1
|
Adiamah M, Poole B, Lindsey JC, Kohe S, Morcavallo A, Burté F, Hill RM, Blair H, Thompson D, Singh M, Swartz S, Crosier S, Zhang T, Maddocks ODK, Peet A, Chesler L, Hickson I, Maxwell RJ, Clifford SC. MYC-dependent upregulation of the de novo serine and glycine synthesis pathway is a targetable metabolic vulnerability in group 3 medulloblastoma. Neuro Oncol 2025; 27:237-253. [PMID: 39377369 PMCID: PMC11726242 DOI: 10.1093/neuonc/noae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Group 3 medulloblastoma (MBGRP3) represents around 25% of medulloblastomas and is strongly associated with c-MYC (MYC) amplification, which confers significantly worse patient survival. Although elevated MYC expression is a significant molecular feature in MBGRP3, direct targeting of MYC remains elusive, and alternative strategies are needed. The metabolic landscape of MYC-driven MBGRP3 is largely unexplored and may offer novel opportunities for therapies. METHODS To study MYC-induced metabolic alterations in MBGRP3, we depleted MYC in isogenic cell-based model systems, followed by 1H high-resolution magic-angle spectroscopy (HRMAS) and stable isotope-resolved metabolomics, to assess changes in intracellular metabolites and pathway dynamics. RESULTS Steady-state metabolic profiling revealed consistent MYC-dependent alterations in metabolites involved in one-carbon metabolism such as glycine. 13C-glucose tracing further revealed a reduction in glucose-derived serine and glycine (de novo synthesis) following MYC knockdown, which coincided with lower expression and activity of phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in this pathway. Furthermore, MYC-overexpressing MBGRP3 cells were more vulnerable to pharmacological inhibition of PHGDH compared to those with low expression. Using in vivo tumor-bearing genetically engineered and xenograft mouse models, pharmacological inhibition of PHGDH increased survival, implicating the de novo serine/glycine synthesis pathway as a pro-survival mechanism sustaining tumor progression. Critically, in primary human medulloblastomas, increased PHGDH expression correlated strongly with both MYC amplification and poorer clinical outcomes. CONCLUSIONS Our findings support a MYC-induced dependency on the serine/glycine pathway in MBGRP3 that represents a novel therapeutic treatment strategy for this poor prognosis disease group.
Collapse
Affiliation(s)
- Magretta Adiamah
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Bethany Poole
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Janet C Lindsey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Sarah Kohe
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Alaide Morcavallo
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, UK
| | - Florence Burté
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Dean Thompson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Mankaran Singh
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Shanel Swartz
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Tong Zhang
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Andrew Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, UK
| | - Ian Hickson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Ross J Maxwell
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| |
Collapse
|
2
|
Schwalbe EC, Lindsey JC, Danilenko M, Hill RM, Crosier S, Ryan SL, Williamson D, Castle J, Hicks D, Kool M, Milde T, Korshunov A, Pfister SM, Bailey S, Clifford SC. Molecular and clinical heterogeneity within MYC-family amplified medulloblastoma is associated with survival outcomes: A multicenter cohort study. Neuro Oncol 2025; 27:222-236. [PMID: 39377358 PMCID: PMC11726341 DOI: 10.1093/neuonc/noae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND MYC/MYCN are the most frequent oncogene amplifications in medulloblastoma (MB) and its primary biomarkers of high-risk (HR) disease. However, while many patients' MYC(N)-amplified tumors are treatment-refractory, some achieve long-term survival. We therefore investigated clinicobiological heterogeneity within MYC(N)-amplified MB and determined its relevance for improved disease management. METHODS We characterized the clinical and molecular correlates of MYC- (MYC-MB; n = 64) and MYCN-amplified MBs (MYCN-MB; n = 95), drawn from >1600 diagnostic cases. RESULTS Most MYC-MBs were molecular group 3 (46/58; 79% assessable) and aged ≥3 years at diagnosis (44/64 [69%]). We identified a "canonical" very high-risk (VHR) MYC-amplified group (n = 51/62; 82%) with dismal survival irrespective of treatment (11% 5-year progression-free survival [PFS]), defined by co-occurrence with ≥1 additional established risk factor(s) (subtotal surgical-resection [STR], metastatic disease, LCA pathology), and commonly group 3/4 subgroup 2 with a high proportion of amplified cells. The majority of remaining noncanonical MYC-MBs survived (i.e. non-group 3/group 3 without other risk features; 11/62 (18%); 61% 5-year PFS). MYCN survival was primarily related to molecular group; MYCN-amplified SHH MB, and group 3/4 MB with additional risk factors, respectively defined VHR and HR groups (VHR, 39% [35/89]; 20% 5-year PFS/HR, 33% [29/89]; 46% 5-year PFS). Twenty-two out of 35 assessable MYCN-amplified SHH tumors harbored TP53 mutations; 9/12 (75%) with data were germline. MYCN-amplified group 3/4 MB with no other risk factors (28%; 25/89) had 70% 5-year PFS. CONCLUSIONS MYC(N)-amplified MB displays significant clinicobiological heterogeneity. Diagnostics incorporating molecular groups, subgroups, and clinical factors enable their risk assessment. VHR "canonical" MYC tumors are essentially incurable and SHH-MYCN-amplified MBs fare extremely poorly (20% survival at 5 years); both require urgent development of alternative treatment strategies. Conventional risk-adapted therapies are appropriate for more responsive groups, such as noncanonical MYC and non-SHH-MYCN MB.
Collapse
Affiliation(s)
- Edward C Schwalbe
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Janet C Lindsey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Marina Danilenko
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Sarra L Ryan
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Jemma Castle
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Marcel Kool
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Till Milde
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Colwill M, Baillie S, Pollok R, Poullis A. Biobanks and biomarkers: Their current and future role in biomedical research. World J Methodol 2024; 14:91387. [PMID: 39712565 PMCID: PMC11287535 DOI: 10.5662/wjm.v14.i4.91387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 07/26/2024] Open
Abstract
The importance and utility of biobanks has increased exponentially since their inception and creation. Initially used as part of translational research, they now contribute over 40% of data for all cancer research papers in the United States of America and play a crucial role in all aspects of healthcare. Multiple classification systems exist but a simplified approach is to either classify as population-based or disease-oriented entities. Whilst historically publicly funded institutions, there has been a significant increase in industry funded entities across the world which has changed the dynamic of biobanks offering new possibilities but also new challenges. Biobanks face legal questions over data sharing and intellectual property as well as ethical and sustainability questions particularly as the world attempts to move to a low-carbon economy. International collaboration is required to address some of these challenges but this in itself is fraught with complexity and difficulty. This review will examine the current utility of biobanks in the modern healthcare setting as well as the current and future challenges these vital institutions face.
Collapse
Affiliation(s)
- Michael Colwill
- Department of Gastroenterology, St George's University Hospital NHS Foundation Trust, London SW17 0QT, United Kingdom
| | - Samantha Baillie
- Department of Gastroenterology, St George's University Hospital NHS Foundation Trust, London SW17 0QT, United Kingdom
| | - Richard Pollok
- Department of Gastroenterology, St George's University Hospital NHS Foundation Trust, London SW17 0QT, United Kingdom
| | - Andrew Poullis
- Department of Gastroenterology, St George's University Hospital NHS Foundation Trust, London SW17 0QT, United Kingdom
| |
Collapse
|
4
|
Keeling C, Davies S, Goddard J, Ramaswamy V, Schwalbe EC, Bailey S, Hicks D, Clifford SC. The clinical significance of sub-total surgical resection in childhood medulloblastoma: a multi-cohort analysis of 1100 patients. EClinicalMedicine 2024; 69:102469. [PMID: 38374970 PMCID: PMC10875250 DOI: 10.1016/j.eclinm.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Background Medulloblastoma patients with a sub-total surgical resection (STR; >1.5 cm2 primary tumour residuum post-surgery) typically receive intensified treatment. However, the association of STR with poor outcomes has not been observed consistently, questioning the validity of STR as a high-risk disease feature. Methods We collected extent of resection (EOR) data from 1110 patients (from UK CCLG centres (n = 416, collected between September 1990 and July 2014) and published (n = 694) cohorts), the largest cohort of molecularly and clinically annotated tumours assembled to specifically assess the significance of EOR. We performed association and univariable/multivariable survival analyses, assessing overall survival (OS) cohort-wide and with reference to the four consensus medulloblastoma molecular groups and clinical features. Findings STR was reported in 20% (226/1110) of patients. Non-WNT (p = 0.047), children <5 years at diagnosis (p = 0.021) and metastatic patients (p < 0.0001) were significantly more likely to have a STR. In cohort-wide analysis, STR was associated with worse survival in univariable analysis (p < 0.0001). Examination of specific disease contexts showed that STR was prognostic in univariate analysis for patients receiving cranio-spinal irradiation (CSI) and chemotherapy (p = 0.016) and for patients with Group 3 tumours receiving CSI (p = 0.039). STR was not independently prognostic in multivariable analyses; outcomes for patients who have STR as their only risk-feature are as per standard-risk disease. Specifically, STR was not prognostic in non-metastatic patients that received upfront CSI. Interpretation In a cohort of 1100 molecularly characterised medulloblastoma patients, STR (n = 226) predicted significantly lower OS in univariable analysis, but was not an independent prognostic factor. Our data suggest that maximal safe resection can continue to be carried out for patients with medulloblastoma and suggest STR should not inform patient management when observed as a sole, isolated risk-feature. Funding Cancer Research UK, Newcastle Hospitals Charity, Children's Cancer North, British Division of the International Academy of Pathology.
Collapse
Affiliation(s)
- Claire Keeling
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Simon Davies
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Jack Goddard
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Vijay Ramaswamy
- Neuro-oncology Section, Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edward C. Schwalbe
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
- Great North Children's Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| |
Collapse
|