of the retina include macular degeneration, proliferative vitreoretinopathy, retinitis pigmentosa, and glaucoma. Novel approaches for treating retinal diseases are based on cell replacement therapy using a variety of exogenous stem cells. An alternative and complementary approach is the potential use of retinal regeneration cell sources (RRCSs) containing retinal pigment epithelium, ciliary body, Müller glia, and retinal ciliary region. RRCSs in lower vertebrates in vivo and in mammals mostly in vitro are able to proliferate and exhibit gene expression and epigenetic characteristics typical for neural/retinal cell progenitors. Here, we review research on the factors controlling the RRCSs' properties, such as the cell microenvironment, growth factors, cytokines, hormones, etc., that determine the regenerative responses and alterations underlying the RRCS-associated pathologies. We also discuss how the current data on molecular features and regulatory mechanisms of RRCSs could be translated in retinal biomedicine with a special focus on (1) attempts to obtain retinal neurons de novo both in vivo and in vitro to replace damaged retinal cells; and (2) investigations of the key molecular networks stimulating regenerative responses and preventing RRCS-related pathologies.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
40
|
Sher G, Masoodi T, Patil K, Akhtar S, Kuttikrishnan S, Ahmad A, Uddin S. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol 2022; 86:107-121. [PMID: 35931301 DOI: 10.1016/j.semcancer.2022.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/27/2023]
Abstract
Since the introduction of the cancer stem cell (CSC) paradigm, significant advances have been made in understanding the functional and biological plasticity of these elusive components in malignancies. Endowed with self-renewing abilities and multilineage differentiation potential, CSCs have emerged as cellular drivers of virtually all facets of tumor biology, including metastasis, tumor recurrence/relapse, and drug resistance. The functional and biological characteristics of CSCs, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation are regulated by an array of extracellular factors, signaling pathways, and pluripotent transcriptional factors. Besides the well-characterized regulatory role of transcription factors OCT4, SOX2, NANOG, KLF4, and MYC in CSCs, evidence for the central role of Forkhead box transcription factor FOXM1 in the establishment, maintenance, and functions of CSCs is accumulating. Conventionally identified as a master regulator of the cell cycle, a comprehensive understanding of this molecule has revealed its multifarious oncogenic potential and uncovered its role in angiogenesis, invasion, migration, self-renewal, and drug resistance. This review compiles the large body of literature that has accumulated in recent years that provides evidence for the mechanisms by which FOXM1 expression promotes stemness in glioblastoma, breast, colon, ovarian, lung, hepatic, and pancreatic carcinomas. We have also compiled the data showing the association of stem cell mediators with FOXM1 using TCGA mRNA expression data. Further, the prognostic importance of FOXM1 and other stem cell markers is presented. The delineation of FOXM1-mediated regulation of CSCs can aid in the development of molecularly targeted pharmacological approaches directed at the selective eradication of CSCs in several human malignancies.
Collapse
Affiliation(s)
- Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
41
|
Mitchell AV, Wu L, James Block C, Zhang M, Hackett J, Craig DB, Chen W, Zhao Y, Zhang B, Dang Y, Zhang X, Zhang S, Wang C, Gibson H, Pile LA, Kidder B, Matherly L, Yang Z, Dou Y, Wu G. FOXQ1 recruits the MLL complex to activate transcription of EMT and promote breast cancer metastasis. Nat Commun 2022; 13:6548. [PMID: 36319643 PMCID: PMC9626503 DOI: 10.1038/s41467-022-34239-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Aberrant expression of the Forkhead box transcription factor, FOXQ1, is a prevalent mechanism of epithelial-mesenchymal transition (EMT) and metastasis in multiple carcinoma types. However, it remains unknown how FOXQ1 regulates gene expression. Here, we report that FOXQ1 initiates EMT by recruiting the MLL/KMT2 histone methyltransferase complex as a transcriptional coactivator. We first establish that FOXQ1 promoter recognition precedes MLL complex assembly and histone-3 lysine-4 trimethylation within the promoter regions of critical genes in the EMT program. Mechanistically, we identify that the Forkhead box in FOXQ1 functions as a transactivation domain directly binding the MLL core complex subunit RbBP5 without interrupting FOXQ1 DNA binding activity. Moreover, genetic disruption of the FOXQ1-RbBP5 interaction or pharmacologic targeting of KMT2/MLL recruitment inhibits FOXQ1-dependent gene expression, EMT, and in vivo tumor progression. Our study suggests that targeting the FOXQ1-MLL epigenetic axis could be a promising strategy to combat triple-negative breast cancer metastatic progression.
Collapse
Affiliation(s)
- Allison V Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Ling Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - C James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Mu Zhang
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Justin Hackett
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Douglas B Craig
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Wei Chen
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Yongzhong Zhao
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaohong Zhang
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai, 201620, China
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai, 201620, China
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Lori A Pile
- The Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Benjamin Kidder
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Larry Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
42
|
Seudre O, Martín-Zamora FM, Rapisarda V, Luqman I, Carrillo-Baltodano AM, Martín-Durán JM. The Fox Gene Repertoire in the Annelid Owenia fusiformis Reveals Multiple Expansions of the foxQ2 Class in Spiralia. Genome Biol Evol 2022; 14:evac139. [PMID: 36099507 PMCID: PMC9539403 DOI: 10.1093/gbe/evac139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Fox genes are a large and conserved family of transcription factors involved in many key biological processes, including embryogenesis and body patterning. Although the role of Fox genes has been studied in an array of model systems, comprehensive comparative studies in Spiralia-a large clade of invertebrate animals including molluscs and annelids-are scarce but much needed to better understand the evolutionary history of this gene family. Here, we reconstruct and functionally characterize the Fox gene complement in the annelid Owenia fusiformis, a slow evolving species and member of the sister group to all remaining annelids. The genome of O. fusiformis contains at least a single ortholog for 20 of the 22 Fox gene classes that are ancestral to Bilateria, including an ortholog of the recently discovered foxT class. Temporal and spatial expression dynamics reveal a conserved role of Fox genes in gut formation, mesoderm patterning, and apical organ and cilia formation in Annelida and Spiralia. Moreover, we uncover an ancestral expansion of foxQ2 genes in Spiralia, represented by 11 paralogs in O. fusiformis. Notably, although all foxQ2 copies have apical expression in O. fusiformis, they show variable spatial domains and staggered temporal activation, which suggest cooperation and sub-functionalization among foxQ2 genes for the development of apical fates in this annelid. Altogether, our study informs the evolution and developmental roles of Fox genes in Annelida and Spiralia generally, providing the basis to explore how regulatory changes in Fox gene expression might have contributed to developmental and morphological diversification in Spiralia.
Collapse
Affiliation(s)
- Océane Seudre
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Valentina Rapisarda
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Imran Luqman
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| |
Collapse
|
43
|
An Integrated Study on the Differential Expression of the FOX Gene Family in Cancer and Their Response to Chemotherapy Drugs. Genes (Basel) 2022; 13:genes13101754. [PMID: 36292640 PMCID: PMC9602029 DOI: 10.3390/genes13101754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The Forkhead-box (FOX) transcription factors, as one of the largest gene families in humans, play key roles in cancer. Although studies have suggested that several FOX transcription factors have a significant impact on cancer, the functions of most of the FOX genes in cancer remain elusive. In the study, the expression of 43 FOX genes in 63 kinds of cancer diseases (including many subtypes of same cancer) and in response to 60 chemical substances was obtained from the Gene Expression Atlas database of the European Bioinformatics Institute. Based on the high degree of overlap in FOXO family members differentially expressed in various cancers and their particular responses to chemotherapeutic drugs, our data disclosed the FOX genes that played an important role in the development and progression of cancer. More importantly, we predicted the role of one or several combinatorial FOX genes in the diagnosis and prognostic assessment of a specific cancer and evaluated the potential of a certain anticancer drug therapy for this type of cancer by integrating patterns of FOX genes expression with anticancer drugs sensitivity.
Collapse
|
44
|
Ruoff F, Kersten N, Anderle N, Jerbi S, Stahl A, Koch A, Staebler A, Hartkopf A, Brucker SY, Hahn M, Schenke-Layland K, Schmees C, Templin MF. Protein Profiling of Breast Carcinomas Reveals Expression of Immune-Suppressive Factors and Signatures Relevant for Patient Outcome. Cancers (Basel) 2022; 14:cancers14184542. [PMID: 36139700 PMCID: PMC9496820 DOI: 10.3390/cancers14184542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
In cancer, the complex interplay between tumor cells and the tumor microenvironment results in the modulation of signaling processes. By assessing the expression of a multitude of proteins and protein variants in cancer tissue, wide-ranging information on signaling pathway activation and the status of the immunological landscape is obtainable and may provide viable information on the treatment response. Archived breast cancer tissues from a cohort of 84 patients (no adjuvant therapy) were analyzed by high-throughput Western blotting, and the expression of 150 proteins covering central cancer pathways and immune cell markers was examined. By assessing CD8α, CD11c, CD16 and CD68 expression, immune cell infiltration was determined and revealed a strong correlation between event-free patient survival and the infiltration of immune cells. The presence of tumor-infiltrating lymphocytes was linked to the pronounced activation of the Jak/Stat signaling pathway and apoptotic processes. The elevated phosphorylation of PPARγ (pS112) in non-immune-infiltrated tumors suggests a novel immune evasion mechanism in breast cancer characterized by increased PPARγ phosphorylation. Multiplexed immune cell marker assessment and the protein profiling of tumor tissue provide functional signaling data facilitating breast cancer patient stratification.
Collapse
Affiliation(s)
- Felix Ruoff
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Nicolas Kersten
- FZI Research Center for Information Technology, Intelligent Systems and Production Engineering (ISPE), 76131 Karlsruhe, Germany
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tuebingen, 72076 Tuebingen, Germany
| | - Nicole Anderle
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Sandra Jerbi
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Aaron Stahl
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - André Koch
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany
| | - Annette Staebler
- Institute of Pathology and Neuropathology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Andreas Hartkopf
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Women’s Health, University of Ulm, 89081 Ulm, Germany
| | - Sara Y. Brucker
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Markus Hahn
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tuebingen, 72076 Tuebingen, Germany
| | - Christian Schmees
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Markus F. Templin
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
- Correspondence: ; Tel.: +49-7121-51530-828
| |
Collapse
|
45
|
Ilieva M, Aldana BI, Vinten KT, Hohmann S, Woofenden TW, Lukjanska R, Waagepetersen HS, Michel TM. Proteomic phenotype of cerebral organoids derived from autism spectrum disorder patients reveal disrupted energy metabolism, cellular components, and biological processes. Mol Psychiatry 2022; 27:3749-3759. [PMID: 35618886 DOI: 10.1038/s41380-022-01627-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
The way in which brain morphology and proteome are remodeled during embryonal development, and how they are linked to the cellular metabolism, could be a key for elucidating the pathological mechanisms of certain neurodevelopmental disorders. Cerebral organoids derived from autism spectrum disorder (ASD) patients were generated to capture critical time-points in the neuronal development, and metabolism and protein expression were investigated. The early stages of development, when neurogenesis commences (day in vitro 39), appeared to be a critical timepoint in pathogenesis. In the first month of development, increased size in ASD-derived organoids were detected in comparison to the controls. The size of the organoids correlates with the number of proliferating cells (Ki-67 positive cells). A significant difference in energy metabolism and proteome phenotype was also observed in ASD organoids at this time point, specifically, prevalence of glycolysis over oxidative phosphorylation, decreased ATP production and mitochondrial respiratory chain activity, differently expressed cell adhesion proteins, cell cycle (spindle formation), cytoskeleton, and several transcription factors. Finally, ASD patients and controls derived organoids were clustered based on a differential expression of ten proteins-heat shock protein 27 (hsp27) phospho Ser 15, Pyk (FAK2), Elk-1, Rac1/cdc42, S6 ribosomal protein phospho Ser 240/Ser 244, Ha-ras, mTOR (FRAP) phospho Ser 2448, PKCα, FoxO3a, Src family phospho Tyr 416-at day 39 which could be defined as potential biomarkers and further investigated for potential drug development.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark. .,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark. .,Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen SV, Denmark.
| | - Blanca Irene Aldana
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Tore Vinten
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonja Hohmann
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Thomas William Woofenden
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Renate Lukjanska
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Helle S Waagepetersen
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tanja Maria Michel
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| |
Collapse
|
46
|
Wang M, Tang S, Yang X, Xie X, Luo Y, He S, Li X, Feng X. Identification of key genes and pathways in chronic rhinosinusitis with nasal polyps and asthma comorbidity using bioinformatics approaches. Front Immunol 2022; 13:941547. [PMID: 36059464 PMCID: PMC9428751 DOI: 10.3389/fimmu.2022.941547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and asthma comorbidity (ACRSwNP) present severe symptoms and are more likely to relapse. However, the pathogenesis of ACRSwNP is not fully understood. The aim of this study was to explore the underlying pathogenesis of ACRSwNP using bioinformatics approaches. ACRSwNP-related differentially expressed genes (DEGs) were identified by the analysis of the GSE23552 dataset. The clusterProfiler R package was used to carry out functional and pathway enrichment analysis. A protein–protein interaction (PPI) network was built using the STRING database to explore key genes in the pathogenesis of ACRSwNP. The bioinformatics analysis results were verified through qRT-PCR. The Connectivity Map (CMap) database was used to predict potential drugs for the treatment of ACRSwNP. A total of 36 DEGs were identified, which were mainly enriched in terms of regulation of immune response and detection sensory perception of taste. Thirteen hub genes including AZGP1, AQP9, GAPT, PIP, and PRR4 were identified as potential hub genes in ACRSwNP from the PPI network. Analysis of the GSE41861 dataset showed that upregulation of CST1 in nasal mucosa was associated with asthma. qRT-PCR detection confirmed the bioinformatics analysis results. Tacrolimus and spaglumic acid were identified as potential drugs for the treatment of ACRSwNP from the CMap database. The findings of this study provide insights into the pathogenesis of ACRSwNP and may provide a basis for the discovery of effective therapeutic modalities for ACRSwNP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin Feng
- *Correspondence: Xin Feng, ; Xuezhong Li,
| |
Collapse
|
47
|
Peng H, Zhu E, Zhang Y. Advances of cancer-associated fibroblasts in liver cancer. Biomark Res 2022; 10:59. [PMID: 35971182 PMCID: PMC9380339 DOI: 10.1186/s40364-022-00406-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors worldwide, it is ranked sixth in incidence and fourth in mortality. According to the distinct origin of malignant tumor cells, liver cancer is mainly divided into hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Since most cases are diagnosed at an advanced stage, the prognosis of liver cancer is poor. Tumor growth depends on the dynamic interaction of various cellular components in the tumor microenvironment (TME). As the most abundant components of tumor stroma, cancer-associated fibroblasts (CAFs) have been involved in the progression of liver cancer. The interplay between CAFs and tumor cells, immune cells, or vascular endothelial cells in the TME through direct cell-to-cell contact or indirect paracrine interaction, affects the initiation and development of tumors. Additionally, CAFs are not a homogeneous cell population in liver cancer. Recently, single-cell sequencing technology has been used to help better understand the diversity of CAFs in liver cancer. In this review, we mainly update the knowledge of CAFs both in HCC and CCA, including their cell origins, chemoresistance, tumor stemness induction, tumor immune microenvironment formation, and the role of tumor cells on CAFs. Understanding the context-dependent role of different CAFs subsets provides new strategies for precise liver cancer treatment.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Erwei Zhu
- The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang, 222006, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
48
|
Leng F, Zhang W, Ramirez RN, Leon J, Zhong Y, Hou L, Yuki K, van der Veeken J, Rudensky AY, Benoist C, Hur S. The transcription factor FoxP3 can fold into two dimerization states with divergent implications for regulatory T cell function and immune homeostasis. Immunity 2022; 55:1354-1369.e8. [PMID: 35926508 PMCID: PMC9907729 DOI: 10.1016/j.immuni.2022.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/03/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
FoxP3 is an essential transcription factor (TF) for immunologic homeostasis, but how it utilizes the common forkhead DNA-binding domain (DBD) to perform its unique function remains poorly understood. We here demonstrated that unlike other known forkhead TFs, FoxP3 formed a head-to-head dimer using a unique linker (Runx1-binding region [RBR]) preceding the forkhead domain. Head-to-head dimerization conferred distinct DNA-binding specificity and created a docking site for the cofactor Runx1. RBR was also important for proper folding of the forkhead domain, as truncation of RBR induced domain-swap dimerization of forkhead, which was previously considered the physiological form of FoxP3. Rather, swap-dimerization impaired FoxP3 function, as demonstrated with the disease-causing mutation R337Q, whereas a swap-suppressive mutation largely rescued R337Q-mediated functional impairment. Altogether, our findings suggest that FoxP3 can fold into two distinct dimerization states: head-to-head dimerization representing functional specialization of an ancient DBD and swap dimerization associated with impaired functions.
Collapse
Affiliation(s)
- Fangwei Leng
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Wenxiang Zhang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ricardo N Ramirez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Juliette Leon
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yi Zhong
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Chen M, Sun Y, Qian Y, Chen N, Li H, Wang L, Dong M. Case report: FOXP1 syndrome caused by a de novo splicing variant (c.1652+5 G>A) of the FOXP1 gene. Front Genet 2022; 13:926070. [PMID: 35991577 PMCID: PMC9388729 DOI: 10.3389/fgene.2022.926070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
FOXP1 syndrome is a rare neurodevelopmental disorder characterized by global developmental delay, intellectual disability, and language delay, with or without autistic features. Several splicing variants have been reported for this condition, but most of them lack functional evidence, and the actual effects of the sequence changes are still unknown. In this study, a de novo splicing variant (c.1652 + 5 G>A) of the FOXP1 gene was identified in a patient with global developmental delay, mild intellectual disability, speech delay, and autistic features. Assessed by TA-cloning, the variant promoted the skipping of exon 18 and a premature stop codon (p.Asn511*), resulting in a predicted truncated protein. This variant, that is lacking the forkhead-box DNA-binding domain and nuclear localization signal 2, may disrupt the protein function and thus cause FOXP1 syndrome-related symptoms. Our study extends the phenotypic and allelic spectra of the FOXP1 syndrome.
Collapse
Affiliation(s)
- Min Chen
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixi Sun
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeqing Qian
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Chen
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongge Li
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Wang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minyue Dong
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Minyue Dong,
| |
Collapse
|
50
|
Zhang L, Ren CF, Yang Z, Gong LB, Wang C, Feng M, Guan WX. Forkhead Box S1 mediates epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway to regulate colorectal cancer progression. J Transl Med 2022; 20:327. [PMID: 35864528 PMCID: PMC9306048 DOI: 10.1186/s12967-022-03525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background Recent studies have shown that the fox family plays a vital role in tumorigenesis and progression. Forkhead Box S1 (FOXS1), as a newly identified subfamily of the FOX family, is overexpressed in certain types of malignant tumors and closely associated with patient's prognosis. However, the role and mechanism of the FOXS1 in colorectal cancer (CRC) remain unclear. Method FOXS1 level in CRC tissues and cell lines was analyzed by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemistry (IHC) was used to detect the relationship between FOXS1 expression and clinicopathological features in 136 patients in our unit. The expression of FOXS1 was knocked down in CRC cells using small interfering RNA (siRNA) technology. Cell proliferation was assessed by CCK8 assay, colony formation, and 5-Ethynyl-20-deoxyuridine (EdU) incorporation assay. Flow cytometry detected apoptosis and wound healing, and Transwell assays determined cell migration and invasion. Western blotting was used to detect the levels of proteins associated with the Wnt/β-catenin signaling pathway. Then, we used short hairpin RNA (shRNA) to knock down FOXS1 to see the effect of FOXS1 on the proliferation, migration, invasion, and metastasis of CRC cells in vivo. Finally, we investigated the impact of Wnt activator LiCl on the proliferation, migration, invasion, and metastasis of CRC cells after FOXS1 knockdown. Result Compared to those in normal groups, FOXS1 overexpressed in CRC tissues and CRC cells (P < 0.05). Upregulation of FOXS1 association with poor prognosis of CRC patients. si-FOXS1 induced apoptosis and inhibited proliferation, migration, invasion, the epithelial-mesenchymal transition (EMT), and the Wnt/β-catenin signaling pathway in vitro; sh-FOXS1 inhibited the volume and weight of subcutaneous xenografts and the number of lung metastases in vivo. LiCl, an activator of Wnt signaling, partially reversed the effect of FOXS1 overexpression on CRC cells. Conclusion FOXS1 could function as an oncogene and promote CRC cell proliferation, migration, invasion and metastasis through the Wnt/βcatenin signaling pathway, FOXS1 may be a potential target for CRC treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.,Department of Gastrointestinal, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chuan-Fu Ren
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Zhi Yang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Long-Bo Gong
- Department of Gastrointestinal, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Wang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Min Feng
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.
| | - Wen-Xian Guan
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|