1
|
Qiao R, Liu Y, Mao Q, Li J, Lu Y, Shi J, Li C, Yu J, Gong J, Wang X, Shao Y, Sun L, Zhang W, Yu H, Chu H, Wang P, Zhao X. Novel Trispecific Neutralizing Antibodies With Enhanced Potency and Breadth Against Pan-Sarbecoviruses. MedComm (Beijing) 2025; 6:e70191. [PMID: 40260012 PMCID: PMC12010136 DOI: 10.1002/mco2.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 04/23/2025] Open
Abstract
The ongoing emergence of new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the urgent need for developing antivirals targeting both SARS-CoV-2 variants and related sarbecoviruses. To this end, we designed novel trispecific antibodies, Tri-1 and Tri-2, engineered by fusing the single-chain variable fragments (scFvs) of a potent antibody (PW5-570) to the Fc region of "Knob-into-Hole" bispecific antibodies (bsAbs) composed of two distinct broad antibodies (PW5-5 and PW5-535). Compared with the parental antibodies, Tri-1 and Tri-2 displayed enhanced binding affinities to the receptor-binding domains of SARS-CoV, SARS-CoV-2 wild type, and Omicron XBB.1.16, with each arm contributed to the overall enhancement. Furthermore, pseudovirus neutralization assays revealed that Tri-1 and Tri-2 effectively neutralized all tested SARS-CoV, SARS-CoV-2 variants, and related sarbecoviruses (Pangolin-GD, RaTG13, WIV1, and SHC014), demonstrating potency and breadth superior to any single parental antibody. Consistently, Tri-1 and Tri-2 were found to effectively neutralize authentic SARS-CoV and SARS-CoV-2 variants with IC50 values comparable to or better than those of parental antibodies. Taken together, this study highlights the potential effectiveness of Tri-1 and Tri-2 as novel formats for harnessing cross-neutralizing antibodies in the development of multivalent agents to combat both current and future SARS-like coronaviruses.
Collapse
Affiliation(s)
- Rui Qiao
- Shanghai Sci‐Tech Inno Center for Infection & ImmunityNational Medical Center for Infectious DiseasesHuashan HospitalInstitute of Infection and HealthShanghai Key Laboratory of Oncology Target Discovery and Antibody Drug DevelopmentFudan UniversityShanghaiChina
- Shanghai Pudong HospitalState Key Laboratory of Genetic EngineeringMOE Engineering Research Center of Gene TechnologySchool of Life SciencesShanghai Institute of Infectious Disease and BiosecurityFudan University Pudong Medical CenterFudan UniversityShanghaiChina
| | - Yuanchen Liu
- Department of MicrobiologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong Special Administrative RegionHong KongChina
| | - Qiyu Mao
- Shanghai Fifth People's HospitalShanghai Institute of Infectious Disease and BiosecurityInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jiayan Li
- Shanghai Pudong HospitalState Key Laboratory of Genetic EngineeringMOE Engineering Research Center of Gene TechnologySchool of Life SciencesShanghai Institute of Infectious Disease and BiosecurityFudan University Pudong Medical CenterFudan UniversityShanghaiChina
| | - Yinying Lu
- Shanghai Sci‐Tech Inno Center for Infection & ImmunityNational Medical Center for Infectious DiseasesHuashan HospitalInstitute of Infection and HealthShanghai Key Laboratory of Oncology Target Discovery and Antibody Drug DevelopmentFudan UniversityShanghaiChina
| | - Jialu Shi
- Department of MicrobiologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong Special Administrative RegionHong KongChina
| | - Chen Li
- Shanghai Pudong HospitalState Key Laboratory of Genetic EngineeringMOE Engineering Research Center of Gene TechnologySchool of Life SciencesShanghai Institute of Infectious Disease and BiosecurityFudan University Pudong Medical CenterFudan UniversityShanghaiChina
| | - Jizhen Yu
- Shanghai Pudong HospitalState Key Laboratory of Genetic EngineeringMOE Engineering Research Center of Gene TechnologySchool of Life SciencesShanghai Institute of Infectious Disease and BiosecurityFudan University Pudong Medical CenterFudan UniversityShanghaiChina
| | - Jiami Gong
- Shanghai Pudong HospitalState Key Laboratory of Genetic EngineeringMOE Engineering Research Center of Gene TechnologySchool of Life SciencesShanghai Institute of Infectious Disease and BiosecurityFudan University Pudong Medical CenterFudan UniversityShanghaiChina
| | - Xun Wang
- Shanghai Pudong HospitalState Key Laboratory of Genetic EngineeringMOE Engineering Research Center of Gene TechnologySchool of Life SciencesShanghai Institute of Infectious Disease and BiosecurityFudan University Pudong Medical CenterFudan UniversityShanghaiChina
| | - Yuchen Shao
- Shanghai Pudong HospitalState Key Laboratory of Genetic EngineeringMOE Engineering Research Center of Gene TechnologySchool of Life SciencesShanghai Institute of Infectious Disease and BiosecurityFudan University Pudong Medical CenterFudan UniversityShanghaiChina
| | - Lei Sun
- Shanghai Fifth People's HospitalShanghai Institute of Infectious Disease and BiosecurityInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Wenhong Zhang
- Department of Infectious DiseasesShanghai Key Laboratory of Infectious Diseases and Biosafety Emergency ResponseNational Medical Center for Infectious DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Hongjie Yu
- School of Public HealthKey Laboratory of Public Health SafetyFudan UniversityMinistry of EducationShanghaiChina
| | - Hin Chu
- Department of MicrobiologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong Special Administrative RegionHong KongChina
| | - Pengfei Wang
- Shanghai Sci‐Tech Inno Center for Infection & ImmunityNational Medical Center for Infectious DiseasesHuashan HospitalInstitute of Infection and HealthShanghai Key Laboratory of Oncology Target Discovery and Antibody Drug DevelopmentFudan UniversityShanghaiChina
- Shanghai Pudong HospitalState Key Laboratory of Genetic EngineeringMOE Engineering Research Center of Gene TechnologySchool of Life SciencesShanghai Institute of Infectious Disease and BiosecurityFudan University Pudong Medical CenterFudan UniversityShanghaiChina
| | - Xiaoyu Zhao
- Shanghai Sci‐Tech Inno Center for Infection & ImmunityNational Medical Center for Infectious DiseasesHuashan HospitalInstitute of Infection and HealthShanghai Key Laboratory of Oncology Target Discovery and Antibody Drug DevelopmentFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Almulhim M, Ghasemian A, Memariani M, Karami F, Yassen ASA, Alexiou A, Papadakis M, Batiha GES. Drug repositioning as a promising approach for the eradication of emerging and re-emerging viral agents. Mol Divers 2025:10.1007/s11030-025-11131-8. [PMID: 40100484 DOI: 10.1007/s11030-025-11131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/08/2025] [Indexed: 03/20/2025]
Abstract
The global impact of emerging and re-emerging viral agents during epidemics and pandemics leads to serious health and economic burdens. Among the major emerging or re-emerging viruses include SARS-CoV-2, Ebola virus (EBOV), Monkeypox virus (Mpox), Hepatitis viruses, Zika virus, Avian flu, Influenza virus, Chikungunya virus (CHIKV), Dengue fever virus (DENV), West Nile virus, Rhabdovirus, Sandfly fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, and Rift Valley fever virus (RVFV). A comprehensive literature search was performed to identify existing studies, clinical trials, and reviews that discuss drug repositioning strategies for the treatment of emerging and re-emerging viral infections using databases, such as PubMed, Scholar Google, Scopus, and Web of Science. By utilizing drug repositioning, pharmaceutical companies can take advantage of a cost-effective, accelerated, and effective strategy, which in turn leads to the discovery of innovative treatment options for patients. In light of antiviral drug resistance and the high costs of developing novel antivirals, drug repositioning holds great promise for more rapid substitution of approved drugs. Main repositioned drugs have included chloroquine, ivermectin, dexamethasone, Baricitinib, tocilizumab, Mab114 (Ebanga™), ZMapp (pharming), Artesunate, imiquimod, saquinavir, capmatinib, naldemedine, Trametinib, statins, celecoxib, naproxen, metformin, ruxolitinib, nitazoxanide, gemcitabine, Dorzolamide, Midodrine, Diltiazem, zinc acetate, suramin, 5-fluorouracil, quinine, minocycline, trifluoperazine, paracetamol, berbamine, Nifedipine, and chlorpromazine. This succinct review will delve into the topic of repositioned drugs that have been utilized to combat emerging and re-emerging viral pathogens.
Collapse
Affiliation(s)
- Marwa Almulhim
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mojtaba Memariani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Karami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Asmaa S A Yassen
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
3
|
Jian F, Wang J, Yisimayi A, Song W, Xu Y, Chen X, Niu X, Yang S, Yu Y, Wang P, Sun H, Yu L, Wang J, Wang Y, An R, Wang W, Ma M, Xiao T, Gu Q, Shao F, Wang Y, Shen Z, Jin R, Cao Y. Evolving antibody response to SARS-CoV-2 antigenic shift from XBB to JN.1. Nature 2025; 637:921-929. [PMID: 39510125 PMCID: PMC11754117 DOI: 10.1038/s41586-024-08315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
The continuous evolution of SARS-CoV-2, particularly the emergence of the BA.2.86/JN.1 lineage replacing XBB, necessitates re-evaluation of vaccine compositions1-3. Here, we provide a comprehensive analysis of the humoral immune response to XBB and JN.1 human exposure. We demonstrate the antigenic distinctiveness of XBB and JN.1 lineages in SARS-CoV-2-naive individuals and show that infection with JN.1 elicits superior plasma neutralization against its subvariants. We highlight the strong immune evasion and receptor-binding capability of KP.3, supporting its foreseeable prevalence. Extensive analysis of the B cell receptor repertoire, in which we isolate approximately 2,000 receptor-binding-domain-specific antibodies, with targeting epitopes characterized by deep mutational scanning, underscores the superiority of JN.1-elicited memory B cells4,5. Class 1 IGHV3-53/3-66-derived neutralizing antibodies (NAbs) are important contributors to the wild-type reactivity of NAbs against JN.1. However, KP.2 and KP.3 evade a substantial subset of these antibodies, even those induced by JN.1, supporting a need for booster updates. JN.1-induced Omicron-specific antibodies also demonstrate high potency across Omicron. Escape hotspots for these NAbs have already been mutated, resulting in a higher immune barrier to escape and indicating probable recovery of escaped NAbs. In addition, the prevalence of IGHV3-53/3-66-derived antibodies and their ability to compete with all Omicron-specific NAbs suggests that they have an inhibitory effect on the activation of Omicron-specific naive B cells, potentially explaining the heavy immune imprinting in mRNA-vaccinated individuals6-8. These findings delineate the evolving antibody response to the antigenic shift of Omicron from XBB to JN.1 and highlight the importance of developing the JN.1 lineage, especially KP.2- and KP.3-based vaccine boosters.
Collapse
Affiliation(s)
- Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jing Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Ayijiang Yisimayi
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Weiliang Song
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Yanli Xu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaosu Chen
- Institute for Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiao Niu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sijie Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| | | | - Peng Wang
- Changping Laboratory, Beijing, China
| | | | | | - Jing Wang
- Changping Laboratory, Beijing, China
| | - Yao Wang
- Changping Laboratory, Beijing, China
| | - Ran An
- Changping Laboratory, Beijing, China
| | | | | | - Tianhe Xiao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | | | - Fei Shao
- Changping Laboratory, Beijing, China
| | - Youchun Wang
- Changping Laboratory, Beijing, China
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Zhongyang Shen
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Jiang W, Jiang Y, Sun H, Deng T, Yu K, Fang Q, Ge H, Lan M, Lin Y, Fang Z, Zhang Y, Zhou L, Li T, Yu H, Zheng Q, Li S, Xia N, Gu Y. Structural insight into broadening SARS-CoV-2 neutralization by an antibody cocktail harbouring both NTD and RBD potent antibodies. Emerg Microbes Infect 2024; 13:2406300. [PMID: 39470577 DOI: 10.1080/22221751.2024.2406300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
The continual emergence of highly pathogenic novel coronaviruses and their variants has underscored the importance of neutralizing monoclonal antibodies (mAbs) as a pivotal therapeutic approach. In the present study, we report the specific neutralizing antibodies 13H7 and 9G11, which target the N-terminal domain (NTD) and receptor-binding domain (RBD) of the SARS-CoV-2, respectively. The comparative analysis observed that 13H7 not only neutralizes early variants of concern (VOCs) but also exhibits neutralizing activity against the Omicron sublineage, including BA.4, BA.5, BQ.1, and BQ.1.1. 9G11, as an RBD antibody, also demonstrated remarkable neutralizing efficacy. A cocktail antibody combining 13H7 and 9G11 with the previously reported 3E2 broaden the neutralization spectrum against new variants of the SARS-CoV-2. We elucidated the cryo-EM structure of the complex, clarifying the mechanism of action of the cocktail antibody combination. Additionally, we also emphasized the molecular mechanism between 13H7 and SARS-CoV-2 NTD, revealing the impact of Y144 and H146 residue deletions and mutations on the neutralizing efficacy of 13H7. Taken together, our findings not only offer novel insights into the combination therapy of NTD and RBD neutralizing mAbs but also lay a theoretical foundation for the development of vaccines targeting NTD antibodies, thus providing valuable understanding of alleviating the emergence of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wenling Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Yanan Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Tingting Deng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Kunyu Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Qianjiao Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Huimin Ge
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Miaoling Lan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Yanling Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Zhongyue Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Yali Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Lizhi Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| |
Collapse
|
5
|
Yang S, Yu Y, Jian F, Yisimayi A, Song W, Liu J, Wang P, Xu Y, Wang J, Niu X, Yu L, Wang Y, Shao F, Jin R, Wang Y, Cao Y. Antigenicity assessment of SARS-CoV-2 saltation variant BA.2.87.1. Emerg Microbes Infect 2024; 13:2343909. [PMID: 38616729 PMCID: PMC11073414 DOI: 10.1080/22221751.2024.2343909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The recent emergence of a SARS-CoV-2 saltation variant, BA.2.87.1, which features 65 spike mutations relative to BA.2, has attracted worldwide attention. In this study, we elucidate the antigenic characteristics and immune evasion capability of BA.2.87.1. Our findings reveal that BA.2.87.1 is more susceptible to XBB-induced humoral immunity compared to JN.1. Notably, BA.2.87.1 lacks critical escaping mutations in the receptor binding domain (RBD) thus allowing various classes of neutralizing antibodies (NAbs) that were escaped by XBB or BA.2.86 subvariants to neutralize BA.2.87.1, although the deletions in the N-terminal domain (NTD), specifically 15-23del and 136-146del, compensate for the resistance to humoral immunity. Interestingly, several neutralizing antibody drugs have been found to restore their efficacy against BA.2.87.1, including SA58, REGN-10933 and COV2-2196. Hence, our results suggest that BA.2.87.1 may not become widespread until it acquires multiple RBD mutations to achieve sufficient immune evasion comparable to that of JN.1.
Collapse
Affiliation(s)
- Sijie Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Yuanling Yu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- College of Chemistry and Molecular Engineering Peking University, Beijing, People’s Republic of China
| | - Ayijiang Yisimayi
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Weiliang Song
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Jingyi Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- College of Future Technology Peking University, Beijing, People’s Republic of China
| | - Peng Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Yanli Xu
- Beijing Ditan Hospital Capital Medical University, Beijing, People’s Republic of China
| | - Jing Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Xiao Niu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- College of Chemistry and Molecular Engineering Peking University, Beijing, People’s Republic of China
| | - Lingling Yu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Yao Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Fei Shao
- Changping Laboratory, Beijing, People’s Republic of China
| | - Ronghua Jin
- Beijing Ditan Hospital Capital Medical University, Beijing, People’s Republic of China
| | - Youchun Wang
- Changping Laboratory, Beijing, People’s Republic of China
- Institute of Medical Biology Chinese Academy of Medical Science & Peking Union Medical College, Kunming, People’s Republic of China
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Clark JJ, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, Krammer F. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination. Cell Rep 2024; 43:114922. [PMID: 39504245 PMCID: PMC11804229 DOI: 10.1016/j.celrep.2024.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Neutralizing antibodies correlate with protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection against disease progression. Non-neutralizing antibodies cannot directly protect against infection but may recruit effector cells and thus contribute to the clearance of infected cells. Additionally, they often bind conserved epitopes across multiple variants. Here, we characterize 42 human monoclonal antibodies (mAbs) from coronavirus disease 2019 (COVID-19)-vaccinated individuals. Most of these antibodies exhibit no neutralizing activity in vitro, but several non-neutralizing antibodies provide protection against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs shows a clear dependence on Fc-mediated effector functions. We have determined the structures of three non-neutralizing antibodies, with two targeting the receptor-binding domain and one that binds the subdomain 1 region. Our data confirm the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
Collapse
Affiliation(s)
- Jordan J Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel C Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Iden A Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Andreata-Santos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Retrovirology Laboratory, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP 04023-062, Brazil
| | - Jeremy S Yong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Julia E Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
7
|
Petro CD, Hooper AT, Peace A, Mohammadi K, Eagan W, Elbashir SM, DiPiazza A, Makrinos D, Pascal K, Bandawane P, Durand M, Basu R, Coppi A, Wang B, Golubov J, Asrat S, Ganguly S, Koehler-Stec EM, Wipperman MF, Ehrlich G, Gonzalez Ortiz AM, Isa F, Lewis MG, Andersen H, Musser BJ, Torres M, Lee WY, Edwards D, Skokos D, Orengo J, Sleeman M, Norton T, O'Brien M, Forleo-Neto E, Herman GA, Hamilton JD, Murphy AJ, Kyratsous CA, Baum A. Monoclonal antibodies against the spike protein alter the endogenous humoral response to SARS-CoV-2 vaccination and infection. Sci Transl Med 2024; 16:eadn0396. [PMID: 39504352 DOI: 10.1126/scitranslmed.adn0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024]
Abstract
Increased use of antiviral monoclonal antibodies (mAbs) for treatment and prophylaxis necessitates better understanding of their impact on endogenous immunity to vaccines and viruses. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presented an opportunity to study immunity in individuals who received antiviral mAbs and were subsequently immunized with vaccines encoding the mAb-targeted viral spike antigen. Here, we describe the impact of administration of an antibody combination, casirivimab plus imdevimab (CAS+IMD), on immune responses to subsequent SARS-CoV-2 vaccination in humans, nonhuman primates, and mice. The presence of CAS+IMD at the time of vaccination led to a specific diminishment of vaccine-elicited pseudovirus neutralizing antibody titers without overall dampening of spike protein-directed immune responses, including antibody, B cell, and T cell responses. The impact on pseudovirus neutralizing titers extended to other therapeutic anti-spike protein antibodies when used as either monotherapy or combination therapy. The specific reduction in pseudovirus neutralizing titers was the result of epitope masking, a phenomenon where specific epitopes are bound by high-affinity antibodies and blocked from B cell recognition. Encouragingly, this reduction in pseudovirus neutralizing titers was reversible with additional booster vaccination. Moreover, by assessing the antiviral immune response in SARS-CoV-2-infected individuals treated therapeutically with CAS+IMD, we demonstrated alteration of antiviral humoral immunity in those who had received mAb therapy, but only in those individuals who had yet to start mounting their natural immune response at the time of mAb treatment. Together, these data demonstrate that antiviral mAbs can alter endogenous humoral immunity during vaccination or infection.
Collapse
MESH Headings
- Spike Glycoprotein, Coronavirus/immunology
- Animals
- Humans
- SARS-CoV-2/immunology
- Immunity, Humoral/drug effects
- Immunity, Humoral/immunology
- COVID-19/immunology
- COVID-19/prevention & control
- Antibodies, Neutralizing/immunology
- COVID-19 Vaccines/immunology
- Antibodies, Monoclonal/immunology
- Female
- Antibodies, Viral/immunology
- Mice
- Vaccination
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Male
- Middle Aged
- Adult
- Drug Combinations
Collapse
Affiliation(s)
| | | | - Avery Peace
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Will Eagan
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Kristen Pascal
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | - Ranu Basu
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Alida Coppi
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Bei Wang
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | - Samit Ganguly
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | - George Ehrlich
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Flonza Isa
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | - Bret J Musser
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Marcela Torres
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Wen-Yi Lee
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | - Jamie Orengo
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Thomas Norton
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Meagan O'Brien
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Gary A Herman
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Alina Baum
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
8
|
Mawazi SM, Fathima N, Mahmood S, Al-Mahmood SMA. Antiviral therapy for COVID-19 virus: A narrative review and bibliometric analysis. Am J Emerg Med 2024; 85:98-107. [PMID: 39244809 DOI: 10.1016/j.ajem.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/28/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024] Open
Abstract
The COVID-19 epidemic has become a major international health emergency. Millions of people have died as a result of this phenomenon since it began. Has there been any successful pharmacological treatment for COVID-19 since the initial report on the virus? How many searches are undertaken to address the impact of the infection? What is the number of drugs that have undergone investigation? What are the mechanisms of action and adverse effects associated with the investigated pharmaceuticals used to treat COVID-19? Has the Food and Drug Administration (FDA) approved any medication to treat COVID-19? To date, our understanding is based on a restricted corpus of published investigations into the treatment of COVID-19. It is important to note that no single study comprehensively encompasses all pharmacological interventions for COVID-19. This paper provides an introductory summary of a bibliometric analysis conducted on the data about COVID-19, sourced explicitly from two platforms, namely PubMed and ScienceDirect. The analysis encompasses the period spanning from 2019 to 2022. Furthermore, this study examines the published literature about the pharmacological interventions for the novel coronavirus disease 2019 (COVID-19), explicitly focusing on the safety and effectiveness of different medications such as Remdesivir (marketed as Veklury®), Lopinavir/Ritonavir (commercially known as Kaletra® or Aluvia®), Ribavirin, Favipiravir (marketed as Avigan®), Ivermectin, Casirivimab and Imdevimab (branded as Ronapreve®), Sotrovimab (marketed as Xevudy®), Anakinra, Molnupiravir, Nirmatrelvir/Ritonavir (marketed as Paxlovid®), and Galidesivir. Findings indicate that while Remdesivir and Nirmatrelvir/Ritonavir show significant efficacy in reducing hospitalization and severe outcomes, drugs like Lopinavir/Ritonavir and Ivermectin have inconsistent results. Our insights suggest a multifaceted approach incorporating these therapies can significantly improve patient outcomes. Repurposing drugs has been critical in rapidly responding to COVID-19, allowing existing medications to be used in new ways to combat the virus. Combination therapies and further research are essential to optimize treatment strategies.
Collapse
Affiliation(s)
- Saeid Mezail Mawazi
- School of Pharmacy, Management & Science University (MSU), Section 13, 40100 Shah Alam, Selangor, Malaysia.
| | - Nousheen Fathima
- Department of Pharmacology, Global College of Pharmacy, Jawaharlal Technology University, Hyderabad (Jntuh) 501504, India
| | - Syed Mahmood
- Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | |
Collapse
|
9
|
Wu H, Wang LC, Sow BM, Leow D, Zhu J, Gallo KM, Wilsbach K, Gupta R, Ostrow LW, Yeo CJJ, Sobota RM, Li R. TDP43 aggregation at ER-exit sites impairs ER-to-Golgi transport. Nat Commun 2024; 15:9026. [PMID: 39424779 PMCID: PMC11489672 DOI: 10.1038/s41467-024-52706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
Protein aggregation plays key roles in age-related degenerative diseases, but how different proteins coalesce to form inclusions that vary in composition, morphology, molecular dynamics and confer physiological consequences is poorly understood. Here we employ a general reporter based on mutant Hsp104 to identify proteins forming aggregates in human cells under common proteotoxic stress. We identify over 300 proteins that form different inclusions containing subsets of aggregating proteins. In particular, TDP43, implicated in Amyotrophic Lateral Sclerosis (ALS), partitions dynamically between two distinct types of aggregates: stress granule and a previously unknown non-dynamic (solid-like) inclusion at the ER exit sites (ERES). TDP43-ERES co-aggregation is induced by diverse proteotoxic stresses and observed in the motor neurons of ALS patients. Such aggregation causes retention of secretory cargos at ERES and therefore delays ER-to-Golgi transport, providing a link between TDP43 aggregation and compromised cellular function in ALS patients.
Collapse
Affiliation(s)
- Hongyi Wu
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Belle M Sow
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Damien Leow
- Department of Anatomy, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Kathryn M Gallo
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathleen Wilsbach
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Roshni Gupta
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Lyle W Ostrow
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Crystal J J Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, UK
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Norton TD, Thakur M, Ganguly S, Ali S, Chao J, Waldron A, Xiao J, Patel Y, Turner KC, Davis JD, Irvin SC, Pan C, Atmodjo-Watkins D, Hooper AT, Hamilton JD, Subramaniam D, Bocchini JA, Kowal B, DiCioccio AT, Bhore R, Geba GP, Cox E, Braunstein N, Dakin P, Herman GA. Assessing the safety and pharmacokinetics of casirivimab and imdevimab (CAS+IMD) in a cohort of pregnant outpatients with COVID-19: results from an adaptive, multicentre, randomised, double-blind, phase 1/2/3 study. BMJ Open 2024; 14:e087431. [PMID: 39384241 PMCID: PMC11474922 DOI: 10.1136/bmjopen-2024-087431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/19/2024] [Indexed: 10/11/2024] Open
Abstract
OBJECTIVE Pregnant women with COVID-19 are at elevated risk for severe outcomes, but clinical data on management of these patients are limited. Monoclonal antibodies, such as casirivimab plus imdevimab (CAS+IMD), have proven effective in treating non-pregnant adults with COVID-19, prompting further evaluation in pregnant women. METHODS A phase 3 portion of an adaptive, multicentre, randomised, double-blind, placebo-controlled trial evaluated the safety, clinical outcomes, pharmacokinetics and immunogenicity of CAS+IMD (1200 mg or 2400 mg) in the treatment of pregnant outpatients with COVID-19 (NCT04425629). Participants were enrolled between December 2020 and November 2021, prior to the emergence of Omicron-lineage variants against which CAS+IMD is not active. Safety was evaluated in randomised participants who received study drug (n=80); clinical outcomes were evaluated in all randomised participants (n=82). Only two pregnant participants received placebo, limiting conclusions regarding treatment effect. Infants born to pregnant participants were followed for developmental outcomes ≤1 year of age. RESULTS In pregnant participants, CAS+IMD was well tolerated, with no grade ≥2 hypersensitivity or infusion-related reactions reported. There were no participant deaths, and only one COVID-19-related medically attended visit. Although two pregnancies (3%) reported issues in the fetus/neonate, they were confounded by maternal history or considered to be due to an alternate aetiology. No adverse developmental outcomes in infants ≤1 year of age were considered related to in utero exposure to the study drug. CAS+IMD 1200 mg and 2400 mg rapidly and similarly reduced viral loads, with a dose-proportional increase in concentrations of CAS+IMD in serum. Pharmacokinetics were consistent with that reported in the general population. Immunogenicity incidence was low. CONCLUSION CAS+IMD treatment of pregnant outpatients with COVID-19 showed similar safety, clinical outcomes and pharmacokinetic profiles to that observed in non-pregnant adults. There was no evidence of an impact on developmental outcomes in infants ≤1 year of age. TRIAL REGISTRATION NUMBER NCT04425629.
Collapse
Affiliation(s)
| | - Mazhar Thakur
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Samit Ganguly
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Shazia Ali
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Jesse Chao
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | - Jing Xiao
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Yogesh Patel
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | - John D Davis
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Susan C Irvin
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Cynthia Pan
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | | | | | | | | - Bari Kowal
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | - Rafia Bhore
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | - Edward Cox
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | - Paula Dakin
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Gary A Herman
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| |
Collapse
|
11
|
Wu Y, Lai SK, En-Zuo Chan C, Tan BH, Sugrue RJ. Evidence that the SARS-CoV-2 S protein undergoes a conformational change at the Golgi complex that leads to the formation of virus neutralising antibody binding epitopes in the S1 protein subunit. Virology 2024; 598:110187. [PMID: 39094503 DOI: 10.1016/j.virol.2024.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Recombinant SARS-CoV-2 S protein expression was examined in Vero cells by imaging using the human monoclonal antibody panel (PD4, PD5, sc23, and sc29). The PD4 and sc29 antibodies recognised conformational specific epitopes in the S2 protein subunit at the Endoplasmic reticulum and Golgi complex. While PD5 and sc23 detected conformationally specific epitopes in the S1 protein subunit at the Golgi complex, only PD5 recognised the receptor binding domain (RBD). A comparison of the staining patterns of PD5 with non-conformationally specific antibodies that recognises the S1 subunit and RBD suggested the PD5 recognised a conformational structure within the S1 protein subunit. Our data suggests the antibody binding epitopes recognised by the human monoclonal antibodies formed at different locations in the secretory pathway during S protein transport, but a conformational change in the S1 protein subunit at the Golgi complex formed antibody binding epitopes that are recognised by virus neutralising antibodies.
Collapse
Affiliation(s)
- Yanjun Wu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Conrad En-Zuo Chan
- Infectious Disease Research Laboratory, National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore, 308442
| | - Boon Huan Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
12
|
Sarkar M, Madabhavi I. COVID-19 mutations: An overview. World J Methodol 2024; 14:89761. [PMID: 39310238 PMCID: PMC11230071 DOI: 10.5662/wjm.v14.i3.89761] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 06/25/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the genus Beta coronavirus and the family of Coronaviridae. It is a positive-sense, non-segmented single-strand RNA virus. Four common types of human coronaviruses circulate globally, particularly in the fall and winter seasons. They are responsible for 10%-30% of all mild upper respiratory tract infections in adults. These are 229E, NL63 of the Alfacoronaviridae family, OC43, and HKU1 of the Betacoronaviridae family. However, there are three highly pathogenic human coronaviruses: SARS-CoV-2, Middle East respiratory syndrome coronavirus, and the latest pandemic caused by the SARS-CoV-2 infection. All viruses, including SARS-CoV-2, have the inherent tendency to evolve. SARS-CoV-2 is still evolving in humans. Additionally, due to the development of herd immunity, prior infection, use of medication, vaccination, and antibodies, the viruses are facing immune pressure. During the replication process and due to immune pressure, the virus may undergo mutations. Several SARS-CoV-2 variants, including the variants of concern (VOCs), such as B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617/B.1.617.2 (Delta), P.1 (Gamma), and B.1.1.529 (Omicron) have been reported from various parts of the world. These VOCs contain several important mutations; some of them are on the spike proteins. These mutations may lead to enhanced infectivity, transmissibility, and decreased neutralization efficacy by monoclonal antibodies, convalescent sera, or vaccines. Mutations may also lead to a failure of detection by molecular diagnostic tests, leading to a delayed diagnosis, increased community spread, and delayed treatment. We searched PubMed, EMBASE, Covariant, the Stanford variant Database, and the CINAHL from December 2019 to February 2023 using the following search terms: VOC, SARS-CoV-2, Omicron, mutations in SARS-CoV-2, etc. This review discusses the various mutations and their impact on infectivity, transmissibility, and neutralization efficacy.
Collapse
Affiliation(s)
- Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla 171001, Himachal Pradesh, India
| | - Irappa Madabhavi
- Department of Medical and Pediatric Oncology and Hematology, J N Medical College, and KAHER, Belagavi, Karnataka 590010, India
- Department of Medical and Pediatric Oncology and Hematology, Kerudi Cancer Hospital, Bagalkot, Karnataka 587103, India
| |
Collapse
|
13
|
Togami K, Wolf W, Olson LC, Card M, Shen L, Schaefer A, Okuda K, Zeitlin L, Pauly M, Whaley K, Pickles RJ, Lai SK. Impact of mAb-FcRn affinity on IgG transcytosis across human well-differentiated airway epithelium. Front Immunol 2024; 15:1371156. [PMID: 39351230 PMCID: PMC11439726 DOI: 10.3389/fimmu.2024.1371156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024] Open
Abstract
Effective treatment and immunoprophylaxis of viral respiratory infections with neutralizing monoclonal antibodies (mAbs) require maintaining inhibitory concentrations of mAbs at the airway surface. While engineered mAbs with increased affinity to the neonatal Fc receptor (FcRn) are increasingly employed, little is known how increased affinity of Fc to FcRn influences basal-to-apical transepithelial transport (transcytosis) of mAbs across the airway epithelium. To investigate this, we utilized a model of well-differentiated human airway epithelium (WD-HAE) that exhibited robust FcRn expression, and measured the transepithelial transport of a mAb against SARS-CoV-2 Spike protein (CR3022) with either wildtype IgG1-Fc or Fc modified with YTE or LS mutations known to increase affinity for FcRn. Despite the marked differences in the affinity of these CR3022 variants for FcRn, we did not find substantial differences in basal-to-apical transport reflective of systemic dosing, or apical-to-basal transport reflective of inhaled dosing, compared to the transport of wildtype IgG1-Fc. These results suggest increasing FcRn affinity may only have limited influence over transcytosis rates of systemically dosed mAbs across the human airway epithelium over short time scales. Over longer time scales, the elevated circulating levels of mAbs with greater FcRn affinity, due to more effective FcRn-mediated recycling, may better resupply mAb into the respiratory tract, leading to more effective extended immunoprophylaxis.
Collapse
Affiliation(s)
- Kohei Togami
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lucas C Olson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Madison Card
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alison Schaefer
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | | | | - Raymond J Pickles
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
14
|
Sevendal ATK, Hurley S, Bartlett AW, Rawlinson W, Walker GJ. Systematic Review of the Efficacy and Safety of RSV-Specific Monoclonal Antibodies and Antivirals in Development. Rev Med Virol 2024; 34:e2576. [PMID: 39209729 DOI: 10.1002/rmv.2576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infection amongst all ages, causing a significant global health burden. Preventative and therapeutic options for RSV infection have long been under development, and recently, several widely-publicised vaccines targeting older adult and maternal populations have become available. Promising monoclonal antibody (mAb) and antiviral (AV) therapies are also progressing in clinical trials, with the prophylactic mAb nirsevimab recently approved for clinical use in infant populations. A systematic review on current progress in this area is lacking. We performed a systematic literature search (PubMed, Embase, Web of Science, ClinicalTrials.gov, EudraCT, ANZCTR-searched Nov 29th, 2023) to identify studies on all RSV-specific mAbs and AV therapies that has undergone human clinical trials since year 2000. Data extraction focused on outcomes related to the therapeutic efficacy and safety of the intervention on trial, and all studies were graded against the OCEBM Levels of Evidence Table. Results from 59 studies were extracted, covering efficacy and safety data on six mAbs (motavizumab, motavizumab-YTE, nirsevimab, ALX-0171, suptavumab, clesrovimab) and 12 AV therapies (ALN-RSV01, RSV604, presatovir, MDT-637, lumicitabine, IFN-α1b, rilematovir, enzaplatovir, AK0529, sisunatovir, PC786, EDP-938). Of the mAbs reviewed, nirsevimab and clesrovimab hold considerable promise. The timeline for RSV-specific AV availability is less advanced, although EDP-938 and AK0529 have reported promising phase 2 efficacy and safety data. Moving forward, passive immunisation and treatment options for RSV infection will play a significant role in reducing the health burden of RSV, complementing recent advancements in vaccine development. TRIAL REGISTRATION: PROSPERO registration: CRD42022376633.
Collapse
Affiliation(s)
- Andrea T K Sevendal
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
| | - Siobhan Hurley
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
| | - Adam W Bartlett
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital Network, Sydney, Australia
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - William Rawlinson
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Gregory J Walker
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Rofail D, Hussein M, Naumann U, Podolanczuk AJ, Norton T, Ali S, Mastey V, Ivanescu C, Hirshberg B, Geba GP. Patient-Reported Outcomes in COVID-19 Treatment with Monoclonal Antibodies Reveal Benefits in Return to Usual Activities. Infect Dis Ther 2024; 13:1861-1876. [PMID: 38961047 PMCID: PMC11266324 DOI: 10.1007/s40121-024-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION This study aimed to assess the effects of a monoclonal antibody (mAb) combination on symptoms, daily function, and overall health-related quality of life. METHODS We analyzed patient-reported outcomes data from symptomatic outpatients in a phase 1/2/3 trial. Patients with confirmed SARS-CoV-2 infection and ≥ 1 risk factor for severe COVID-19 received mAb treatment (casirivimab plus imdevimab 1200 mg) or placebo. Prespecified exploratory assessments included time to sustained symptoms resolution, usual health, and return to usual activities (assessed daily for 29 days). The trial was conducted from September 2020 to February 2021, prior to widespread COVID-19 vaccination programs and Omicron-lineage variants against which casirivimab + imdevimab is not active. RESULTS In this analysis 736 outpatients received mAb and 1341 received placebo. Median time to sustained symptoms resolution was consistently shorter with mAb versus placebo (≥ 2 consecutive days: 14 vs 17 days, [nominal p = 0.0017]; ≥ 3 consecutive days: 17 vs 21 days, [nominal p = 0.0046]). Median time to sustained return to usual health and usual activities were both consistently shorter with mAb versus placebo (≥ 2 consecutive days: 12 vs 15 days [nominal p = 0.0001] and 9 vs 11 days [nominal p = 0.0001], respectively; ≥ 3 consecutive days: 14 vs 18 days [nominal p = 0.0003] and 10 vs 13 days [nominal p = 0.0041], respectively). CONCLUSIONS mAb treatment against susceptible SARS-CoV-2 strains improved how patients feel and function, as evidenced by shortened time to sustained symptoms resolution and return to usual health and activities. Future studies are warranted to assess the patient experience with next generation mAbs. CLINICALTRIALS GOV: Registration number, NCT04425629; Submission date June 11, 2020.
Collapse
Affiliation(s)
- Diana Rofail
- Regeneron Pharmaceuticals, Inc., 1 Rockwood Road, Sleepy Hollow, NY, 10591, USA.
| | - Mohamed Hussein
- Regeneron Pharmaceuticals, Inc., 1 Rockwood Road, Sleepy Hollow, NY, 10591, USA
| | | | | | | | - Shazia Ali
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Vera Mastey
- Regeneron Pharmaceuticals, Inc., 1 Rockwood Road, Sleepy Hollow, NY, 10591, USA
| | | | | | | |
Collapse
|
16
|
Deng S, Xu Z, Wang M, Hu J, Liu Z, Zhu F, Zheng P, Kombe Kombe AJ, Zhang H, Wu S, Jin T. Structural insights into immune escape at killer T cell epitope by SARS-CoV-2 Spike Y453F variants. J Biol Chem 2024; 300:107563. [PMID: 39002680 PMCID: PMC11342781 DOI: 10.1016/j.jbc.2024.107563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
CD8+ T cell immunity, mediated by human leukocyte antigen (HLA) and T cell receptor (TCR), plays a critical role in conferring immune memory and protection against viral pathogens. The emergence of SARS-CoV-2 variants poses a serious challenge to the efficacy of current vaccines. Whereas numerous SARS-CoV-2 mutations associated with immune escape from CD8+ T cells have been documented, the molecular effects of most mutations on epitope-specific TCR recognition remain largely unexplored. Here, we studied an HLA-A24-restricted NYN epitope (Spike448-456) that elicits broad CD8+ T cell responses in COVID-19 patients characterized by a common TCR repertoire. Four natural mutations, N450K, L452Q, L452R, and Y453F, arose within the NYN epitope and have been transmitted in certain viral lineages. Our findings indicate that these mutations have minimal impact on the epitope's presentation by cell surface HLA, yet they diminish the affinities of their respective peptide-HLA complexes (pHLAs) for NYN peptide-specific TCRs, particularly L452R and Y453F. Furthermore, we determined the crystal structure of HLA-A24 loaded with the Y453F peptide (NYNYLFRLF), and subsequently a ternary structure of the public TCRNYN-I complexed to the original NYN-HLA-A24 (NYNYLYRLF). Our structural analysis unveiled that despite competent presentation by HLA, the mutant Y453F peptide failed to establish a stable TCR-pHLA ternary complex due to reduced peptide: TCR contacts. This study supports the idea that cellular immunity restriction is an important driving force behind viral evolution.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- SARS-CoV-2/immunology
- Immune Evasion
- CD8-Positive T-Lymphocytes/immunology
- COVID-19/immunology
- COVID-19/virology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/chemistry
- Mutation
- Crystallography, X-Ray
Collapse
Affiliation(s)
- Shasha Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Zhihao Xu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meihua Wang
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Hu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peiyi Zheng
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Songquan Wu
- College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, P.R. China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; College of Medicine, Lishui University, Lishui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
17
|
Cui L, Li T, Lan M, Zhou M, Xue W, Zhang S, Wang H, Hong M, Zhang Y, Yuan L, Sun H, Ye J, Zheng Q, Guan Y, Gu Y, Xia N, Li S. A cryptic site in class 5 epitope of SARS-CoV-2 RBD maintains highly conservation across natural isolates. iScience 2024; 27:110208. [PMID: 39015149 PMCID: PMC11251093 DOI: 10.1016/j.isci.2024.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/12/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024] Open
Abstract
The emergence of SARS-CoV-2 variants raises concerns about the efficacy of existing COVID-19 vaccines and therapeutics. Previously, we identified a conserved cryptic class 5 epitope of SARS-CoV-2 receptor binding domain (RBD) by two cross-neutralizing antibodies 7D6 and 6D6. Intriguingly, this site remains resistant to substantial mutations occurred in ever-changing SARS-CoV-2 subvariants. As compared to class 3 antibody S309, 6D6 maintains broad and consistent neutralizing activities against SARS-CoV-2 variants. Furthermore, 6D6 effectively protected hamster from the virulent Beta strain. Sequence alignment of approximately 6 million documented SARS-CoV-2 isolates revealed that 6D6 epitope maintains an exceptionally high conservation rate (99.92%). Structural analysis demonstrated that all 33 mutations accumulated in XBB.1.5 since the original strain do not perturb the binding 6D6 to RBD, in line with the sequence analysis throughout the antigenicity evolution of SARS-CoV-2. These findings suggest the potential of this epitope serving as a critical determinant for vaccines and therapeutic design.
Collapse
Affiliation(s)
- Lingyan Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Miaolin Lan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ming Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenhui Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Sibo Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Hong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Minqing Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Yali Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Lunzhi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Hui Sun
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Jianghui Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong 999077, China
- Joint Institute of Virology (Shantou University and University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou 515063, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
18
|
Lin X, Yang F, Yan S, Wu H, Wang P, Zhao Y, Shi D, Yao H, Wu H, Li L. Preparation and characterization of mouse-derived monoclonal antibodies against the hemagglutinin of the H1N1 influenza virus. Virus Res 2024; 345:199402. [PMID: 38772446 PMCID: PMC11156778 DOI: 10.1016/j.virusres.2024.199402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
H1N1 influenza virus is a significant global public health concern. Monoclonal antibodies (mAbs) targeting specific viral proteins such as hemagglutinin (HA) have become an important therapeutic strategy, offering highly specific targeting to block viral transmission and infection. This study focused on the development of mAbs targeting HA of the A/Victoria/2570/2019 (H1N1pdm09, VIC-19) strain by utilizing hybridoma technology to produce two mAbs with high binding capacity. Notably, mAb 2B2 has demonstrated a strong affinity for HA proteins in recent H1N1 influenza vaccine strains. In vitro assessments showed that both mAbs exhibited broad-spectrum hemagglutination inhibition and potent neutralizing effects against various vaccine strains of H1N1pdm09 viruses. 2B2 was also effective in animal models, offering both preventive and therapeutic protection against infections caused by recent H1N1 strains, highlighting its potential for clinical application. By individually co-cultivating each of the aforementioned mAbs with the virus in chicken embryos, four amino acid substitution sites in HA (H138Q, G140R, A141E/V, and D187E) were identified in escape mutants, three in the antigenic site Ca2, and one in Sb. The identification of such mutations is pivotal, as it compels further investigation into how these alterations could undermine the binding efficacy and neutralization capacity of antibodies, thereby impacting the design and optimization of mAb therapies and influenza vaccines. This research highlights the necessity for continuous exploration into the dynamic interaction between viral evolution and antibody response, which is vital for the formulation of robust therapeutic and preventive strategies against influenza.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H1N1 Subtype/immunology
- Antibodies, Monoclonal/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Antibodies, Viral/immunology
- Mice
- Antibodies, Neutralizing/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Mice, Inbred BALB C
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Hemagglutination Inhibition Tests
- Humans
- Chick Embryo
- Female
- Influenza, Human/immunology
- Influenza, Human/virology
- Influenza, Human/prevention & control
Collapse
Affiliation(s)
- Xiantian Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Fan Yang
- Department of Geriatrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Sijing Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Han Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Ping Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Yuxi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China.
| |
Collapse
|
19
|
Lee JH, Kim JW, Lee HE, Song JY, Cho AH, Hwang JH, Heo K, Lee S. A dual-targeting approach using a human bispecific antibody against the receptor-binding domain of the Middle East Respiratory Syndrome Coronavirus. Virus Res 2024; 345:199383. [PMID: 38697296 PMCID: PMC11074968 DOI: 10.1016/j.virusres.2024.199383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has posed a significant global health concern due to its severe respiratory illness and high fatality rate. Currently, despite the potential for resurgence, there are no specific treatments for MERS-CoV, and only supportive care is available. Our study aimed to address this therapeutic gap by developing a potent neutralizing bispecific antibody (bsAb) against MERS-CoV. Initially, we isolated four human monoclonal antibodies (mAbs) that specifically target the MERS-CoV receptor-binding domain (RBD) using phage display technology and an established human antibody library. Among these four selected mAbs, our intensive in vitro functional analyses showed that the MERS-CoV RBD-specific mAb K111.3 exhibited the most potent neutralizing activity against MERS-CoV pseudoviral infection and the molecular interaction between MERS-CoV RBD and human dipeptidyl peptidase 4. Consequently, we engineered a novel bsAb, K207.C, by utilizing K111.3 as the IgG base and fusing it with the single-chain variable fragment of its non-competing pair, K111.1. This engineered bsAb showed significantly enhanced neutralization potential against MERS-CoV compared to its parental mAb. These findings suggest that K207.C may serve as a potential candidate for effective MERS-CoV neutralization, further highlighting the promise of the bsAb dual-targeting approach in MERS-CoV neutralization.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Woong Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Hee Eon Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Jin Young Song
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ah Hyun Cho
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Jae Hyeon Hwang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyun Heo
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
20
|
Pavia G, Quirino A, Marascio N, Veneziano C, Longhini F, Bruni A, Garofalo E, Pantanella M, Manno M, Gigliotti S, Giancotti A, Barreca GS, Branda F, Torti C, Rotundo S, Lionello R, La Gamba V, Berardelli L, Gullì SP, Trecarichi EM, Russo A, Palmieri C, De Marco C, Viglietto G, Casu M, Sanna D, Ciccozzi M, Scarpa F, Matera G. Persistence of SARS-CoV-2 infection and viral intra- and inter-host evolution in COVID-19 hospitalized patients. J Med Virol 2024; 96:e29708. [PMID: 38804179 DOI: 10.1002/jmv.29708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) persistence in COVID-19 patients could play a key role in the emergence of variants of concern. The rapid intra-host evolution of SARS-CoV-2 may result in an increased transmissibility, immune and therapeutic escape which could be a direct consequence of COVID-19 epidemic currents. In this context, a longitudinal retrospective study on eight consecutive COVID-19 patients with persistent SARS-CoV-2 infection, from January 2022 to March 2023, was conducted. To characterize the intra- and inter-host viral evolution, whole genome sequencing and phylogenetic analysis were performed on nasopharyngeal samples collected at different time points. Phylogenetic reconstruction revealed an accelerated SARS-CoV-2 intra-host evolution and emergence of antigenically divergent variants. The Bayesian inference and principal coordinate analysis analysis showed a host-based genomic structuring among antigenically divergent variants, that might reflect the positive effect of containment practices, within the critical hospital area. All longitudinal antigenically divergent isolates shared a wide range of amino acidic (aa) changes, particularly in the Spike (S) glycoprotein, that increased viral transmissibility (K417N, S477N, N501Y and Q498R), enhanced infectivity (R346T, S373P, R408S, T478K, Q498R, Y505H, D614G, H655Y, N679K and P681H), caused host immune escape (S371L, S375F, T376A, K417N, and K444T/R) and displayed partial or complete resistance to treatments (G339D, R346K/T, S371F/L, S375F, T376A, D405N, N440K, G446S, N460K, E484A, F486V, Q493R, G496S and Q498R). These results suggest that multiple novel variants which emerge in the patient during persistent infection, might spread to another individual and continue to evolve. A pro-active genomic surveillance of persistent SARS-CoV-2 infected patients is recommended to identify genetically divergent lineages before their diffusion.
Collapse
Affiliation(s)
- Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Andrea Bruni
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Eugenio Garofalo
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Marta Pantanella
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Michele Manno
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Simona Gigliotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Aida Giancotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Giorgio Settimo Barreca
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Carlo Torti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Rotundo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Rosaria Lionello
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Valentina La Gamba
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Lavinia Berardelli
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Sara Palma Gullì
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Alessandro Russo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| |
Collapse
|
21
|
Leducq V, Zafilaza K, Fauchois A, Ghidaoui E, Sayon S, Dorival C, Meledje ML, Lusivika-Nzinga C, Yordanov Y, Martin-Blondel G, Carrat F, Marcelin AG, Soulie C. Spike Protein Genetic Evolution in Patients at High Risk of Severe Coronavirus Disease 2019 Treated by Monoclonal Antibodies. J Infect Dis 2024; 229:1341-1351. [PMID: 37996072 DOI: 10.1093/infdis/jiad523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND High-risk patients, often immunocompromised and not responding to vaccine, continue to experience severe coronavirus disease 2019 (COVID-19) and death. Monoclonal antibodies (mAbs) were shown to be effective to prevent severe COVID-19 for these patients. Nevertheless, concerns about the emergence of resistance mutations were raised. METHODS We conducted a multicentric prospective cohort study, including 264 patients with mild to moderate COVID-19 at high risk for progression to severe COVID-19 and treated early with casirivimab/imdevimab, sotrovimab, or tixagevimab/cilgavimab. We sequenced the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome during follow-up and searched for emerging spike mutations. RESULTS Immunocompromised patients have a 6-fold increased risk of developing mutations, which are associated with a prolonged duration of viral clearance but no clinical worsening. Emerging P337S/R/L/H, E340D/K/A/Q/V/G, and K356T/R substitutions in patients treated with sotrovimab are associated with higher viral RNA loads for up to 14 days post-treatment initiation. Tixagevimab/cilgavimab is associated with a 5-fold increased risk of developing mutations. R346K/I/T/S and K444R/N/M substitutions associated with tixagevimab/cilgavimab have been identified in multiple SARS-CoV-2 lineages, including BQ.1 and XBB. CONCLUSIONS The probability of emerging mutations arising in response to mAbs is significant, emphasizing the crucial need to investigate these mutations thoroughly and assess their impact on patients and the evolutionary trajectory of SARS-CoV-2.
Collapse
Affiliation(s)
- Valentin Leducq
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de virologie, Paris, France
| | - Karen Zafilaza
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de virologie, Paris, France
| | - Antoine Fauchois
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de virologie, Paris, France
| | - Emna Ghidaoui
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de virologie, Paris, France
| | - Sophie Sayon
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de virologie, Paris, France
| | - Céline Dorival
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Epidémiologie clinique des maladies virales chroniques (CLEPIVIR), Paris, France
| | - Marie-Laure Meledje
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Epidémiologie clinique des maladies virales chroniques (CLEPIVIR), Paris, France
| | - Clovis Lusivika-Nzinga
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Epidémiologie clinique des maladies virales chroniques (CLEPIVIR), Paris, France
| | - Youri Yordanov
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Service d'Accueil des Urgences, Paris, France
| | - Guillaume Martin-Blondel
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Toulouse, Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Inserm, Université Toulouse III, Toulouse, France
| | - Fabrice Carrat
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Département de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de virologie, Paris, France
| | - Cathia Soulie
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de virologie, Paris, France
| |
Collapse
|
22
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
23
|
Brady DK, Gurijala AR, Huang L, Hussain AA, Lingan AL, Pembridge OG, Ratangee BA, Sealy TT, Vallone KT, Clements TP. A guide to COVID-19 antiviral therapeutics: a summary and perspective of the antiviral weapons against SARS-CoV-2 infection. FEBS J 2024; 291:1632-1662. [PMID: 36266238 PMCID: PMC9874604 DOI: 10.1111/febs.16662] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Antiviral therapies are integral in the fight against SARS-CoV-2 (i.e. severe acute respiratory syndrome coronavirus 2), the causative agent of COVID-19. Antiviral therapeutics can be divided into categories based on how they combat the virus, including viral entry into the host cell, viral replication, protein trafficking, post-translational processing, and immune response regulation. Drugs that target how the virus enters the cell include: Evusheld, REGEN-COV, bamlanivimab and etesevimab, bebtelovimab, sotrovimab, Arbidol, nitazoxanide, and chloroquine. Drugs that prevent the virus from replicating include: Paxlovid, remdesivir, molnupiravir, favipiravir, ribavirin, and Kaletra. Drugs that interfere with protein trafficking and post-translational processing include nitazoxanide and ivermectin. Lastly, drugs that target immune response regulation include interferons and the use of anti-inflammatory drugs such as dexamethasone. Antiviral therapies offer an alternative solution for those unable or unwilling to be vaccinated and are a vital weapon in the battle against the global pandemic. Learning more about these therapies helps raise awareness in the general population about the options available to them with respect to aiding in the reduction of the severity of COVID-19 infection. In this 'A Guide To' article, we provide an in-depth insight into the development of antiviral therapeutics against SARS-CoV-2 and their ability to help fight COVID-19.
Collapse
Affiliation(s)
- Drugan K. Brady
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Aashi R. Gurijala
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Liyu Huang
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Ali A. Hussain
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Audrey L. Lingan
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | | | - Brina A. Ratangee
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Tristan T. Sealy
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Kyle T. Vallone
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | | |
Collapse
|
24
|
Tanino Y, Nishioka K, Yamamoto C, Watanabe Y, Daidoji T, Kawamoto M, Uda S, Kirito S, Nakagawa Y, Kasamatsu Y, Kawahara Y, Sakai Y, Nobori S, Inaba T, Ota B, Fujita N, Hoshino A, Nukui Y, Nakaya T. Emergence of SARS-CoV-2 with Dual-Drug Resistant Mutations During a Long-Term Infection in a Kidney Transplant Recipient. Infect Drug Resist 2024; 17:531-541. [PMID: 38348230 PMCID: PMC10860503 DOI: 10.2147/idr.s438915] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction Various therapeutic agents are being developed for the treatment of coronavirus disease 2019 (COVID-19). Therefore, it is crucial to accumulate information regarding the features of drug-resistant viruses to these antiviral drugs. Methods We investigated the emergence of dual-drug resistance in a kidney transplant recipient who received sotrovimab (from day 0) and remdesivir (RDV) (from day 8 to day 17). We sequenced the whole viral genomes from nasopharyngeal swabs taken on day 0 and seven points after starting treatment (on days 12, 19, 23, 37, 43, 48, and 58). The genetic traits of the wild-type (day 0) and descendant viruses (after day 12) were determined by comparing the genomes with those of a Wuhan strain and the day 0 wild-type strain, respectively. Three viral isolates (from samples collected on days 0, 23, and 37) were investigated for their escape ability and growth kinetics in vitro. Results The sotrovimab resistant mutation (S:E340K) and the RDV resistant mutation RdRp:V792I (nt: G15814A) emerged within 12 days (day 12) and 11 days (day 19) after the treatment, respectively. The day 23 isolate harboring S:E340K/RdRp:V791I was resistant to both sotrovimab and RDV, showing 364- and 2.73-fold higher resistance respectively, compared with the wild-type. Moreover, compared with the day 23 isolate, the day 37 isolate accumulated multiple additional mutations and had a higher level of resistance to both drugs. Conclusion Drug-resistant variants with double mutations (S:E340K/RdRp:V791I) became dominant within 23 days after starting treatment, suggesting that even a combination therapy involving sotrovimab and RDV, dual-drug resistant viruses may emerge rapidly in immunocompromised patients. The dual-resistant variants had lower virus yields than those of the wild-type virus in vitro, suggesting that they paid a fitness cost.
Collapse
Affiliation(s)
- Yoko Tanino
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keisuke Nishioka
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Yamamoto
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- JST, MIRAI, Tokyo, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Masataka Kawamoto
- Department of Forensics Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sayaka Uda
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shoko Kirito
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuta Nakagawa
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yu Kasamatsu
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiyuki Kawahara
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Yuri Sakai
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Shuji Nobori
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tohru Inaba
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Bon Ota
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Fujita
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoko Nukui
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Zhang D, Kukkar D, Kim KH, Bhatt P. A comprehensive review on immunogen and immune-response proteins of SARS-CoV-2 and their applications in prevention, diagnosis, and treatment of COVID-19. Int J Biol Macromol 2024; 259:129284. [PMID: 38211928 DOI: 10.1016/j.ijbiomac.2024.129284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Exposure to severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2) prompts humoral immune responses in the human body. As the auxiliary diagnosis of a current infection, the existence of viral proteins can be checked from specific antibodies (Abs) induced by immunogenic viral proteins. For people with a weakened immune system, Ab treatment can help neutralize viral antigens to resist and treat the disease. On the other hand, highly immunogenic viral proteins can serve as effective markers for detecting prior infections. Additionally, the identification of viral particles or the presence of antibodies may help establish an immune defense against the virus. These immunogenic proteins rather than SARS-CoV-2 can be given to uninfected people as a vaccination to improve their coping ability against COVID-19 through the generation of memory plasma cells. In this work, we review immunogenic and immune-response proteins derived from SARS-CoV-2 with regard to their classification, origin, and diverse applications (e.g., prevention (vaccine development), diagnostic testing, and treatment (via neutralizing Abs)). Finally, advanced immunization strategies against COVID-19 are discussed along with the contemporary circumstances and future challenges.
Collapse
Affiliation(s)
- Daohong Zhang
- College of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| |
Collapse
|
26
|
Acar DD, Witkowski W, Wejda M, Wei R, Desmet T, Schepens B, De Cae S, Sedeyn K, Eeckhaut H, Fijalkowska D, Roose K, Vanmarcke S, Poupon A, Jochmans D, Zhang X, Abdelnabi R, Foo CS, Weynand B, Reiter D, Callewaert N, Remaut H, Neyts J, Saelens X, Gerlo S, Vandekerckhove L. Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warranted. EBioMedicine 2024; 100:104960. [PMID: 38232633 PMCID: PMC10803917 DOI: 10.1016/j.ebiom.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cocktails targeting non-overlapping epitopes. METHODS Undertaking a nAB discovery program, we employed a classical workflow, while integrating artificial intelligence (AI)-based prediction to select non-competing nABs very early in the pipeline. We identified and in vivo validated (in female Syrian hamsters) two highly potent nABs. FINDINGS Despite the promising results, in depth cryo-EM structural analysis demonstrated that the AI-based prediction employed with the intention to ensure non-overlapping epitopes was inaccurate. The two nABs in fact bound to the same receptor-binding epitope in a remarkably similar manner. INTERPRETATION Our findings indicate that, even in the Alphafold era, AI-based predictions of paratope-epitope interactions are rough and experimental validation of epitopes remains an essential cornerstone of a successful nAB lead selection. FUNDING Full list of funders is provided at the end of the manuscript.
Collapse
Affiliation(s)
- Delphine Diana Acar
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Wojciech Witkowski
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Magdalena Wejda
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Ruifang Wei
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Tim Desmet
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent 9000, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sieglinde De Cae
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Hannah Eeckhaut
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Daria Fijalkowska
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Kenny Roose
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sandrine Vanmarcke
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | | | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Xin Zhang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Caroline S Foo
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Birgit Weynand
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven 3000, Belgium
| | - Dirk Reiter
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Han Remaut
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels 1050, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sarah Gerlo
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
27
|
Sun H, Deng T, Zhang Y, Lin Y, Jiang Y, Jiang Y, Huang Y, Song S, Cui L, Li T, Xiong H, Lan M, Liu L, Li Y, Fang Q, Yu K, Jiang W, Zhou L, Que Y, Zhang T, Yuan Q, Cheng T, Zhang Z, Yu H, Zhang J, Luo W, Li S, Zheng Q, Gu Y, Xia N. Two antibodies show broad, synergistic neutralization against SARS-CoV-2 variants by inducing conformational change within the RBD. Protein Cell 2024; 15:121-134. [PMID: 37470320 PMCID: PMC10833452 DOI: 10.1093/procel/pwad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
Continual evolution of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus has allowed for its gradual evasion of neutralizing antibodies (nAbs) produced in response to natural infection or vaccination. The rapid nature of these changes has incited a need for the development of superior broad nAbs (bnAbs) and/or the rational design of an antibody cocktail that can protect against the mutated virus strain. Here, we report two angiotensin-converting enzyme 2 competing nAbs-8H12 and 3E2-with synergistic neutralization but evaded by some Omicron subvariants. Cryo-electron microscopy reveals the two nAbs synergistic neutralizing virus through a rigorous pairing permitted by rearrangement of the 472-489 loop in the receptor-binding domain to avoid steric clashing. Bispecific antibodies based on these two nAbs tremendously extend the neutralizing breadth and restore neutralization against recent variants including currently dominant XBB.1.5. Together, these findings expand our understanding of the potential strategies for the neutralization of SARS-CoV-2 variants toward the design of broad-acting antibody therapeutics and vaccines.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tingting Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Yanling Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yanan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuo Song
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Lingyan Cui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Hualong Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Miaolin Lan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yu Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qianjiao Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Kunyu Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wenling Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen 361102, China
| |
Collapse
|
28
|
Wu J, Yang H, Yu D, Yang X. Blood-derived product therapies for SARS-CoV-2 infection and long COVID. MedComm (Beijing) 2023; 4:e426. [PMID: 38020714 PMCID: PMC10651828 DOI: 10.1002/mco2.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is capable of large-scale transmission and has caused the coronavirus disease 2019 (COVID-19) pandemic. Patients with COVID-19 may experience persistent long-term health issues, known as long COVID. Both acute SARS-CoV-2 infection and long COVID have resulted in persistent negative impacts on global public health. The effective application and development of blood-derived products are important strategies to combat the serious damage caused by COVID-19. Since the emergence of COVID-19, various blood-derived products that target or do not target SARS-CoV-2 have been investigated for therapeutic applications. SARS-CoV-2-targeting blood-derived products, including COVID-19 convalescent plasma, COVID-19 hyperimmune globulin, and recombinant anti-SARS-CoV-2 neutralizing immunoglobulin G, are virus-targeting and can provide immediate control of viral infection in the short term. Non-SARS-CoV-2-targeting blood-derived products, including intravenous immunoglobulin and human serum albumin exhibit anti-inflammatory, immunomodulatory, antioxidant, and anticoagulatory properties. Rational use of these products can be beneficial to patients with SARS-CoV-2 infection or long COVID. With evidence accumulated since the pandemic began, we here summarize the progress of blood-derived product therapies for COVID-19, discuss the effective methods and scenarios regarding these therapies, and provide guidance and suggestions for clinical treatment.
Collapse
Affiliation(s)
- Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
| | | | - Ding Yu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
- Beijing Tiantan Biological Products Co., Ltd.BeijingChina
| | | |
Collapse
|
29
|
Wall SC, Suryadevara N, Kim C, Shiakolas AR, Holt CM, Irbe EB, Wasdin PT, Suresh YP, Binshtein E, Chen EC, Zost SJ, Canfield E, Crowe JE, Thompson-Arildsen MA, Sheward DJ, Carnahan RH, Georgiev IS. SARS-CoV-2 antibodies from children exhibit broad neutralization and belong to adult public clonotypes. Cell Rep Med 2023; 4:101267. [PMID: 37935199 PMCID: PMC10694659 DOI: 10.1016/j.xcrm.2023.101267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
From the beginning of the COVID-19 pandemic, children have exhibited different susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, reinfection, and disease compared with adults. Motivated by the established significance of SARS-CoV-2-neutralizing antibodies in adults, here we characterize SARS-CoV-2-specific antibody repertoires in a young cohort of individuals aged from 5 months to 18 years old. Our results show that neutralizing antibodies in children possess similar genetic features compared to antibodies identified in adults, with multiple antibodies from children belonging to previously established public antibody clonotypes in adults. Notably, antibodies from children show potent neutralization of circulating SARS-CoV-2 variants that have cumulatively resulted in resistance to virtually all approved monoclonal antibody therapeutics. Our results show that children can rely on similar SARS-CoV-2 antibody neutralization mechanisms compared to adults and are an underutilized source for the discovery of effective antibody therapeutics to counteract the ever-evolving pandemic.
Collapse
Affiliation(s)
- Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma B Irbe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Perry T Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yukthi P Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elaine C Chen
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth Canfield
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Ann Thompson-Arildsen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
30
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
31
|
Focosi D, McConnell S, Sullivan DJ, Casadevall A. Analysis of SARS-CoV-2 mutations associated with resistance to therapeutic monoclonal antibodies that emerge after treatment. Drug Resist Updat 2023; 71:100991. [PMID: 37572569 DOI: 10.1016/j.drup.2023.100991] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
The mutation rate of the Omicron sublineage has led to baseline resistance against all previously authorized anti-Spike monoclonal antibodies (mAbs). Nevertheless, in case more antiviral mAbs will be authorized in the future, it is relevant to understand how frequently treatment-emergent resistance has emerged so far, under different combinations and in different patient subgroups. We report the results of a systematic review of the medical literature for case reports and case series for treatment-emergent immune escape, which is defined as emergence of a resistance-driving mutation in at least 20% of sequences in a given host at a given timepoint. We identified 32 publications detailing 216 cases that included different variants of concern (VOC) and found that the incidence of treatment emergent-resistance ranged from 10% to 50%. Most of the treatment-emergent resistance events occurred in immunocompromised patients. Interestingly, resistance also emerged against cocktails of two mAbs, albeit at lower frequencies. The heterogenous therapeutic management of those cases doesn't allow inferences about the clinical outcome in patients with treatment-emergent resistance. Furthermore, we noted a temporal correlation between the introduction of mAb therapies and a subsequent increase in SARS-CoV-2 sequences across the globe carrying mutations conferring resistance to that mAb, raising concern as to whether these had originated in mAb-treated individuals. Our findings confirm that treatment-emergent immune escape to anti-Spike mAbs represents a frequent and concerning phenomenon and suggests that these are associated with mAb use in immunosuppressed hosts.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Italy.
| | - Scott McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Subramanian S, Schnell G, Iulio JD, Gupta AK, Shapiro AE, Sarkis EH, Lopuski A, Peppercorn A, Aldinger M, Hebner CM, Cathcart AL. Resistance analysis following sotrovimab treatment in participants with COVID-19 during the phase III COMET-ICE study. Future Virol 2023; 18:10.2217/fvl-2023-0146. [PMID: 38074312 PMCID: PMC10705769 DOI: 10.2217/fvl-2023-0146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/22/2023] [Indexed: 04/12/2024]
Abstract
Aim: Sotrovimab is an engineered human monoclonal antibody that binds a conserved region of the SARS-CoV-2 spike protein. The COMET-ICE phase III study evaluated sotrovimab for treatment of mild to moderate COVID-19 in nonhospitalized participants with ≥1 risk factor for severe disease progression. Materials & methods: We evaluated the presence of circulating SARS-CoV-2 variants of concern or interest (VOCs/VOIs) and characterized the presence of baseline, post-baseline and emergent amino acid substitutions detected in the epitope of sotrovimab in SARS-CoV-2. Results: None of the sotrovimab-treated participants with baseline epitope substitutions, and 1 of 48 sotrovimab-treated participants with post-baseline epitope substitutions, met the primary clinical endpoint for progression. Conclusion: Overall, progression was not associated with identified VOC/VOI or the presence of epitope substitutions in sotrovimab-treated participants.
Collapse
Affiliation(s)
| | | | | | - Anil K Gupta
- William Osler Health Centre, Etobicoke, Ontario, Canada
| | - Adrienne E Shapiro
- University of Washington & Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Erasmus MF, Ferrara F, D'Angelo S, Spector L, Leal-Lopes C, Teixeira AA, Sørensen J, Nagpal S, Perea-Schmittle K, Choudhary A, Honnen W, Calianese D, Antonio Rodriguez Carnero L, Cocklin S, Greiff V, Pinter A, Bradbury ARM. Insights into next generation sequencing guided antibody selection strategies. Sci Rep 2023; 13:18370. [PMID: 37884618 PMCID: PMC10603065 DOI: 10.1038/s41598-023-45538-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Therapeutic antibody discovery often relies on in-vitro display methods to identify lead candidates. Assessing selected output diversity traditionally involves random colony picking and Sanger sequencing, which has limitations. Next-generation sequencing (NGS) offers a cost-effective solution with increased read depth, allowing a comprehensive understanding of diversity. Our study establishes NGS guidelines for antibody drug discovery, demonstrating its advantages in expanding the number of unique HCDR3 clusters, broadening the number of high affinity antibodies, expanding the total number of antibodies recognizing different epitopes, and improving lead prioritization. Surprisingly, our investigation into the correlation between NGS-derived frequencies of CDRs and affinity revealed a lack of association, although this limitation could be moderately mitigated by leveraging NGS clustering, enrichment and/or relative abundance across different regions to enhance lead prioritization. This study highlights NGS benefits, offering insights, recommendations, and the most effective approach to leverage NGS in therapeutic antibody discovery.
Collapse
Affiliation(s)
| | | | - Sara D'Angelo
- Specifica LLC, a Q2 Solutions Company, Santa Fe, USA
| | - Laura Spector
- Specifica LLC, a Q2 Solutions Company, Santa Fe, USA
| | | | | | | | | | | | - Alok Choudhary
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - William Honnen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - David Calianese
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | | | - Simon Cocklin
- Specifica LLC, a Q2 Solutions Company, Santa Fe, USA
| | | | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | | |
Collapse
|
34
|
Woodall DW, Thomson CA, Dillon TM, McAuley A, Green LB, Foltz IN, Bondarenko PV. Native SEC and Reversed-Phase LC-MS Reveal Impact of Fab Glycosylation of Anti-SARS-COV-2 Antibodies on Binding to the Receptor Binding Domain. Anal Chem 2023; 95:15477-15485. [PMID: 37812809 DOI: 10.1021/acs.analchem.2c05554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The binding affinity of monoclonal antibodies (mAbs) for their intended therapeutic targets is often affected by chemical and post-translational modifications in the antigen binding (Fab) domains. A new two-dimensional analytical approach is described here utilizing native size exclusion chromatography (SEC) to separate populations of antibodies and bound antibody-antigen complexes for subsequent characterization of these modifications by reversed-phase (RP) liquid chromatography-mass spectrometry (LC-MS) at the intact antibody level. Previously, we utilized peptide mapping to measure modifications impacting binding. However, in this study, the large size of the modification (N-glycosylation) allowed assessing its impact from small amounts (∼20 ug) of intact antibody, without the need for peptide mapping. Here, we apply the native SEC-based competitive binding assay to quickly and qualitatively investigate the effects of Fab glycosylation of four antispike protein mAbs that were developed for use in the treatment of COVID-19 disease. Three of the mAbs were observed to have consensus N-glycosylation sites (N-X-T/S) in the Fab domains, a relatively rare occurrence in therapeutic mAbs. The goal of the study was to characterize the levels of Fab glycosylation present, as well as determine the impact of glycosylation on binding to the spike protein receptor binding domain (RBD) and the ability of the mAbs to inhibit RBD-ACE2 interaction at the intact antibody level, with minimal sample treatment and preparation. The three mAbs with Fab N-glycans were found to have glycosylation profiles ranging from full occupancy at each Fab (in one mAb) to partially glycosylated with mixed populations of two, one, or no glycan moieties. Competitive SEC analysis of mAb-RBD revealed that the glycosylated antibody populations outcompete their nonglycosylated counterparts for the available RBD molecules. This competitive SEC binding analysis was applied to investigate the three-body interaction of a glycosylated mAb blocking the interaction between endogenous binding partners RBD-ACE2, finding that both glycosylated and nonglycosylated mAb populations bound to RBD with high enough affinity to block RBD-ACE2 binding.
Collapse
Affiliation(s)
- Daniel W Woodall
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Christy A Thomson
- Discovery Protein Science, Amgen Research, Amgen Inc., Burnaby, BC V5A1 V7, Canada
| | - Thomas M Dillon
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
- Drug Product Technologies, Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Arnold McAuley
- Drug Product Technologies, Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Lydia B Green
- Biologics Discovery, Amgen Research, Amgen Inc., Burnaby, BC V5A1 V7, Canada
| | - Ian N Foltz
- Biologics Discovery, Amgen Research, Amgen Inc., Burnaby, BC V5A1 V7, Canada
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
35
|
Wayham NP, Niedecken AR, Simons JF, Chiang YY, Medina-Cucurella AV, Mizrahi RA, Wagner EK, Gras A, Segal I, Witte P, Enstrom A, Bountouvas A, Nelson SM, Weinberger T, Tan D, Asensio MA, Subramanian A, Lim YW, Adler AS, Keating SM. A Potent Recombinant Polyclonal Antibody Therapeutic for Protection Against New Severe Acute Respiratory Syndrome Coronavirus 2 Variants of Concern. J Infect Dis 2023; 228:555-563. [PMID: 37062677 PMCID: PMC10469345 DOI: 10.1093/infdis/jiad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023] Open
Abstract
Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) possess mutations that prevent antibody therapeutics from maintaining antiviral binding and neutralizing efficacy. Monoclonal antibodies (mAbs) shown to neutralize Wuhan-Hu-1 SARS-CoV-2 (ancestral) strain have reduced potency against newer variants. Plasma-derived polyclonal hyperimmune drugs have improved neutralization breadth compared with mAbs, but lower titers against SARS-CoV-2 require higher dosages for treatment. We previously developed a highly diverse, recombinant polyclonal antibody therapeutic anti-SARS-CoV-2 immunoglobulin hyperimmune (rCIG). rCIG was compared with plasma-derived or mAb standards and showed improved neutralization of SARS-CoV-2 across World Health Organization variants; however, its potency was reduced against some variants relative to ancestral, particularly omicron. Omicron-specific antibody sequences were enriched from yeast expressing rCIG-scFv and exhibited increased binding and neutralization to omicron BA.2 while maintaining ancestral strain binding and neutralization. Polyclonal antibody libraries such as rCIG can be utilized to develop antibody therapeutics against present and future SARS-CoV-2 threats.
Collapse
Affiliation(s)
| | | | | | - Yao Y Chiang
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | | | - Rena A Mizrahi
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - Ellen K Wagner
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - Ashley Gras
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - Ilana Segal
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - Peyton Witte
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - Alexis Enstrom
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | | | | | - Tess Weinberger
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - David Tan
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | | | | | - Yoong Wearn Lim
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - Adam S Adler
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | | |
Collapse
|
36
|
Hunt AC, Vögeli B, Hassan AO, Guerrero L, Kightlinger W, Yoesep DJ, Krüger A, DeWinter M, Diamond MS, Karim AS, Jewett MC. A rapid cell-free expression and screening platform for antibody discovery. Nat Commun 2023; 14:3897. [PMID: 37400446 DOI: 10.1038/s41467-023-38965-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/23/2023] [Indexed: 07/05/2023] Open
Abstract
Antibody discovery is bottlenecked by the individual expression and evaluation of antigen-specific hits. Here, we address this bottleneck by developing a workflow combining cell-free DNA template generation, cell-free protein synthesis, and binding measurements of antibody fragments in a process that takes hours rather than weeks. We apply this workflow to evaluate 135 previously published antibodies targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including all 8 antibodies previously granted emergency use authorization for coronavirus disease 2019 (COVID-19), and demonstrate identification of the most potent antibodies. We also evaluate 119 anti-SARS-CoV-2 antibodies from a mouse immunized with the SARS-CoV-2 spike protein and identify neutralizing antibody candidates, including the antibody SC2-3, which binds the SARS-CoV-2 spike protein of all tested variants of concern. We expect that our cell-free workflow will accelerate the discovery and characterization of antibodies for future pandemics and for research, diagnostic, and therapeutic applications more broadly.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Bastian Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura Guerrero
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Danielle J Yoesep
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Madison DeWinter
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
37
|
Wu CY, Yang YH, Lin YS, Shu LH, Cheng YC, Liu HT, Lin YY, Lee IY, Shih WT, Yang PR, Tsai YY, Chang GH, Hsu CM, Yeh RA, Wu YH, Wu YH, Shen RC, Tsai MS. The anti-SARS-CoV-2 effect and mechanism of Chiehyuan herbal oral protection solution. Heliyon 2023; 9:e17701. [PMID: 37483781 PMCID: PMC10359827 DOI: 10.1016/j.heliyon.2023.e17701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The Chiehyuan herbal oral protection solution (GB-2) is a herbal mixture commonly utilized in Taiwan for combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as per traditional Chinese medicine practices. This study assessed the clinical impact of GB-2 through prospective clinical trials. With twice-daily use for a week, GB-2 was shown to diminish the expression of angiotensin-converting enzyme 2 (ACE2) in oral mucosal cells. Moreover, after two weeks of use, it could reduce transmembrane protease, serine 2 (TMRPSS2) expression in these cells. Additionally, in vitro experiments demonstrated that GB-2 lessened the entry efficiency of the Omicron, L452R-D614G, T478K-D614G, and L452R-T478K-D614G variants of the SARS-CoV-2 pseudotyped lentivirus. It also impeded the interaction between ACE2 and the receptor-binding domain (RBD) presenting N501Y-K417N-E484A-G339D-Q493R-G496S-Q498R and L452R-T478K mutations. Glycyrrhizic acid, a major compound in GB-2, also hindered the entry of the Omicron variant (BA.1) of the SARS-CoV-2 pseudotyped lentivirus by obstructing the binding between ACE2 and the RBD presenting the N501Y-K417N-E484A-G339D-Q493R-G496S-Q498R mutation. To sum up, these findings suggest that GB-2 can decrease ACE2 and TMPRSS2 expression in oral mucosal cells. Both glycyrrhizic acid and GB-2 were found to reduce the entry efficiency of the Omicron variant (BA.1) of the SARS-CoV-2 pseudotyped lentivirus and block the binding between ACE2 and the RBD with the N501Y-K417N-E484A-G339D-Q493R-G496S-Q498R mutation. This evidence implies that GB-2 might be a potential candidate for further study as a preventative measure against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ching Cheng
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yin-Yin Lin
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wei-Tai Shih
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Pei-Rung Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ying-Ying Tsai
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Geng-He Chang
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Reming-Albert Yeh
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Huei Wu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Heng Wu
- Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Rou-Chen Shen
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Shao Tsai
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
38
|
Guo Y, Zhang G, Yang Q, Xie X, Lu Y, Cheng X, Wang H, Liang J, Tang J, Gao Y, Shang H, Dai J, Shi Y, Zhou J, Zhou J, Guo H, Yang H, Qi J, Liu L, Ma S, Zhang B, Huo Q, Xie Y, Wu J, Dong F, Zhang S, Lou Z, Gao Y, Song Z, Wang W, Sun Z, Yang X, Xiong D, Liu F, Chen X, Zhu P, Wang X, Cheng T, Rao Z. Discovery and characterization of potent pan-variant SARS-CoV-2 neutralizing antibodies from individuals with Omicron breakthrough infection. Nat Commun 2023; 14:3537. [PMID: 37322000 PMCID: PMC10267556 DOI: 10.1038/s41467-023-39267-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
The SARS-CoV-2 Omicron variant evades most currently approved neutralizing antibodies (nAbs) and caused drastic decrease of plasma neutralizing activity elicited by vaccination or prior infection, urging the need for the development of pan-variant antivirals. Breakthrough infection induces a hybrid immunological response with potentially broad, potent and durable protection against variants, therefore, convalescent plasma from breakthrough infection may provide a broadened repertoire for identifying elite nAbs. We performed single-cell RNA sequencing (scRNA-seq) and BCR sequencing (scBCR-seq) of B cells from BA.1 breakthrough-infected patients who received 2 or 3 previous doses of inactivated vaccine. Elite nAbs, mainly derived from the IGHV2-5 and IGHV3-66/53 germlines, showed potent neutralizing activity across Wuhan-Hu-1, Delta, Omicron sublineages BA.1 and BA.2 at picomolar NT50 values. Cryo-EM analysis revealed diverse modes of spike recognition and guides the design of cocktail therapy. A single injection of paired antibodies cocktail provided potent protection in the K18-hACE2 transgenic female mouse model of SARS-CoV-2 infection.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- Chinese Academy of Medical Sciences (CAMS)
- This work was supported by the National Program on Key Research Project of China (2018YFE0200400, 2021YFE0201900, 2021YFA1100900 and 2018YFA0507200),The Key Program of Natural Science Foundation of Tianjin (20JCYBJC01340), Haihe Laboratory of Cell Ecosystem Innovation Fund (22HHXBSS00001),Science and Technology Project of Tianjin (22ZYJDSS00080),the Non-CAMS Fundamental Research Funds for Central Research Institutes (3332021093), Application for Basic and Applied Basic Research Projects of Guangzhou Basic Research Program (SL2023A04J00076), Emergency Key Program of Guangzhou Laboratory (EKPGL2021008), R&D Program of Guangzhou Laboratory (SRPG22-003, SRPG22-002).
Collapse
Affiliation(s)
- Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China.
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China.
- Beijing Institute of Biological Products Company Limited, China National Biotech Group, Beijing, 100176, China.
| | - Guangshun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Qi Yang
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China.
| | - Xiaowei Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yang Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xuelian Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Hui Wang
- Beijing Institute of Biological Products Company Limited, China National Biotech Group, Beijing, 100176, China
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Jielin Tang
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China
| | - Yuxin Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hang Shang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, 510700, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, 510700, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Hangtian Guo
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Jianwei Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Lijun Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Biao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Qianyu Huo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yi Xie
- Tianjin Haihe Hospital, Jingu Road, Tianjin, 300071, China
| | - Junping Wu
- Tianjin Haihe Hospital, Jingu Road, Tianjin, 300071, China
| | - Fang Dong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Song Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhiyong Lou
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Zidan Song
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wenming Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zixian Sun
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoming Yang
- Beijing Institute of Biological Products Company Limited, China National Biotech Group, Beijing, 100176, China.
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Dongsheng Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Fengjiang Liu
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China.
| | - Xinwen Chen
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China.
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Ximo Wang
- Tianjin Haihe Hospital, Jingu Road, Tianjin, 300071, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin, 300071, China.
- Guangzhou Laboratory, Guangzhou, Guangdong, People's Republic of China.
- CNBG-Nankai Joint Research Center, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P.R. China.
| |
Collapse
|
39
|
Ragonnet-Cronin M, Nutalai R, Huo J, Dijokaite-Guraliuc A, Das R, Tuekprakhon A, Supasa P, Liu C, Selvaraj M, Groves N, Hartman H, Ellaby N, Mark Sutton J, Bahar MW, Zhou D, Fry E, Ren J, Brown C, Klenerman P, Dunachie SJ, Mongkolsapaya J, Hopkins S, Chand M, Stuart DI, Screaton GR, Rokadiya S. Generation of SARS-CoV-2 escape mutations by monoclonal antibody therapy. Nat Commun 2023; 14:3334. [PMID: 37286554 PMCID: PMC10246534 DOI: 10.1038/s41467-023-37826-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/03/2023] [Indexed: 06/09/2023] Open
Abstract
COVID-19 patients at risk of severe disease may be treated with neutralising monoclonal antibodies (mAbs). To minimise virus escape from neutralisation these are administered as combinations e.g. casirivimab+imdevimab or, for antibodies targeting relatively conserved regions, individually e.g. sotrovimab. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to detect emerging drug resistance in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the antibody epitopes and for casirivimab+imdevimab multiple mutations are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.
Collapse
Affiliation(s)
- Manon Ragonnet-Cronin
- Genomics Public Health Analysis, UK Health Security Agency, London, UK.
- Centre for Global Infectious Disease Analysis, Imperial College London, London, England.
| | - Rungtiwa Nutalai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jiandong Huo
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
| | - Aiste Dijokaite-Guraliuc
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Raksha Das
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aekkachai Tuekprakhon
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Muneeswaran Selvaraj
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Natalie Groves
- Genomics Public Health Analysis, UK Health Security Agency, London, UK
| | - Hassan Hartman
- Genomics Public Health Analysis, UK Health Security Agency, London, UK
| | - Nicholas Ellaby
- Genomics Public Health Analysis, UK Health Security Agency, London, UK
| | - J Mark Sutton
- Genomics Public Health Analysis, UK Health Security Agency, London, UK
| | - Mohammad W Bahar
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Daming Zhou
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Elizabeth Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Colin Brown
- Genomics Public Health Analysis, UK Health Security Agency, London, UK
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand, Department of Medicine, University of Oxford, Oxford, UK
| | - Susan Hopkins
- Genomics Public Health Analysis, UK Health Security Agency, London, UK
| | - Meera Chand
- Genomics Public Health Analysis, UK Health Security Agency, London, UK
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Sakib Rokadiya
- Genomics Public Health Analysis, UK Health Security Agency, London, UK.
| |
Collapse
|
40
|
Nishi W, Wakamatsu E, Machiyama H, Matsushima R, Saito K, Yoshida Y, Nishikawa T, Takehara T, Toyota H, Furuhata M, Nishijima H, Takeuchi A, Azuma M, Suzuki M, Yokosuka T. Evaluation of therapeutic PD-1 antibodies by an advanced single-molecule imaging system detecting human PD-1 microclusters. Nat Commun 2023; 14:3157. [PMID: 37280233 PMCID: PMC10244369 DOI: 10.1038/s41467-023-38512-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
With recent advances in immune checkpoint inhibitors (ICIs), immunotherapy has become the standard treatment for various malignant tumors. Their indications and dosages have been determined empirically, taking individually conducted clinical trials into consideration, but without a standard method to evaluate them. Here we establish an advanced imaging system to visualize human PD-1 microclusters, in which a minimal T cell receptor (TCR) signaling unit co-localizes with the inhibitory co-receptor PD-1 in vitro. In these microclusters PD-1 dephosphorylates both the TCR/CD3 complex and its downstream signaling molecules via the recruitment of a phosphatase, SHP2, upon stimulation with the ligand hPD-L1. In this system, blocking antibodies for hPD-1-hPD-L1 binding inhibits hPD-1 microcluster formation, and each therapeutic antibody (pembrolizumab, nivolumab, durvalumab and atezolizumab) is characterized by a proprietary optimal concentration and combinatorial efficiency enhancement. We propose that our imaging system could digitally evaluate PD-1-mediated T cell suppression to evaluate their clinical usefulness and to develop the most suitable combinations among ICIs or between ICIs and conventional cancer treatments.
Collapse
Affiliation(s)
- Wataru Nishi
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Ei Wakamatsu
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Hiroaki Machiyama
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Ryohei Matsushima
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Kensho Saito
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yosuke Yoshida
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
- Department of Nephrology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Tetsushi Nishikawa
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
- Department of Dermatology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Tomohiro Takehara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroko Toyota
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Masae Furuhata
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Hitoshi Nishijima
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Arata Takeuchi
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan.
| |
Collapse
|
41
|
Struble EB, Rawson JMO, Stantchev T, Scott D, Shapiro MA. Uses and Challenges of Antiviral Polyclonal and Monoclonal Antibody Therapies. Pharmaceutics 2023; 15:pharmaceutics15051538. [PMID: 37242780 DOI: 10.3390/pharmaceutics15051538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Viral diseases represent a major public health concerns and ever-present risks for developing into future pandemics. Antiviral antibody therapeutics, either alone or in combination with other therapies, emerged as valuable preventative and treatment options, including during global emergencies. Here we will discuss polyclonal and monoclonal antiviral antibody therapies, focusing on the unique biochemical and physiological properties that make them well-suited as therapeutic agents. We will describe the methods of antibody characterization and potency assessment throughout development, highlighting similarities and differences between polyclonal and monoclonal products as appropriate. In addition, we will consider the benefits and challenges of antiviral antibodies when used in combination with other antibodies or other types of antiviral therapeutics. Lastly, we will discuss novel approaches to the characterization and development of antiviral antibodies and identify areas that would benefit from additional research.
Collapse
Affiliation(s)
- Evi B Struble
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jonathan M O Rawson
- Division of Antivirals, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Dorothy Scott
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Marjorie A Shapiro
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
42
|
Jaki L, Weigang S, Kern L, Kramme S, Wrobel AG, Grawitz AB, Nawrath P, Martin SR, Dähne T, Beer J, Disch M, Kolb P, Gutbrod L, Reuter S, Warnatz K, Schwemmle M, Gamblin SJ, Neumann-Haefelin E, Schnepf D, Welte T, Kochs G, Huzly D, Panning M, Fuchs J. Total escape of SARS-CoV-2 from dual monoclonal antibody therapy in an immunocompromised patient. Nat Commun 2023; 14:1999. [PMID: 37037847 PMCID: PMC10085998 DOI: 10.1038/s41467-023-37591-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) directed against the spike of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective therapeutic options to combat infections in high-risk patients. Here, we report the adaptation of SARS-CoV-2 to the mAb cocktail REGN-COV in a kidney transplant patient with hypogammaglobulinemia. Following mAb treatment, the patient did not clear the infection. During viral persistence, SARS-CoV-2 acquired three novel spike mutations. Neutralization and mouse protection analyses demonstrate a complete viral escape from REGN-COV at the expense of ACE-2 binding. Final clearance of the virus occurred upon reduction of the immunosuppressive regimen and total IgG substitution. Serology suggests that the development of highly neutralizing IgM rather than IgG substitution aids clearance. Our findings emphasise that selection pressure by mAbs on SARS-CoV-2 can lead to development of escape variants in immunocompromised patients. Thus, modification of immunosuppressive therapy, if possible, might be preferable to control and clearance of the viral infection.
Collapse
Affiliation(s)
- Lena Jaki
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Weigang
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Kern
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Kramme
- Institute for Infection Prevention and Hospital Epidemiology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Antoni G Wrobel
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Andrea B Grawitz
- Institute for Clinical Chemistry and Laboratory Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Nawrath
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Stephen R Martin
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Theo Dähne
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julius Beer
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Disch
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Kolb
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Gutbrod
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Reuter
- Institute for Infection Prevention and Hospital Epidemiology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven J Gamblin
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Welte
- Renal Division, Department of Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kochs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Jonas Fuchs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
43
|
Raho G, Cordeddu W, Firinu D, Del Giacco S, Angioni G. Successful Combination of Remdesivir and Convalescent Plasma to Treat
a Patient with Rituximab-Related B-Cell Deficiency and Prolonged
COVID-19: A Case Report. ANTI-INFECTIVE AGENTS 2023; 21. [DOI: 10.2174/2211352520666220922091227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 08/18/2022] [Indexed: 09/22/2023]
Abstract
Background:
Treatment of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection in immuno-compromised patients with complete B cell depletion
can be really challenging due to the lack of seroconversion and long-lasting disease.
Case Report:
We describe a case of long-lasting coronavirus disease (COVID-19) in a female patient with rheumatoid arthritis who was treated with rituximab and continued to show B-cell depletion. An ongoing replication of SARS-CoV-2 was demonstrated for a period of 8 months when nasopharyngeal swabs were tested. She was treated once with remdesivir but without lasting resolution, and she was then treated with convalescent plasma but with a similar effect. Only with a combination of both treatments was clinical resolution achieved. The patient's lack of seroconversion and the prolonged course of the disease illustrate the importance of humoral immunity in resolving SARS-CoV-2 infection. This case report highlights challenges in managing immunocompromised hosts, who may act as persistent shedders and sources of transmission.
Conclusions:
The combination of remdesivir and convalescent plasma resulted in successfully
achieving clinical resolution of SARS-CoV-2 infection in our patient.
Collapse
Affiliation(s)
- Giorgio Raho
- Department of Infectious and Tropical Disease Ospedale, S.S. Trinità Hospital, Cagliari, Italy
- Unit of Internal Medicine,
Allergy and Clinical Immunology, Department of Medical Sciences, Public Health University of Cagliari, Cagliari, Italy
| | - William Cordeddu
- Department of Infectious and Tropical Disease Ospedale, S.S. Trinità Hospital, Cagliari, Italy
| | - Davide Firinu
- Unit of Internal Medicine,
Allergy and Clinical Immunology, Department of Medical Sciences, Public Health University of Cagliari, Cagliari, Italy
| | - Stefano Del Giacco
- Unit of Internal Medicine,
Allergy and Clinical Immunology, Department of Medical Sciences, Public Health University of Cagliari, Cagliari, Italy
| | - Goffredo Angioni
- Department of Infectious and Tropical Disease Ospedale, S.S. Trinità Hospital, Cagliari, Italy
| |
Collapse
|
44
|
Zhang X, Chen Q, Xu G. Clinical manifestations of COVID-19 infection in dialysis patients and protective effect of COVID-19 vaccine. Inflamm Res 2023; 72:989-1000. [PMID: 37004547 PMCID: PMC10066982 DOI: 10.1007/s00011-023-01723-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVE COVID-19 infection poses a special challenge to patients with dialysis patients. The purpose of this study was to evaluate the clinical manifestations of dialysis patients with COVID-19 and the protective effect of the vaccine. METHODS We included 41 studies based on big data, mainly analyzing the clinical symptoms of dialysis patients with COVID-19, the proportion of severe patients before and after vaccination, and the humoral reaction of vaccine in the body. RESULTS 6.1% to 35.7% of dialysis patients with COVID-19 developed respiratory distress symptoms and needed to be admitted to an intensive care unit for mechanical ventilation. The incidence and mortality of COVID-19 in dialysis patients before vaccination were 5.5% and 1.1%, respectively, and decreased to 4.5% and 0.6% in breakthrough infected patients. There was no statistical difference in serum conversion rates between dialysis patients and healthy controls, but the neutralizing antibody titer in the control group was 1922 (IQR 533 to 3186) AU/mL, and the neutralizing antibody titer in dialysis patients significantly decreased to 367 (IQR 171 to 1650) AU/mL (P=0.046). CONCLUSIONS Dialysis is associated with an increased risk of severe COVID-19, and generally has a poor seroconversion response to vaccines. It also confirms the protective effect of vaccines on high-risk populations such as dialysis.
Collapse
Affiliation(s)
- Xuehan Zhang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, People's Republic of China
| | - Qingfeng Chen
- School of Public Health and Management, Nanchang Medical College, No. 1689, Meiling Avenue, Wanli, Nanchang, 330004, People's Republic of China.
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
45
|
Liu M, Gan H, Liang Z, Liu L, Liu Q, Mai Y, Chen H, Lei B, Yu S, Chen H, Zheng P, Sun B. Review of therapeutic mechanisms and applications based on SARS-CoV-2 neutralizing antibodies. Front Microbiol 2023; 14:1122868. [PMID: 37007494 PMCID: PMC10060843 DOI: 10.3389/fmicb.2023.1122868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
COVID-19 pandemic is a global public health emergency. Despite extensive research, there are still few effective treatment options available today. Neutralizing-antibody-based treatments offer a broad range of applications, including the prevention and treatment of acute infectious diseases. Hundreds of SARS-CoV-2 neutralizing antibody studies are currently underway around the world, with some already in clinical applications. The development of SARS-CoV-2 neutralizing antibody opens up a new therapeutic option for COVID-19. We intend to review our current knowledge about antibodies targeting various regions (i.e., RBD regions, non-RBD regions, host cell targets, and cross-neutralizing antibodies), as well as the current scientific evidence for neutralizing-antibody-based treatments based on convalescent plasma therapy, intravenous immunoglobulin, monoclonal antibodies, and recombinant drugs. The functional evaluation of antibodies (i.e., in vitro or in vivo assays) is also discussed. Finally, some current issues in the field of neutralizing-antibody-based therapies are highlighted.
Collapse
Affiliation(s)
- Mingtao Liu
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Hui Gan
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhiman Liang
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Li Liu
- Guangzhou Medical University, Guangzhou, China
| | - Qiwen Liu
- Guangzhou Medical University, Guangzhou, China
| | - Yiyin Mai
- Guangzhou Medical University, Guangzhou, China
| | | | - Baoying Lei
- Guangzhou Medical University, Guangzhou, China
| | - Shangwei Yu
- Guangzhou Medical University, Guangzhou, China
| | - Huihui Chen
- Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Baoqing Sun
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| |
Collapse
|
46
|
Rayaprolu V, Fulton BO, Rafique A, Arturo E, Williams D, Hariharan C, Callaway H, Parvate A, Schendel SL, Parekh D, Hui S, Shaffer K, Pascal KE, Wloga E, Giordano S, Negron N, Ni M, Copin R, Atwal GS, Franklin M, Boytz RM, Donahue C, Davey R, Baum A, Kyratsous CA, Saphire EO. Structure of the Inmazeb cocktail and resistance to Ebola virus escape. Cell Host Microbe 2023; 31:260-272.e7. [PMID: 36708708 PMCID: PMC10375381 DOI: 10.1016/j.chom.2023.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023]
Abstract
Monoclonal antibodies can provide important pre- or post-exposure protection against infectious disease for those not yet vaccinated or in individuals that fail to mount a protective immune response after vaccination. Inmazeb (REGN-EB3), a three-antibody cocktail against Ebola virus, lessened disease and improved survival in a controlled trial. Here, we present the cryo-EM structure at 3.1 Å of the Ebola virus glycoprotein, determined without symmetry averaging, in a simultaneous complex with the antibodies in the Inmazeb cocktail. This structure allows the modeling of previously disordered portions of the glycoprotein glycan cap, maps the non-overlapping epitopes of Inmazeb, and illuminates the basis for complementary activities and residues critical for resistance to escape by these and other clinically relevant antibodies. We further provide direct evidence that Inmazeb protects against the rapid emergence of escape mutants, whereas monotherapies even against conserved epitopes do not, supporting the benefit of a cocktail versus a monotherapy approach.
Collapse
Affiliation(s)
| | | | | | - Emilia Arturo
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Dewight Williams
- Eyring Materials Center, Arizona State University, Tempe, AZ 85281, USA
| | | | | | - Amar Parvate
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | - Sean Hui
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kelly Shaffer
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | - Min Ni
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | - Ruth Mabel Boytz
- Department of Microbiology, Boston University of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Callie Donahue
- Department of Microbiology, Boston University of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Robert Davey
- Department of Microbiology, Boston University of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Alina Baum
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Erica Ollmann Saphire
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.
| |
Collapse
|
47
|
Shoham S, Bloch EM, Casadevall A, Hanley D, Lau B, Gebo K, Cachay E, Kassaye SG, Paxton JH, Gerber J, Levine AC, Naeim A, Currier J, Patel B, Allen ES, Anjan S, Appel L, Baksh S, Blair PW, Bowen A, Broderick P, Caputo CA, Cluzet V, Elena MC, Cruser D, Ehrhardt S, Forthal D, Fukuta Y, Gawad AL, Gniadek T, Hammel J, Huaman MA, Jabs DA, Jedlicka A, Karlen N, Klein S, Laeyendecker O, Karen L, McBee N, Meisenberg B, Merlo C, Mosnaim G, Park HS, Pekosz A, Petrini J, Rausch W, Shade DM, Shapiro JR, Singleton RJ, Sutcliffe C, Thomas DL, Yarava A, Zand M, Zenilman JM, Tobian AA, Sullivan DJ. Transfusing Convalescent Plasma as Post-Exposure Prophylaxis Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Double-Blinded, Phase 2 Randomized, Controlled Trial. Clin Infect Dis 2023; 76:e477-e486. [PMID: 35579509 PMCID: PMC9129191 DOI: 10.1093/cid/ciac372] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The efficacy of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent plasma (CCP) for preventing infection in exposed, uninfected individuals is unknown. CCP might prevent infection when administered before symptoms or laboratory evidence of infection. METHODS This double-blinded, phase 2 randomized, controlled trial (RCT) compared the efficacy and safety of prophylactic high titer (≥1:320 by Euroimmun ELISA) CCP with standard plasma. Asymptomatic participants aged ≥18 years with close contact exposure to a person with confirmed coronavirus disease 2019 (COVID-19) in the previous 120 hours and negative SARS-CoV-2 test within 24 hours before transfusion were eligible. The primary outcome was new SARS-CoV-2 infection. RESULTS In total, 180 participants were enrolled; 87 were assigned to CCP and 93 to control plasma, and 170 transfused at 19 sites across the United States from June 2020 to March 2021. Two were excluded for screening SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) positivity. Of the remaining 168 participants, 12/81 (14.8%) CCP and 13/87 (14.9%) control recipients developed SARS-CoV-2 infection; 6 (7.4%) CCP and 7 (8%) control recipients developed COVID-19 (infection with symptoms). There were no COVID-19-related hospitalizations in CCP and 2 in control recipients. Efficacy by restricted mean infection free time (RMIFT) by 28 days for all SARS-CoV-2 infections (25.3 vs 25.2 days; P = .49) and COVID-19 (26.3 vs 25.9 days; P = .35) was similar for both groups. CONCLUSIONS Administration of high-titer CCP as post-exposure prophylaxis, although appearing safe, did not prevent SARS-CoV-2 infection. CLINICAL TRIALS REGISTRATION NCT04323800.
Collapse
Affiliation(s)
| | | | | | | | - Bryan Lau
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, Mosaic Consulting Ltd., Israel
| | | | - Edward Cachay
- Department of Medicine, Division of Infectious Diseases
| | - Seble G. Kassaye
- Division of Infectious Diseases/Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - James H. Paxton
- Department of Emergency Medicine Wayne State University, Detroit, Michigan, USA
| | - Jonathan Gerber
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worchester, Massachusetts, USA
| | - Adam C Levine
- Department of Emergency Medicine, Rhode Island Hospital/Brown University, Providence, Rhode Island, USA
| | - Arash Naeim
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, California, USA
| | - Judith Currier
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, California, USA
| | - Bela Patel
- Department of Medicine, Division Critical Care Medicine, University of Texas Health, Houston, Texas, USA
| | - Elizabeth S. Allen
- Department of Pathology, University of California, San Diego, San Diego, California, USA
| | - Shweta Anjan
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Sheriza Baksh
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, Mosaic Consulting Ltd., Israel
| | | | | | | | | | - Valerie Cluzet
- Vassar Brothers Medical Center, Nuvance Health, Poughkeepsie, New York, USA
| | | | | | - Stephan Ehrhardt
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, Mosaic Consulting Ltd., Israel
| | - Donald Forthal
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, Irvine, California, USA
| | - Yuriko Fukuta
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | | | - Thomas Gniadek
- Department of Pathology, Northshore University Health System, Evanston, Illinois, USA
| | | | - Moises A. Huaman
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, Ohio, USA
| | - Douglas A. Jabs
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Sabra Klein
- Department of Molecular Microbiology and Immunology
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | | | | | | | | | | | - Han-Sol Park
- Department of Molecular Microbiology and Immunology
| | | | - Joann Petrini
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - William Rausch
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - David M. Shade
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, Mosaic Consulting Ltd., Israel
| | | | | | - Catherine Sutcliffe
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, Mosaic Consulting Ltd., Israel
| | | | | | - Martin Zand
- Department of Medicine, University of Rochester, Rochester, New York, USA
| | | | | | | |
Collapse
|
48
|
Focosi D, Quiroga R, McConnell S, Johnson MC, Casadevall A. Convergent Evolution in SARS-CoV-2 Spike Creates a Variant Soup from Which New COVID-19 Waves Emerge. Int J Mol Sci 2023; 24:2264. [PMID: 36768588 PMCID: PMC9917121 DOI: 10.3390/ijms24032264] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023] Open
Abstract
The first 2 years of the COVID-19 pandemic were mainly characterized by recurrent mutations of SARS-CoV-2 Spike protein at residues K417, L452, E484, N501 and P681 emerging independently across different variants of concern (Alpha, Beta, Gamma, and Delta). Such homoplasy is a marker of convergent evolution. Since Spring 2022 and the third year of the pandemic, with the advent of Omicron and its sublineages, convergent evolution has led to the observation of different lineages acquiring an additional group of mutations at different amino acid residues, namely R346, K444, N450, N460, F486, F490, Q493, and S494. Mutations at these residues have become increasingly prevalent during Summer and Autumn 2022, with combinations showing increased fitness. The most likely reason for this convergence is the selective pressure exerted by previous infection- or vaccine-elicited immunity. Such accelerated evolution has caused failure of all anti-Spike monoclonal antibodies, including bebtelovimab and cilgavimab. While we are learning how fast coronaviruses can mutate and recombine, we should reconsider opportunities for economically sustainable escape-proof combination therapies, and refocus antibody-mediated therapeutic efforts on polyclonal preparations that are less likely to allow for viral immune escape.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Rodrigo Quiroga
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordova 5000, Argentina
| | - Scott McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marc C. Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65201, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Takayama S, Yoshino T, Koizumi S, Irie Y, Suzuki T, Fujii S, Katori R, Kainuma M, Kobayashi S, Nogami T, Yokota K, Yamazaki M, Minakawa S, Chiba S, Suda N, Nakada Y, Ishige T, Maehara H, Tanaka Y, Nagase M, Kashio A, Komatsu K, Nojiri M, Shimooki O, Nakamoto K, Arita R, Ono R, Saito N, Kikuchi A, Ohsawa M, Nakae H, Mitsuma T, Mimura M, Ishii T, Nochioka K, Chiu SW, Yamaguchi T, Namiki T, Hisanaga A, Mitani K, Ito T. Conventional and Kampo Medicine Treatment for Mild-to-moderate COVID-19: A Multicenter, Retrospective, Observational Study by the Integrative Management in Japan for Epidemic Disease (IMJEDI Study-observation). Intern Med 2023; 62:187-199. [PMID: 36328579 PMCID: PMC9908382 DOI: 10.2169/internalmedicine.0027-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective Patients in whom coronavirus disease 2019 (COVID-19) was suspected or confirmed between January 1, 2020, and October 31, 2021, were enrolled from Japanese hospitals in this multicenter, retrospective, observational study. Methods Data on the treatment administered (including conventional and Kampo medicine) and changes in common cold-like symptoms (such as fever, cough, sputum, dyspnea, fatigue, and diarrhea) were collected from their medical records. The primary outcome was the number of days without a fever (with a body temperature <37°C). The secondary outcomes were symptomatic relief and the worsening of illness, defined as the presence of a condition requiring oxygen inhalation. The outcomes of patients treated with and without Kampo medicine were compared. Patients We enrolled 962 patients, among whom 528 received conventional and Kampo treatment (Kampo group) and 434 received conventional treatment (non-Kampo group). Results Overall, after adjusting for the staging of COVID-19 and risk factors, there were no significant between-group differences in the symptoms or number of days being afebrile. After performing propensity score matching and restricting the included cases to those with confirmed COVID-19 who did not receive steroid administration and initiated treatment within 4 days from the onset, the risk of illness worsening was significantly lower in the Kampo group than in the non-Kampo group (odds ratio=0.113, 95% confidence interval: 0.014-0.928, p=0.0424). Conclusion Early Kampo treatment may suppress illness worsening risk in COVID-19 cases without steroid use. Further randomized controlled studies are needed to confirm the clinical benefit of Kampo medicine for COVID-19.
Collapse
Affiliation(s)
- Shin Takayama
- Department of Education and Support for Regional Medicine (General and Kampo Medicine), Tohoku University Hospital, Japan
| | - Tetsuhiro Yoshino
- Center for Kampo Medicine, Keio University School of Medicine, Japan
| | - Sayaka Koizumi
- Department of Internal Medicine, Kamitsuga General Hospital, Japan
| | - Yasuhito Irie
- Department of Emergency and Critical Care Medicine, Akita University Graduate School of Medicine, Japan
| | - Tomoko Suzuki
- Department of General Medicine, Saitama Medical University Hospital, Japan
| | - Susumu Fujii
- Department of Cardiovascular Surgery, Ogikubo Hospital, Japan
| | - Rie Katori
- Association of Medical Corporation Riseijinkai Katori Clinic, Japan
| | - Mosaburo Kainuma
- Department of Japanese Oriental Medicine, Toyama University Hospital, Japan
| | - Seiichi Kobayashi
- Department of Respiratory Medicine, Japanese Red Cross Ishinomaki Hospital, Japan
| | - Tatsuya Nogami
- Department of Kampo Medicine, Tokai University, School of Medicine, Japan
| | - Kenichi Yokota
- Department of Surgery, Department of Respiratory Medicine, Kesennuma City Hospital, Japan
| | - Mayuko Yamazaki
- Department of Kampo and Nephrology, Saiseikai Kurihashi Hospital, Japan
| | - Satoko Minakawa
- Department of Clinical Laboratory, Hirosaki University Hospital, Japan
| | - Shigeki Chiba
- Department of Surgery, Department of Respiratory Medicine, Kesennuma City Hospital, Japan
| | - Norio Suda
- Department of Internal Medicine and Kampo Medicine, Suda Medical Clinic, Japan
| | | | - Tatsuya Ishige
- Oriental Medicine Research Center, Kitasato University, Japan
| | | | - Yutaka Tanaka
- Department of Kampo Medicine, Hyogo Prefectural Amagasaki General Medical Center, Japan
| | - Mahiko Nagase
- Kichijyoji Traditional Chinese Medicine Clinic, Japan
| | | | | | | | - Osamu Shimooki
- Iwate Medical University Hospital, Iwate Medical University Uchimaru Medical Center, Japan
| | - Kayo Nakamoto
- Japan Traditional Chinese Medical Foundation of Osaka, Japan
| | - Ryutaro Arita
- Department of Education and Support for Regional Medicine (General and Kampo Medicine), Tohoku University Hospital, Japan
| | - Rie Ono
- Department of Education and Support for Regional Medicine (General and Kampo Medicine), Tohoku University Hospital, Japan
| | - Natsumi Saito
- Department of Education and Support for Regional Medicine (General and Kampo Medicine), Tohoku University Hospital, Japan
| | - Akiko Kikuchi
- Department of Education and Support for Regional Medicine (General and Kampo Medicine), Tohoku University Hospital, Japan
| | - Minoru Ohsawa
- Department of Education and Support for Regional Medicine (General and Kampo Medicine), Tohoku University Hospital, Japan
| | - Hajime Nakae
- Department of Emergency and Critical Care Medicine, Akita University Graduate School of Medicine, Japan
| | - Tadamichi Mitsuma
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Japan
| | - Masaru Mimura
- Center for Kampo Medicine, Keio University School of Medicine, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Japan
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine (General and Kampo Medicine), Tohoku University Hospital, Japan
| | - Kotaro Nochioka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Shih-Wei Chiu
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Japan
| | - Takao Namiki
- Department of Japanese-Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, Japan
| | | | | | | |
Collapse
|
50
|
Kurshan A, Snell LB, Prior L, Tam JCH, Graham C, Thangarajah R, Edgeworth JD, Nebbia G, Doores KJ. Endogenous antibody responses in REGN-COV2-treated SARS-CoV-2-infected individuals. OXFORD OPEN IMMUNOLOGY 2023; 4:iqac012. [PMID: 36844257 PMCID: PMC9914479 DOI: 10.1093/oxfimm/iqac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/21/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Neutralizing monoclonal antibodies (mAbs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein have been developed for the treatment of COVID-19. Whilst antibody therapy has been shown to reduce the risk of COVID-19-associated hospitalization and death, there is limited understanding of the endogenous immunity to SARS-CoV-2 generated in mAb-treated patients and therefore ongoing susceptibility to future infections. Here we measure the endogenous antibody response in SARS-CoV-2-infected individuals treated with REGN-COV2 (Ronapreve). We show that in the majority of unvaccinated, delta-infected REGN-COV2-treated individuals, an endogenous antibody response is generated, but, like untreated, delta-infected individuals, there was a limited neutralization breadth. However, some vaccinated individuals who were seronegative at SARS-CoV-2 infection baseline and some unvaccinated individuals failed to produce an endogenous immune response following infection and REGN-COV2 treatment demonstrating the importance of mAb therapy in some patient populations.
Collapse
Affiliation(s)
- Ashwini Kurshan
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Lucie Prior
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Jerry C H Tam
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Rajeni Thangarajah
- Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Department of Pharmacy, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Jonathan D Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Gaia Nebbia
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| |
Collapse
|