1
|
Gangwar T, Poonia N, Subudhi RN, Arora V. Therapeutic potential and underlying mechanisms of phytoconstituents: emphasizing on resveratol, curcumin, quercetin, berberine, and hesperidin in ulcerative colitis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6579-6596. [PMID: 39878817 DOI: 10.1007/s00210-025-03811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Ulcerative colitis is a long-term inflammatory colon illness that significantly affects patients quality of life. Traditional medicines and therapies often come with challenges such as side effects, instability, unpredictability, and high costs. This has captured interest in natural products that have huge health benefits. Various natural compounds, including resveratrol, curcumin, quercetin, berberine, and hesperidin demonstrate immunomodulatory and oxido-inflammatory properties inside the gut epithelium, showing potential in managing ulcerative colitis. These compounds attenuate inflammatory mediators, NF-κB, and TLR4 signaling leading to a reduction in the production of inflammation-related cytokines, including TNF-α and IL-6. They also augment the activity of internal defense compounds, including superoxide radical dismutase enzyme and heme oxygenase-1, thereby alleviating oxidative damage. In addition, natural compounds have a profound effect on the endogenous microbiota and thus, support mucosal healing and intercellular barrier integrity. Both experimental and clinical analyses provide evidence that these bioactive compounds may help reduce clinical manifestations, induce and sustain remission, and improve the well-being of individuals suffering from ulcerative colitis. This review seeks to discuss various aspects of natural compounds in the management of ulcerative colitis, including mechanisms, therapeutic prospects, and hurdles, and hence the basis for future research and practice.
Collapse
Affiliation(s)
- Tanuj Gangwar
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Rudra Narayan Subudhi
- Institute of Pharmaceutical Sciences, J.S. University, Shikohabad, Uttar Pradesh, India
| | - Vimal Arora
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
2
|
Zhong SJ, Xing YD, Dong LY, Chen Y, Liu N, Wang ZM, Zhang H, Zheng AP. Progress in the study of curcumin metabolism in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:639-657. [PMID: 39692630 DOI: 10.1080/10286020.2024.2420619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/19/2024]
Abstract
Curcumin has diverse biological functions, especially antioxidant and anti-inflammatory properties, but clinical trials have been hindered by its low bioavailability and pharmacokinetic properties. To achieve therapeutic efficacy, understanding curcumin's in vivo metabolism is crucial. We reviewed current research on curcumin metabolism in PubMed, Google Scholar, and CNKI. This article outlines curcumin's metabolic processes in the body via oral and intravenous injection. It suggests that upon entering the human body, curcumin may undergo oxidation, reduction, binding, and microbial community influence.
Collapse
Affiliation(s)
- Shi-Jie Zhong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, China
| | - Ya-Dong Xing
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing 100000, China
| | - Lu-Yao Dong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, China
| | - Yi Chen
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing 100000, China
| | - Nan Liu
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing 100000, China
| | - Zeng-Ming Wang
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing 100000, China
| | - Hui Zhang
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing 100000, China
| | - Ai-Ping Zheng
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing 100000, China
| |
Collapse
|
3
|
Aminudin NI, Wan Jaafar WMS, Mohd Amin NMS, Kamarul Baharin R, Zainal Abidin ZA. Biotransformation of curcumin by Streptomyces sp. K1-18 isolated from mangrove soil. Nat Prod Res 2025; 39:2824-2830. [PMID: 38372293 DOI: 10.1080/14786419.2024.2318786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Biotransformation is recognised as a green chemistry tool to synthesise diverse natural product analogues for valorisation of their chemistry and bioactivities. It offers significant benefits compared to chemical synthesis, given its cost-effectiveness and greater selectivity. In this work, a curcumin analogue, namely gingerenone A, was yielded from the biotransformation process catalysed by Streptomyces sp. K1-18. The structure of the compound was established by using mass spectrometry/mass spectrometry chemical profiling assisted with in silico fragmentation by MetFrag tool. This biotransformation successfully afforded a reduction reaction on curcumin. This is the first report on utilisation of Streptomyces sp. K1-18 as a biocatalyst for biotransformation of curcumin.
Collapse
Affiliation(s)
- Nurul Iman Aminudin
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | | | | | - Raudah Kamarul Baharin
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Zaima Azira Zainal Abidin
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| |
Collapse
|
4
|
Perrotta C, Carnovale C, Pozzi M, De Palma C, Cervia D, Nobile M, Clementi E. Antipsychotics and dietary interventions: Pharmacodynamics, pharmacokinetics, and synergisms in therapy. Pharmacol Rev 2025; 77:100061. [PMID: 40412008 DOI: 10.1016/j.pharmr.2025.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/27/2025] Open
Abstract
Antipsychotic (AP) medications are the primary treatment for severe mental illnesses, including schizophrenia and severe mood disorders. APs are currently categorized into typical or first-generation APs and atypical or second-generation APs. Although both first-generation and second-generation APs are considered effective in treating psychotic symptoms in severe mental disorders, they differ in their mechanisms, treatment strategies, and side effect profiles. Because of their potential motor and metabolic side effects, which often compromise patient adherence and clinical outcomes, whether and how to use APs remains controversial. The use of dietary interventions in combination with APs is emerging as a viable strategy to reduce AP adverse effects while maintaining their efficacy and enhance patient adherence to treatment. In contrast to drugs that possess a well defined molecular mechanism of action, dietary interventions act in pleiotropic ways by nature. While providing a holistic approach to patient care this pleiotropy needs to be analyzed and systematized to enhance the efficacy and safety of the combination of them with APs. Guidelines for this type of treatment are still needed. In this review, we explore the pharmacological properties, therapeutic applications, and limitations of APs, and discuss the potential benefits and limitations of those dietary interventions that are employed to improve the efficacy and counteract side effects of APs discussing also their mechanisms of action. Finally, we critically discuss the main results of clinical studies combining APs and dietary interventions and provide a view on future directions in terms of research and clinical use of these combinations. SIGNIFICANCE STATEMENT: Antipsychotic drugs are useful in a variety of psychiatric conditions, yet their use is hampered by issues of efficacy and safety. An important step toward therapy optimization is their use in combination with dietary interventions (ie, dietary supplements and nutraceuticals) that have shown promising results in clinical trials.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milano, Italy
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milano, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, Segrate, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Maria Nobile
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy.
| | - Emilio Clementi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy; Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco Hospital, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
5
|
Zeng A, Quan Y, Tao H, Dai Y, Song L, Zhao J. The Role of Tetrahydrocurcumin in Tumor and Neurodegenerative Diseases Through Anti-Inflammatory Effects. Int J Mol Sci 2025; 26:3561. [PMID: 40332041 PMCID: PMC12027286 DOI: 10.3390/ijms26083561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Tetrahydrocurcumin (THC), a curcumin derivative, shows potential in oncology and neurology. It regulates NF-κB, reduces inflammation, promotes cancer cell apoptosis, inhibits tumor angiogenesis, and enhances antioxidants, aiding in treating inflammation-related cancers. In neurology, THC's anti-inflammatory and antioxidant properties protect neurons, reduce neuroinflammation, and support autophagy for cellular debris clearance, with its blood-brain barrier penetration offering a neuroprotective edge. Research on THC's therapeutic application must focus on improving delivery and bioavailability and confirming its clinical safety and efficacy.
Collapse
Affiliation(s)
- Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; (A.Z.); (Y.Q.); (Y.D.)
- Sichuan Institute for Translational Chinese Medicine, Chengdu 610041, China
| | - Yunyun Quan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; (A.Z.); (Y.Q.); (Y.D.)
| | - Hongxia Tao
- West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; (A.Z.); (Y.Q.); (Y.D.)
- Sichuan Institute for Translational Chinese Medicine, Chengdu 610041, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; (A.Z.); (Y.Q.); (Y.D.)
- Sichuan Institute for Translational Chinese Medicine, Chengdu 610041, China
| |
Collapse
|
6
|
Nowak I, Kubina R, Strzałka-Mrozik B. Therapeutic Potential of Hexahydrocurcumin in the Regeneration and Protection of the Retinal Pigment Epithelium. Pharmaceuticals (Basel) 2025; 18:554. [PMID: 40283989 PMCID: PMC12030554 DOI: 10.3390/ph18040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Hexahydrocurcumin (HHC), the primary metabolite of curcumin, shows promising therapeutic potential due to its antioxidant and anti-inflammatory properties. The retinal pigment epithelium (RPE) plays a crucial role in maintaining retinal homeostasis; however, its dysfunction-linked to oxidative stress and chronic inflammation-contributes to the progression of degenerative diseases such as age-related macular degeneration (AMD). This review highlights the therapeutic potential of HHC in protecting and regenerating RPE cells. It explores the effects of oxidative stress on the RPE, the mechanisms underlying its damage, and the involvement of reactive oxygen species (ROS) and inflammatory mediators. HHC has demonstrated the ability to modulate these pathways by activating nuclear factor erythroid 2-related factor 2 (NRF2), enhancing antioxidant defenses, and inhibiting pro-inflammatory cytokine production. Preclinical studies suggest that HHC mitigates vascular remodeling and endothelial dysfunction by reducing the expression of transforming growth factor β (TGF-β1) and matrix metalloproteinase-9 (MMP-9). Moreover, HHC improves nitric oxide bioavailability and promotes nitric oxide synthase expression, thereby counteracting oxidative stress-induced vascular damage. Emerging evidence indicates that HHC may be a promising candidate for the treatment of retinal degenerative diseases, particularly those associated with oxidative stress and inflammation. However, further studies, including clinical trials, are essential to confirm its efficacy and elucidate the precise mechanisms underlying HHC's protective effects on RPE cells.
Collapse
Affiliation(s)
- Ilona Nowak
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia, 41-752 Katowice, Poland;
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia, 41-752 Katowice, Poland;
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
7
|
Neira M, Mena C, Torres K, Simón L. The Potential Benefits of Curcumin-Enriched Diets for Adults with Colorectal Cancer: A Systematic Review. Antioxidants (Basel) 2025; 14:388. [PMID: 40298630 PMCID: PMC12024020 DOI: 10.3390/antiox14040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/30/2025] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Conventional treatments such as chemotherapy and radiotherapy are often associated with severe side effects and limited effectiveness. Curcumin, a polyphenol derived from Curcuma longa, has demonstrated anti-inflammatory and anticancer properties. A systematic review of the recent scientific literature followed PRISMA guidelines to evaluate the benefits of a curcumin-enriched diet for adults with colorectal cancer. Articles published between 2018 and 2024 were retrieved from PubMed, SciELO, Google Scholar, and Scopus. Studies meeting the inclusion criteria focused on curcumin, adults, and colorectal cancer outcomes. The administration of curcumin-containing products was associated with improved survival rates, enhanced quality of life, tumor reduction, and anti-inflammatory effects. A curcumin-enriched diet shows potential as an effective adjunct therapy for CRC patients, though its limited bioavailability and potential side effects, such as gastrointestinal discomfort, pose challenges. Addressing these limitations through larger cohorts, extended study durations, and improved formulations to enhance bioavailability is essential. Such efforts could enable the development of personalized dietary recommendations for CRC management.
Collapse
Affiliation(s)
| | | | - Keila Torres
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501015, Chile; (M.N.); (C.M.)
| | - Layla Simón
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501015, Chile; (M.N.); (C.M.)
| |
Collapse
|
8
|
Sidhambaram J, Sakayanathan P, Loganathan C, Iruthayaraj A, Thayumanavan P. Esterified Indole-3-propionic Acid: A Novel Inhibitor against Cholinesterase Identified through Experimental and Computational Approaches. ACS OMEGA 2025; 10:9073-9087. [PMID: 40092751 PMCID: PMC11904713 DOI: 10.1021/acsomega.4c08149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are targeted for designing drugs against cognitive dysfunction. Curcumin (CUR) and indole-3-propionic acid (IPA) are known for their neuroprotective activity. The clinical application of CUR is hindered due to poor absorption and bioavailability. Hence, CUR was conjugated with IPA to form the CUR-IPA diester. CUR-IPA inhibition against electric eel AChE (eAChE), human AChE (hAChE), and hBChE was carried out. In silico and molecular dynamics (MD) analyses of the interaction of CUR-IPA with hAChE and hBChE were done. UV-visible spectroscopy (λmax at 415 and 276 nm), NMR spectrum, and ESI/MS/MS [m/z = 711 (M + H)] confirmed CUR-IPA formation. CUR-IPA showed in vitro antioxidant activity. The IC50 values of eAChE, hAChE, and hBChE enzyme inhibition were 5.66, 59.30, and 60.66 μM, respectively. MD simulation-based analysis such as RMSD, RMSF, free-energy calculation, PCA, FEL, and DCCM confirmed the stable binding of CUR-IPA with hAChE and hBChE. Further QM/MM analysis confirmed the stable interaction of CUR-IPA with hAChE and hBChE. Since CUR-IPA showed in vitro inhibition against AChE and BChE, a further neuroprotective effect in in vivo could be studied.
Collapse
Affiliation(s)
| | | | - Chitra Loganathan
- Department
of Prosthodontics and Implantology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences
(SIMATS), Chennai600 077, India
| | - Ancy Iruthayaraj
- Bioinnov
Solutions LLP, Research and Development Center, Salem, Tamil Nadu 636009, India
| | | |
Collapse
|
9
|
Gabe HB, Taruhn KA, Mello DF, Lebrun M, Paillard C, Corporeau C, Dafre AL, Trevisan R. Prolonged curcumin supplementation causes tissue-specific antioxidant responses in adult oysters: Potential implications for resilience against abiotic and biotic stressors in the aquaculture industry. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 280:107282. [PMID: 39955876 DOI: 10.1016/j.aquatox.2025.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Aquatic animals inhabiting marine coastal environments are highly susceptible to environmental fluctuations and pollution, exemplified by widespread mass mortalities induced by marine bacteria or viruses. Enhancing antioxidant defenses presents a promising strategy to mitigate such environmental stressors. We postulated that supplementation of oysters with natural compounds such as flavonoids, exemplified by curcumin (CUR), could effectively bolster their antioxidant protection. Adult Pacific oysters were supplemented with CUR (30 μM) in seawater for 2, 4, 8, and 16 days. CUR metabolites progressively accumulated in gills, mantle, and digestive glands. Notably, oyster antioxidant response was significantly augmented, as evidenced by elevated glutathione (GSH) levels, and enhanced activities of glutathione reductase (GR), thioredoxin reductase (TrxR), and glutathione S-transferase (GST) after 4, 8, and 16 days of CUR supplementation. This response was tissue-specific, with the most pronounced increase in gills, followed by mantle, whereas digestive gland exhibited minimal response. After being supplemented with CUR for 8 days, oysters were subjected to antioxidant-disrupting agents such as N-ethylmaleimide (NEM), 1‑chloro-2,4-dinitrobenzene (CDNB). Both chemicals reduced antioxidant protection in untreated animals. However, CUR supplementation prevented these redox-disrupting effects, suggesting the potential ability of CUR to counteract antioxidant stressors. The effects of 8 days of CUR supplementation were also tested against the lethal effects of the pathogens V. tapetis, V, alginolyticus, and V. anguillarum, but CUR failed to induce immunological protection. The antioxidant protection induced by CUR holds promise for application in aquaculture to bolster animal health and resilience against abiotic stressors. Further research is needed to investigate the long-term impact of CUR supplementation and its role against biotic stressors, such as bacterial and viral infections.
Collapse
Affiliation(s)
- Heloísa Bárbara Gabe
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; UMR6539 LEMAR, UBO/CNRS/IFREMER/IRD, F-29280 Plouzané, France
| | - Karine Amabile Taruhn
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | | | - Melody Lebrun
- UMR6539 LEMAR, UBO/CNRS/IFREMER/IRD, F-29280 Plouzané, France
| | | | | | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Rafael Trevisan
- UMR6539 LEMAR, UBO/CNRS/IFREMER/IRD, F-29280 Plouzané, France.
| |
Collapse
|
10
|
Nainggolan SI, Rajuddin R, Kamarlis RK, Hambal M, Frengki F. In silico study of the potential of curcumin and its derivatives for increasing wild-type p53 expression and improving the function of p53 mutant R273H. Vet World 2025; 18:715-730. [PMID: 40342745 PMCID: PMC12056914 DOI: 10.14202/vetworld.2025.715-730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/25/2025] [Indexed: 05/11/2025] Open
Abstract
Background and Aim p53 is a critical tumor suppressor protein responsible for regulating the cell cycle and inducing apoptosis. Mutations in the p53 gene, particularly in the DNA-binding domain, are frequently associated with various cancers due to the loss of transcriptional activity. Curcumin and its derivatives have demonstrated potential as p53 enhancers and reactivators of mutant p53. This study employs in silico methods to evaluate the potential of curcumin derivatives to enhance wild-type p53 expression and restore the function of the p53 mutant R273H. Materials and Methods Curcumin and 20 derivatives were selected from PubChem for computational analysis. Their potential as p53 enhancers was assessed using Quantitative Structure-Activity Relationship (QSAR) analysis. Molecular docking was conducted to determine their binding affinities with wild-type and mutant p53 proteins, followed by molecular dynamics (MD) simulations to evaluate ligand-receptor stability. Pharmacokinetics and toxicity assessments were performed using predictive computational models to evaluate their drug-like properties. Results QSAR analysis identified hexahydrocurcumin (probable activity [Pa]: 0.837) and tetrahydrocurcumin (Pa: 0.752) as the most potent p53 enhancers. Molecular docking revealed strong binding affinities for curcumin derivatives at key p53 binding residues, particularly through hydrogen bonds with His 273 of the R273H mutant. MD simulations demonstrated that curcumin, bisdemethoxycurcumin, and monodemethylcurcumin stabilized p53 mutant R273H, closely mimicking the structural stability of wild-type p53. Pharmacokinetic analysis indicated favorable absorption, distribution, metabolism, and excretion profiles for most derivatives, with low toxicity predicted for the majority. Conclusion Curcumin and its derivatives exhibit dual functions as p53 enhancers and reactivators of the p53 mutant R273H. Hexahydrocurcumin and tetrahydrocurcumin emerged as promising compounds with strong bioactivity and favorable pharmacokinetic properties, suggesting their potential as anticancer agents. Further in vitro and in vivo studies are necessary to validate these findings and explore their therapeutic applications.
Collapse
Affiliation(s)
- Sarah Ika Nainggolan
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Obstetrics and Gynecology, Division of Gynecological Endocrinology, Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| | - Rajuddin Rajuddin
- Department of Obstetrics and Gynecology, Division of Gynecological Endocrinology, Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| | - Reno Keumalazia Kamarlis
- Department of Obstetrics and Gynecology, Division of Gynecological Endocrinology, Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| | - Muhammad Hambal
- Department of Parasitology, Faculty of Medicine Veterinary, Syiah Kuala University, Banda Aceh, 243111, Indonesia
| | - Frengki Frengki
- Department of Pharmacology, Faculty of Medicine Veterinary, Syiah Kuala University, Banda Aceh, Indonesia
| |
Collapse
|
11
|
Lu H, Zheng J, Hu C, He J, Wang S, Chen Z, Wang Y, Li H, Ge RS, Tang Y, Ying Y. Cyclocurcumin potently inhibits human aromatase as a potential therapeutic agent. J Steroid Biochem Mol Biol 2025; 247:106672. [PMID: 39746524 DOI: 10.1016/j.jsbmb.2024.106672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Curcuminoids, including curcumin and its derivatives, show potent inhibition of aromatase (CYP19A1), crucial for estradiol synthesis and breast cancer metastasis. Our study evaluated the efficacy and mechanism of 10 curcuminoids and their metabolites against human and rat CYP19A1 using placental microsomes, revealing species-specific IC50 values. Cyclocurcumin (IC50, 4.43 μM) and curcumin (IC50, 3.49 μM) were the most effective inhibitors for human and rat CYP19A1, respectively. These compounds acted as mixed or competitive inhibitors, reducing estradiol production in human BeWo cells. Docking analysis showed that curcuminoids interact with CYP19A1 active site, forming a hydrogen bond with Met374. 3D-QSAR analysis highlighted the importance of hydrogen bonding in inhibition. A negative correlation was observed between the pKa values and IC50 values for human CYP19A1. A positive correlation was observed between the lowest binding energy and IC50 values for human CYP19A1. These findings underscore the potential of curcuminoids as therapeutic agents against breast cancer.
Collapse
Affiliation(s)
- Han Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou Medical University, Zhejiang Province, China
| | - Jingyi Zheng
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou Medical University, Zhejiang Province, China
| | - Chunnan Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou Medical University, Zhejiang Province, China
| | - Jiayi He
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou Medical University, Zhejiang Province, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhuoqi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou Medical University, Zhejiang Province, China.
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
12
|
Wahnou H, El Kebbaj R, Liagre B, Sol V, Limami Y, Duval RE. Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy. Pharmaceutics 2025; 17:114. [PMID: 39861761 PMCID: PMC11768525 DOI: 10.3390/pharmaceutics17010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Curcumin, a bioactive compound derived from the rhizome of Curcuma longa L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application. Nanotechnology offers a viable solution to these challenges by enabling the development of curcumin-based nanoparticles (CNPs) that enhance its bioavailability and therapeutic efficacy. This review provides a comprehensive overview of the recent advancements in the design and synthesis of CNPs for cancer therapy. We discuss various NP formulations, including polymeric, lipid-based, and inorganic nanoparticles, highlighting their role in improving curcumin's pharmacokinetic and pharmacodynamic profiles. The mechanisms by which CNPs exert anticancer effects, such as inducing apoptosis, inhibiting cell proliferation, and modulating signaling pathways, are explored in details. Furthermore, we examine the preclinical and clinical studies that have demonstrated the efficacy of CNPs in treating different types of tumors, including breast, colorectal, and pancreatic cancers. Finally, the review addresses the current challenges and future perspectives in the clinical translation of CNPs, emphasizing the need for further research to optimize their design for targeted delivery and to enhance their therapeutic outcomes. By synthesizing the latest research, this review underscores the potential of CNPs as a promising avenue for advancing cancer therapy.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P2693, Maarif, Casablanca 20100, Morocco;
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Youness Limami
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| | | |
Collapse
|
13
|
Hajimirzaei P, Eyni H, Razmgir M, Abolfazli S, Pirzadeh S, Ahmadi Tabatabaei FS, Vasigh A, Yazdanian N, Ramezani F, Janzadeh A, Butler AE, Sahebkar A. The analgesic effect of curcumin and nano-curcumin in clinical and preclinical studies: a systematic review and meta-analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:393-416. [PMID: 39186190 DOI: 10.1007/s00210-024-03369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Chronic pain remains a treatment challenge. Curcumin, a natural plant product found in the Curcuma genus, has been shown to possess anti-inflammatory, antioxidant, and neuroprotective properties. In this systematic review and meta-analysis, we aimed to evaluate the efficacy of curcumin and nano-curcumin for treating chronic pain in clinical and preclinical studies. A systematic search was performed through PubMed, SCOPUS, Web of Science Core Collection, Cochrane, and Google Scholar up to April 1, 2023, using relevant keywords. Trials that met the inclusion criteria were included in this study. We applied the mean difference (MD) or standardized mean difference (SMD) in random or fixed-effects models to analyze the impact of combined trials. We also evaluated the potential risk of bias using the Higgins method for clinical studies and the SYRCLE Risk of Bias tool for animal studies. Our meta-analysis included 59 studies, comprising 29 animal studies and 30 clinical studies. Curcumin strongly reduced pain in preclinical studies, and both the intraperitoneal (SMD = 1.48; 95% CI, 0.81 to 2.14; p < 0.001, and I2 = 77.9%) and oral (SMD = 1.27; 95% CI, 1.01 to 1.55; p < 0.001, and I2 = 0.0%) administration method of curcumin had pain-relieving effects. However, the subcutaneous method (SMD = 0.24; 95% CI, - 0.89 to 1.38; p = 0.67) had no effect. The drug's efficacy within the 100-250 mg range (SMD = 1.46; 95% CI, 0.76 to 2.15; p < 0.001; and I2 = 73.4%) surpassed that observed above 250 mg (SMD = 1.23; 95% CI, 0.89 to 1.57; p < 0.001; and I2 = 0.0%). In clinical studies, nano-curcumin had a powerful effect on pain reduction compared to placebo (MD = - 1.197; CI 95% (- 1.94 to - 0.45); p = 0.002; and I2 = 80.9%), and the effects of NSAIDs on pain were not significantly altered when used in combination with Curcuma longa extract (MD = - 0.23; CI 95% (- 0.99 to 0.53); p = 0.554; and I2 = 92%). In addition, the effect of increased bioavailability of curcumin (MD = - 1.54; CI 95% (- 2.06 to - 1.02); p < 0.001; and I2 = 89.6%), curcumin (MD = - 1.35; CI 95% (- 2.451 to - 0.252); p = 0.016; and I2 = 90.8%), and nano-curcumin was greater than placebo. Our meta-analysis suggests that curcumin and nano-curcumin are effective in reducing chronic pain. These findings have important implications for pharmaceutical science and may lead to the development of new treatments for chronic pain. However, further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Pooya Hajimirzaei
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Eyni
- Stem Cell and Regenerative Medicine Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Razmgir
- Department of Medical Library and Information, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simin Pirzadeh
- Stem Cell and Regenerative Medicine Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ayda Vasigh
- International Campus of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Yazdanian
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Calcaterra V, Cena H, Loperfido F, Porri D, Basilico S, Gazzola C, Ricciardi Rizzo C, Conti MV, Luppino G, Wasniewska MG, Zuccotti G. Functional Gastrointestinal Disorders and Childhood Obesity: The Role of Diet and Its Impact on Microbiota. Nutrients 2024; 17:123. [PMID: 39796556 PMCID: PMC11722901 DOI: 10.3390/nu17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Introduction Emerging evidence suggests an association between obesity and Functional Gastrointestinal Disorders (FGIDs). Childhood obesity and FGIDs share many common features, such as high prevalence in the pediatric population, risk factors related to diet and lifestyle, gut microbiota impairments, and psychological distress. This narrative review aims to summarize the main evidence regarding FGIDs in childhood obesity, with a specific focus on the role of diet and its impact on the microbiota. Additionally, the review highlights potential common-ground solutions for preventing and managing both obesity and FGIDs. Methods A comprehensive PubMed search was conducted. Keywords used included terms related to children and adolescents, obesity, functional gastrointestinal disorders, and microbiota. Results The review emphasizes the importance of holistic, multidisciplinary approaches to managing symptoms. In addition to nutrition education, physical activity, and medical care, complementary strategies such as psychological interventions and personalized dietary modifications (e.g., low-FODMAP and fiber-enriched diets) are critical. Given the interplay between gut microbiota alterations, obesity, and FGIDs, microbiota modulation through probiotics, prebiotics, and integrative support shows significant promise. However, the variability in current evidence underlines the need for robust longitudinal studies to develop standardized protocols and maximize treatment efficacy. Conclusions Bridging gaps in knowledge and practice with an integrated, evidence-based framework could improve patient outcomes and deepen understanding of the complex relationship between metabolic and gastrointestinal health in children and adolescents.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (C.G.); (G.Z.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (S.B.); (C.R.R.); (M.V.C.)
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (S.B.); (C.R.R.); (M.V.C.)
| | - Debora Porri
- Pediatric Unit, AOU Policlinico “G. Martino”, 98122 Messina, Italy; (D.P.); (G.L.); (M.G.W.)
- Department of Human Pathology of Adulthood and Childhood, University of Messina, 98122 Messina, Italy
| | - Sara Basilico
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (S.B.); (C.R.R.); (M.V.C.)
| | - Cassandra Gazzola
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (C.G.); (G.Z.)
| | - Cecilia Ricciardi Rizzo
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (S.B.); (C.R.R.); (M.V.C.)
| | - Maria Vittoria Conti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (S.B.); (C.R.R.); (M.V.C.)
| | - Giovanni Luppino
- Pediatric Unit, AOU Policlinico “G. Martino”, 98122 Messina, Italy; (D.P.); (G.L.); (M.G.W.)
- Department of Human Pathology of Adulthood and Childhood, University of Messina, 98122 Messina, Italy
| | - Malgorzata Gabriela Wasniewska
- Pediatric Unit, AOU Policlinico “G. Martino”, 98122 Messina, Italy; (D.P.); (G.L.); (M.G.W.)
- Department of Human Pathology of Adulthood and Childhood, University of Messina, 98122 Messina, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (C.G.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy
| |
Collapse
|
15
|
Sendani AA, Farmani M, Kazemifard N, Ghavami SB, Sadeghi A. Molecular mechanisms and therapeutic effects of natural products in inflammatory bowel disease. CLINICAL NUTRITION OPEN SCIENCE 2024; 58:21-42. [DOI: 10.1016/j.nutos.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
16
|
Luo M, Han Y, Chen Y, Du H, Chen B, Gao Z, Wang Q, Cao Y, Xiao H. Unveiling the role of gut microbiota in curcumin metabolism using antibiotic-treated mice. Food Chem 2024; 460:140706. [PMID: 39096800 DOI: 10.1016/j.foodchem.2024.140706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Curcumin might exert its therapeutic effects by interacting with gut microbiota. However, the role of gut microbiota in curcumin metabolism in vivo remains poorly understood. To address this, we used antibiotics to deplete gut microbiota and compared curcumin metabolism in control and antibiotic-treated mice. Using Q-TOF and triple quadrupole mass spectrometry, we identified and quantified curcumin metabolites, revealing distinct metabolic pathways in these two mice groups. The novel metabolites, hexahydro-dimethyl-curcumin and hexahydro-didemethyl-curcumin were exclusively derived from gut microbiota. Additionally, gut bacteria deconjugated curcumin metabolites back into their bioactive forms. Moreover, control mice exhibited significantly lower curcumin degradation, suggesting a protective role of gut microbiota against degradation. In conclusion, our results indicated that gut microbiota might enhance the effectiveness of curcumin by deconjugation, production of active metabolites, and protection against degradation in the large intestine. This study enhances our understanding of the interactions between curcumin and gut microbiota.
Collapse
Affiliation(s)
- Minna Luo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Bin Chen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
17
|
Zhang J, Zhang R, Jin S, Feng X. Curcumin, a plant polyphenol with multiple physiological functions of improving antioxidation, anti-inflammation, immunomodulation and its application in poultry production. J Anim Physiol Anim Nutr (Berl) 2024; 108:1890-1905. [PMID: 39081000 DOI: 10.1111/jpn.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/11/2024] [Accepted: 07/18/2024] [Indexed: 11/07/2024]
Abstract
Finding environmentally friendly, effective and residue-free alternatives to antibiotics has become a research priority. This is due to the ban on antibiotics in animal feed. Curcumin is a polyphenol extracted from the rhizome of turmeric that has antioxidant, anti-inflammatory and immunomodulatory properties. Curcumin has been widely demonstrated as a traditional flavoured agent and herbal medicine in the fight against diseases. In recent years, curcumin has been extensively studied in animal production, especially in poultry production. This article reviews the source, structure, metabolism and biological functions of curcumin and focuses on the application of curcumin in poultry production. In terms of production performance, curcumin can improve the growth performance of poultry, increase the egg production rate of laying hens and alleviate the negative effects of heat stress on the production performance of poultry and livestock. In terms of meat quality, curcumin can improve poultry meat quality by regulating lipid metabolism and antioxidant capacity. In terms of health, curcumin can improve immunity. Since mycotoxins have been a major problem in poultry production, this article also reviews the role of curcumin in helping poultry resist toxins. It is hoped that the review in this article can provide a concrete theoretical basis and research ideas for the research and application of curcumin in the field of poultry.
Collapse
Affiliation(s)
- Jingyang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ruoshi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Sanjun Jin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Luo M, Wong S, Thanuphol P, Du H, Han Y, Lin M, Guo X, Bechtel TD, Gibbons JG, Xiao H. Isolation and Identification of Human Gut Bacteria Capable of Converting Curcumin to Its Hydrogenated Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20410-20418. [PMID: 39240774 DOI: 10.1021/acs.jafc.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Curcumin is widely recognized for its health benefits, though the role of gut microbiota in its metabolic transformation was not well studied. In this study, bacterial strains capable of metabolizing curcumin were isolated from human stool samples. Using 16S rRNA and whole-genome sequencing, two novel strains (Clostridium butyricum UMA_cur1 and Escherichia coli UMA_cur2) were identified. In addition, the metabolic products were analyzed using liquid chromatography-mass spectrometry. These strains efficiently converted curcumin into dihydro-curcumin (DHC) and tetrahydro-curcumin (THC). Notably, E. coli UMA_cur2 also produced hexahydro-curcumin (HHC) and octahydro-curcumin (OHC), marking the first identification of a strain capable of such transformations. The absence of the YncB gene (typically involved in curcumin conversion) in C. butyricum UMA_cur1 suggests an alternative metabolic pathway. Curcumin metabolism begins during the stationary growth phase, indicating that it is not crucial for primary growth functions. Furthermore, E. coli UMA_cur2 produced these metabolites sequentially, starting with DHC and THC and progressing to HHC and OHC. These findings identified two novel strains that can metabolize curcumin to hydrogenated metabolites, which enhance our understanding of the interaction between curcumin and gut microbiota.
Collapse
Affiliation(s)
- Minna Luo
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Siu Wong
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Pongpol Thanuphol
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Margaret Lin
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xiaojing Guo
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Tyler D Bechtel
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
19
|
Razavi SM, Khayatan D, Najafi Arab Z, Hosseini Y, Khanahmadi M, Momtaz S, Jamialahmadi T, Johnston TP, Abdolghaffari AH, Sahebkar A. Protective effects of curcumin against spinal cord injury. JOR Spine 2024; 7:e1364. [PMID: 39144499 PMCID: PMC11322827 DOI: 10.1002/jsp2.1364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 08/16/2024] Open
Abstract
Background In parallel with population aging, the prevalence of neurological and neurodegenerative diseases has been dramatically increasing over the past few decades. Neurodegenerative diseases reduce the quality of life of patients and impose a high cost on the health system. These slowly progressive diseases can cause functional, perceptual, and behavioral deficits in patients. Therefore, neurodegenerative impairments have always been an interesting subject for scientists and clinicians. One of these diseases is spinal cord injury (SCI). SCI can lead to irreversible damage and is classified into two main subtypes: traumatic and non-traumatic, each with very different pathophysiological features. Aims This review aims to gather relevant information about the beneficial effects of curcumin (Cur), with specific emphasis on its anti-inflammatory properties towards spinal cord injury (SCI) patients. Materials & Methods The review collates data from extensive in-vitro, in-vivo, and clinical trials documenting the effects of CUR on SCI. It examines the modulation of pathophysiological pathways and regulation of the inflammatory cascades after CUR administration. Results Various pathophysiological processes involving the nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NF-kB), and transforming growth factor beta (TGF-β) signaling pathways have been suggested to exacerbate damages resulting from SCI. CUR administration showed to modulate these signaling pathways which lead to attenuation of SCI complications. Discussion Anti-inflammatory compounds, particularly CUR, can modulate these pathophysiological pathways and regulate the inflammatory cascades. CUR, a well-known natural product with significant anti-inflammatory effects, has been extensively documented in experimental and clinical trials. Conclusion Curcumin's potential to alter key steps in the Nrf2, NF-kB, and TGF-β signaling pathways suggests that it may play a role in attenuating SCI complications.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Maryam Khanahmadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Saeideh Momtaz
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
- Medical Toxicology Research Center, Mashhad University of Medical SciencesMashhadIran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical SciencesSchool of Pharmacy, University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research Center, Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
20
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
21
|
Servida S, Piontini A, Gori F, Tomaino L, Moroncini G, De Gennaro Colonna V, La Vecchia C, Vigna L. Curcumin and Gut Microbiota: A Narrative Overview with Focus on Glycemic Control. Int J Mol Sci 2024; 25:7710. [PMID: 39062953 PMCID: PMC11277527 DOI: 10.3390/ijms25147710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Turmeric is a spice widely used in China, Southeast Asia, and in traditional Ayurvedic medicine. Its safety profile and efficacy as an antioxidant, anti-inflammatory, antimicrobial, antitumor, antidiabetic, and anti-obesity agent have led to extensive research into its potential role in preventing and treating metabolic diseases. The active compound in turmeric is curcumin, which exhibits low systemic bioavailability after oral administration. However, it is detectable in the gut, where it bidirectionally interacts with the gut microbiota (GM), which plays a crucial role in maintaining host health. The favorable effects of curcumin, particularly its hypoglycemic properties, are linked to alteration in intestinal dysbiosis observed in type 2 diabetes mellitus and metabolic syndrome patients. Restoration of the eubiotic GM may contribute to glycemic homeostasis. Preclinical and clinical studies have demonstrated the involvement of the GM in the regulation of glucose and lipid metabolism. Although the underlying mechanism remains incompletely understood, intestinal dysbiosis is associated with insulin resistance, hyperglycemia, and low-grade inflammation. In the present overview, we summarize the biological properties of curcumin, focusing on its link with GM and, therefore, on its potential role in metabolic diseases.
Collapse
Affiliation(s)
- Simona Servida
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.S.); (A.P.); (V.D.G.C.)
| | - Alessandra Piontini
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.S.); (A.P.); (V.D.G.C.)
| | - Francesca Gori
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Laura Tomaino
- Postgraduate School of Emergency Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy;
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy;
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy;
| | - Vito De Gennaro Colonna
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.S.); (A.P.); (V.D.G.C.)
- Department of Clinical Science and Community Health, DISSCO, Università degli Studi, 20122 Milan, Italy;
| | - Carlo La Vecchia
- Department of Clinical Science and Community Health, DISSCO, Università degli Studi, 20122 Milan, Italy;
| | - Luisella Vigna
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.S.); (A.P.); (V.D.G.C.)
| |
Collapse
|
22
|
Zhou M, Li R, Hua H, Dai Y, Yin Z, Li L, Zeng J, Yang M, Zhao J, Tan R. The role of tetrahydrocurcumin in disease prevention and treatment. Food Funct 2024; 15:6798-6824. [PMID: 38836693 DOI: 10.1039/d3fo05739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In recent decades, natural compounds derived from herbal medicine or dietary sources have played important roles in prevention and treatment of various diseases and have attracted more and more attention. Curcumin, extracted from the Curcumae Longae Rhizoma and widely used as food spice and coloring agent, has been proven to possess high pharmacological value. However, the pharmacological application of curcumin is limited due to its poor systemic bioavailability. As a major active metabolite of curcumin, tetrahydrocurcumin (THC) has higher bioavailability and stability than curcumin. Increasing evidence confirmed that THC had a wide range of biological activities and significant treatment effects on diseases. In this paper, we reviewed the research progress on the biological activities and therapeutic potential of THC on different diseases such as neurological disorders, metabolic syndromes, cancers, and inflammatory diseases. The extensive pharmacological effects of THC involve the modulation of various signaling transduction pathways including MAPK, JAK/STAT, NF-κB, Nrf2, PI3K/Akt/mTOR, AMPK, Wnt/β-catenin. In addition, the pharmacokinetics, drug combination and toxicology of THC were discussed, thus providing scientific basis for the safe application of THC and the development of its dietary supplements and drugs.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Hua
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Mengni Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
- National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
23
|
Belcher S, Flores-Iga G, Natarajan P, Crummett G, Talavera-Caro A, Gracia-Rodriguez C, Lopez-Ortiz C, Das A, Adjeroh DA, Nimmakayala P, Balagurusamy N, Reddy UK. Dietary Curcumin Intake and Its Effects on the Transcriptome and Metabolome of Drosophila melanogaster. Int J Mol Sci 2024; 25:6559. [PMID: 38928266 PMCID: PMC11203963 DOI: 10.3390/ijms25126559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin's effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools-transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer's, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.
Collapse
Affiliation(s)
- Samantha Belcher
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Gerardo Flores-Iga
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Garrett Crummett
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Alicia Talavera-Caro
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Amartya Das
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Donald A. Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| |
Collapse
|
24
|
Matthewman C, Krishnakumar IM, Swick AG. Review: bioavailability and efficacy of 'free' curcuminoids from curcumagalactomannoside (CGM) curcumin formulation. Nutr Res Rev 2024; 37:14-31. [PMID: 36655498 DOI: 10.1017/s0954422423000033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The golden spice turmeric with its main bioactive component curcumin is one of the most popular and extensively studied nutraceuticals. Despite numerous pre-clinical studies reporting positive pharmacodynamics of turmeric extracts and curcumin, the main issues in translating the pharmacological effects to clinical efficacy have been to overcome its poor pharmacokinetics and to deliver significant amounts of the biologically relevant forms of the actives to various tissues. This review is aimed at providing a first critical evaluation of the current published literature with the novel curcumagalactomannoside (CGM) formulation of curcumin using fenugreek galactomannan dietary fibre, specifically designed to address curcumin poor pharmacokinetics. We describe CGM and its technology as a food-grade formulation to deliver 'free' unconjugated curcuminoids with enhanced bioavailability and improved pharmacokinetic properties. The therapeutic relevance of improving bioavailability of 'free' curcuminoids and some of the technical challenges in the measurement of the 'free' form of curcuminoids in plasma and tissues are also discussed. A total of twenty-six manuscripts are reviewed here, including fourteen pre-clinical and twelve clinical studies that have investigated CGM pharmacokinetics, safety and efficacy in various animal models and human conditions. Overall current scientific evidence suggests CGM formulation has improved bioavailability and tissue distribution of the biologically relevant unconjugated forms of turmeric actives called 'free' curcuminoids that may be responsible for the superior clinical outcomes reported with CGM treatments in comparison with unformulated standard curcumin across multiple studies.
Collapse
|
25
|
He J, Ji Z, Sang J, Quan H, Zhang H, Lu H, Zheng J, Wang S, Ge RS, Li X. Potent inhibition of human and rat 17β-hydroxysteroid dehydrogenase 1 by curcuminoids and the metabolites: 3D QSAR and in silico docking analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:433-456. [PMID: 38785078 DOI: 10.1080/1062936x.2024.2355529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Curcumin, an extensively utilized natural pigment in the food industry, has attracted considerable attention due to its potential therapeutic effects, such as anti-tumorigenic and anti-inflammatory activities. The enzyme 17β-Hydroxysteroid dehydrogenase 1 (17β-HSD1) holds a crucial position in oestradiol production and exhibits significant involvement in oestrogen-responsive breast cancers and endometriosis. This study investigated the inhibitory effects of curcuminoids, metabolites, and analogues on 17β-HSD1, a key enzyme in oestradiol synthesis. Screening 10 compounds, including demethoxycurcumin (IC50, 3.97 μM) and dihydrocurcumin (IC50, 5.84 μM), against human and rat 17β-HSD1 revealed varying inhibitory potencies. These compounds suppressed oestradiol secretion in human BeWo cells at ≥ 5-10 μM. 3D-Quantitative structure-activity relationship (3D-QSAR) and molecular docking analyses elucidated the interaction mechanisms. Docking studies and Gromacs simulations suggested competitive or mixed binding to the steroid or NADPH/steroid binding sites of 17β-HSD1. Predictive 3D-QSAR models highlighted the importance of hydrophobic regions and hydrogen bonding in inhibiting 17β-HSD1 activity. In conclusion, this study provides valuable insights into the inhibitory effects and mode of action of curcuminoids, metabolites, and analogues on 17β-HSD1, which may have implications in the field of hormone-related disorders.
Collapse
Affiliation(s)
- J He
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Z Ji
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - J Sang
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - H Quan
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - H Zhang
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - H Lu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - J Zheng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - S Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - R S Ge
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang Province, China
| | - X Li
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang Province, China
| |
Collapse
|
26
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
27
|
Ravera S, Pasquale C, Panfoli I, Bozzo M, Agas D, Bruno S, Hamblin MR, Amaroli A. Assessing the Effects of Curcumin and 450 nm Photodynamic Therapy on Oxidative Metabolism and Cell Cycle in Head and Neck Squamous Cell Carcinoma: An In Vitro Study. Cancers (Basel) 2024; 16:1642. [PMID: 38730594 PMCID: PMC11083672 DOI: 10.3390/cancers16091642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Oral cancer is the 16th most common malignant tumor worldwide. The risk of recurrence and mortality is high, and the survival rate is low over the following five years. Recent studies have shown that curcumin causes apoptosis in tumor cells by affecting FoF1-ATP synthase (ATP synthase) activity, which, in turn, hinders cell energy production, leading to a loss of cell viability. Additionally, irradiation of curcumin within cells can intensify its detrimental effects on cancer cell viability and proliferation (photodynamic therapy). We treated the OHSU-974 cell line, a model for human head and neck squamous cell carcinoma (HNSCC), and primary human fibroblasts. The treatment involved a 1 h exposure of cells to 0.1, 1.0, and 10 μM curcumin, followed or not by irradiation or the addition of the same concentration of pre-irradiated curcumin. Both instances involved a diode laser with a wavelength of 450 nm (0.25 W, 15 J, 60 s, 1 cm2, continuous wave mode). The treatment with non-irradiated 1 and 10 µM curcumin caused ATP synthase inhibition and a consequent reduction in the oxygen consumption rate (OCR) and the ATP/AMP ratio, which was associated with a decrement in lipid peroxidation accumulation and a slight increase in glutathione reductase and catalase activity. By contrast, 60 s curcumin irradiation with 0.25 W-450 nm caused a further oxidative phosphorylation (OxPhos) metabolism impairment that induced an uncoupling between respiration and energy production, leading to increased oxidative damage, a cellular growth and viability reduction, and a cell cycle block in the G1 phase. These effects appeared to be more evident when the curcumin was irradiated after cell incubation. Since cells belonging to the HNSCC microenvironment support tumor development, curcumin's effects have been analyzed on primary human fibroblasts, and a decrease in cell energy status has been observed with both irradiated and non-irradiated curcumin and an increase in oxidative lipid damage and a slowing of cell growth were observed when the curcumin was irradiated before or after cellular administration. Thus, although curcumin displays an anti-cancer role on OHSU-974 in its native form, photoactivation seems to enhance its effects, making it effective even at low dosages.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences (DISC), University of Genoa, 16132 Genoa, Italy;
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy
| | - Matteo Bozzo
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (A.A.)
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Silvia Bruno
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg 2092, South Africa;
| | - Andrea Amaroli
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (A.A.)
| |
Collapse
|
28
|
Kasetsuwan N, Reinprayoon U, Uthaithammarat L, Sereemaspun A, Sae-Liang N, Chaichompoo W, Suksamrarn A. Anti-inflammatory effect of curcuminoids and their analogs in hyperosmotic human corneal limbus epithelial cells. BMC Complement Med Ther 2024; 24:172. [PMID: 38654265 DOI: 10.1186/s12906-024-04448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND To assess the efficacy of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin [BDC]) and their analogs (tetrahydrocurcumin [THC], tetrahydrodemethoxycurcumin [THDC], tetrahydrobisdemethoxycurcumin) in reducing inflammatory cytokines and their toxicity to primary human corneal limbal epithelial cells, these cells were cultured and exposed to these compounds. METHODS The PrestoBlue assay assessed cell viability after treatment. Anti-inflammatory effects on hyperosmotic cells were determined using real-time polymerase chain reaction and significance was gauged using one-way analysis of variance and Tukey's tests, considering p-values < 0.05 as significant. RESULTS Curcuminoids and their analogs, at 1, 10, and 100 µM, exhibited no effect on cell viability compared to controls. However, cyclosporin A 1:500 significantly reduced cell viability more than most curcuminoid treatments, except 100 µM curcumin and BDC. All tested curcuminoids and analogs at these concentrations significantly decreased mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-17 A, matrix metallopeptidase-9, and intercellular adhesion molecule-1 after 90 mM NaCl stimulation compared to untreated cells. Furthermore, proinflammatory cytokine levels from hyperosmotic cells treated with 1, 10, and 100 µM curcumin, 100 µM BDC, 100 µM THC, 1 and 100 µM THDC mirrored those treated with cyclosporin A 1:500. CONCLUSION The anti-inflammatory efficiency of 1 and 10 µM curcumin, 100 µM THC, 1 and 100 µM THDC was comparable to that of cyclosporin A 1:500 while maintaining cell viability.
Collapse
Affiliation(s)
- Ngamjit Kasetsuwan
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
- Department of Ophthalmology, Center of Excellence for Cornea and Stem Cell Transplantation, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| | - Usanee Reinprayoon
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Department of Ophthalmology, Center of Excellence for Cornea and Stem Cell Transplantation, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Lita Uthaithammarat
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Amornpun Sereemaspun
- Department of Anatomy, Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nutchanart Sae-Liang
- Department of Anatomy, Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| |
Collapse
|
29
|
Ji Z, Sang J, Wang H, Xia M, Hao T, Chen L, Lu H, Wang S, Yao M, Li L, Ge RS. Demethoxylation of curcumin enhances its inhibition on human and rat 17β-hydroxysteroid dehydrogenase 3: QSAR structure-activity relationship and in silico docking analysis. Food Chem Toxicol 2024; 186:114489. [PMID: 38360388 DOI: 10.1016/j.fct.2024.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Curcuminoids have many pharmacological effects. They or their metabolites may have side effects by suppressing 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3). Herein, we investigated the inhibition of curcuminoids and their metabolites on human and rat 17β-HSD3 and analyzed their structure-activity relationship (SAR) and performed in silico docking. Curcuminoids and their metabolites ranked in terms of IC50 values against human 17β-HSD3 were bisdemethoxycurcumin (0.61 μM) > curcumin (8.63 μM) > demethoxycurcumin (9.59 μM) > tetrahydrocurcumin (22.04 μM) > cyclocurcumin (29.14 μM), and those against rat 17β-HSD3 were bisdemethoxycurcumin (3.94 μM) > demethoxycurcumin (4.98 μM) > curcumin (9.62 μM) > tetrahydrocurcumin (45.82 μM) > cyclocurcumin (143.5 μM). The aforementioned chemicals were mixed inhibitors for both enzymes. Molecular docking analysis revealed that they bind to the domain between the androstenedione and NADPH active sites of 17β-HSD3. Bivariate correlation analysis showed a positive correlation between LogP and pKa of curcumin derivatives with their IC50 values. Additionally, a 3D-QSAR analysis revealed that a pharmacophore model consisting of three hydrogen bond acceptor regions and one hydrogen bond donor region provided a better fit for bisdemethoxycurcumin compared to curcumin. In conclusion, curcuminoids and their metabolites possess the ability to inhibit androgen biosynthesis by directly targeting human and rat 17β-HSD3. The inhibitory strength of these compounds is influenced by their lipophilicity and ionization characteristics.
Collapse
Affiliation(s)
- Zhongyao Ji
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianmin Sang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hong Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Miaomiao Xia
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ting Hao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Liping Chen
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Han Lu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shaowei Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ming Yao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Linxi Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
30
|
Nájera-Maldonado JM, Salazar R, Alvarez-Fitz P, Acevedo-Quiroz M, Flores-Alfaro E, Hernández-Sotelo D, Espinoza-Rojo M, Ramírez M. Phenolic Compounds of Therapeutic Interest in Neuroprotection. J Xenobiot 2024; 14:227-246. [PMID: 38390994 PMCID: PMC10885129 DOI: 10.3390/jox14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
The number of elderly people is projected to double in the next 50 years worldwide, resulting in an increased prevalence of neurodegenerative diseases. Aging causes changes in brain tissue homeostasis, thus contributing to the development of neurodegenerative disorders. Current treatments are not entirely effective, so alternative treatments or adjuvant agents are being actively sought. Antioxidant properties of phenolic compounds are of particular interest for neurodegenerative diseases whose psychopathological mechanisms strongly rely on oxidative stress at the brain level. Moreover, phenolic compounds display other advantages such as the permeability of the blood-brain barrier (BBB) and the interesting molecular mechanisms that we reviewed in this work. We began by briefly outlining the physiopathology of neurodegenerative diseases to understand the mechanisms that result in irreversible brain damage, then we provided an overall classification of the phenolic compounds that would be addressed later. We reviewed in vitro and in vivo studies, as well as some clinical trials in which neuroprotective mechanisms were demonstrated in models of different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), ischemia, and traumatic brain injury (TBI).
Collapse
Affiliation(s)
| | - Ricardo Salazar
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Patricia Alvarez-Fitz
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Macdiel Acevedo-Quiroz
- National Technological Institute of Mexico, Technological/IT Institute of Zacatepec, Zacatepec 62780, Mexico
| | - Eugenia Flores-Alfaro
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Daniel Hernández-Sotelo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Espinoza-Rojo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Ramírez
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| |
Collapse
|
31
|
Zhou Y, Zhang Y, Botchway BOA, Wang X, Liu X. Curcumin can improve spinal cord injury by inhibiting DNA methylation. Mol Cell Biochem 2024; 479:351-362. [PMID: 37076656 DOI: 10.1007/s11010-023-04731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
Spinal cord injury (SCI) is a serious central nervous system disease. Traumatic SCI often causes persistent neurological deficits below the injury level. Epigenetic changes occur after SCI. Studies have shown DNA methylation to be a key player in nerve regeneration and remodeling, and in regulating some pathophysiological characteristics of SCI. Curcumin is a natural polyphenol from turmeric. It has anti-inflammatory, antioxidant, and neuroprotective effects, and can mitigate the cell and tissue damage caused by SCI. This report analyzed the specific functions of DNA methylation in central nervous system diseases, especially traumatic brain injury and SCI. DNA methylation can regulate the level of gene expressions in the central nervous system. Therefore, pharmacological interventions regulating DNA methylation may be promising for SCI.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Bupa Cromwell Hospital, London, UK
| | - Xichen Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
32
|
Imran M, Saeed F, Alsagaby SA, Imran A, Ahmad I, El Ghorab AH, Abdelgawad MA, Qaisrani TB, Mehmood T, Umar M, Mumtaz MA, Sajid A, Manzoor Q, Hussain M, Al Abdulmonem W, Al Jbawi E. Curcumin: recent updates on gastrointestinal cancers. CYTA - JOURNAL OF FOOD 2023; 21:502-513. [DOI: 10.1080/19476337.2023.2245009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/26/2023] [Indexed: 01/04/2025]
Affiliation(s)
- Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ali Imran
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ishtiaque Ahmad
- Department of Dairy Technology, FAPT, Ravi Campus, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Ahmad H. El Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Tahira Batool Qaisrani
- Department of Agricultural Engineering and Technology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Tahir Mehmood
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maryam Umar
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | | | - Arfaa Sajid
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Qaisar Manzoor
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | |
Collapse
|
33
|
Guariglia M, Saba F, Rosso C, Bugianesi E. Molecular Mechanisms of Curcumin in the Pathogenesis of Metabolic Dysfunction Associated Steatotic Liver Disease. Nutrients 2023; 15:5053. [PMID: 38140312 PMCID: PMC10745597 DOI: 10.3390/nu15245053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial condition characterized by insulin resistance, oxidative stress, chronic low-grade inflammation, and sometimes fibrosis. To date, no effective pharmacological therapy has been approved for the treatment of metabolic-associated steatohepatitis (MASH), the progressive form of MASLD. Recently, numerous in vitro and in vivo studies have described the efficacy of nutraceutical compounds in the diet has been tested. Among them, curcumin is the most widely used polyphenol in the diet showing potent anti-inflammatory and antifibrotic activities. This review aims to summarize the most important basic studies (in vitro and animal models studies), describing the molecular mechanisms by which curcumin acts in the context of MASLD, providing the rationale for its effective translational use in humans.
Collapse
Affiliation(s)
| | | | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.G.); (F.S.)
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.G.); (F.S.)
| |
Collapse
|
34
|
Qiao X, Ye L, Lu J, Pan C, Fei Q, Zhu Y, Li H, Lin H, Ge RS, Wang Y. Curcumin analogues exert potent inhibition on human and rat gonadal 3β-hydroxysteroid dehydrogenases as potential therapeutic agents: structure-activity relationship and in silico docking. J Enzyme Inhib Med Chem 2023; 38:2205052. [PMID: 37184069 DOI: 10.1080/14756366.2023.2205052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Curcuminoids are functional food additives, and the effect on gonadal hormone biosynthesis remains unclear. Gonads contain 3β-hydroxysteroid dehydrogenase isoforms, h3β-HSD2 (humans) and r3β-HSD1 (rats), which catalyse pregnenolone into progesterone. The potency and mechanisms of curcuminoids to inhibit 3β-HSD activity were explored. The inhibitory potency was bisdemethoxycurcumin (IC50, 1.68 µM) >demethoxycurcumin (3.27 µM) > curcumin (13.87 µM) > tetrahydrocurcumin (109.0 µM) > dihydrocurcumin and octahydrocurcumin on KGN cell h3β-HSD2, while that was bisdemethoxycurcumin (1.22 µM) >demethoxycurcumin (2.18 µM) > curcumin (4.12 µM) > tetrahydrocurcumin (102.61 µM) > dihydrocurcumin and octahydrocurcumin on testicular r3β-HSD1. All curcuminoids inhibited progesterone secretion by KGN cells under basal and forskolin-stimulated conditions at >10 µM. Docking analysis showed that curcuminoids bind steroid-active site with mixed or competitive mode. In conclusion, curcuminoids inhibit gonadal 3β-HSD activity and de-methoxylation of curcumin increases inhibitory potency and metabolism of curcumin by saturation of carbon chain losses inhibitory potency.
Collapse
Affiliation(s)
- Xinyi Qiao
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Ye
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialin Lu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengshuang Pan
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianjin Fei
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, China
| | - Han Lin
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, China
| |
Collapse
|
35
|
Elbanna SA, Ebada HMK, Abdallah OY, Essawy MM, Abdelhamid HM, Barakat HS. Novel tetrahydrocurcumin integrated mucoadhesive nanocomposite κ-carrageenan/xanthan gum sponges: a strategy for effective local treatment of oral cancerous and precancerous lesions. Drug Deliv 2023; 30:2254530. [PMID: 37668361 PMCID: PMC10481765 DOI: 10.1080/10717544.2023.2254530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
Oral cancer is one of the leading causes of death worldwide. Oral precancerous lesions (OPL) are the precursors of oral cancer, with varying degrees of progression. Tetrahydrocurcumin (THC) is a major metabolite of curcumin with superior anticancer properties against various types of cancer. However, THC's clinical outcome is limited by its poor aqueous solubility. Herein, we developed novel mucoadhesive biopolymer-based composite sponges for buccal delivery of THC, exploiting nanotechnology and mucoadhesion for efficient prevention and treatment of oral cancer. Firstly, THC-nanocrystals (THC-NC) were formulated and characterized for subsequent loading into mucoadhesive composite sponges. The anticancer activity of THC-NC was assessed on a human tongue squamous carcinoma cell line (SCC-4). Finally, the chemopreventive activity of THC-NC loaded sponges (THC-NC-S) was examined in DMBA-induced hamster OPL. The selected THC-NC exhibited a particle size of 532.68 ± 13.20 nm and a zeta potential of -46.08 ± 1.12 mV. Moreover, THC-NC enhanced the anticancer effect against SCC-4 with an IC50 value of 80 µg/mL. THC-NC-S exhibited good mucoadhesion properties (0.24 ± 0.02 N) with sustained drug release, where 90% of THC was released over 4 days. Furthermore, THC-NC-S had a magnificent potential for maintaining high chemopreventive activity, as demonstrated by significant regression in the dysplasia degree and a decline in cyclin D1 (control: 40.4 ± 12.5, THC-NC-S: 12.07 ± 5.2), culminating in significant amelioration after 25 days of treatment. Conclusively, novel THC-NC-S represent a promising platform for local therapy of OPL, preventing their malignant transformation into cancer.
Collapse
Affiliation(s)
- Shimaa A. Elbanna
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Heba M. K. Ebada
- Central Lab, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y. Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M. Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hend M. Abdelhamid
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hebatallah S. Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
36
|
Teixé-Roig J, Oms-Oliu G, Artiga-Artigas M, Odriozola-Serrano I, Martín-Belloso O. Enhanced in vivo absorption and biodistribution of curcumin loaded into emulsions with high medium-chain triglyceride content. Food Res Int 2023; 174:113595. [PMID: 37986458 DOI: 10.1016/j.foodres.2023.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
The health benefits of curcumin have been demonstrated by several clinical studies, but its low bioavailability compromises its functionality. In this regard, emulsions have proven to be effective encapsulation systems for curcumin. Nevertheless, emulsions with a high oil content (50%) may offer some advantages due to the large amount of compound they can incorporate. Therefore, the aim of this work was to study the pharmacokinetics and biodistribution of curcumin when carried in optimized emulsions containing 50% MCT oil and a plant-based emulsifier (soybean lecithin) at 2 h or 4 h post-oral administration to rats. The most stable emulsion was obtained using 50% of oil and a surfactant-oil-ratio 0.1, through a microfluidization process. After the oral administration of the systems (150 mg curcumin/kg body weight), curcumin glucuronide was the main compound present in plasma (AUC0-t = 1556.3 ng·h·ml-1), especially at 2-4 h post-administration. The total curcuminoid bioavailability was increased by 10.6-fold when rats were fed with the curcumin emulsion rather than with a control suspension. Moreover, rats fed with the emulsion showed the highest accumulation of free curcuminoids, which present the highest biological activity, in the liver (129 ng curcumin/g tissue) and brown adipose tissue (193 ng curcumin/g tissue). The obtained results are of great interest since the presence of curcumin in the brown adipose tissue has been shown to play a relevant role in the prevention of obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - María Artiga-Artigas
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Isabel Odriozola-Serrano
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
37
|
Łanoszka K, Vlčková N. Natural Sirtuin1 Activators and Atherosclerosis: an Overview. Curr Atheroscler Rep 2023; 25:979-994. [PMID: 38038821 PMCID: PMC10770200 DOI: 10.1007/s11883-023-01165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the most recent findings investigating the impact of several natural sirtuin (SIRT) activators, particularly SIRT1, on atherosclerosis. RECENT FINDINGS Sirtuins that belong to a family of class III histone deacetylases are believed to be novel therapeutic targets to treat age-related and chronic diseases. SIRT expression is regulated by small molecules called SIRT-activating compounds that can be found in natural food products. SIRT1 may exert protective effects in atherosclerosis, which is said to be a major cause of cardiovascular diseases. Most of the evidence supporting the beneficial effects of these natural compounds comes from in vitro or animal-based studies, while there have been particularly few or inconsistent human-based studies evaluating their long-term impact in recent years. SIRT1 activation has been demonstrated to mitigate or prevent atherosclerosis through various mechanisms. However, further research is required to determine the optimal SIRT activator dosage and to establish a stronger correlation between health effects and the administration of bioactive compounds. Additionally, conducting more human clinical trials is necessary to ensure the safety of these compounds for preventing atherosclerosis development.
Collapse
Affiliation(s)
- Karolina Łanoszka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland
| | - Nimasha Vlčková
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland.
| |
Collapse
|
38
|
Moetlediwa MT, Ramashia R, Pheiffer C, Titinchi SJJ, Mazibuko-Mbeje SE, Jack BU. Therapeutic Effects of Curcumin Derivatives against Obesity and Associated Metabolic Complications: A Review of In Vitro and In Vivo Studies. Int J Mol Sci 2023; 24:14366. [PMID: 37762669 PMCID: PMC10531575 DOI: 10.3390/ijms241814366] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity is a major cause of morbidity and mortality globally, increasing the risk for chronic diseases. Thus, the need to identify more effective anti-obesity agents has spurred significant interest in the health-promoting properties of natural compounds. Of these, curcumin, the most abundant and bioactive constituent of turmeric, possesses a variety of health benefits including anti-obesity effects. However, despite its anti-obesity potential, curcumin has demonstrated poor bioavailability, which limits its clinical applicability. Synthesizing curcumin derivatives, which are structurally modified analogs of curcumin, has been postulated to improve bioavailability while maintaining therapeutic efficacy. This review summarizes in vitro and in vivo studies that assessed the effects of curcumin derivatives against obesity and its associated metabolic complications. We identified eight synthetic curcumin derivatives that were shown to ameliorate obesity and metabolic dysfunction in diet-induced obese animal models, while five of these derivatives also attenuated obesity and associated metabolic complications in cell culture models. These curcumin derivatives modulated adipogenesis, lipid metabolism, insulin resistance, steatosis, lipotoxicity, inflammation, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, fibrosis, and dyslipidemia to a greater extent than curcumin. In conclusion, the findings from this review show that compared to curcumin, synthetic curcumin derivatives present potential candidates for further development as therapeutic agents to modulate obesity and obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Marakiya T. Moetlediwa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa; (M.T.M.); (R.R.); (C.P.)
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa;
| | - Rudzani Ramashia
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa; (M.T.M.); (R.R.); (C.P.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 7505, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa; (M.T.M.); (R.R.); (C.P.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 7505, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Salam J. J. Titinchi
- Department of Chemistry, Faculty of Natural Science, University of the Western Cape, Bellville 7535, South Africa;
| | | | - Babalwa U. Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa; (M.T.M.); (R.R.); (C.P.)
| |
Collapse
|
39
|
He Y, Wang H, Lin S, Chen T, Chang D, Sun Y, Wang C, Liu Y, Lu Y, Song J, Li S, Xu W, Lin Y, Zheng Y, Zhou X, Huang Q, Huang M. Advanced effect of curcumin and resveratrol on mitigating hepatic steatosis in metabolic associated fatty liver disease via the PI3K/AKT/mTOR and HIF-1/VEGF cascade. Biomed Pharmacother 2023; 165:115279. [PMID: 37544281 DOI: 10.1016/j.biopha.2023.115279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease that has no viable treatment. Curcumin (Cur) and resveratrol (Res) are two natural products that have been studied for their potential to ameliorate MAFLD. However, while these compounds have been investigated individually, their combined use and the potential for a synergistic or augmented effect remain unexplored. This study aims to investigate the effect of curcumin (Cur) and resveratrol (Res) as a potential combination therapy on MAFLD. Cur, Res and Cur+Res were tested in palmitic acid (PA)-induced-HepG2 cells. MAFLD model was established using Goto-Kakizaki rats. The animals were treated with vehicle control (model group), Cur (150 mg/kg), Res (150 mg/kg), Cur+Res (150 mg/kg, 8:2, w/w), or metformin (Met, positive control, 400 mg/kg/day) via oral gavage for 4 weeks. Wistar rats were used as the control group. Network pharmacology was conducted to elucidate the molecular actions of Cur and Res, followed by q-PCR and immunoblotting in vivo. Cur+Res exhibited synergistic effects in reducing triglyceride, total cholesterol and lipid accumulation in PA-induced HepG2 cells. The combination also markedly attenuated hepatic steatosis in the MAFLD rats. Network pharmacology illustrated that the interaction of Cur and Res was associated with the modulation of multiple molecular targets associated with the PI3K/AKT/mTOR and HIF-1 signaling pathways. Experimental results confirmed that Cur+Res nomalised the gene targets and protein expressions in the PI3K/AKT/mTOR and HIF-1 signaling pathways, including PI3K, mTOR, STAT-3, HIF-1α, and VEGF. The present study demonstrated an advanced effect of Cur and Res in combination to attenuate MAFLD, and the mechanism is at least partly associated with the modulation of the PI3K/AKT/mTOR and HIF-1 signaling pathways.
Collapse
Affiliation(s)
- Yuhui He
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Huan Wang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Shiling Lin
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Tao Chen
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Yibin Sun
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Chenxiang Wang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Yusheng Lu
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Jianyuan Song
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350100, China
| | - Shaohua Li
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Wen Xu
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Yanxiang Lin
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Yanfang Zheng
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China.
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia.
| | - Qiumei Huang
- Guangdong Food and Drug Vocational College, Guangzhou 510520, China.
| | - Mingqing Huang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China.
| |
Collapse
|
40
|
Tripathi DN, Rajendran S. A concise synthesis route to access bioactive natural products-dihydrocurcumins/1,7-diarylheptanoids. RSC Adv 2023; 13:25871-25876. [PMID: 37664191 PMCID: PMC10472796 DOI: 10.1039/d3ra05049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Dihydrocurcumin (DHCUR), a natural product and reductive metabolite of curcumin (CUR), is limitedly explored owing to its low bioavailability and limited accessibility due to lack of straightforward synthetic routes and poor yields with known methods. Herein, we report a concise and straightforward route to synthesize DHCUR and its analogs in excellent yields. Dihydroferuloylacetone is condensed with aldehydes to obtain desired DHCURs/1,7-diarylheptanoids in 81-90% yields. The developed protocol facilitates easy access to bioactive natural products, 1,7-diarylheptanoids and DHCUR, for therapeutic study.
Collapse
Affiliation(s)
- Datendra Nath Tripathi
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology Chennai campus Vandalur-Kelambakkam Road Chennai - 600127 Tamil Nadu India +91 44 3993 2555 +91 44 3993 1479
- Anthem Biosciences Private Limited No 49, Canara Bank Road, Hosur Rd, Electronics City Phase 1, Bommasandra Industrial Area Bengaluru Karnataka 560099 India
| | - Saravanakumar Rajendran
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology Chennai campus Vandalur-Kelambakkam Road Chennai - 600127 Tamil Nadu India +91 44 3993 2555 +91 44 3993 1479
| |
Collapse
|
41
|
Mukherjee D, Krishnan A. Therapeutic potential of curcumin and its nanoformulations for treating oral cancer. World J Methodol 2023; 13:29-45. [PMID: 37456978 PMCID: PMC10348080 DOI: 10.5662/wjm.v13.i3.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/14/2023] [Accepted: 04/14/2023] [Indexed: 06/14/2023] Open
Abstract
The global incidence of oral cancer has steadily increased in recent years and is associated with high morbidity and mortality. Oral cancer is the most common cancer in the head and neck region, and is predominantly of epithelial origin (i.e. squamous cell carcinoma). Oral cancer treatment modalities mainly include surgery with or without radiotherapy and chemotherapy. Though proven effective, chemotherapy has significant adverse effects with possibilities of tumor resistance to anticancer drugs and recurrence. Thus, there is an imperative need to identify suitable anticancer therapies that are highly precise with minimal side effects and to make oral cancer treatment effective and safer. Among the available adjuvant therapies is curcumin, a plant polyphenol isolated from the rhizome of the turmeric plant Curcuma longa. Curcumin has been demonstrated to have anti-infectious, antioxidant, anti-inflammatory, and anticarcinogenic properties. Curcumin has poor bioavailability, which has been overcome by its various analogues and nanoformulations, such as nanoparticles, liposome complexes, micelles, and phospholipid complexes. Studies have shown that the anticancer effects of curcumin are mediated by its action on multiple molecular targets, including activator protein 1, protein kinase B (Akt), nuclear factor κ-light-chain-enhancer of activated B cells, mitogen-activated protein kinase, epidermal growth factor receptor (EGFR) expression, and EGFR downstream signaling pathways. These targets play important roles in oral cancer pathogenesis, thereby making curcumin a promising adjuvant treatment modality. This review aims to summarize the different novel formulations of curcumin and their role in the treatment of oral cancer.
Collapse
Affiliation(s)
- Diptasree Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
- Department of Medicine, Apex Institute of Medical Science, Kolkata 700075, West Bengal, India
| | - Arunkumar Krishnan
- Department of Medicine Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| |
Collapse
|
42
|
Goenka S. Novel Hydrogenated Derivatives of Chemically Modified Curcumin CMC2.24 Are Potent Inhibitors of Melanogenesis in an In Vitro Model: Influence of Degree of Hydrogenation. Life (Basel) 2023; 13:1373. [PMID: 37374155 DOI: 10.3390/life13061373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Chemically modified curcumin, CMC2.24, is a promising therapeutic that has shown efficacy in ameliorating excessive pigmentation in our previous studies. However, its inherent disadvantages of color, stability, solubility, and cytotoxicity to melanocytes and keratinocytes at concentrations > 4 µg/mL posed challenges in its use in cosmetic formulations. To overcome these limitations, chemical reduction by hydrogenation of CMC2.24 (compound 1) was developed to yield products at different time points of hydrogenation (1 h, 2 h, 4 h, and 24 h) referred to as partially (2, 3, 4) or fully hydrogenated (5) products, and the effects of the degree of hydrogenation on melanogenesis in vitro were explored. Compound 1 and products 2-5 were evaluated using mushroom tyrosinase activity assays with two substrates (L-tyrosine and L-DOPA), then cellular assays using B16F10 mouse melanoma cells, MNT-1 human melanoma cells, and physiological normal human melanocytes (HEMn-DP cells). The cytotoxicity, melanin contents, cellular tyrosinase activities, and cellular oxidative stress were evaluated. Moreover, the recovery of melanin contents in HEMn-DP cells was also studied. Our results provide novel insights into the role of the degree of hydrogenation of compound 1 on the biological effects of melanogenesis, which were dependent on cell type. To the best of our knowledge, this is the first study to show that in HEMn-DP cells, the anti-melanogenic efficacy of the yellow-colored CMC2.24 is retained as early as 1 h after its hydrogenation; this efficacy is enhanced with longer durations of hydrogenation, with a robust efficacy achieved for the 24 h hydrogenated product 5 at the lowest concentration of 4 µg/mL. A similar potency could be achieved for product 4 at higher concentrations, although interestingly, both differ only by a minor amount of dihydro-CMC2.24. Our results indicate promise for using products 4 & 5 as a skin-lightener in cosmetic formulations with the advantages of lack of color combined with a potency much greater than that of the parent compound 1 at lower concentrations and reversibility of the effects on melanocytes. This, along with the easy synthesis and scale-up of the hydrogenation method for CMC2.24 and the documented higher solubility, stability, and bioavailability of tetrahydrocurcumin, provides further impetus to incorporating these derivatives in cosmetic formulations. The results of this study can help to extend the therapeutic window of the lead compound CMC2.24 by providing options for selecting partially or fully hydrogenated derivatives for cosmetic applications where a trade-off between color and efficacy is needed. Thus, the degree of hydrogenation can be tuned for desired biological effects. Further studies are warranted to evaluate the efficacy of products 4 & 5 at suppressing pigmentation in 3D skin-tissue equivalents and in vivo models.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
43
|
Huang SM, Liu SM, Tseng HY, Chen WC. Development and In Vitro Analysis of Layer-by-Layer Assembled Membranes for Potential Wound Dressing: Electrospun Curcumin/Gelatin as Middle Layer and Gentamicin/Polyvinyl Alcohol as Outer Layers. MEMBRANES 2023; 13:564. [PMID: 37367768 PMCID: PMC10304541 DOI: 10.3390/membranes13060564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Nanofibrous membranes made of hydrogels have high specific surface areas and are suitable as drug carriers. Multilayer membranes fabricated by continuous electrospinning could delay drug release by increasing diffusion pathways, which is beneficial for long-term wound care. In this experiment, polyvinyl alcohol (PVA) and gelatin were used as membrane substrates, and a sandwich PVA/gelatin/PVA structure of layer-by-layer membranes was prepared by electrospinning under different drug loading concentrations and spinning times. The outer layers on both sides were citric-acid-crosslinked PVA membranes loaded with gentamicin as an electrospinning solution, and the middle layer was a curcumin-loaded gelatin membrane for the study of release behavior, antibacterial activity, and biocompatibility. According to the in vitro release results, the multilayer membrane could release curcumin slowly; the release amount was about 55% less than that of the single layer within 4 days. Most of the prepared membranes showed no significant degradation during immersion, and the phosphonate-buffered saline absorption rate of the multilayer membrane was about five to six times its weight. The results of the antibacterial test showed that the multilayer membrane loaded with gentamicin had a good inhibitory effect on Staphylococcus aureus and Escherichia coli. In addition, the layer-by-layer assembled membrane was non-cytotoxic but detrimental to cell attachment at all gentamicin-carrying concentrations. This feature could be used as a wound dressing to reduce secondary damage to the wound when changing the dressing. This multilayer wound dressing could be applied to wounds in the future to reduce the risk of bacterial infection and help wounds heal.
Collapse
Affiliation(s)
- Ssu-Meng Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
| | - Hua-Yi Tseng
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
44
|
Dytrych P, Kejík Z, Hajduch J, Kaplánek R, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hoskovec D, Martásek P, Jakubek M. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed Pharmacother 2023; 163:114758. [PMID: 37141738 DOI: 10.1016/j.biopha.2023.114758] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Treatment of metastatic cancer is one of the biggest challenges in anticancer therapy. Curcumin is interesting nature polyphenolic compound with unique biological and medicinal effects, including repression of metastases. High impact studies imply that curcumin can modulate the immune system, independently target various metastatic signalling pathways, and repress migration and invasiveness of cancer cells. This review discusses the potential of curcumin as an antimetastatic agent and describes potential mechanisms of its antimetastatic activity. In addition, possible strategies (curcumin formulation, optimization of the method of administration and modification of its structure motif) to overcome its limitation such as low solubility and bioactivity are also presented. These strategies are discussed in the context of clinical trials and relevant biological studies.
Collapse
Affiliation(s)
- Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
45
|
Mishra AP, Singh P, Yadav S, Nigam M, Seidel V, Rodrigues CF. Role of the Dietary Phytochemical Curcumin in Targeting Cancer Cell Signalling Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091782. [PMID: 37176840 PMCID: PMC10180989 DOI: 10.3390/plants12091782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
The diarylheptanoid curcumin [(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione] is one of the phenolic pigments responsible for the yellow colour of turmeric (Curcuma longa L.). This phytochemical has gained much attention in recent years due to its therapeutic potential in cancer. A range of drug delivery approaches have been developed to optimise the pharmacokinetic profile of curcumin and ensure that it reaches its target sites. Curcumin exhibits numerous biological effects, including anti-inflammatory, cardioprotective, antidiabetic, and anti-aging activities. It has also been extensively studied for its role as a cancer chemopreventive and anticancer agent. This review focusses on the role of curcumin in targeting the cell signalling pathways involved in cancer, particularly via modulation of growth factors, transcription factors, kinases and other enzymes, pro-inflammatory cytokines, and pro-apoptotic and anti-apoptotic proteins. It is hoped that this study will help future work on the potential of curcumin to fight cancer.
Collapse
Affiliation(s)
- Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, Bloemfontein 9300, South Africa
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Celia Fortuna Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
46
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
47
|
Sang J, Chu J, Zhao X, Quan H, Ji Z, Wang S, Tang Y, Hu Z, Li H, Li L, Ge RS. Curcuminoids inhibit human and rat placental 3β-hydroxysteroid dehydrogenases: Structure-activity relationship and in silico docking analysis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116051. [PMID: 36572324 DOI: 10.1016/j.jep.2022.116051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, curcuma longa L has been applied to treat pain and tumour-related symptoms for over thousands of years. Curcuminoids, polyphenolic compounds, are the main pharmacological component from the rhizome of Curcuma longa L. Pharmacological investigations have found that curcuminoids have many pharmacological activities of anti-inflammatory, anti-tumour, and anti-metastasis. AIM OF THE STUDY 3β-Hydroxysteroid dehydrogenase (3β-HSD1) catalyses the production of steroid precursors for androgens and estrogens, which play an essential role in cancer metastasis. We explored the potency and mode of action of curcuminoids and their metabolites of inhibiting 3β-HSD1 activity and compared the species difference between human and rat. MATERIALS AND METHODS In this study, we investigated the direct inhibition of 6 curcuminoids on human placental 3β-HSD1 activity and compared the species-dependent difference in human 3β-HSD1 and rat placental homolog 3β-HSD4. RESULTS The inhibitory potency of curcuminoids on human 3β-HSD1 was demethoxycurcumin (IC50, 0.18 μM) > bisdemethoxycurcumin (0.21 μM)>curcumin (2.41 μM)> dihydrocurcumin (4.13 μM)>tetrahydrocurcumin (15.78 μM)>octahydrocurcumin (ineffective at 100 μM). The inhibitory potency of curcuminoids on rat 3β-HSD4 was bisdemethoxycurcumin (3.34 μM)>dihydrocurcumin (5.12 μM)>tetrahydrocurcumin (41.82 μM)>demethoxycurcumin (88.10 μM)>curcumin (137.06 μM)> octahydrocurcumin (ineffective at 100 μM). Human choriocarcinoma JAr cells with curcuminoid treatment showed that these chemicals had similar potency to inhibit progesterone secretion under basal and 8bromo-cAMP stimulated conditions. Docking analysis showed that all chemicals bind pregnenolone-binding site with mixed/competitive mode for 3β-HSD. CONCLUSION Some curcuminoids are potent human placental 3β-HSD1 inhibitors, possibly being potential drugs to treat prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Jianmin Sang
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jinjin Chu
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xin Zhao
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hehua Quan
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhongyao Ji
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhiyan Hu
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huitao Li
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Linxi Li
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
48
|
Marwa A, Jufri M. Nanoemulsion curcumin injection showed significant anti-inflammatory activities on carrageenan-induced paw edema in Sprague-Dawley rats. Heliyon 2023; 9:e15457. [PMID: 37151685 PMCID: PMC10161698 DOI: 10.1016/j.heliyon.2023.e15457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Medicinal plants are candidates for the discovery of potential new anti-inflammatory agents. Curcumin is the active compound found in turmeric root, which has high anti-inflammatory activity. One of the limitations of curcumin as a therapeutic agent is its low solubility in water and extensive first-pass effect metabolism. The aim of this study was to formulate curcumin nanoemulsion for parenteral injection. We prepared curcumin nanoemulsions with a homogenizer using three surfactant concentrations (1.8%; 2.4%; and 3%) and two curcumin concentrations (1% and 3%). Formulas were evaluated for droplet diameter, polydispersity index, zeta potential, viscosity, pH, entrapment efficiency (EE), osmolality, sterility, and morphology. The nanoemulsion containing 1% curcumin and 3% surfactant (F3) demonstrated good stability. Curcumin nanoemulsions at 20 and 40 mg/kg doses showed anti-inflammatory activity on carrageenan-induced paw edema in male Sprague-Dawley rats. These two doses inhibited paw edema by 33% and 56% respectively at 5 h after carrageenan induction. Inhibition of edema volume by curcumin nanoemulsion at a dose of 40 mg/kg did not show a significant difference (P > 0.05) compared to the activity of the standard drug ketorolac at a dose of 2.7 mg/kg. We conclude that curcumin nanoemulsion has anti-inflammatory activity and can be a promising anti-inflammatory agent.
Collapse
|
49
|
Jongjitphisut N, Thitikornpong W, Wichitnithad W, Thanusuwannasak T, Vajragupta O, Rojsitthisak P. A Stability-Indicating Assay for Tetrahydrocurcumin-Diglutaric Acid and Its Applications to Evaluate Bioaccessibility in an In Vitro Digestive Model. Molecules 2023; 28:molecules28041678. [PMID: 36838664 PMCID: PMC9966976 DOI: 10.3390/molecules28041678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
A simple and reliable ultra-high-performance liquid chromatographic (UHPLC) method was developed and validated for determination of tetrahydrocurcumin diglutaric acid (TDG) and applied for evaluation of its bioaccessibility. The analytical method was validated to demonstrate as a stability-indicating assay (SIA) according to the ICH Q2(R1) guidelines under various force degradation conditions including thermal degradation, moisture, acid and base hydrolysis, oxidation, and photolysis. The developed chromatographic condition could completely separate all degradants from the analyte of interest. The method linearity was verified in the range of 0.4-12 μg/mL with the coefficient of determination (r2) > 0.995. The accuracy and precision of the method provided %recovery in the range of 98.9-104.2% and %RSD lower than 4.97%, respectively. The limit of detection and quantitation were found to be 0.25 μg/mL and 0.40 μg/mL, respectively. This method has been successfully applied for the bioaccessibility assessment of TDG with the bioaccessibility of TDG approximately four fold greater than THC in simulated gastrointestinal fluid. The validated SIA method can also benefit the quality control of TDG raw materials in pharmaceutical and nutraceutical development.
Collapse
Affiliation(s)
- Nattapong Jongjitphisut
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Government Pharmaceutical Organization, Bangkok 10400, Thailand
| | - Worathat Thitikornpong
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-218-8315; Fax: +66-2-254-5195
| | - Wisut Wichitnithad
- Department of Analytical and Clinical Development, Pharma Nueva Co., Ltd., Bangkok 10900, Thailand
| | - Thanundorn Thanusuwannasak
- CU Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
50
|
Malik M, Britten JL, DeAngelis A, Sitler C, Moran S, Roura-Monllor JA, Driggers P, Catherino WH. Curcumin inhibits human leiomyoma xenograft tumor growth and induces dissolution of the extracellular matrix. F&S SCIENCE 2023; 4:74-89. [PMID: 36273722 DOI: 10.1016/j.xfss.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To determine whether a curcumin-supplemented diet would prevent and/or treat uterine leiomyoma growth in our mouse xenograft model. DESIGN Animal study. SETTING Laboratory study. PATIENT(S) N/A. INTERVENTION(S) Curcumin-supplemented diet. MAIN OUTCOME MEASURE(S) Dietary intake, blood concentrations, tumor size, extracellular matrix protein concentrations, apoptosis markers. RESULT(S) We found that curcumin was well tolerated as a dietary supplement, free curcumin and its metabolites were detected in the serum, and exposure resulted in approximately 60% less leiomyoma xenograft growth as well as dissolution of the peripheral extracellular matrix architecture of the xenografts. The production of matrix proteins, including collagens, decreased, whereas the number of apoptotic cells in the xenografts increased. Additionally, when xenografts were placed in a uterine intramural location, we found a significantly increased apoptotic response to curcumin in the diet. CONCLUSION(S) Mice on a diet supplemented with curcumin could achieve serum concentrations sufficient to regulate human leiomyoma xenograft growth, and curcumin could play both preventive and curative roles in the treatment of uterine leiomyoma as an oral nutritional supplement.
Collapse
Affiliation(s)
- Minnie Malik
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy L Britten
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Anthony DeAngelis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Collin Sitler
- Department of Gynecologic Surgery and Obstetrics, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Sean Moran
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jaime A Roura-Monllor
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Paul Driggers
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - William H Catherino
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland; National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|