1
|
Chong-Nguyen C, Yilmaz B, Coles B, Sokol H, MacPherson A, Siepe M, Reineke D, Mosbahi S, Tomii D, Nakase M, Atighetchi S, Ferro C, Wingert C, Gräni C, Pilgrim T, Windecker S, Blasco H, Dupuy C, Emond P, Banz Y, Losmanovà T, Döring Y, Siontis GCM. A scoping review evaluating the current state of gut microbiota and its metabolites in valvular heart disease physiopathology. Eur J Clin Invest 2025; 55:e14381. [PMID: 39797472 DOI: 10.1111/eci.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored. METHODS Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included. Eligible studies used 16S rRNA or shotgun sequencing, metabolite profiling by mass spectrometry, and examined osteogenesis or fibrosis signalling in valve cells. Methods and findings were qualitatively analysed, with data charted to summarize study design, materials and outcomes. RESULTS Thirteen studies were included in the review: five human, three animal and five in vitro. Of the nine studies on calcific aortic stenosis (CAS), elevated trimethylamine N-oxide (TMAO) levels were linked to an increased risk of cardiovascular events in cohort studies, with CAS patients showing higher levels of Bacteroides plebeius, Enterobacteriaceae, Veillonella dispar and Prevotella copri. In vivo, TMAO promoted aortic valve fibrosis, while tryptophan derivatives stimulated osteogenic differentiation and interleukin-6 secretion in valvular interstitial cells. Two studies on rheumatic mitral valve disease found altered microbiota profiles and lower short-chain fatty acid levels, suggesting potential impacts on immune regulation. Two studies on Barlow's mitral valve disease in animal models revealed elevated TMAO levels in dogs with congestive heart failure, reduced Paraprevotellaceae, increased Actinomycetaceae and dysbiosis involving Turicibacter and E. coli. CONCLUSIONS TMAO has been mainly identified as a prognostic marker in VHD. Gut microbiota dysbiosis has been observed in various forms of VHD and deserve further study.
Collapse
Affiliation(s)
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Bernadette Coles
- Velindre University NHS Trust Library and Knowledge Service, Cardiff, UK
| | - Harry Sokol
- Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Andrew MacPherson
- Department of Visceral Surgery and Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Matthias Siepe
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Reineke
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Selim Mosbahi
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daijiro Tomii
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Masaaki Nakase
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Sarah Atighetchi
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Cyril Ferro
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Christoph Wingert
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Hélène Blasco
- Faculté de médecine, Equipe neurogénétique et neurométabolomique, INSERM U930, Université François Rabelais, Tours, France
| | - Camille Dupuy
- Faculté de médecine, Equipe neurogénétique et neurométabolomique, INSERM U930, Université François Rabelais, Tours, France
| | - Patrick Emond
- Faculté de médecine, Equipe neurogénétique et neurométabolomique, INSERM U930, Université François Rabelais, Tours, France
| | - Yara Banz
- Institute of Tissue Medicine and Pathology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Tereza Losmanovà
- Institute of Tissue Medicine and Pathology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Yvonne Döring
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
| | - George C M Siontis
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| |
Collapse
|
2
|
Lin M, Huang R, Li W, Peng H, Chen J, Qiu Y, Liu Y, Chen L. Dysbiosis of the gut micro-flora aggravates symptoms and accelerates disease progression in MASLD-IBD Co-morbid mice through host-microbial metabolic imbalance. Arch Biochem Biophys 2025; 769:110441. [PMID: 40320060 DOI: 10.1016/j.abb.2025.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/09/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Studies have shown that dysregulation of intestinal microbial structure and co-metabolic imbalance caused by diet and other factors play important role in MASLD and IBD. However, it is unclear how host-microbial interactions differ in the two diseases, and what potential impact they have on accelerating disease progression. Our study aims to find the disease characteristics in MASLD, IBD and their complication from the perspective of host-microbial metabolism. In our study, mouse models of MASLD, IBD, and MASLD-IBD induced by high-fat diet and dextran sulfate sodium. Detecting the pathological changes of colon and liver. Using 16s rRNA to screen out specific micro-flora, and UPLC-MS to monitor the changes of metabolites in feces. The micro-flora-metabolite co-expression network was constructed by Cytoscape software. The result showed that MASLD-IBD mice aggravate intestinal barrier damage, hepatic steatosis and fibrosis, immune inflammation and other pathological changes. In MASLD-IBD mice, the structural change of gut micro-flora is similar to IBD mice, which significantly reduced the abundance of Actinobacteriota, Desulfobacterota while increasing the abundance of Proteobacteria, and the metabolic disorder include nine metabolic pathways, such as tryptophan, bile acids and short-chain fatty acids, is similar to MASLD mice. Their co-expression network indicates that different specific micro-flora are closely related to the metabolic disorder and disease symptoms of MASLD-IBD mice. Analyzing the relationship between intestinal microbial dysregulation and hoetic co-metabolic imbalance is helpful to understand the mechanism of MASLD and IBD comorbidity, which suggesting that combined liver-gut therapy may be a new method for the treatment of MASLD-IBD complication.
Collapse
Affiliation(s)
- Minling Lin
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruiting Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wanyu Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui Peng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jun Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongyi Qiu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
van Deuren T, Umanets A, Venema K, Moreno LL, Zoetendal EG, Canfora EE, Blaak EE. Specific dietary fibers steer toward distal colonic saccharolytic fermentation using the microbiota of individuals with overweight/obesity. Food Res Int 2025; 209:116271. [PMID: 40253188 DOI: 10.1016/j.foodres.2025.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Evidence suggests that increased distal short-chain fatty acid (SCFA) production beneficially impacts metabolic health. However, indigestible carbohydrate availability is limited in the distal colon; consequently, microbes shift toward protein fermentation, often linked to adverse metabolic health effects. We aimed to identify specific fiber(s) that promote saccharolytic fermentation in the distal colon and thereby may (partially) inhibit proteolytic fermentation. METHODS Potato-fiber, pectin, and inulin were studied individually and in combination against a high (predigested) protein background using an in vitro model of the colon (TIM-2) inoculated with pooled, standardized fecal microbiota from individuals with overweight/obesity. Microbiota composition and activity were assessed at different timepoints to simulate the travel throughout the colon (proximal: 0-8 h, distal: 8-24 h) and compared to a high protein (HP)_control, receiving only proteins. RESULTS Fiber addition increased total SCFA production compared to HP_control (52.11 ± 1.49 vs 27.07 ± 0.26 mmol) whereas total branched-chain fatty acids (BCFA; a marker for protein fermentation) production only slightly decreased (3.31 ± 0.10 vs 4.18 ± 0.40 mmol). Combining potato-fiber and pectin led to the highest total and distal SCFA production and distal SCFA:BCFA. Fiber addition attenuated HP-induced increases in several bacterial taxa including Mogibacterium and Coprococcus, independent of fiber type. Additionally, time- and fiber-specific microbial signatures were identified: inulin increased Bifidobacterium (proximal) relative abundance and pectin and/or potato-fiber increased Prevotella 9 (distal) relative abundance. CONCLUSION The most marked increase in distal colonic SCFA production was induced by combining potato-fiber and pectin. Further research should elucidate whether this switch toward saccharolytic fermentation translates into beneficial metabolic health effects in humans.
Collapse
Affiliation(s)
- Thirza van Deuren
- Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, the Netherlands'
| | - Alexander Umanets
- Chair Group Youth Food and Health, Faculty of Science and Engineering, Maastricht University-Campus Venlo, Venlo, the Netherlands; Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Venlo, the Netherlands
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Venlo, the Netherlands
| | - Luis L Moreno
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands; Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Emanuel E Canfora
- Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, the Netherlands'
| | - Ellen E Blaak
- Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, the Netherlands'.
| |
Collapse
|
4
|
Shen Q, Yang Z, Hu C, Liu Y, Zhao L, Li C, Ma Y, Bian H. Non-starch polysaccharides and health: gut-target organ axis influencing obesity. Food Sci Biotechnol 2025; 34:1771-1788. [PMID: 40196321 PMCID: PMC11972281 DOI: 10.1007/s10068-024-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 04/09/2025] Open
Abstract
Obesity is recognized as a global epidemic that can result in changes in the human body and metabolism. Accumulating evidence indicates that gut microbiota (GM) can affect the development of obesity. The GM not only plays a crucial role in digesting and absorbing nutrients, but also in maintaining the overall health of the host. Dietary supplements such as non-starch polysaccharides are mainly fermented by the GM in the colon. Recent findings suggest that shaping the GM through the prebiotic function of non-starch polysaccharides may be a viable strategy against obesity. In this paper, the effects of non-starch polysaccharides on host health, together with their prebiotic function influencing the GM to control obesity via the gut-target organ axis, are reviewed. Potential perspectives of non-starch polysaccharides exhibiting anti-obesity effects via the gut-target organ axis are proposed for future research. Graphical abstract
Collapse
Affiliation(s)
- Qingshan Shen
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004 Henan China
| | - Zhuan Yang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Wolong Road 1638, Nanyang, 473061 China
| | - Chengzhi Hu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000 China
| | - Yilin Liu
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004 Henan China
| | - Lei Zhao
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004 Henan China
| | - Cuicui Li
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004 Henan China
| | - Yanli Ma
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004 Henan China
| | - Hua Bian
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004 Henan China
| |
Collapse
|
5
|
Huang S, Xiao H, Xiao H, Liu L, Cai S. Higher dietary live microbe intake is linked to reduced risk of metabolic syndrome and mortality: a cross-sectional and longitudinal study. Front Nutr 2025; 12:1592969. [PMID: 40365238 PMCID: PMC12069296 DOI: 10.3389/fnut.2025.1592969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Background The association between dietary live microbe intake and metabolic syndrome (MetS) prevalence, as well as its impact on all-cause and cardiovascular disease (CVD) mortality in MetS patients, remains underexplored. Methods A total of 38,462 individuals from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 were analyzed. Based on the live microbial level of the consumed foods, participants were divided into three dietary live microbe intake groups: low, medium, and high. Foods with medium and high live microbe content were aggregated into a medium-high consumption category. MetS was defined based on NCEP-ATP III criteria. Survey-weighted logistic regression assessed the cross-sectional association with MetS prevalence, while Cox proportional hazards models evaluated mortality risks in 12,432 individuals with MetS, among whom 2,641 all-cause and 901 CVD deaths occurred. Results Higher dietary live microbe intake was significantly associated with lower odds of MetS. Compared to the low intake group, participants in the high intake group had a 12% lower risk of MetS in the fully adjusted model (OR: 0.88; 95% CI: 0.80-0.97; p = 0.01). Among MetS components, significant inverse associations were observed for low HDL-C, elevated TG, and elevated BP. Participants with high dietary live microbe intake demonstrated a significantly lower risk of all-cause mortality (HR: 0.85; 95% CI: 0.77-0.94; p = 0.002) and CVD-specific mortality (HR: 0.71; 95% CI: 0.55-0.92; p = 0.001) compared to the low intake group. Kaplan-Meier survival curves revealed better survival probabilities in individuals with medium and high intake levels, with significant differences across groups (log-rank p < 0.005). Quantitatively, each 100g increase in MedHi foods was associated with 6% lower all-cause mortality (HR: 0.94; 95% CI: 0.90-0.99; p = 0.01) and 8% lower CVD mortality (HR: 0.92; 95% CI: 0.84-1.00; p = 0.05). Conclusion Dietary live microbe intake is inversely associated with the prevalence of MetS and its key components, particularly low HDL-C, elevated TG, and elevated BP. In individuals with MetS, higher live microbe intake is associated with reduced all-cause and CVD-specific mortality. These findings suggest that dietary live microbes are a promising modifiable factor for MetS prevention and management, as well as for improving long-term survival outcomes.
Collapse
Affiliation(s)
- Shan Huang
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| | - Haixia Xiao
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Huanshun Xiao
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| | - Lu Liu
- Department of Internal Medicine, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shuangming Cai
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
6
|
Jin J, Sun X, Wang L. Association of dietary index of gut microbiota with cardiovascular disease risk: new evidence from NHANES 2007-2018. BMC Cardiovasc Disord 2025; 25:332. [PMID: 40295908 PMCID: PMC12039086 DOI: 10.1186/s12872-025-04776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The dietary index of gut microbiota (DI-GM) is a newly proposed index for assessing dietary quality, and studies on its association with cardiovascular disease (CVD) are limited. This study aimed to investigate the association between DI-GM and the prevalence of CVD. METHODS We utilized data from the National Health and Nutrition Examination Survey (NHANES). Logistic regression analyses were performed to examine the association between DI-GM and CVD. Smoothed curve fitting was employed to explore potential nonlinear relationships. Additionally, subgroup analyses were conducted to assess the stability of the results. RESULTS The study included 22,590 participants, of whom 20,216 had no CVD and 2,374 had CVD. After adjusting for all covariates, the DI-GM score was significantly negatively associated with CVD risk, with a 4% reduction in CVD risk for each unit increase in DI-GM score (OR = 0.96, 95% CI: 0.94-0.99, P = 0.015). Notably, the highest DI-GM score group (6-12) had a 13% lower risk of CVD compared to the lowest DI-GM score group (0-3) (OR = 0.87, 95% CI: 0.76-1.00, P = 0.048). CONCLUSION The research results indicate that a higher DI-GM score protects against CVD, providing crucial empirical support for dietary intervention strategies based on gut microbiota modulation. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jiameng Jin
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xingang Sun
- Department of Cardiology Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang Province, China.
| | - Lihong Wang
- Department of Cardiology Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Pessotti RDC, Guerville M, Agostinho LL, Bogsan CSB, Salgaço MK, Ligneul A, Freitas MND, Guimarães CRW, Sivieri K. Bugs got milk? Exploring the potential of lactose as a prebiotic ingredient for the human gut microbiota of lactose-tolerant individuals. Nutr Res 2025; 136:64-80. [PMID: 40154186 DOI: 10.1016/j.nutres.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 04/01/2025]
Abstract
Milk consumption is important to help meet daily nutrient requirements. However, lactose-present in dairy products-has been associated with digestive discomfort in individuals who are lactose intolerant or have inadequate lactase activity. Yet, a new perspective on this dietary component has emerged: its potential as a prebiotic for the lactose-tolerant population. We hypothesized that ingestion of lactose may improve the microbial community structure and metabolism of the gut microbiota from healthy adults. First, we assessed the acute impact of lactose ingestion on the gut microbiota of adults using a short-duration in vitro batch colonic model. Subsequently, we employed a long-duration in vitro dynamic multivessel colonic model to evaluate the effects of lactose chronic ingestion. In both cases, a mixture of lactose/galactose/glucose was administered in a defined proportion to mimic lactose metabolism and galactose/glucose absorption in lactose-tolerant adults. The hypothesis was confirmed, as a modulatory prebiotic effect was revealed on the microbial community structure and metabolism of the microbiota upon treatments simulating the ingestion of three doses of lactose, equivalent to half a glass, one glass, and two glasses of cow's milk. The long-duration model confirmed this potential, increasing the relative abundance of the beneficial genera Lactobacillus, Akkermansia, and Faecalibacterium, while the usually detrimental genus Clostridium decreased. Additionally, the health-promoting microbial metabolites acetate, propionate, and lactate were increased. Therefore, lactose ingestion could positively modulate the gut microbiota in healthy lactose-tolerant adults, thereby promoting gut health and shedding light on the dietary benefits of consuming milk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Katia Sivieri
- Nintx-Next Innovative Therapeutics, São Paulo, Brazil; Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil; Department of Biotechnology, University of Araraquara (UNIARA), Araraquara, Brazil
| |
Collapse
|
8
|
Willis NB, Cannavale CN, Walk AM, Burd NA, Holscher HD, Khan NA. Inhibitory control is related to fecal short-chain fatty acid concentrations in adults with overweight and obesity. Nutr Res 2025; 138:12-21. [PMID: 40280069 DOI: 10.1016/j.nutres.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/29/2025]
Abstract
Obesity is a pro-inflammatory condition with negative effects on executive functioning. Increased inflammation dysregulates gastrointestinal homeostasis and alters microbiota community composition. The gut microbiota produce immunomodulatory short-chain fatty acids (SCFA) that have been related to cognition in obesity, but the neural effects are not explored. Here, we hypothesized that greater fecal SCFA would be positively related to neuroelectric markers of inhibitory control and conflict monitoring in obesity. A cross-sectional cohort of 87 adults (35 ± 6 years, 53 females) with overweight and obesity (BMI = 32 ± 6 kg/m2) provided fresh fecal samples and participated in cognitive testing to assess response inhibition and conflict monitoring with electroencephalographic recording. Linear regressions, controlling for age, sex, BMI, and energy-adjusted dietary fiber intake, revealed positive relationships between NoGo N2 mean amplitude and fecal SCFA concentrations. Linear discriminant analysis effect size (LEfSe) revealed 16 amplicon sequence variants differentially abundant between high and low butyrate groups with Roseburia and Adlercreutzia individually related to NoGo N2 mean amplitude in MaAsLin2 modeling. Thus, greater fecal SCFA concentrations and SCFA producing microbiota (i.e., Roseburia) were related to markers of superior conflict monitoring in the NoGo task when adjusting for key covariates. These data highlight key associations between bacterial derived gut signaling molecules and neural regulation in cognitive domains particularly relevant to weight status that warrant further investigation.
Collapse
Affiliation(s)
- Nathaniel B Willis
- Division of Nutrition Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Corinne N Cannavale
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Anne M Walk
- Department of Psychology, Eastern Illinois University, Charleston, IL USA
| | - Nicholas A Burd
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Hannah D Holscher
- Division of Nutrition Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA; Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL USA; Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Naiman A Khan
- Division of Nutrition Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA; Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL USA.
| |
Collapse
|
9
|
Honda S, Eguchi H, Okino Y, Wang DS. The Probiotic Strain Clostridium butyricum TO-A Produces Butyrate by Utilizing Lactate and Acetate. Int J Mol Sci 2025; 26:2951. [PMID: 40243571 PMCID: PMC11988312 DOI: 10.3390/ijms26072951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Lactate-utilizing bacteria (LUB) are intestinal bacteria that produce butyrate from lactate and acetate, key metabolites in the gut. As LUB help maintain lactate and butyrate concentrations in the intestinal tract, they are promising probiotic candidates. Clostridium butyricum TO-A (CBTOA) has reportedly been effective in treating various gastrointestinal issues in humans and animals. Although CBTOA is known to increase intestinal butyrate levels, it is unclear how it utilizes lactate and acetate, similar to LUB, to produce butyrate. We investigated lactate utilization-related genes in CBTOA and examined the relationship between lactate and acetate utilization and butyrate production using peptone-yeast medium supplemented with D-lactate, L-lactate, and/or acetate. This study demonstrates for the first time that the probiotic strain CBTOA harbors lactate utilization-related genes and efficiently produces butyrate only in the presence of exogenous lactate and acetate instead of sugars. Furthermore, CBTOA expresses a lactate racemase that enables the bacterium to utilize both lactate enantiomers while regulating the ratio of D-lactate to L-lactate in the intestinal microenvironment via racemization. In conclusion, CBTOA efficiently produces butyrate utilizing lactate and acetate, similar to LUB; therefore, CBTOA could be an efficient butyrate supplier as a probiotic strain in the intestinal tract.
Collapse
Affiliation(s)
- Shotaro Honda
- Research Division, TOA Biopharma Co., Ltd., 606 Kondoh-cho, Tatebayashi 374-0042, Japan (Y.O.); (D.-S.W.)
| | | | | | | |
Collapse
|
10
|
Peng L, Liu Y, Deng Y, Jing J, Chen G, Liu Y, Wu M, Lin J, Yin W. Sleep duration as a mediator in the association between dietary intake of live microbes and insulin resistance: a cross-sectional study. Lipids Health Dis 2025; 24:97. [PMID: 40102875 PMCID: PMC11921493 DOI: 10.1186/s12944-025-02507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Insulin resistance and associated metabolic health symptoms remain a primary global health concern. In addition to healthy dietary and nutritional programs, sleep duration is closely related to and has been linked to healthy metabolism. This study aimed to determine the link between insulin resistance and sleep duration and the dietary intake of live microbes. METHODS Data were collected from 15,927 participants in the National Health and Nutrition Examination Survey database from 2005 to 2018; this sample is equivalent to 209,316,590 individuals in the United States. The participants were categorized according to their consumption of foods containing live microbes: low, medium, high, and medium-high. The relationship between diets containing live microbes and the triglyceride-glucose index was analysed using a weighted multivariate linear regression model with a multistage sampling approach. The individuals were deemed to have insulin resistance if their homeostatic model assessment score for insulin resistance was ≥ 2. The relationship between diets containing live microbes and insulin resistance status was assessed using weighted multivariate logistic regression analyses. The mediating role of sleep duration on the relationship between diets containing live microbes and the triglyceride-glucose index was also examined. RESULTS After accounting for potential confounders, diets containing live microbes at medium and medium-high levels were significantly associated with a reduced triglyceride-glucose index. The medium and medium-high levels of live microbial intake were also associated with a lower risk of insulin resistance. Within the 6-9 hours' sleep duration range, the indirect effect of medium and medium-high levels of live microbes on the triglyceride-glucose index was observed, accounting for 2.95% and 6.08% of the overall change, respectively. CONCLUSIONS This study suggests an association between a diet rich in medium and medium-high viable microbes, lower triglyceride-glucose index values, and a reduced risk of developing insulin resistance. Additionally, a sleep duration of 6-9 h may mediate this association.
Collapse
Affiliation(s)
- Lei Peng
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Yanmei Liu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Yujun Deng
- Endocrinology department, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Jianan Jing
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Gaohuang Chen
- Department of Medical Ultrasonics, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Yang Liu
- Department of Medical Ultrasonics, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Maofeng Wu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Jinduan Lin
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| | - Weiguo Yin
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| |
Collapse
|
11
|
Ding Y, Liu W, Zhang X, Xue B, Yang X, Zhao C, Li C, Wang S, Qiu Z, Li C, Wang J, Shen Z. Bicarbonate-Rich Mineral Water Mitigates Hypoxia-Induced Osteoporosis in Mice via Gut Microbiota and Metabolic Pathway Regulation. Nutrients 2025; 17:998. [PMID: 40290012 PMCID: PMC11944587 DOI: 10.3390/nu17060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
Background: High-altitude hypoxia is known to adversely affect bone health, leading to accelerated bone loss and metabolic alterations. Recent studies suggest that factors such as bicarbonate and gut microbiota may play key roles in bone health. Mineral water, rich in bicarbonate, may influence bone health and the gut-bone axis under such conditions. Methods: Mice were exposed to hypoxia and treated with different concentrations of drinking water. Bone-related parameters were assessed using dual-energy X-ray absorptiometry (DXA) and Micro-CT. Bone health was assessed using the measurement of serum biomarkers. Additionally, Untargeted Metabolomics was employed to analyze differential metabolites between groups, while gut microbiota composition was analyzed using 16S rRNA sequencing. Results: BMW consumption increased bone mineral density (BMD) and helped alleviate the damage to the microstructure of bones caused by hypoxia and delayed the progression of osteoporosis. Additionally, BMW was shown to enhance probiotics such as Akkermansia and Dubosiella and regulate the longevity-regulating pathway as well as the PI3K/AKT/mTOR (PAM) signaling pathway. This study also discovered changes in metabolic products due to BMW intervention, predominantly in pathways such as the amino acid, prostaglandin, and purine metabolisms, with correlation analysis further exploring the relationships between gut microbiota and these differential metabolites. Conclusions: Long-term exposure to high-altitude hypoxic conditions affects the structure of gut microbiota and bone metabolism in mice. The consumption of BMW improves the structure of gut microbiota and regulates the metabolic pathways to maintain bone health under high-altitude hypoxia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jingfeng Wang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (Y.D.); (W.L.); (X.Z.); (B.X.); (X.Y.); (C.Z.); (C.L.); (S.W.); (Z.Q.); (C.L.)
| | - Zhiqiang Shen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (Y.D.); (W.L.); (X.Z.); (B.X.); (X.Y.); (C.Z.); (C.L.); (S.W.); (Z.Q.); (C.L.)
| |
Collapse
|
12
|
Thomas KL, Wahlquist AE, James D, Clark WA, Wagner CL. Effects of Maternal Pre-Pregnancy BMI on Preterm Infant Microbiome and Fecal Fermentation Profile-A Preliminary Cohort Study. Nutrients 2025; 17:987. [PMID: 40290029 PMCID: PMC11944810 DOI: 10.3390/nu17060987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
Objective: This feasibility, proof-of-concept study aimed to assess the impact of maternal pre-pregnancy body mass index (BMI) on preterm infant fecal fermentation and microbiome. Study Design: An infant cohort study (n = 54) in the NICU at MUSC from June 2021 to September 2022 was grouped according to maternal pre-pregnancy BMI-normal weight (<25 kg/m2), overweight (25-29.9 kg/m2), and obese (≥30 kg/m2). All fecal samples were subjected to 16s rRNA isolation and analysis, as well as short chain fatty acid (SCFA) extraction and analysis. Results: Preterm infants born to overweight and obese mothers did not have differences in microbial diversities but did have different bacterial taxonomic composition and lower relative abundance levels of taxa than those born to normal-weight mothers. While controlling for covariates, we found SCFA propionic acid to be higher and more significant in infant stools born to mothers with a higher pre-pregnancy BMI. Conclusions: This is a novel study investigating the microbiome and SCFA in premature infants while considering maternal pre-pregnancy BMI. This study adds to the current literature, in that the preterm infant gut is generally lower in microbial diversity which can impact infant health. Thus, it is important to understand the mechanisms necessary to modulate the microbiome of preterm infants to improve their health outcomes.
Collapse
Affiliation(s)
- Kristy L. Thomas
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (K.L.T.); (W.A.C.)
- Department of Rehabilitative Sciences, College of Health Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - Amy E. Wahlquist
- Center for Rural Health and Research, Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA
| | - Dalton James
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - William Andrew Clark
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (K.L.T.); (W.A.C.)
- Department of Rehabilitative Sciences, College of Health Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - Carol L. Wagner
- Division of Neonatology, Department of Pediatrics, Shawn Jenkins Children’s Hospital, Medical University of South Carolina, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| |
Collapse
|
13
|
Westerbeke FHM, Attaye I, Rios‐Morales M, Nieuwdorp M. Glycaemic sugar metabolism and the gut microbiota: past, present and future. FEBS J 2025; 292:1421-1436. [PMID: 39359099 PMCID: PMC11927047 DOI: 10.1111/febs.17293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/02/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Non-communicable diseases (NCDs), such as type 2 diabetes (T2D) and metabolic dysfunction-associated fatty liver disease, have reached epidemic proportions worldwide. The global increase in dietary sugar consumption, which is largely attributed to the production and widespread use of cheap alternatives such as high-fructose corn syrup, is a major driving factor of NCDs. Therefore, a comprehensive understanding of sugar metabolism and its impact on host health is imperative to rise to the challenge of reducing NCDs. Notably, fructose appears to exert more pronounced deleterious effects than glucose, as hepatic fructose metabolism induces de novo lipogenesis and insulin resistance through distinct mechanisms. Furthermore, recent studies have demonstrated an intricate relationship between sugar metabolism and the small intestinal microbiota (SIM). In contrast to the beneficial role of colonic microbiota in complex carbohydrate metabolism, sugar metabolism by the SIM appears to be less beneficial to the host as it can generate toxic metabolites. These fermentation products can serve as a substrate for fatty acid synthesis, imposing negative health effects on the host. Nevertheless, due to the challenging accessibility of the small intestine, our knowledge of the SIM and its involvement in sugar metabolism remains limited. This review presents an overview of the current knowledge in this field along with implications for future research, ultimately offering potential therapeutic avenues for addressing NCDs.
Collapse
Affiliation(s)
- Florine H. M. Westerbeke
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Melany Rios‐Morales
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| |
Collapse
|
14
|
Jena PK, Arditi M, Rivas MN. Gut Microbiota Alterations in Patients With Kawasaki Disease. Arterioscler Thromb Vasc Biol 2025; 45:345-358. [PMID: 39846163 PMCID: PMC11998981 DOI: 10.1161/atvbaha.124.321201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
The intestinal microbiota influences many host biological processes, including metabolism, intestinal barrier functions, and immune responses in the gut and distant organs. Alterations in its composition have been associated with the development of inflammatory disorders and cardiovascular diseases, including Kawasaki disease (KD). KD is an acute pediatric vasculitis of unknown etiology and the leading cause of acquired heart disease in children in the United States. The presence of gastrointestinal symptoms in the acute phase of KD has been associated with an increased risk of treatment resistance and the development of coronary artery aneurysms. Studies report alterations in fecal bacterial communities of patients with KD, characterized by the blooming of pathogenic bacteria and decreased relative abundance of short-chain fatty acid-producing bacteria. However, causality and functionality cannot be established from these observational patient cohorts of KD. This highlights the need for more advanced and rigorous studies to establish causality and functionality in both experimental models of KD vasculitis and patient cohorts. Here, we review the evidence linking an altered gut microbiota composition to the development of KD, assess the potential mechanisms involved in this process, and discuss the potential therapeutic value of these observations.
Collapse
Affiliation(s)
- Prasant K. Jena
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children’s, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Moshe Arditi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children’s, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children’s, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
15
|
Tingstad RH, Witczak O, Beajani S, Seo SH, Løvsletten NG, Skagen C, Myhrstad MCW, Telle‐Hansen VH, Eide L, Rustan AC, Aas V. Impact of Short-Chain Fatty Acids on Glucose, Fatty Acid and Leucine Metabolism in Primary Human Myotubes. Endocrinol Diabetes Metab 2025; 8:e70042. [PMID: 40051343 PMCID: PMC11885951 DOI: 10.1002/edm2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 03/10/2025] Open
Abstract
INTRODUCTION Short-chain fatty acids (SCFAs) are small molecule metabolites mainly produced during microbial fermentation of dietary fibre in the gut and have been shown to have a beneficial impact on human health. The aim of this study was to evaluate the effect of SCFAs on human skeletal muscle energy metabolism. METHODS Primary human myotubes were analysed for glucose and fatty acid (oleic acid) metabolism, as well as insulin sensitivity and protein synthesis in the presence or absence of SCFAs. RESULTS The most pronounced effects of SCFAs were observed on 14C-oleic acid uptake and oxidation, as well as 14C-leucine uptake and protein synthesis, following butyrate treatment. Butyrate increased 14C-leucine accumulation twofold, potentially due to protein incorporation. On the other hand, the conversion of 14C-leucine into free fatty acids was reduced by more than 50% by butyrate. Both 14C-acetate and 14C-butyrate were shown to be taken up and utilised by primary human myotubes. None of the SCFAs were found to influence glucose metabolism or insulin effects. CONCLUSION The results from the current study thus suggest that among the SCFAs, butyrate emerges as the most powerful SCFA in regulating primary human myotube metabolism.
Collapse
Affiliation(s)
- Ragna Husby Tingstad
- Department of Life Sciences and Health, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Oliwia Witczak
- Department of Life Sciences and Health, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Siver Beajani
- Department of Life Sciences and Health, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Seung Hee Seo
- Department of Life Sciences and Health, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Nils Gunnar Løvsletten
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
| | - Christine Skagen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
| | - Mari Charlotte Wik Myhrstad
- Department of Nursing and Health Promotion, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Vibeke Helen Telle‐Hansen
- Department of Nursing and Health Promotion, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
| | - Arild Christian Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
| | - Vigdis Aas
- Department of Life Sciences and Health, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| |
Collapse
|
16
|
Jimoh AA, Adebo OA. Evaluation of antiobesogenic properties of fermented foods: In silico insights. J Food Sci 2025; 90:e70074. [PMID: 40047326 PMCID: PMC11884235 DOI: 10.1111/1750-3841.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 03/09/2025]
Abstract
Obesity prevalence has steadily increased over the past decades. Standard approaches, such as increased energy expenditure, lifestyle changes, a balanced diet, and the use of specific drugs, are the conventional strategies for preventing or treating the disease and its associated complications. Fermented foods and their subsequent bioactive constituents are now believed to be a novel strategy that can complement already existing approaches for managing and preventing this disease. Recent developments in systems biology and bioinformatics have made it possible to model and simulate compounds and disease interactions. The adoption of such in silico models has contributed to the discovery of novel fermented product targets and helped in testing hypotheses regarding the mechanistic impact and underlying functions of fermented food components. From the studies explored, key findings suggest that fermented foods affect adipogenesis, lipid metabolism, appetite regulation, gut microbiota composition, insulin resistance, and inflammation related to obesity, which could lead to new ways to treat these conditions. These outcomes were linked to probiotics, prebiotics, metabolites, and complex bioactive substances produced during fermentation. Overall, fermented foods and their bioactive compounds show promise as innovative tools for obesity management by influencing metabolic pathways and overall gut health.
Collapse
Affiliation(s)
- Abdullahi Adekilekun Jimoh
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of Johannesburg, DoornfonteinJohannesburgSouth Africa
| | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of Johannesburg, DoornfonteinJohannesburgSouth Africa
| |
Collapse
|
17
|
Li Q, Shao C, Hu Y, Chen K, Zhang J. Feasibility Evaluation of Dried Whole Egg Powder Application in Tadpole ( Lithobates catesbeianus) Feed: Effects on Growth, Metamorphosis Rate, Lipid Metabolism and Intestinal Flora. Animals (Basel) 2025; 15:584. [PMID: 40003064 PMCID: PMC11851411 DOI: 10.3390/ani15040584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
At present, studies on tadpole nutrition and metabolism are scarce. This study aimed at comparing the influence of two protein sources, fishmeal (FM) and dried whole egg powder (DWEP), on tadpoles from the perspective of growth, the metamorphosis rate, lipid metabolism, antioxidant properties and the intestinal flora. In this experiment, the control diet was set to contain no FM or DWEP. Based on the control diet, 5% and 10% FM or DWEP were included, respectively. The results of the experiment indicated that FM or DWEP inclusion significantly enhanced the growth performance and metamorphosis rate (p < 0.05); activated hepatic lipid metabolism, as manifested by enhanced LPL and HL activity; upregulated lipid metabolism-related gene expression (fasn, acc, acadl and cpt1α) (p < 0.05); and distinctly elevated the activity of SOD, CAT and GPX (p < 0.05), suggesting improved antioxidant capabilities (p < 0.05). Moreover, the inclusion of FM or DWEP elevated the relative abundance of Actinobacteria and Actinomyces and reduced the relative abundance of Proteobacteria. Unexpectedly, no significant differences were observed between the FM and DWEP groups regarding the above detected indices. This indicates that using DWEP to replace FM is a viable option.
Collapse
Affiliation(s)
| | | | | | - Kaijian Chen
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.); (C.S.); (Y.H.)
| | - Junzhi Zhang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.); (C.S.); (Y.H.)
| |
Collapse
|
18
|
Wei X, Wang M, Yu S, Han Z, Li C, Zhong Y, Zhang M, Yang T. Mapping the knowledge of omics in myocardial infarction: A scientometric analysis in R Studio, VOSviewer, Citespace, and SciMAT. Medicine (Baltimore) 2025; 104:e41368. [PMID: 39960900 PMCID: PMC11835070 DOI: 10.1097/md.0000000000041368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Many researchers nowadays choose multi-omics techniques for myocardial infarction studies. However, there's yet to be a review article integrating myocardial infarction multi-omics. Hence, this study adopts the popular bibliometrics. Based on its principles, we use software like R Studio, Vosviewer, Citespace, and SciMAT to analyze literature data of myocardial infarction omics research (1991-2022) from Web of Science. By extracting key information and calculating weights, we conduct analyses from 4 aspects: Collaboration Network Analysis, Co-word Analysis, Citing and Cited Journal Analysis, and Co-citation and Clustering Analysis, aiming to understand the field's cooperation, research topic evolution, and knowledge flow. The results show that myocardial infarction omics research is still in its early stage with limited international cooperation. In terms of knowledge flow, there's no significant difference within the discipline, but non-biomedical disciplines have joined, indicating an interdisciplinary integration trend. In the overall research field, genomics remains the main topic with many breakthroughs identifying susceptibility sites. Meanwhile, other omics fields like lipidomics and proteomics are also progressing, clarifying the pathogenesis. The cooperation details in this article enable researchers to connect with others, facilitating their research. The evolution trend of subject terms helps them set goals and directions, quickly grasp the development context, and read relevant literature. Journal analysis offers submission suggestions, and the analysis of research base and frontier provides references for the research's future development.
Collapse
Affiliation(s)
- Xuan Wei
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Min Wang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Shengnan Yu
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Zhengqi Han
- Institute for Digital Technology and Law (IDTL), China University of Political Science and Law, Beijing, China
- CUPL Scientometrics and Evaluation Center of Rule of Law, China University of Political Science and Law, Beijing, China
| | - Chang Li
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Yue Zhong
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Mengzhou Zhang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Tiantong Yang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| |
Collapse
|
19
|
Zhong H, Luo X, Abdullah, Liu X, Hussain M, Guan R. Nano-targeted delivery system: a promising strategy of anthocyanin encapsulation for treating intestinal inflammation. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39919822 DOI: 10.1080/10408398.2025.2458741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Anthocyanins are natural flavonoids derived from plants, widely recognized for their health-promoting effects, specifically to treat inflammatory bowel disease (Crohn's disease and ulcerative colitis). However, certain limitations are associated with their use, including instability, low solubility and permeability, poor gastrointestinal digestion, and low bioavailability. In this review, nano-carriers (e.g., liposome, polymersome, exosome, halloysite nanotubes, dendrimer, and nano-niosome, etc.) were summarized as anthocyanins delivery vehicles to treat inflammatory bowel disease. Recent progress on emerging strategies involved surface functionalization, responsive release, magnetic orientation, and self-assembly aggregation to address intestinal inflammation through nano-carriers and potential mechanisms were discussed. Anthocyanins, water-soluble pigments linked by glycoside bonds have attracted attention to alleviate intestinal inflammation related diseases. Anthocyanins can address intestinal inflammation by exerting their health beneficial effects such as anti-oxidative, anti-inflammatory, regulating the intestinal flora, and promoting apoptosis. Moreover, nano-carriers were discussed as oral delivery system for maximized bioefficacy of anthocyanins and to address concerns related to their low solubility and permeability, poor gastrointestinal metabolism, and low bioavailability were discussed. A future perspective is proposed concerning anthocyanin-loaded nano-carriers, different strategies to improve their efficacy, and developing functional food to treat intestinal inflammation.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xin Luo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
20
|
Yu W, Sun S, Yan Y, Zhou H, Liu Z, Fu Q. The role of short-chain fatty acid in metabolic syndrome and its complications: focusing on immunity and inflammation. Front Immunol 2025; 16:1519925. [PMID: 39991152 PMCID: PMC11842938 DOI: 10.3389/fimmu.2025.1519925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Metabolic syndrome (Mets) is an important contributor to morbidity and mortality in cardiovascular, liver, neurological, and reproductive diseases. Short-chain fatty acid (SCFA), an organismal energy donor, has recently been demonstrated in an increasing number of studies to be an important molecule in ameliorating immuno-inflammation, an important causative factor of Mets, and to improve lipid distribution, blood glucose, and body weight levels in animal models of Mets. This study reviews recent research advances on SCFA in Mets from an immune-inflammatory perspective, including complications dominated by chronic inflammation, as well as the fact that these findings also contribute to the understanding of the specific mechanisms by which gut flora metabolites contribute to metabolic processes in humans. This review proposes an emerging role for SCFA in the inflammatory Mets, followed by the identification of major ambiguities to further understand the anti-inflammatory potential of this substance in Mets. In addition, this study proposes novel strategies to modulate SCFA for the treatment of Mets that may help to mitigate the prognosis of Mets and its complications.
Collapse
Affiliation(s)
- Wenqian Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Siyuan Sun
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yutong Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Fu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Frydrych A, Kulita K, Jurowski K, Piekoszewski W. Lipids in Clinical Nutrition and Health: Narrative Review and Dietary Recommendations. Foods 2025; 14:473. [PMID: 39942064 PMCID: PMC11816940 DOI: 10.3390/foods14030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Lipids are essential components of human health, serving as critical structural elements of cell membranes, energy sources, and precursors for bioactive molecules. This narrative review aims to examine the multifaceted roles of lipids in clinical nutrition and health, focusing on their impact on chronic disease prevention, management, and the potential of lipid-based therapies. A narrative review was conducted utilizing Scopus, Google Scholar, and Web of Science databases. Key terms such as lipids, dietary fats, and cholesterol were used to identify and analyze relevant studies. A total of 145 articles meeting inclusion criteria were reviewed for their insights into lipid metabolism, dietary sources, and clinical implications. The analysis highlighted the metabolic significance of various lipid classes-saturated, monounsaturated, and polyunsaturated fatty acids-along with evidence-based recommendations for their dietary intake. Lipids were shown to play a pivotal role in managing chronic diseases such as cardiovascular disease, obesity, and metabolic syndrome. Emerging therapies, including omega-3 fatty acids and medium-chain triglycerides, demonstrated potential benefits in clinical practice. By synthesizing current knowledge, this narrative review provides healthcare professionals with an updated understanding of the roles of lipids in clinical nutrition. The findings emphasize the importance of tailored dietary interventions and lipid-based therapies in optimizing health and managing chronic diseases effectively. Additionally, this review successfully presents practical dietary recommendations to guide clinical practice.
Collapse
Affiliation(s)
- Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Faculty of Medicine, Medical College, University of Rzeszów, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland; (A.F.); (K.J.)
| | - Kamil Kulita
- Toxicological Science Club ‘Paracelsus’, Faculty of Medicine, Medical College, University of Rzeszów, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland;
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyses, Faculty of Medicine, Medical College, University of Rzeszów, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland; (A.F.); (K.J.)
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Wojciech Piekoszewski
- Laboratory of High Resolution of Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
22
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
23
|
Vila-Real C, Costa C, Pimenta-Martins A, Mbugua S, Hagrétou SL, Katina K, Maina NH, Pinto E, Gomes AMP. Novel Fermented Plant-Based Functional Beverage: Biological Potential and Impact on the Human Gut Microbiota. Foods 2025; 14:433. [PMID: 39942028 PMCID: PMC11817141 DOI: 10.3390/foods14030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/28/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Controlled fermentation carried out by selected starters might enhance the safety, nutritional, and biological profiles of non-dairy fermented products. This research aims to study the biological potential and impact on the human gut microbiota of a novel fermented finger millet-based product. Finger millet (Eleusine coracana), suspended in an aqueous sucrose-based solution, was fermented by Weissella confusa 2LABPT05 and Lactiplantibacillus plantarum 299v (1%, 1:1 ratio (v/v)), at 30 °C/200 rpm in an orbital incubator until pH ≈ 4.5-5.0. Microbial growth, phenolic compounds, antioxidant, and antidiabetic activities were evaluated. In vitro digestion followed by in vitro faecal fermentation were used to study the impact of the fermented plant-based functional beverage (PBFB) on the human gut microbiota. Antidiabetic activity (21% vs. 14%) and total phenolics (244 vs. 181 mg of gallic acid equivalents/kg PBFB) increased with fermentation. The digested fermented PBFB contributed to the increase, over the first 6 h, of the Bifidobacterium's 16S rRNA gene copy numbers, concomitant with significant release of the acetic, propionic, and butyric short chain fatty acids, and also lactic acid. The novel PBFB has been shown to have antidiabetic potential and bifidogenic effects, and consequently its consumption might positively impact blood glucose levels and the human gut microbiota.
Collapse
Affiliation(s)
- Catarina Vila-Real
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.V.-R.); (C.C.); (A.P.-M.); (E.P.)
| | - Célia Costa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.V.-R.); (C.C.); (A.P.-M.); (E.P.)
| | - Ana Pimenta-Martins
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.V.-R.); (C.C.); (A.P.-M.); (E.P.)
| | - Samuel Mbugua
- Department of Food Science, Nutrition and Technology, University of Nairobi, P.O. Box 29053, Nairobi 00625, Kenya;
| | - Sawadogo-Lingani Hagrétou
- Département Technologie Alimentaire (DTA), Institut de Recherche en Sciences Appliquées et Technologies (IRSAT), Centre National de la Recherche Scientifique et Technologique (CNRST), Ouagadougou 03 BP 7047, Burkina Faso;
| | - Kati Katina
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland; (K.K.); (N.H.M.)
| | - Ndegwa H. Maina
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland; (K.K.); (N.H.M.)
| | - Elisabete Pinto
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.V.-R.); (C.C.); (A.P.-M.); (E.P.)
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Ana M. P. Gomes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.V.-R.); (C.C.); (A.P.-M.); (E.P.)
| |
Collapse
|
24
|
Cui M, Yang WM, Yao P. Protective effect of low-dose lactulose in dextran sulfate sodium induced ulcerative colitis model of rats. Sci Rep 2025; 15:2760. [PMID: 39843913 PMCID: PMC11754915 DOI: 10.1038/s41598-025-86823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Although low-dose lactulose has shown a good theoretical foundation for the treatment of ulcerative colitis (UC) in previous studies, the exact effects and mechanism remain unclear. The rats were randomly distributed into 5 groups, i.e., normal drinking water was provided for an initial 14 days in blank control group, 4% dextran sulfate sodium was used for modeling in the remaining 4 groups. During the 15-24th day, rats in the blank control group were administered with 0.9% saline (0.5 ml/d) by gavage. In the rest 4 groups, rats were administered 0.9% saline (0.5 ml/d, UC model), mesalazine (400 mg/kg/d), lactulose (1000 mg/kg/d), and lactulose + mesalazine (two-drug combination) by gavage. In addition to symptoms and pathological changes, serum IL-6, TNF-α, and High-sensitivity C-reactive protein(Hs-CRP) by ELISA analysis, mRNA and protein expression levels of TLR-2, TLR-4, Nuclear factor-κB(NF-κB), IL-6, and TNF-α in colon tissues by RT-qPCR and WB analyses respectively. Meanwhile, short-chain fatty acid(SCFAs) and intestinal flora were analyzed. Low-dose lactulose improved symptoms (diarrhea, blood in stool, weight loss) and pathological inflammation. In addition to serum IL-6, TNF-α, and Hs-CRP, the mRNA and protein expression levels of TLR-2, TLR-4, NF-κB, IL-6 and TNF-α in the colon were down-regulated with the intervention of lactulose.Meanwhile, lactulose decreased the ileocecal PH, increased SCFAs and altered the intestinal flora. Low-dose lactulose may be beneficial to UC by regulating TLRs/NF-κB pathway, reducing ileocecal PH, increasing SCFAs, regulating intestinal flora and improving the intestinal mucosal barrier. Meanwhile, low-dose lactulose and mesalazine may have additive effects upon combination.
Collapse
Affiliation(s)
- Min Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, No.137 LiYuShan Road Xinjiang Province, Urumqi, 830000, China
| | - Wei-Ming Yang
- Xinjiang Medical University, Xinjiang Province, Urumqi, 830000, China
| | - Ping Yao
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, No.137 LiYuShan Road Xinjiang Province, Urumqi, 830000, China.
| |
Collapse
|
25
|
Yin Z, Fu L, Wang Y, Tai S. Impact of gut microbiota on cardiac aging. Arch Gerontol Geriatr 2025; 128:105639. [PMID: 39312851 DOI: 10.1016/j.archger.2024.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Recent research has suggested imbalances in gut microbiota composition as contributors to cardiac aging. An individual's physical condition, along with lifestyle-associated factors, including diet and medication, are significant determinants of gut microbiota composition. This review discusses evidence of bidirectional associations between aging and gut microbiota, identifying gut microbiota-derived metabolites as potential regulators of cardiac aging. It summarizes the effects of gut microbiota on cardiac aging diseases, including cardiac hypertrophy and fibrosis, heart failure, and atrial fibrillation. Furthermore, this review discusses the potential anti-aging effects of modifying gut microbiota composition through dietary and pharmacological interventions. Lastly, it underscores critical knowledge gaps and outlines future research directions. Given the current limited understanding of the direct relationship between gut microbiota and cardiac aging, there is an urgent need for preclinical and clinical investigations into the mechanistic interactions between gut microbiota and cardiac aging. Such endeavors hold promise for shedding light on the pathophysiology of cardiac aging and uncovering new therapeutic targets for cardiac aging diseases.
Collapse
Affiliation(s)
- Zhiyi Yin
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China
| | - Liyao Fu
- Hunan Key Laboratory of Cardiometabolic Medicine, Department of Cardiology, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China
| | - Yongjun Wang
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Shi Tai
- Hunan Key Laboratory of Cardiometabolic Medicine, Department of Cardiology, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|
26
|
Voros C, Mavrogianni D, Minaoglou A, Karakasis A, Papahliou AM, Topalis V, Varthaliti A, Mantzioros R, Kondili P, Darlas M, Sotiropoulou R, Athanasiou D, Loutradis D, Daskalakis G. Nitrate-Nitrite-Nitric Oxide Pathway, Oxidative Stress, and Fertility Outcomes in Morbidly Obese Women Following Bariatric Surgery: A Systematic Review. Biomedicines 2024; 13:64. [PMID: 39857648 PMCID: PMC11762565 DOI: 10.3390/biomedicines13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Obesity reduces nitric oxide (NO) production due to endothelial nitric oxide synthase (eNOS) dysfunction, resulting in oxidative stress, mitochondrial dysfunction, and chronic inflammation. These factors have a negative impact on reproductive health, including oocyte quality, endometrial receptivity, and embryo implantation. When oxidative stress affects eNOS function, the nitrate-nitrite-nitric oxide (NO3-NO2-NO) pathway provides an alternate route for NO production. Bariatric surgery has been found to restore NO production, reduce oxidative stress, and improve fertility in morbidly obese women. This review investigates the molecular mechanisms by which bariatric surgery affects eNOS activity, the NO3-NO2-NO pathway, and oxidative stress reduction, with an emphasis on intracellular activities including mitochondrial biogenesis and NO production. A systematic review employing PRISMA criteria included articles published between 2000 and 2024 from PubMed, Scopus, and Embase that investigated NO3-NO2 pathways, oxidative stress markers, hormonal alterations, and reproductive outcomes in morbidly obese women following bariatric surgery. After evaluating 1542 studies, 11 were selected for the final analysis. Results showed a 45% increase in NO3-NO2 levels (p < 0.001), a 35% reduction in oxidative stress indicators (p < 0.01), a 60% increase in pregnancy rates, and a 50% increase in spontaneous ovulation rates following surgery. These benefits were connected to improved mitochondrial function and endometrial receptivity as a result of reduced oxidative stress and inflammation. The NO3-NO2-NO route is critical in compensating for lower NO generation under oxidative stress and hypoxia, and bariatric surgery significantly improves this pathway to optimize blood flow, mitochondrial function, and reproductive results.
Collapse
Affiliation(s)
- Charalampos Voros
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Despoina Mavrogianni
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Aspasia Minaoglou
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Alexios Karakasis
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Anthi-Maria Papahliou
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Vasileios Topalis
- Department of Internal Medicine, Hospital of Thun, 3600 Thun, Switzerland;
| | - Antonia Varthaliti
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Raphail Mantzioros
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Panagiota Kondili
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Menelaos Darlas
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Regina Sotiropoulou
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | | | - Dimitrios Loutradis
- Fertility Institute-Assisted Reproduction Unit, Paster 15, 11528 Athens, Greece;
- Athens Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios Daskalakis
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| |
Collapse
|
27
|
Tiwari A, Ika Krisnawati D, Susilowati E, Mutalik C, Kuo TR. Next-Generation Probiotics and Chronic Diseases: A Review of Current Research and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27679-27700. [PMID: 39588716 DOI: 10.1021/acs.jafc.4c08702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The burgeoning field of microbiome research has profoundly reshaped our comprehension of human health, particularly highlighting the potential of probiotics and fecal microbiota transplantation (FMT) as therapeutic interventions. While the benefits of traditional probiotics are well-recognized, the efficacy and mechanisms remain ambiguous, and FMT's long-term effects are still being investigated. Recent advancements in high-throughput sequencing have identified gut microbes with significant health benefits, paving the way for next-generation probiotics (NGPs). These NGPs, engineered through synthetic biology and bioinformatics, are designed to address specific disease states with enhanced stability and viability. This review synthesizes current research on NGP stability, challenges in delivery, and their applications in preventing and treating chronic diseases such as diabetes, obesity, and cardiovascular diseases. We explore the physiological characteristics, safety profiles, and mechanisms of action of various NGP strains while also addressing the challenges and opportunities presented by their integration into clinical practice. The potential of NGPs to revolutionize microbiome-based therapies and improve clinical outcomes is immense, underscoring the need for further research to optimize their efficacy and ensure their safety.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237 East Java, Indonesia
| | - Erna Susilowati
- Akademi Kesehatan Dharma Husada Kediri, Kediri, 64118 East Java, Indonesia
| | - Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
28
|
Gao Y, Zhang H, Zhu D, Guo L. Different artificial feeding strategies shape the diverse gut microbial communities and functions with the potential risk of pathogen transmission to captive Asian small-clawed otters ( Aonyx cinereus). mSystems 2024; 9:e0095424. [PMID: 39601555 DOI: 10.1128/msystems.00954-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Captive otters raised in zoos are fed different artificial diets, which may shape gut microbiota. The objective is to evaluate the impacts of two different artificial diets on microbial communities and function capabilities and short-chain fatty acid (SCFA) profiles in healthy otters' feces. A total of 16 Asian small-clawed otters in two groups (n = 8) were selected. Group A otters were fed raw loaches supplemented with commercial cat food (LSCF) diet, and group B otters were fed raw crucian diet. The communities and functional capabilities of microbiota in feces were assessed with metagenomic sequencing. Captive otters fed two kinds of diets possessed different gut microbial communities and functional capabilities. Various pathogenic bacteria, like Escherichia coli and Clostridium perfringens, were enriched in the samples from the two groups, respectively. Most of the differential pathways of nutrient metabolism were significantly enriched in group A, and the distributions of carbohydrate enzymes in the two groups significantly differed from each other. Multiple resistance genes markedly accumulated in fecal samples of the group A otters with LSCF diet. Higher concentrations of SCFAs were also observed in group A otters. Two feeding strategies were both likely to facilitate the colonization and expansion of various pathogenic bacteria and the accumulation of resistance genes in the intestines of captive otters, suggesting that risk of pathogen transmission existed in the current feeding process. Commercial cat food could supplement various nutrients and provide a substrate for the production of SCFAs, which might be beneficial for the otters' intestinal fermentation and metabolism. IMPORTANCE Captive otters fed with different diets possessed distinct gut microbial communities and functions, with the enrichment of several pathogens and multiple resistance genes in their gut microbiota. The current artificial feeding strategies had the possibility to accelerate the colonization and proliferation of various pathogenic bacteria in the intestines of otters and the spread of resistance genes, increasing the risk of diseases. In addition, supplementation with commercial cat food had benefits for otters' intestinal fermentation and the metabolism of gut microbiota.
Collapse
Affiliation(s)
- Yuanda Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hangyu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dapeng Zhu
- Foping National Nature Reserve, Hanzhong, China
| | - Long Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Ban SY, Yun DY, Yum SJ, Jeong HG, Park JT. Development of Saccharomyces cerevisiae accumulating excessive amount of glycogen and its effects on gut microbiota in a mouse model. Int J Biol Macromol 2024; 283:137589. [PMID: 39557260 DOI: 10.1016/j.ijbiomac.2024.137589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Saccharomyces cerevisiae accumulates glycogen, a hyperbranched glucose polymer with multiple bio-functionalities. In this study, mutants of S. cerevisiae that accumulate excessive amounts of glycogen were developed through UV mutagenesis. From over 30,000 mutants, the mutant strain CEY1, which exhibited the highest glycogen production, was selected using iodine vapor screening. The glycogen structures of wild type (WT) and CEY1 were analyzed and found to be relatively similar in molecular weight, hydrodynamic diameter, and side-chain distribution. The glycogen from CEY1 contained long branches (DP >12) 23.6 % greater than those in Escherichia coli TBP38. In addition, WT and CEY1 glycogen showed 32 %-34 % digestibility, which is significantly lower than E. coli glycogen. The glycogen content in dried CEY1 cells was increased to 21.7 % during laboratory-scale fed-batch fermentation. Glycogen with a homogeneous structure was accumulated to 17.5 % (w/w dried cell), and the total glucan content was increased by 33.2 % during large-scale fed-batch fermentation. In a mouse model, a diet containing 30 % CEY1 increased the production of butyrate and populations of beneficial bacteria, including Bacteroides and Parabacteroides. Therefore, glycogen from CEY1 exhibits a distinct structure from other polysaccharides, with notably slow and low digestibility, thereby indicating its potential application as a dietary supplement.
Collapse
Affiliation(s)
- So Young Ban
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea
| | - Da-Young Yun
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Su-Jin Yum
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hee-Gon Jeong
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea.
| |
Collapse
|
30
|
Zhou GL, Xie Y, Zhang YD, Wang L, Xie YT, Qiu HL, Zhu XQ, Jiang JC, Yang Y, Xiang M, Dong GH, Zhou Y, Fan SJ, Yang BY. Exposure to greenspaces sourced soils improves mice gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124931. [PMID: 39260549 DOI: 10.1016/j.envpol.2024.124931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/30/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Greenspaces are important components of our living environment and have been linked to various human health. However, the mechanisms underlying the linkages remain unclear. Enriching microbiota has emerged as a novel mechanism, but the corresponding evidence is still limited. We collected soil samples from forest land, grassland, and barren land in Zunyi City, southwestern China and prepared soil solutions. A total of 40 BALB/c mice were evenly divided into normal control group, model control group, forest soil group, grassland soil group, and barren land soil group. After establishing the pseudo germ-free mouse model, different soil solutions were administered through gavage, lasting for seven weeks. Fecal samples were collected and a 16S rRNA high-throughput sequencing analysis was performed. Then, alpha- and beta-diversity were calculated and employed to estimate the effects of soil exposures on mice gut microbial diversity and composition. Further, Linear Discriminant Analysis Effect Size (LEfSe) analysis was carried out to evaluate the effects of soil exposures on gut microbiota specific genera abundances and functional pathways. Compared to mice exposed to barren land soils, those exposed to soils sourced from forest land showed an increase of 0.43 and 70.63 units in the Shannon index and the Observed ASVs, respectively. In addition, exposure to soils sourced from forest land and grassland resulted in healthier changes (i.e., more short-chain fatty acids (SCFAs)-producing bacteria) in gut microbiota than those from barren land. Furthermore, mice exposed to forest soil and grassland soil showed enrichment in 5 and 3 pathways (e.g., butanoate metabolism) compared to those exposed to barren land soil, respectively. In conclusion, exposure to various greenspaces soils may modify the gut microbial communities of mice, potentially fostering a more beneficial microbiota profile. Further better-designed studies are needed to validate the current findings and to explore the effects of greenspace related gut microbiota on human health.
Collapse
Affiliation(s)
- Gang-Long Zhou
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Xie
- Department of Toxicology, School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yi-Dan Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lu Wang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu-Ting Xie
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui-Ling Qiu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Qi Zhu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian-Cheng Jiang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Yang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuanzhong Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shu-Jun Fan
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Bo-Yi Yang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
31
|
Kramer CS, Monsegue A, Morwani-Mangnani J, Grootswagers P, Beekman M, Slagboom PE, Verdijk LB, de Groot LCPGM. Design of the VOILA-intervention study: A 12-week nutrition and resistance exercise intervention in metabolic or mobility compromised Dutch older adults and the response on immune-metabolic, gut and muscle health parameters. Mech Ageing Dev 2024; 222:112002. [PMID: 39490538 DOI: 10.1016/j.mad.2024.112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Exercise and nutrition interventions can slow ageing-induced decline in physiology. However, effects are heterogeneous and usually studied separately per outcome domain. In the VOILA study, we simultaneously study various health outcomes relevant for older adults and the inter-individual heterogeneity in response to a lifestyle intervention. METHODS VOILA is a 12-week lifestyle intervention in 3 groups of older adults (≥60 years), with compromised mobility (n=50), compromised metabolic health (n=50), or recovering from total knee replacement (TKR, n=70, of which 20 randomized to standard care only). The intervention includes high-intensity resistance exercise training thrice weekly, nutritional counselling, and nutritional supplements every morning and evening (including 20-25 g whey protein and (evening only) 5.5 g Biotis™ GOS). We measure immune-metabolic, gut health, muscle mass and physical functioning at baseline and after completion of the intervention/standard care. An additional reference group of healthy older adults (n=50) will undergo baseline measurements only. DISCUSSION Improvements in various physiological systems are expected, but with differences between groups/individuals. This study will provide insights into how the physiological state of older adults influences the extent of lifestyle-induced health improvements to create better tailored interventions to attenuate biological ageing and improve the health span of subgroups and individuals.
Collapse
Affiliation(s)
- C S Kramer
- Wageningen University & Research, Wageningen Campus, Agrotechnology and Food Sciences Group, Division of Human Nutrition and Health, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - A Monsegue
- Maastricht University Medical Center+, Department of Human Biology, NUTRIM Institute of nutrition and translational research in metabolism, PO Box 616, Maastricht 6200 MD, the Netherlands.
| | - J Morwani-Mangnani
- Leiden University Medical Centre, Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - P Grootswagers
- Wageningen University & Research, Wageningen Campus, Agrotechnology and Food Sciences Group, Division of Human Nutrition and Health, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - M Beekman
- Leiden University Medical Centre, Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - P E Slagboom
- Leiden University Medical Centre, Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - L B Verdijk
- Maastricht University Medical Center+, Department of Human Biology, NUTRIM Institute of nutrition and translational research in metabolism, PO Box 616, Maastricht 6200 MD, the Netherlands.
| | - L C P G M de Groot
- Wageningen University & Research, Wageningen Campus, Agrotechnology and Food Sciences Group, Division of Human Nutrition and Health, PO Box 17, Wageningen 6700 AA, the Netherlands.
| |
Collapse
|
32
|
Gopal RK, Ganesh PS, Pathoor NN. Synergistic Interplay of Diet, Gut Microbiota, and Insulin Resistance: Unraveling the Molecular Nexus. Mol Nutr Food Res 2024; 68:e2400677. [PMID: 39548908 DOI: 10.1002/mnfr.202400677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/04/2024] [Indexed: 11/18/2024]
Abstract
This comprehensive review explores the intricate relationship between gut microbiota, diet, and insulin resistance, emphasizing the novel roles of diet-induced microbial changes in influencing metabolic health. It highlights how diet significantly influences gut microbiota composition, with different dietary patterns fostering diverse microbial communities. These diet-induced changes in the microbiome impact human metabolism by affecting inflammation, energy balance, and insulin sensitivity, particularly through microbial metabolites like short-chain fatty acids (SCFAs). Focusing the key mediators like endotoxemia and systemic inflammation, and introduces personalized microbiome-based therapeutic strategies, it also investigates the effects of dietary components-fiber, polyphenols, and lipids-on microbiota and insulin sensitivity, along with the roles of protein intake and amino acid metabolism. The study compares the effects of Western and Mediterranean diets on the microbiota-insulin resistance axis. Therapeutic implications, including probiotics, fecal microbiota transplantation (FMT), and personalized diets, are discussed. Key findings reveal that high-fat diets, especially those rich in saturated fats, contribute to dysbiosis and increased intestinal permeability, while high-fiber diets promote beneficial bacteria and SCFAs. The review underscores the future potential of food and microbiota interventions for preventing or managing insulin resistance.
Collapse
Affiliation(s)
- Rajesh Kanna Gopal
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, 600077, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, 600077, India
| | - Naji Naseef Pathoor
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
33
|
Shi YC, Wu SC, Lin YC, Zheng YJ, Huang CH, Lee BH. Development of fermented Atemoya (Annona cherimola × Annona squamosa)-Amazake increased intestinal next-generation probiotics. Food Chem 2024; 459:140373. [PMID: 38986198 DOI: 10.1016/j.foodchem.2024.140373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Akkermansia muciniphila and Faecalibacterium prausnitzii are next-generation probiotics, which has been reported to protect disease and effectively utilize various carbohydrates (starch and pectin) as nutrients for growth. Atemoya exhibiting fruity flavor, which is suitable for enhancing aroma and attenuating unpleasant taste caused by the koji metabolites. Results indicated that malic acid was increased (from 42.4 to 70.1 mg/100 g) in fermented Atemoya-Amazake. In addition, fermented Atemoya-Amazake elevated growthes in A. muciniphila and F. prausnitzii. Similarly, the populations of Parabacteroides (5.7 fold) and Akkermansia (1.66 fold) were elevated by fermented Atemoya-Amazake treatment in an in vitro simulated gastrointestinal system compared to the control group. Results revealed that fermented Atemoya-Amazake modulated the intestinal microbiota through increasing the production of short-chain fatty acids (exhibiting anti-pathogenic activity) for 2.1, 2.5, 2.6, and 2.1 folds in acetic acid, propionic acid, isobutyric acid, and butyric acid, respectively; suggesting this fermented Atemoya-Amazake could be applied in intestinal protection.
Collapse
Affiliation(s)
- Yeu-Ching Shi
- Department of Food Sciences, National Chiayi University, Chiayi, Taiwan
| | - She-Ching Wu
- Department of Food Sciences, National Chiayi University, Chiayi, Taiwan.
| | - Yi-Ching Lin
- Department of Horticultural Science, National Chiayi University, Chiayi, Taiwan
| | - Yu-Juan Zheng
- Department of Horticultural Science, National Chiayi University, Chiayi, Taiwan
| | - Cheng-Hao Huang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bao-Hong Lee
- Department of Horticultural Science, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|
34
|
Li JH, Gu FT, Yang Y, Zhao ZC, Huang LX, Zhu YY, Chen S, Wu JY. Simulated human digestion and fermentation of a high-molecular weight polysaccharide from Lentinula edodes mushroom and protective effects on intestinal barrier. Carbohydr Polym 2024; 343:122478. [PMID: 39174101 DOI: 10.1016/j.carbpol.2024.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024]
Abstract
Lentinula edodes (Shiitake) is an important edible mushroom and polysaccharides are its major constituents with proven health benefits. The study was to investigate the gut bacterial fermentation and subsequent effects on gut barrier function of a glucan-rich polysaccharide, LePS40 precipitated from the mushroom water extract with 40 % (v/v) ethanol. LePS40 consisted of a β-(1→3)-glucan main chain with substitution in the C-6 position with side chains mainly composed of (1 → 6)-linked β-Glcp residues, (1 → 6)-linked α-Galp residues and terminal residues of β-Glcp. LePS40 was found highly resistant to digestive enzymes and gastric acid in simulated human gastrointestinal tract, but highly fermentable during in vitro human fecal fermentation. The fecal fermentation degradation of LePS40 appeared to selectively break the glucoside linkage in view of the dramatic decrease in the glucose molar ratio (12.68 to 1.07). Compared with the prebiotic reference FOS, LePS40 led to much higher levels of butyric, and propionic acid and a lower level of acetic acid. Moreover, LePS40 enhanced the abundance of some beneficial bacterial populations, but decreased the bacteria possibly linked with fatty-liver disease and colorectal cancer. Furthermore, the fecal fermentation products of LePS40 showed a potential protective effect on intestinal barrier function against inflammatory damage in Caco-2/Raw264.7 co-culture model. These findings suggest the potential of LePS40 for improvement of gut health through modulation of gut microbiota.
Collapse
Affiliation(s)
- Jun Hui Li
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Zhejiang University Shandong (Linyi) Institute of Modern Agriculture, Linyi, China
| | - Fang Ting Gu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ye Yang
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zi Chen Zhao
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lin Xi Huang
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yan Yu Zhu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Shiguo Chen
- Zhejiang University Shandong (Linyi) Institute of Modern Agriculture, Linyi, China.
| | - Jian Yong Wu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
35
|
Bejcek A, Ancha A, Lewis M, Beaver R, Tecson K, Bomar J, Johnson C. Antibiotic use and risk of Clostridioides difficile infection in patients with inflammatory bowel disease. J Gastroenterol Hepatol 2024; 39:2417-2423. [PMID: 39148287 DOI: 10.1111/jgh.16720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND AIM Patients with inflammatory bowel disease (IBD) have an increased risk of Clostridioides difficile infection (CDI) compared with those without IBD, which is worsened with antibiotic usage. While prior studies have shown a correlation between CDI development and certain classes of antibiotics, the IBD population has not been well represented. This study evaluates the rates of CDI with outpatient antibiotic use in patients with IBD. METHODS We conducted a retrospective cohort study composed of patients with IBD and compared the incidence of CDI in patients who received an outpatient prescription for antibiotics (6694 patients) against those without prescriptions (6025 patients) from 2014 to 2020 at our institution. We compared CDI rates based on nine antibiotic classes: penicillins, cephalosporins, sulfonamides, tetracyclines, macrolides, quinolones, clindamycin, metronidazole, and nitrofurantoin. RESULTS The risk of CDI was low (0.7%) but significantly higher for those with antibiotic exposure (0.9% vs 0.5%, P = 0.005) and had a positive correlation with a smoking history. The increased risk of CDI in the IBD population was attributable to the clindamycin and metronidazole classes (odds ratio = 4.7, 95% confidence interval: 1.9-11.9, P = 0.001; odds ratio = 3.6, 95% confidence interval: 2.1-6.2, P < 0.0001, respectively). CONCLUSIONS The use of clindamycin or metronidazole prescribed in an outpatient setting was associated with a statistically significant increased risk of CDI in patients with IBD. Although the association between clindamycin and CDI is a well-established and common finding, the association between metronidazole and CDI is unique in this study.
Collapse
Affiliation(s)
- Alexis Bejcek
- Division of Gastroenterology, Department of Medicine, Baylor Scott & White Medical Center, Temple, Texas, USA
| | - Anupama Ancha
- Division of Internal Medicine, Department of Medicine, Baylor Scott & White Medical Center, Temple, Texas, USA
| | - Megan Lewis
- Division of Gastroenterology, Department of Medicine, Baylor Scott & White Medical Center, Temple, Texas, USA
| | - Ryan Beaver
- Division of Infectious Diseases, Department of Medicine, Baylor Scott & White Medical Center, Temple, Texas, USA
| | - Kristen Tecson
- Baylor Scott & White Research Institute, Baylor Scott & White Health, Dallas, Texas, USA
| | - Jaccallene Bomar
- Baylor Scott & White Research Institute, Baylor Scott & White Health, Dallas, Texas, USA
| | - Christopher Johnson
- Division of Gastroenterology, Department of Medicine, Baylor Scott & White Medical Center, Temple, Texas, USA
- Department of Medicine, Baylor College of Medicine, Temple, Texas, USA
| |
Collapse
|
36
|
Wang Y, Wang H, Yu X, Wu Q, Lv X, Zhou X, Chen Y, Geng S. Identification of metabolism related biomarkers in obesity based on adipose bioinformatics and machine learning. J Transl Med 2024; 22:986. [PMID: 39482740 PMCID: PMC11526509 DOI: 10.1186/s12967-024-05615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/18/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Obesity has emerged as a growing global public health concern over recent decades. Obesity prevalence exhibits substantial global variation, ranging from less than 5% in regions like China, Japan, and Africa to rates exceeding 75% in urban areas of Samoa. AIM To examine the involvement of metabolism-related genes. METHODS Gene expression datasets GSE110729 and GSE205668 were accessed from the GEO database. DEGs between obese and lean groups were identified through DESeq2. Metabolism-related genes and pathways were detected using enrichment analysis, WGCNA, Random Forest, and XGBoost. The identified signature genes were validated by real-time quantitative PCR (qRT-PCR) in mouse models. RESULTS A total of 389 genes exhibiting differential expression were discovered, showing significant enrichment in metabolic pathways, particularly in the propanoate metabolism pathway. The orangered4 module, which exhibited the highest correlation with propanoate metabolism, was identified using Weighted Correlation Network Analysis (WGCNA). By integrating the DEGs, WGCNA results, and machine learning methods, the identification of two metabolism-related genes, Storkhead Box 1 (STOX1), NACHT and WD repeat domain-containing protein 2(NWD2) was achieved. These signature genes successfully distinguished between obese and lean individuals. qRT-PCR analysis confirmed the downregulation of STOX1 and NWD2 in mouse models of obesity. CONCLUSION This study has analyzed the available GEO dataset in order to identify novel factors associated with obesity metabolism and found that STOX1 and NWD2 may serve as diagnostic biomarkers.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Honglin Wang
- Department of Orthopedic Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Xingrui Yu
- Institute of Information, Xiamen University, Xiamen, China
| | - Qinan Wu
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Xinlu Lv
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Xuelian Zhou
- The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China
| | - Yong Chen
- The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China.
| | - Shan Geng
- Department of Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China.
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China.
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
37
|
Feng J, Peng J, Hsiao YC, Liu CW, Yang Y, Zhao H, Teitelbaum T, Wang X, Lu K. Non/Low-Caloric Artificial Sweeteners and Gut Microbiome: From Perturbed Species to Mechanisms. Metabolites 2024; 14:544. [PMID: 39452925 PMCID: PMC11509705 DOI: 10.3390/metabo14100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Non/low-caloric artificial sweeteners (NAS) are recognized as chemical additives substituting sugars to avoid caloric intake and subsequent sugar-derived diseases such as diabetes and hyperglycemia. Six NAS have been claimed safe and are authorized by the US Food and Drug Administration (FDA) for public use, with acceptable daily intake information available: aspartame, acesulfame-K, saccharin, sucralose, neotame, and advantame. However, the impacts of NAS on the gut microbiome have raised potential concerns, since sporadic research revealed NAS-induced microbial changes in the gastrointestinal tracts and alterations in the microbiome-host interactive metabolism. METHODS Given the fact that the gut microbiome influences kaleidoscopic physiological functions in host health, this review aimed to decipher the impacts of NAS on the gut microbiome by implementing a comprehensive two-stage literature analysis based on each NAS. RESULTS This review documented disturbed microbiomes due to NAS exposure to a maximal resolution of species level using taxonomic clustering analysis, and recorded metabolism alterations involved in gut microbiome-host interactions. CONCLUSIONS The results elucidated that specific NAS exhibited discrepant impacts on the gut microbiome, even though overlapping on the genera and species were identified. Some NAS caused glucose tolerance impairment in the host, but the key metabolites and their underlying mechanisms were different. Furthermore, this review embodied the challenges and future directions of current NAS-gut microbiome research to inspire advanced examination of the NAS exposure-gut microbiome-host metabolism axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
38
|
Bai Z, Wu Y, Gao D, Dong Y, Pan Y, Gu S. Gut Microbiome and Metabolome Alterations in Overweight or Obese Adult Population after Weight-Loss Bifidobacterium breve BBr60 Intervention: A Randomized Controlled Trial. Int J Mol Sci 2024; 25:10871. [PMID: 39456659 PMCID: PMC11507383 DOI: 10.3390/ijms252010871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Probiotics, known for regulating gut microbiota, may aid those with overweight or obesity, but their mechanisms require more research. This study involved 75 overweight or obese young adults, randomly assigned to either a Bifidobacterium breve BBr60 (BBr60) group or a placebo group. Both groups received diet guidance and took either BBr60 (1 × 1010 CFU/day) or a placebo for 12 weeks. Researchers analyzed body composition, serum glucose, lipids, liver and kidney function, comprehensive metabolome, and intestinal homeostasis before and after the intervention. After 12 weeks, BBr60 significantly reduced weight and BMI compared to pretreatment levels and outperformed the placebo. The BBr60 group also showed improved blood biochemistry, with notably lower fasting blood glucose (FBG) levels than the placebo group (p < 0.05). Additionally, BBr60 influenced vital serum and fecal metabolites related to three amino acid metabolic pathways and regulated the bacteria Dialister, Klebsiella, and Bacteroides, which correlated strongly with serum metabolites. These findings indicate that BBr60 can safely and effectively regulate BMI, body weight, serum glucose, lipids, and liver function markers, which may involve BBr60's impact on key gut bacteria, which influence metabolites related to the valine, leucine, and isoleucine biosynthesis; glycine, serine, and threonine metabolism; and alanine, aspartate, and glutamate metabolism.
Collapse
Affiliation(s)
- Zhouya Bai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Z.B.); (Y.W.); (D.G.); (Y.P.)
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Z.B.); (Y.W.); (D.G.); (Y.P.)
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| | - Dejiao Gao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Z.B.); (Y.W.); (D.G.); (Y.P.)
| | - Yao Dong
- Germline Stem Cells and Microenvironment Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yujia Pan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Z.B.); (Y.W.); (D.G.); (Y.P.)
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Z.B.); (Y.W.); (D.G.); (Y.P.)
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| |
Collapse
|
39
|
Qiu J, Ye B, Feng L. Improvement of intestinal microbial structure in patients with cerebral infarction through in vitro fermentation of anthocyanins from Lycium ruthenicum Murray. Food Sci Nutr 2024; 12:7481-7491. [PMID: 39479706 PMCID: PMC11521701 DOI: 10.1002/fsn3.4263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 11/02/2024] Open
Abstract
Anthocyanins in Lycium ruthenicum Murray can be degraded into metabolites by intestinal microorganisms and have a wide range of biological functions. However, there are limited studies on the effect of anthocyanins on the intestinal flora structure in patients with cerebral infarction. To explore the new probiotic effects of ACN, the gut microbiota present in fecal samples obtained from healthy volunteers and patients with acute cerebral infarction underwent in vitro fermentation analysis. The in vitro fermentation product of ACN with L. ruthenicum Murray can significantly increase the diversity of the gut flora in patients with cerebral infarction. It can also promote beneficial bacteria (e.g., Bifidobacterium) in the guts of patients with acute cerebral infarction (e.g. Bifidobacterium, Allisonella, and Prevotell), reduce the growth of potentially harmful bacteria (Dialister, Megamonas, and Clostridium), and increase the levels of SCFAs. This investigation demonstrated the capability of ACN in vitro fermentation to improve the gut microbiota structure in patients with cerebral infarction. This, in turn, furnishes new theoretical underpinnings for its potential development as a functional food component.
Collapse
Affiliation(s)
- Jun Qiu
- Stroke CenterThe Third People's Hospital of BengbuBengbuAnhuiChina
| | - Bin Ye
- Stroke CenterThe Third People's Hospital of BengbuBengbuAnhuiChina
| | - Lei Feng
- Department of NeurosurgeryThe First People's Hospital of JiningJiningShandongChina
- Jining Key Laboratory of Stroke and Nerve RepairJiningShandongChina
| |
Collapse
|
40
|
Liu A, Tian B, Qiu C, Su KJ, Jiang L, Zhao C, Song M, Liu Y, Qu G, Zhou Z, Zhang X, Gnanesh SSM, Thumbigere-Math V, Luo Z, Tian Q, Zhang LS, Wu C, Ding Z, Shen H, Deng HW. Multi-View Integrative Approach For Imputing Short-Chain Fatty Acids and Identifying Key factors predicting Blood SCFA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614767. [PMID: 39386638 PMCID: PMC11463355 DOI: 10.1101/2024.09.25.614767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of dietary fiber within gastrointestinal tract. SCFAs produced by gut microbiotas (GMs) are absorbed by host, reach bloodstream, and are distributed to different organs, thus influencing host physiology. However, due to the limited budget or the poor sensitivity of instruments, most studies on GMs have incomplete blood SCFA data, limiting our understanding of the metabolic processes within the host. To address this gap, we developed an innovative multi-task multi-view integrative approach (M2AE, Multi-task Multi-View Attentive Encoders), to impute blood SCFA levels using gut metagenomic sequencing (MGS) data, while taking into account the intricate interplay among the gut microbiome, dietary features, and host characteristics, as well as the nuanced nature of SCFA dynamics within the body. Here, each view represents a distinct type of data input (i.e., gut microbiome compositions, dietary features, or host characteristics). Our method jointly explores both view-specific representations and cross-view correlations for effective predictions of SCFAs. We applied M2AE to two in-house datasets, which both include MGS and blood SCFAs profiles, host characteristics, and dietary features from 964 subjects and 171 subjects, respectively. Results from both of two datasets demonstrated that M2AE outperforms traditional regression-based and neural-network based approaches in imputing blood SCFAs. Furthermore, a series of gut bacterial species (e.g., Bacteroides thetaiotaomicron and Clostridium asparagiforme), host characteristics (e.g., race, gender), as well as dietary features (e.g., intake of fruits, pickles) were shown to contribute greatly to imputation of blood SCFAs. These findings demonstrated that GMs, dietary features and host characteristics might contribute to the complex biological processes involved in blood SCFA productions. These might pave the way for a deeper and more nuanced comprehension of how these factors impact human health.
Collapse
Affiliation(s)
- Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Bo Tian
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha, P.R. China
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Chen Zhao
- College of Computing and Software Engineering, Kennesaw State University, GA, USA
| | - Meng Song
- College of Science, Xi'an Shiyou University, Xi'an, P.R. China
| | - Yong Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha, P.R. China
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Ziyu Zhou
- School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Shashank Sajjan Mungasavalli Gnanesh
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Vivek Thumbigere-Math
- Division of Periodontics, University of Maryland Baltimore School of Dentistry, Baltimore, USA
| | - Zhe Luo
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Li-Shu Zhang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, USA
| | - Zhengming Ding
- School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
41
|
Gindt ME, Lück R, Deppenmeier U. Genetic optimization of the human gut bacterium Phocaeicola vulgatus for enhanced succinate production. Appl Microbiol Biotechnol 2024; 108:465. [PMID: 39283347 PMCID: PMC11405475 DOI: 10.1007/s00253-024-13303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
The demand for sustainably produced bulk chemicals is constantly rising. Succinate serves as a fundamental component in various food, chemical, and pharmaceutical products. Succinate can be produced from sustainable raw materials using microbial fermentation and enzyme-based technologies. Bacteroides and Phocaeicola species, widely distributed and prevalent gut commensals, possess enzyme sets for the metabolization of complex plant polysaccharides and synthesize succinate as a fermentative end product. This study employed novel molecular techniques to enhance succinate yields in the natural succinate producer Phocaeicola vulgatus by directing the metabolic carbon flow toward succinate formation. The deletion of the gene encoding the methylmalonyl-CoA mutase (Δmcm, bvu_0309-0310) resulted in a 95% increase in succinate production, as metabolization to propionate was effectively blocked. Furthermore, deletion of genes encoding the lactate dehydrogenase (Δldh, bvu_2499) and the pyruvate:formate lyase (Δpfl, bvu_2880) eliminated the formation of fermentative end products lactate and formate. By overproducing the transketolase (TKT, BVU_2318) in the triple deletion mutant, succinate production increased from 3.9 mmol/g dry weight in the wild type to 10.9 mmol/g dry weight. Overall, succinate yield increased by 180% in the new mutant strain P. vulgatus Δmcm Δldh Δpfl pG106_tkt relative to the parent strain. This approach is a proof of concept, verifying the genetic accessibility of P. vulgatus, and forms the basis for targeted genetic optimization. The increase of efficiency highlights the huge potential of P. vulgatus as a succinate producer with applications in sustainable bioproduction processes. KEY POINTS: • Deleting methylmalonyl-CoA mutase gene in P. vulgatus doubled succinate production • Triple deletion mutant with transketolase overexpression increased succinate yield by 180% • P. vulgatus shows high potential for sustainable bulk chemical production via genetic optimization.
Collapse
Affiliation(s)
- Mélanie E Gindt
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Rebecca Lück
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Uwe Deppenmeier
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany.
| |
Collapse
|
42
|
Arnone AA, Wilson AS, Soto-Pantoja DR, Cook KL. Diet Modulates the Gut Microbiome, Metabolism, and Mammary Gland Inflammation to Influence Breast Cancer Risk. Cancer Prev Res (Phila) 2024; 17:415-428. [PMID: 38701438 PMCID: PMC11372361 DOI: 10.1158/1940-6207.capr-24-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Several studies indicate a strong link between obesity and the risk of breast cancer. Obesity decreases gut microbial biodiversity and modulates Bacteroidetes-to-Firmicutes phyla proportional abundance, suggesting that increased energy-harvesting capacity from indigestible dietary fibers and elevated lipopolysaccharide bioavailability may promote inflammation. To address the limited evidence linking diet-mediated changes in gut microbiota to breast cancer risk, we aimed to determine how diet affects the microbiome and breast cancer risk. For ten weeks, female 3-week-old BALB/c mice were fed six different diets (control, high-sugar, lard, coconut oil, lard + flaxseed oil, and lard + safflower oil). Fecal 16S sequencing was performed for each group. Diet shifted fecal microbiome populations and modulated mammary gland macrophage infiltration. Fecal-conditioned media shifted macrophage polarity and inflammation. In our DMBA-induced breast cancer model, diet differentially modulated tumor and mammary gland metabolism. We demonstrated how dietary patterns change metabolic outcomes and the gut microbiota, possibly contributing to breast tumor risk. Furthermore, we showed the influence of diet on metabolism, inflammation, and macrophage polarity. This study suggests that dietary-microbiome interactions are key mediators of breast cancer risk. Prevention Relevance: Our study demonstrates the impact of diet on breast cancer risk, focusing on the interplay between diet, the gut microbiome, and mammary gland inflammation.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Adam S Wilson
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - David R Soto-Pantoja
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Atrium Health Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Katherine L Cook
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Atrium Health Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
43
|
Zhou J, Hou W, Zhong H, Liu D. Lung microbiota: implications and interactions in chronic pulmonary diseases. Front Cell Infect Microbiol 2024; 14:1401448. [PMID: 39233908 PMCID: PMC11372588 DOI: 10.3389/fcimb.2024.1401448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
The lungs, as vital organs in the human body, continuously engage in gas exchange with the external environment. The lung microbiota, a critical component in maintaining internal homeostasis, significantly influences the onset and progression of diseases. Beneficial interactions between the host and its microbial community are essential for preserving the host's health, whereas disease development is often linked to dysbiosis or alterations in the microbial community. Evidence has demonstrated that changes in lung microbiota contribute to the development of major chronic lung diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and lung cancer. However, in-depth mechanistic studies are constrained by the small scale of the lung microbiota and its susceptibility to environmental pollutants and other factors, leaving many questions unanswered. This review examines recent research on the lung microbiota and lung diseases, as well as methodological advancements in studying lung microbiota, summarizing the ways in which lung microbiota impacts lung diseases and introducing research methods for investigating lung microbiota.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wang Hou
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huilin Zhong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Komorniak N, Pawlus J, Gaweł K, Hawryłkowicz V, Stachowska E. Cholelithiasis, Gut Microbiota and Bile Acids after Bariatric Surgery-Can Cholelithiasis Be Prevented by Modulating the Microbiota? A Literature Review. Nutrients 2024; 16:2551. [PMID: 39125429 PMCID: PMC11314327 DOI: 10.3390/nu16152551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Cholelithiasis is one of the more common complications following bariatric surgery. This may be related to the rapid weight loss during this period, although the exact mechanism of gallstone formation after bariatric surgery has not been fully elucidated. METHODS The present literature review focuses on risk factors, prevention options and the impact of the gut microbiota on the development of gallbladder stones after bariatric surgery. RESULTS A potential risk factor for the development of cholelithiasis after bariatric surgery may be changes in the composition of the intestinal microbiota and bile acids. One of the bile acids-ursodeoxycholic acid-is considered to reduce the concentration of mucin proteins and thus contribute to reducing the formation of cholesterol crystals in patients with cholelithiasis. Additionally, it reduces the risk of both asymptomatic and symptomatic gallstones after bariatric surgery. Patients who developed gallstones after bariatric surgery had a higher abundance of Ruminococcus gnavus and those who did not develop cholelithiasis had a higher abundance of Lactobacillaceae and Enterobacteriaceae. CONCLUSION The exact mechanism of gallstone formation after bariatric surgery has not yet been clarified. Research suggests that the intestinal microbiota and bile acids may have an important role in this.
Collapse
Affiliation(s)
- Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (V.H.); (E.S.)
| | - Jan Pawlus
- Department of General Mini-Invasive and Gastroenterological Surgery, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Katarzyna Gaweł
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (V.H.); (E.S.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (V.H.); (E.S.)
| |
Collapse
|
45
|
Peer A, Samuelson DR. The Role of the Microbiome in Allergy, Asthma, and Occupational Lung Disease. Curr Allergy Asthma Rep 2024; 24:415-423. [PMID: 38904934 PMCID: PMC11297072 DOI: 10.1007/s11882-024-01156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE OF REVIEW The human commensal microbiota is now widely accepted as a key regulator of human health and disease. The composition of the mucosal associated microbiota has been shown to play a critical role in the lung health. The role of the mucosal microbiota in the development and severity of allergy, asthma, and occupational lung disease is only beginning to take shape. However, advances in our understanding of these links have tremendous potential to led to new clinical interventions to reduce allergy, asthma, and occupational lung disease morbidity. RECENT FINDINGS We review recent work describing the relationship and role of the commensal microbiota in the development of allergy, asthma, and occupational lung disease. Our review primarily focuses on occupational exposures and the effects of the microbiome, both in composition and function. Data generated from these studies may lead to the development of interventions targeted at establishing and maintaining a healthy microbiota. We also highlight the role of environmental exposures and the effects on the commensal microbial community and their potential association with occupational lung disease. This review explores the current research describing the role of the human microbiome in the regulation of pulmonary health and disease, with a specific focus on the role of the mucosal microbiota in the development of allergy, asthma, and occupational lung disease.
Collapse
Affiliation(s)
- Ashley Peer
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA.
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
46
|
Khumalo S, Duma Z, Bekker L, Nkoana K, Pheeha SM. Type 2 Diabetes Mellitus in Low- and Middle-Income Countries: The Significant Impact of Short-Chain Fatty Acids and Their Quantification. Diagnostics (Basel) 2024; 14:1636. [PMID: 39125512 PMCID: PMC11311635 DOI: 10.3390/diagnostics14151636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Globally, type 2 diabetes mellitus (T2DM) is a major threat to the public's health, particularly in low- and middle-income countries (LMICs). The production of short-chain fatty acids (SCFAs) by the gut microbiota has been reported to have the potential to reduce the prevalence of T2DM, particularly in LMICs where the disease is becoming more common. Dietary fibers are the primary source of SCFAs; they can be categorized as soluble (such as pectin and inulin) or insoluble (such as resistant starches). Increased consumption of processed carbohydrates, in conjunction with insufficient consumption of dietary fiber, has been identified as a significant risk factor for type 2 diabetes (T2DM). However, there are still controversies over the therapeutic advantages of SCFAs on human glucose homeostasis, due to a lack of studies in this area. Hence, a few questions need to be addressed to gain a better understanding of the beneficial link between SCFAs and glucose metabolism. These include the following: What are the biochemistry and biosynthesis of SCFAs? What role do SCFAs play in the pathology of T2DM? What is the most cost-effective strategy that can be employed by LMICs with limited laboratory resources to enhance their understanding of the beneficial function of SCFAs in patients with T2DM? To address the aforementioned questions, this paper aims to review the existing literature on the protective roles that SCFAs have in patients with T2DM. This paper further discusses possible cost-effective and accurate strategies to quantify SCFAs, which may be recommended for implementation by LMICs as preventive measures to lower the risk of T2DM.
Collapse
Affiliation(s)
- Scelo Khumalo
- Department of Chemical Pathology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa Zone 1, Ga-Rankuwa 0208, South Africa; (Z.D.); (L.B.); (K.N.)
| | - Zamathombeni Duma
- Department of Chemical Pathology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa Zone 1, Ga-Rankuwa 0208, South Africa; (Z.D.); (L.B.); (K.N.)
| | - Lizette Bekker
- Department of Chemical Pathology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa Zone 1, Ga-Rankuwa 0208, South Africa; (Z.D.); (L.B.); (K.N.)
| | - Koketso Nkoana
- Department of Chemical Pathology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa Zone 1, Ga-Rankuwa 0208, South Africa; (Z.D.); (L.B.); (K.N.)
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa;
| | - Sara Mosima Pheeha
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa;
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa
| |
Collapse
|
47
|
Braga GDC, Simões JLB, Teixeira Dos Santos YJ, Filho JCM, Bagatini MD. The impacts of obesity in rheumatoid arthritis and insights into therapeutic purinergic modulation. Int Immunopharmacol 2024; 136:112357. [PMID: 38810303 DOI: 10.1016/j.intimp.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune condition responsible for the impairment of synovia and joints, endangering the functionality of individuals and contributing to mortality. Currently, obesity is increasing worldwide, and recent studies have suggested an association between such condition and RA. In this sense, obese individuals present a lower capacity for achieving remission and present more intense symptoms of the disease, demonstrating a link between both disorders. Different studies aim to understand the possible connection between the conditions; however, few is known in this sense. Therefore, knowing that obesity can alter the activity of multiple body systems, this work's objective is to evaluate the main modifications caused by obesity, which can be linked to the pathophysiology of RA, highlighting as relevant topics obesity's negative impact triggering systemic inflammation, intestinal dysbiosis, endocrine disbalances. Furthermore, the relationship between oxidative stress and obesity also deserves to be highlighted, considering the influence of reactive oxygen species (ROS) accumulation in RA exacerbation. Additionally, many of those characteristics influenced by obesity, along with the classic peculiarities of RA pathophysiology, can also be associated with purinergic signaling. Hence, this work suggests possible connections between the purinergic system and RA, proposing potential therapeutic targets against RA to be studied.
Collapse
|
48
|
Wang X, Wen Q, Wu H, Peng W, Cai K, Tan Z, Na W, Wu K. Effect of Sex on Intestinal Microbial Metabolites of Hainan Special Wild Boars. Animals (Basel) 2024; 14:2164. [PMID: 39123691 PMCID: PMC11310994 DOI: 10.3390/ani14152164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The intestinal microbiota and its metabolites are essential for the health and growth development of animals. Current research indicates that sex has a certain impact on the structure and function of the intestinal microbiota, but there are few reports on sex differences in intestinal microbiota metabolites, including those of castrated male animals. This study aimed to explore the impact of sex on the intestinal microbial metabolites of Hainan special wild boars (10 entire male pigs, 10 female pigs, and 10 castrated male pigs, denoted EM, FE, and CM, respectively) by employing non-targeted metabolomics and gas chromatography. A total of 1086 metabolites were detected, with the greatest number of differential metabolites observed between EM and FE (54 differential metabolites, including 18 upregulated and 36 downregulated metabolites), the fewest between CM and FE (7 differential metabolites, including 1 upregulated and 6 downregulated metabolites), and an intermediate number between CM and EM (47 differential metabolites, including 35 upregulated and 12 downregulated metabolites). Differential metabolites were involved in more pathways between EM and FE and between CM and EM, including amino acid metabolism and digestive system pathways, whereas differential metabolites were involved in the fewest pathways between CM and FE. Correlation analysis showed Ruminococcaceae UCG-009, uncultured_bacterium_o_SAR324_cladeMarine_group_B, and Candidatus Saccharimonas contributed to the production of metabolites such as trehalose, docosatrienoic acid, D(-)-beta-hydroxy butyric acid, and acetyl-DL-leucine. The levels of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and isovaleric acid were significantly higher in EM than in FE, with CM falling between the two. Streptococcus, Lachnospiraceae_NK4A136_group and Rikenellaceae_RC9_gut_group showed a significant positive correlation with the production of short-chain fatty acids (SCFAs), while [Eubacterium]_coprostanoligenes_group, uncultured_bacterium_f_p-251-o5 and Ruminococcaceae_UCG-005 showed a significant negative correlation with the generation of SCFAs. This study provides foundational data and significant insights into precision feeding strategies for Hainan special wild boars of different sexes, as well as the study of sex differences in intestinal microbial metabolites in animals.
Collapse
Affiliation(s)
- Xiaozhe Wang
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
- Sanya Institute, China Agricultural University, Sanya 572024, China
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Qiong Wen
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
- Wuhan Xiangda Feedstuff Co., Ltd., Wuhan 430045, China
| | - Hongfen Wu
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
| | - Wenchuan Peng
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Keqi Cai
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhen Tan
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
| | - Wei Na
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
| | - Kebang Wu
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
| |
Collapse
|
49
|
Li J, Zhao J, Tian C, Dong L, Kang Z, Wang J, Zhao S, Li M, Tong X. Mechanisms of regulation of glycolipid metabolism by natural compounds in plants: effects on short-chain fatty acids. Nutr Metab (Lond) 2024; 21:49. [PMID: 39026248 PMCID: PMC11256480 DOI: 10.1186/s12986-024-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Natural compounds can positively impact health, and various studies suggest that they regulate glucose‒lipid metabolism by influencing short-chain fatty acids (SCFAs). This metabolism is key to maintaining energy balance and normal physiological functions in the body. This review explores how SCFAs regulate glucose and lipid metabolism and the natural compounds that can modulate these processes through SCFAs. This provides a healthier approach to treating glucose and lipid metabolism disorders in the future. METHODS This article reviews relevant literature on SCFAs and glycolipid metabolism from PubMed and the Web of Science Core Collection (WoSCC). It also highlights a range of natural compounds, including polysaccharides, anthocyanins, quercetins, resveratrols, carotenoids, and betaines, that can regulate glycolipid metabolism through modulation of the SCFA pathway. RESULTS Natural compounds enrich SCFA-producing bacteria, inhibit harmful bacteria, and regulate operational taxonomic unit (OTU) abundance and the intestinal transport rate in the gut microbiota to affect SCFA content in the intestine. However, most studies have been conducted in animals, lack clinical trials, and involve fewer natural compounds that target SCFAs. More research is needed to support the conclusions and to develop healthier interventions. CONCLUSIONS SCFAs are crucial for human health and are produced mainly by the gut microbiota via dietary fiber fermentation. Eating foods rich in natural compounds, including fruits, vegetables, tea, and coarse fiber foods, can hinder harmful intestinal bacterial growth and promote beneficial bacterial proliferation, thus increasing SCFA levels and regulating glucose and lipid metabolism. By investigating how these compounds impact glycolipid metabolism via the SCFA pathway, novel insights and directions for treating glucolipid metabolism disorders can be provided.
Collapse
Affiliation(s)
- Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinyue Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chuanxi Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Lishuo Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingshuo Wang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolin Tong
- Guang'anmen Hospital, Academician of Chinese Academy of Sciences, China Academy of Traditional Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
50
|
Yuan M, Zhang Z, Liu T, Feng H, Liu Y, Chen K. The Role of Nondigestible Oligosaccharides in Alleviating Human Chronic Diseases by Regulating the Gut Microbiota: A Review. Foods 2024; 13:2157. [PMID: 38998662 PMCID: PMC11241040 DOI: 10.3390/foods13132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
The gut has been a focus of chronic disease research. The gut microbiota produces metabolites that act as signaling molecules and substrates, closely influencing host health. Nondigestible oligosaccharides (NDOs), as a common dietary fiber, play an important role in regulating the structure and function of the gut microbiota. Their mechanism of action is mainly attributed to providing a carbon source as specific probiotics, producing related metabolites, and regulating the gut microbial community. However, due to the selective utilization of oligosaccharides, some factors, such as the type and structure of oligosaccharides, have different impacts on the composition of microbial populations and the production of metabolites in the colon ecosystem. This review systematically describes the key factors influencing the selective utilization of oligosaccharides by microorganisms and elaborates how oligosaccharides affect the host's immune system, inflammation levels, and energy metabolism by regulating microbial diversity and metabolic function, which in turn affects the onset and progress of chronic diseases, especially diabetes, obesity, depression, intestinal inflammatory diseases, and constipation. In this review, we re-examine the interaction mechanisms between the gut microbiota and its associated metabolites and diseases, and we explore new strategies for promoting human health and combating chronic diseases through dietary interventions.
Collapse
Affiliation(s)
- Meiyu Yuan
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Tongying Liu
- Jiangxi Maternel and Child Health Hospital, Nanchang 330108, China;
| | - Hua Feng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|