1
|
Farhadian N, Miresmaeili A, Farhadifard H, Banisafar Z, Farhadian M, Beiglar V, Ahmadpour Y. Effect of 850 nm LED irradiation on the alignment of crowded mandibular anterior teeth: a randomized controlled clinical trial. Clin Oral Investig 2024; 29:30. [PMID: 39724477 DOI: 10.1007/s00784-024-06044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/08/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION This study aims to determine if intraoral 850 nm LED irradiation could reduce the duration of lower anterior crowding alignment. METHODS In a parallel-designed, randomized controlled clinical trial 60 patients with 2 to 6 mm of lower incisor crowding who need non-extraction treatment, were randomly assigned to the intervention and control groups by block randomization (36 females, 24 males, mean age: 19.93 ± 3.05). MBT brackets (0.022 × 0.28-inch) were bonded for both groups and the NiTi wires in sequences were put in place until correction of crowding. The intra-oral LED device with a wavelength of 850 nm and power density of 70 mW/cm2 was used for 5 min per day in the intervention group. The control group did not receive any light. The primary outcome was the duration of crowding correction. The patient's pain according the modified McGill pain questionnaire was the secondary outcome. The Cox regression model was used to compare groups. Mann-Whitney test was used for pain analysis. RESULTS The crowding at baseline was the same between the two groups (P > 0.05). Duration of treatment in the intervention group was 104.7 days (95% CI: 95.6 -113.8) and significantly shorter than 161.9 days (95% CI: 151.5 -171.2) in the control group. The control group experienced a significantly higher pain score of 6.8 (95% CI: 6.1-7.5) immediately after archwire placement than the intervention group 5.4 (95% CI: 4.6-6.3). CONCLUSIONS Intra-oral LED 850 nm significantly decreased the relieving time of lower incisor crowding by up to 36% and reduced pain experience.
Collapse
Affiliation(s)
- Nasrin Farhadian
- Department of Orthodontics, School of Dentistry, Hamadan Dental Research Centre, Hamadan University of Medical Sciences, Hamadan, 65417838741, Iran
| | - Amirfarhang Miresmaeili
- Department of Orthodontics, School of Dentistry, Hamadan Dental Research Centre, Hamadan University of Medical Sciences, Hamadan, 65417838741, Iran
| | - Homa Farhadifard
- Department of Orthodontics, School of Dentistry, Hamadan Dental Research Centre, Hamadan University of Medical Sciences, Hamadan, 65417838741, Iran
| | - Ziba Banisafar
- Department of Orthodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, 65417838741, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health, Research Centre for Health Sciences Hamadan University of Medical Sciences, Hamadan, 65417838741, Iran
| | - Vahid Beiglar
- Hamadan Dental Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yousef Ahmadpour
- Department of Orthodontics, Faculty of Dentistry, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
2
|
Domínguez A, Muñoz-Alvear HD, Oviedo-Toro D, Suárez-Quenguán X, Lopez-Portilla E. Effective Parameters for Orthodontic Tooth Movement Acceleration with Photobiomodulation: An Umbrella Review. Photobiomodul Photomed Laser Surg 2024; 42:449-462. [PMID: 38836768 DOI: 10.1089/pho.2024.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Objective: To answer this research question: What are the effective wavelength, power, and energy density parameters for achieving dental movement acceleration? Background Data: Photobiomodulation (PBM) has been clinically studied for its ability to accelerate dental movements in orthodontics. However, its effectiveness is dose dependent. Methods: The search was carried out in PubMed, SCOPUS, and ISI Web of Science. The quality of the included systematic reviews was performed using the AMSTAR 2 tool. The risk of bias was assessed using the ROBIS tool. Results: In total, 29 articles in PubMed, 75 in Scopus, and 61 in ISI Web of Science. Finally, only five systematic reviews were included. Conclusions: The results showed the range from 730 to 830 nm as the most effective range of wavelength to accelerate the orthodontic dental movement. A power range of 0.25-200 mW, with emphasis on the direct correlation between power, wavelength, and energy density. Energy density has not been adequately reported in the most randomized controlled clinical trials.
Collapse
Affiliation(s)
| | - Hernan Dario Muñoz-Alvear
- Postgraduate Endodontics Department, School of Dentistry, Universidad Cooperativa de Colombia, Pasto, Colombia
| | - Daniela Oviedo-Toro
- Postgraduate Endodontics Department, School of Dentistry, Universidad Cooperativa de Colombia, Pasto, Colombia
| | - Ximena Suárez-Quenguán
- Postgraduate Endodontics Department, School of Dentistry, Universidad Cooperativa de Colombia, Pasto, Colombia
| | - Esteban Lopez-Portilla
- Postgraduate Endodontics Department, School of Dentistry, Universidad Cooperativa de Colombia, Pasto, Colombia
| |
Collapse
|
3
|
Asgari R, Mehran YZ, Weber HM, Weber M, Golestanha SA, Hosseini Kazerouni SM, Panahi F, Mohammadi P, Mansouri K. Management of oxidative stress for cell therapy through combinational approaches of stem cells, antioxidants, and photobiomodulation. Eur J Pharm Sci 2024; 196:106715. [PMID: 38301971 DOI: 10.1016/j.ejps.2024.106715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Over the recent decades, stem cell-based therapies have been considered as a beneficial approach for the treatment of various diseases. In these types of therapies, the stem cells and their products are used as treating agents. Despite the helpful efficacy of stem cell-based therapies, there may be challenges. Oxidative stress (OS) is one of these challenges that can affect the therapeutic properties of stem cells. Therefore, it seems that employing strategies for the reduction of OS in combination with stem cell therapy can lead to better results of these therapies. Based on the available evidence, antioxidant therapy and photobiomodulation (PBM) are strategies that can regulate the OS in the cells. Antioxidant therapy is a method in which various antioxidants are used in the therapeutic processes. PBM is also the clinical application of light that gained importance in medicine. Antioxidants and PBM can regulate OS by the effect on mitochondria as an important source of OS in the cells. Considering the importance of OS in pathologic pathways and its effect on the treatment outcomes of stem cells, in the present review first the stem cell therapy and effects of OS on this type of therapy are summarized. Then, antioxidant therapy and PBM as approaches for reducing OS with a focus on mitochondrial function are discussed. Also, a novel combination treatment with the hope of achieving better and more stable outcomes in the treatment process of diseases is proposed.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yasaman Zandi Mehran
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hans Michael Weber
- International Society of Medical Laser Applications, Lauenfoerde, Germany
| | | | | | | | - Farzad Panahi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Kusumoto J, Akashi M, Terashi H, Sakakibara S. Differential Photosensitivity of Fibroblasts Obtained from Normal Skin and Hypertrophic Scar Tissues. Int J Mol Sci 2024; 25:2126. [PMID: 38396801 PMCID: PMC10889571 DOI: 10.3390/ijms25042126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
It is unclear whether normal human skin tissue or abnormal scarring are photoreceptive. Therefore, this study investigated photosensitivity in normal skin tissue and hypertrophic scars. The expression of opsins, which are photoreceptor proteins, in normal dermal fibroblasts (NDFs) and hypertrophic scar fibroblasts (HSFs) was examined. After exposure to blue light (BL), changes in the expression levels of αSMA and clock-related genes, specifically PER2 and BMAL1, were examined in both fibroblast types. Opsins were expressed in both fibroblast types, with OPN3 exhibiting the highest expression levels. After peripheral circadian rhythm disruption, BL induced rhythm formation in NDFs. In contrast, although HSFs showed changes in clock-related gene expression levels, no distinct rhythm formation was observed. The expression level of αSMA was significantly higher in HSFs and decreased to the same level as that in NDFs upon BL exposure. When OPN3 knocked-down HSFs were exposed to BL, the reduction in αSMA expression was inhibited. This study showed that BL exposure directly triggers peripheral circadian synchronization in NDFs but not in HSFs. OPN3-mediated BL exposure inhibited HSFs. Although the current results did not elucidate the relationship between peripheral circadian rhythms and hypertrophic scars, they show that BL can be applied for the prevention and treatment of hypertrophic scars and keloids.
Collapse
Affiliation(s)
- Junya Kusumoto
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (H.T.); (S.S.)
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hiroto Terashi
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (H.T.); (S.S.)
| | - Shunsuke Sakakibara
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (H.T.); (S.S.)
| |
Collapse
|
5
|
Dominguez A. Current protocol to achieve dental movement acceleration and pain control with Photo-biomodulation. World J Methodol 2023; 13:379-383. [PMID: 38229945 PMCID: PMC10789100 DOI: 10.5662/wjm.v13.i5.379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
When designing a study on dental movement acceleration or pain control during orthodontic treatment, it is crucial to consider effective parameters. The objective of this editorial is to compile the most effective parameters supported by evidence that should be considered in future studies to achieve complete parameter homogenization. The protocol currently recommended to homogenize the parameters and facilitate the development of further meta-analysis in terms of acceleration of movement and pain control in orthodontics is Wavelength: 810 nm, 2.2 J per surface, 0.1 W in continuous mode/0.1 W average power in a super-pulsed, sweeping movement, 1mm from the mucosa, 22 seconds along the vestibular surface and 22 seconds along the lingual surface, the recommended speed of movement is 2 mm/sec, 1 application during each orthodontic control, to achieve dental movement acceleration and repeat the dose at 24 h to ensure pain elimination. The energy density and power density will depend on the spot size used in the equipment and the distance from the mucosa. It will strengthen the evidence of photobiomodulation as the best therapy to accelerate tooth movement and at the same time control the pain produced by orthodontic treatments.
Collapse
Affiliation(s)
- Angela Dominguez
- Department of Orthodontics, Faculty of Dentistry, Benemerita Universidad Autónoma de Puebla, Zaragoza de Puebla Calle 4 Sur 104, Puebla, C.P. 72000, Mexico
| |
Collapse
|
6
|
Abstract
When designing a study on dental movement acceleration or pain control during orthodontic treatment, it is crucial to consider effective parameters. The objective of this editorial is to compile the most effective parameters supported by evidence that should be considered in future studies to achieve complete parameter homogenization. The protocol currently recommended to homogenize the parameters and facilitate the development of further meta-analysis in terms of acceleration of movement and pain control in orthodontics is Wavelength: 810 nm, 2.2 J per surface, 0.1 W in continuous mode/0.1 W average power in a super-pulsed, sweeping movement, 1mm from the mucosa, 22 seconds along the vestibular surface and 22 seconds along the lingual surface, the recommended speed of movement is 2 mm/sec, 1 application during each orthodontic control, to achieve dental movement acceleration and repeat the dose at 24 h to ensure pain elimination. The energy density and power density will depend on the spot size used in the equipment and the distance from the mucosa. It will strengthen the evidence of photobiomodulation as the best therapy to accelerate tooth movement and at the same time control the pain produced by orthodontic treatments.
Collapse
|
7
|
Wang Q, Chen N, Li M, Yao S, Sun X, Feng X, Chen Y. Light-related activities of metal-based nanoparticles and their implications on dermatological treatment. Drug Deliv Transl Res 2023; 13:386-399. [PMID: 35908132 DOI: 10.1007/s13346-022-01216-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Metal-based nanoparticles (MNPs) represent an emerging class of materials that have attracted enormous attention in many fields. By comparison with other biomaterials, MNPs own unique optical properties which make them a potential alternative to conventional therapeutic agents in medical applications. Especially, owing to the easy access to the skin, the use of MNPs based on their optical properties has gained importance for the treatment of a variety of skin diseases. This review provides an insight into the different optical properties of MNPs, including photoprotection, photocatalysis, and photothermal, and highlights their implications in treating skin disorders, with a special emphasis on their use in infection control. Finally, a perspective on the safety concern of MNPs for dermatological use is discussed and analyzed. The information gathered and presented in this review will help the readers have a comprehensive understanding of utilizing the photo-triggered activity of MNPs for the treatment of skin diseases.
Collapse
Affiliation(s)
- Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Mingming Li
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China.
| |
Collapse
|
8
|
Purbhoo-Makan M, Houreld NN, Enwemeka CS. The Effects of Blue Light on Human Fibroblasts and Diabetic Wound Healing. Life (Basel) 2022; 12:life12091431. [PMID: 36143466 PMCID: PMC9505688 DOI: 10.3390/life12091431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a serious threat to global health and is among the top 10 causes of death. The Diabetic foot ulcer (DFU) is among the most common and severe complications of the disease. Bacterial infections are common; therefore, timely aggressive management, using multidisciplinary management approaches is needed to prevent complications, morbidity, and mortality, particularly in view of the growing cases of antibiotic-resistant bacteria. Photobiomodulation (PBM) involves the application of low-level light at specific wavelengths to induce cellular photochemical and photophysical responses. Red and near-infrared (NIR) wavelengths have been shown to be beneficial, and recent studies indicate that other wavelengths within the visible spectrum could be helpful as well, including blue light (400–500 nm). Reports of the antimicrobial activity and susceptibility of blue light on several strains of the same bacterium show that many bacteria are less likely to develop resistance to blue light treatment, meaning it is a viable alternative to antibiotic therapy. However, not all studies have shown positive results for wound healing and fibroblast proliferation. This paper presents a critical review of the literature concerning the use of PBM, with a focus on blue light, for tissue healing and diabetic ulcer care, identifies the pros and cons of PBM intervention, and recommends the potential role of PBM for diabetic ulcer care.
Collapse
Affiliation(s)
- Meesha Purbhoo-Makan
- Department of Podiatry, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Correspondence:
| | - Chukuka S. Enwemeka
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- College of Health and Human Services, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
9
|
El Saftawy E, Sarhan R, Hamed A, Elhawary E, Sameh A. Lasers for cutaneous lesions: An update. Dermatol Ther 2022; 35:e15647. [PMID: 35714173 DOI: 10.1111/dth.15647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/30/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
There are several types of medical settings which use lasers. Dermatologists use lasers as it is non-invasive with preferential cosmetic outcomes and finer wound healing. The types of lasers are relying on their wavelengths and delivery systems. Over time, by using several distinct devices and strategies, new lasers have been generated; as a consequence, they are manipulated in a wide range of dermatological settings. In this review, laser applications in various vascular, infectious, and hyperpigmented cutaneous lesions were framed. We aimed to represent the fitness of phototherapy for each condition as well as the overall challenges that face laser. In addition, low-level laser therapy, and laser resurfacing were noted as the marketable line of lasers in the current time for cosmetic purposes.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Rania Sarhan
- Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt.,Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Hamed
- Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Esraa Elhawary
- Department of Dermatology and Venereology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed Sameh
- Department of Dermatology and Venereology, Armed Forces College of Medicine, Cairo, Egypt
| |
Collapse
|
10
|
Chen Q, Yang J, Yin H, Li Y, Qiu H, Gu Y, Yang H, Xiaoxi D, Xiafei S, Che B, Li H. Optimization of photo-biomodulation therapy for wound healing of diabetic foot ulcers in vitro and in vivo. BIOMEDICAL OPTICS EXPRESS 2022; 13:2450-2466. [PMID: 35519257 PMCID: PMC9045913 DOI: 10.1364/boe.451135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 05/08/2023]
Abstract
Unclear optical parameters make photo-biomodulation (PBM) difficult to implement in diabetic foot ulcer (DFU) clinically. Here, 12 wavelengths (400-900 nm) were used to conduct PBM to heal DFU wounds in vitro and in vivo. PBM at 10 mW/cm2 and 0.5-4 J/cm2 with all 12 wavelengths promoted proliferation of diabetic wound cells. In a mimic DFU (mDFU) rat model, PBM (425, 630, 730, and 850 nm, and a combination light strategy) promoted mDFU healing. The positive cell proliferation, re-epithelialization, angiogenesis, collagen synthesis, and inflammation were possible mechanisms. The combination strategy had the best effect, which can be applied clinically.
Collapse
Affiliation(s)
- Qianqian Chen
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
- National Research Center for Rehabilitation Technical Aids, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, Beijing 100176, China
- Equal contributors
| | - Jichun Yang
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
- Equal contributors
| | - Huijuan Yin
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Yingxin Li
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Haixia Qiu
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Gu
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Hua Yang
- Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Dong Xiaoxi
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Shi Xiafei
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Bochen Che
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Hongxiao Li
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
11
|
Cai W, Hamushan M, Zhang Y, Xu Z, Ren Z, Du J, Ju J, Cheng P, Tan M, Han P. Synergistic Effects of Photobiomodulation Therapy with Combined Wavelength on Diabetic Wound Healing In Vitro and In Vivo. Photobiomodul Photomed Laser Surg 2022; 40:13-24. [PMID: 34941461 DOI: 10.1089/photob.2021.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objective: The difficulty in chronic diabetic wound healing remains the focus of clinical research. Photobiomodulation therapy (PBMT) with different wavelengths could exert different effects on wound healing, but the effects of combined red and blue light (BL) remained unclear. Methods: Diabetic rat wound model and diabetic wounded endothelial cell model were established to observe possible effects of PBMT using combined wavelengths for wound healing. Cells and animals were separated into four groups exposed to red and/or BL. Cell viability, apoptosis, and migration, as well as the expression level of nitric oxide (NO), vascular endothelial growth factor, interleukin-6, and tumor necrosis factor-α were measured in vitro. Diabetic rats were evaluated for wound closure rates, collagen deposition, inflammation intensity, and density of neovascularization after light irradiation. Results: PBMT using combined wavelengths significantly sped up the healing process with increasing angiogenesis density, collagen deposition, and alleviating inflammation in vivo. Moreover, combined wavelength irradiation promoted cell proliferation and migration, and NO production, as well as reduced reactive oxygen species and inflammation in vitro. Conclusions: PBMT using combined wavelengths performed a synergistic effect for promoting diabetic wound healing and would be helpful to explore a more efficient pattern toward chronic wound healing.
Collapse
Affiliation(s)
- Weijie Cai
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Musha Hamushan
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yubo Zhang
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhengyu Xu
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zun Ren
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiafei Du
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiaqi Ju
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Pengfei Cheng
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Moyan Tan
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Pei Han
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
12
|
Dos Santos KW, Hugo FN, da Cunha Rodrigues E, Stein AT, Hilgert JB. Effect of oral exercises and photobiomodulation therapy in the rehabilitation of patients with mandible fractures: randomized double-blind clinical trial. Lasers Med Sci 2021; 37:1727-1735. [PMID: 34557956 DOI: 10.1007/s10103-021-03423-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/18/2021] [Indexed: 12/01/2022]
Abstract
Mandible fractures compromise stomatognathic functions, requiring rehabilitation. Evaluate the effectiveness of photobiomodulation (PBM) associated with oral exercises for rehabilitation of patients with mandible fractures. In this randomized clinical trial, we compared PBM with PBM sham in 14 adults with mandibular fractures who underwent surgical intervention. The sessions were performed 24 h and 48 h after surgical procedure, and weekly for 4 weeks after hospital discharge. Both groups performed oral exercises after each PBM session. Restriction of food consistencies, mandibular mobility, pain, and facial sensitivity measured before and after the surgical procedure were the outcomes evaluated, one and 3 months after surgery. Maximum interincisal distances (MID), exercise pain, and restriction of food consistencies were also evaluated during each week of intervention. Both groups showed normal MID (> 35 mm) and food consistencies consumed 1 month after the surgical procedure, with no significant differences between them. Individuals in the PBM group had less pain response to exercise during all the weeks of intervention than the sham group (p < 0.05). The patients presented a reduction in the painful response in MID and mandibular laterality movements 1 month after surgery compared to the preoperative period. In contrast, there was an improvement in laterality in the sham group only 3 months postoperatively and persistent pain in MID. There was no significant difference in facial sensitivity within and between groups during follow-up. The performance of oral exercises associated with PBM effectively facilitated the early rehabilitation of oral functions, with significant gains in pain management.
Collapse
Affiliation(s)
- Karoline Weber Dos Santos
- Cristo Redentor Hospital/Conceição Hospital Group (GHC) - 20, Domingos Rubbo Street, Porto Alegre, Rio Grande Do Sul, 91040-000, Brazil.
| | - Fernando Neves Hugo
- Department of Preventive and Social Dentistry, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos 2492, Porto Alegre, RS, 90035-0003, Brazil
| | - Esther da Cunha Rodrigues
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) - 245, Sarmento Leite Street, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil
| | - Airton Tetelbom Stein
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) - 245, Sarmento Leite Street, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil
| | - Juliana Balbinot Hilgert
- Department of Preventive and Social Dentistry, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos 2492, Porto Alegre, RS, 90035-0003, Brazil
| |
Collapse
|
13
|
Hamushan M, Cai W, Lou T, Cheng P, Zhang Y, Tan M, Chai Y, Zhang F, Lineaweaver WC, Han P, Ju J. Postconditioning With Red-Blue Light Therapy Improves Survival of Random Skin Flaps in a Rat Model. Ann Plast Surg 2021; 86:582-587. [PMID: 32756256 DOI: 10.1097/sap.0000000000002501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Random skin flap ischemic necrosis is a serious challenge in reconstructive surgery. Photobiomodulation is a noninvasive effective technique to improve microcirculation and neovascularization. Photobiomodulation with red or blue light has been separately proven to partially prevent skin flap necrosis, but the synergistic effect of red and blue light not been elucidated. Our experiment evaluated the impact of postconditioning with red-blue light therapy on the viability of random flaps. METHODS Thirty Sprague-Dawley male rats (male, 12 weeks) with a cranially based random pattern skin flap (3 × 8 cm) were divided into 3 groups: control group, red light group, and red-blue light group. On postoperative day 7, flap survival was observed and recorded using transparent graph paper, flaps were obtained and stained with hematoxylin and eosin, and microvessel density was measured. Micro-computed tomography was used to measure vascular volume and vascular length. On days 0, 3, and 7 after surgery, blood flow was measured by laser Doppler. To investigate the underlying mechanisms, the amount of nitric oxide (NO) metabolites in the flap tissue was assessed on days 3, 5, and 7 after surgery. RESULTS The mean percentage of skin flap survival was 59 ± 10% for the control group, 69 ± 7% for the red light group, and 79 ± 9% for the red-blue light group (P < 0.01). The microvessel density was 12.3 ± 1.2/mm2 for the control group, 31.3 ± 1.3/mm2 for the red light group, and 36.5 ± 1.4/mm2 for the red-blue light group (P < 0.01). Both vascular volume and total length in the red-blue light group showed significantly increased compared with the red light and control group (P < 0.01). Blood flow in the red-blue light treated flap showed significantly increased at postsurgery days 3 and 7 compared with the red light and control group (P < 0.01). The level of the NO metabolites was significantly increased in flap tissues belonging to the red-blue light group compared with the other 2 groups (P < 0.01). CONCLUSIONS This study showed that postconditioning with red-blue light therapy can enhance the survival of random skin flap by improving angiogenesis and NO releasing.
Collapse
Affiliation(s)
- Musha Hamushan
- From the Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Weijie Cai
- From the Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tengfei Lou
- From the Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pengfei Cheng
- From the Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yubo Zhang
- From the Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Moyan Tan
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Yimin Chai
- From the Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Zhang
- Joseph M. Still Burn and Reconstructive Center Jackson, MS
| | | | - Pei Han
- From the Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiaqi Ju
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
14
|
Austin E, Geisler AN, Nguyen J, Kohli I, Hamzavi I, Lim HW, Jagdeo J. Visible light. Part I: Properties and cutaneous effects of visible light. J Am Acad Dermatol 2021; 84:1219-1231. [PMID: 33640508 PMCID: PMC8887026 DOI: 10.1016/j.jaad.2021.02.048] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Approximately 50% of the sunlight reaching the Earth's surface is visible light (400-700 nm). Other sources of visible light include lasers, light-emitting diodes, and flash lamps. Photons from visible light are absorbed by photoreceptive chromophores (e.g., melanin, heme, and opsins), altering skin function by activating and imparting energy to chromophores. Additionally, visible light can penetrate the full thickness of the skin and induce pigmentation and erythema. Clinically, lasers and light devices are used to treat skin conditions by utilizing specific wavelengths and treatment parameters. Red and blue light from light-emitting diodes and intense pulsed light have been studied as antimicrobial and anti-inflammatory treatments for acne. Pulsed dye lasers are used to treat vascular lesions in adults and infants. Further research is necessary to determine the functional significance of visible light on skin health without confounding the influence of ultraviolet and infrared wavelengths.
Collapse
Affiliation(s)
- Evan Austin
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, New York
| | | | - Julie Nguyen
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, New York
| | - Indermeet Kohli
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| | - Iltefat Hamzavi
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| | - Henry W Lim
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| | - Jared Jagdeo
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, New York.
| |
Collapse
|
15
|
Xu QH, Li Y, Yu JH, Liao HF. Biological role of postoperative low level laser therapy in preventing hydroxyapatite orbital implantation exposure: A case report. Exp Ther Med 2021; 21:314. [PMID: 33717257 PMCID: PMC7885064 DOI: 10.3892/etm.2021.9745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 11/25/2019] [Indexed: 11/06/2022] Open
Abstract
Conjunctival sac stenosis is the contraction of the conjunctival sac as a result of trauma or disease. The aim of the present study was to observe the clinical effects of low-level laser therapy (LLLT) combined with hydroxyapatite (HA) orbital implantation as a treatment strategy for conjunctival sac stenosis. A total of 10 patients with conjunctival sac stenosis were treated with scleral graft transplantation in conjunction with HA implantation and postoperative LLLT. In addition, a rabbit model was used to investigate the biological mechanism underlying the effects of LLLT with the aim of preventing and treating orbital implantation exposure. The right eyeball was removed, orbital implantation performed and LLLT applied to experimental groups. 99mTc-Methyl diphosphonate scanning methods were performed at different timepoints to compare the average radioactivity count of the region of interest between surgical (right) and control (left) eyes (R/L). Histopathological examination was performed 8 weeks post-surgery, followed by analysis of fiber vascularization. Following LLLT, moderate conjunctival wounds were completely healed within 2 weeks and severe stenosis wounds healed within 3 weeks. Following prosthesis implantation in the rabbit model, a significantly elevated R/L ratio was observed after 4 weeks, whereas no significant difference was observed compared with the control group at 6 and 8 weeks postoperatively. Histopathological examination revealed that all implants were fibrotic. Overall, the present study demonstrated that LLLT promoted the survival of conjunctival grafts, stimulated conjunctival incision healing and promoted early vascularization of HA implants. Clinical trial registration no: ChiCTR-DDT-12002660 (www.chictr.org/cn/).
Collapse
Affiliation(s)
- Qi-Hua Xu
- The Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330046, P.R. China
| | - Yue Li
- The Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330046, P.R. China
| | - Jin-Hai Yu
- The Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330046, P.R. China
| | - Hong-Fei Liao
- The Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330046, P.R. China
| |
Collapse
|
16
|
Martins MD, Silveira FM, Martins MAT, Almeida LO, Bagnato VS, Squarize CH, Castilho RM. Photobiomodulation therapy drives massive epigenetic histone modifications, stem cells mobilization and accelerated epithelial healing. JOURNAL OF BIOPHOTONICS 2021; 14:e202000274. [PMID: 33025746 DOI: 10.1002/jbio.202000274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidence indicates the clinical benefits of photobiomodulation therapy (PBMT) in the management of skin and mucosal wounds. Here, we decided to explore the effects of different regiments of PBMT on epithelial cells and stem cells, and the potential implications over the epigenetic circuitry during healing. Scratch-wound migration, immunofluorescence (anti-acetyl-Histone H3, anti-acetyl-CBP/p300 and anti-BMI1), nuclear morphometry and western blotting (anti-Phospho-S6, anti-methyl-CpG binding domain protein 2 [MBD2]) were performed. Epithelial stem cells were identified by the aldehyde dehydrogenase enzymatic levels and sphere-forming assay. We observed that PBMT-induced accelerated epithelial migration and chromatin relaxation along with increased levels of histones acetylation, the transcription cofactors CBP/p300 and mammalian target of rapamycin. We further observed a reduction of the transcription repression-associated protein MBD2 and a reduced number of epithelial stem cells and spheres. In this study, we showed that PBMT could induce epigenetic modifications of epithelial cells and control stem cell fate, leading to an accelerated healing phenotype.
Collapse
Affiliation(s)
- Manoela D Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Felipe Martins Silveira
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Marco A T Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Oral Medicine, Hospital de Clínicas de Porto Alegre (HCPA/UFRGS), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana O Almeida
- Laboratory of Tissue Culture, Department of Basic and Oral Biology, University of Sao Paulo School of Dentistry, Ribeirao Preto, Rio Grande do Sul, Brazil
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Etemadi A, Eftekhari Bayati S, Pourhajibagher M, Chiniforush N. In vitro effect of antimicrobial photodynamic therapy with phycocyanin on Aggregatibacter actinomycetemcomitans biofilm on SLA titanium discs. Photodiagnosis Photodyn Ther 2020; 32:102062. [PMID: 33068819 DOI: 10.1016/j.pdpdt.2020.102062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE The aim of this in vitro study was to evaluate antimicrobial photodynamic therapy (aPDT) with phycocyanin on Aggregatibacter actinomycetemcomitans biofilm formed on sandblasted, large-grit, and acid-etched (SLA) titanium discs. MATERIALS AND METHODS In this in vitro experimental study, the minimum inhibitory concentration (MIC), sublethal dose of diode laser irradiation time, and sublethal dose of aPDT were first determined. Next, 30 SLA titanium discs with 8 mm diameter and 2 mm thickness were incubated with A. actinomycetemcomitans in order for the bacterial biofilm to form, and were randomly divided into 5 groups (n = 6): (I) negative control with no treatment, (II) positive control, immersed in 0.2 % chlorhexidine (CHX) for 5 min, (III) phycocyanin alone with ×2 MIC concentration for 5 min, (IV) diode laser alone (635 nm wavelength, 220 mW power), and (V) PDT with diode laser and phycocyanin. The samples were then sonicated, and the number of colony-forming units (CFUs) on each disc was calculated. Data were analyzed using one-way ANOVA, t-test, and a post-hoc test. RESULTS aPDT with 125 μg/mL phycocyanin and 4 min irradiation of 635 nm diode laser decreasedA. actinomycetemcomitans biofilm by 40.07 %. The lowest mean colony count (CFUs/mL) was noted in 0.2 % CHX group (0.0 × 105 CFU/mL) while the highest mean was observed in the negative control group (4.55 ± 0.08 × 105 CFUs/mL). Using phycocyanin alone significantly decreased the A. actinomycetemcomitans count by 27.54 % (3.29 ± 0.06 × 105 CFUs/mL) compared with the negative control group (P < 0.0001). Significant differences were noted between the negative control and other groups (P < 0.0001). CONCLUSION aPDT with phycocyanin and diode laser can decrease the A. actinomycetemcomitans biofilm on SLA titanium implant surfaces and can be used as a safe and non-invasive decontamination method for reduction of A. actinomycetemcomitans biofilm on implant surfaces.
Collapse
Affiliation(s)
- Ardavan Etemadi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Laser Research Center of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Eftekhari Bayati
- Dental Student, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Dental Implant Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Lo Giudice A, Nucera R, Leonardi R, Paiusco A, Baldoni M, Caccianiga G. A Comparative Assessment of the Efficiency of Orthodontic Treatment With and Without Photobiomodulation During Mandibular Decrowding in Young Subjects: A Single-Center, Single-Blind Randomized Controlled Trial. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:272-279. [PMID: 31944878 PMCID: PMC7249466 DOI: 10.1089/photob.2019.4747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: To assess if photobiomodulation (PBM) improves the efficiency of orthodontic treatment with fixed appliance during the alignment stage. Methods: Eighty-nine subjects were included in this trial and randomly assigned for treatment with fixed appliance and PBM group or with fixed appliance only (control group). Inclusion criteria were as follows: (1) age between 13 and 30 years, (2) permanent dentition, (3) class I malocclusion, (4) lower 6–6 mild crowding measured on dental cast, (5) no spaces or diastema in the lower arch, (6) no ectopic teeth, (7) nonextractive treatment plan, and (8) no previous orthodontic treatment. PBM was administered in the PBM group every 14 days using the ATP38® (Biotech Dental, Allée de Craponne, Salon de Provence, France) (72 J/cm2 of fluency for each session). Dental alignment was assessed by visual inspection, and treatment time was defined in days as T2 (date of assessment of complete dental alignment)–T1 (date of brackets bonding). The number of monthly scheduled appointments was also recorded. All the data underwent statistical analysis for comparison between groups. Results: Treatment time was significantly shorter (p < 0.001) in the PBM group (203 days) compared with the control (260 days). Consequently, control visits (p < 0.001) were lower in the PBM group (7) compared with the control group (9). Conclusions: The present findings would confirm that PBM can be used to enhance the efficiency of orthodontic treatment during dental decrowding.
Collapse
Affiliation(s)
- Antonino Lo Giudice
- Section of Orthodontics, Department of Medical-Surgical Specialties, School of Dentistry, University of Catania, Policlinico Universitario "V. Emanuele," Catania, Italy
| | - Riccardo Nucera
- Section of Orthodontics, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, School of Dentistry, University of Messina, Policlinico Universitario "G. Martino," Messina, Italy
| | - Rosalia Leonardi
- Section of Orthodontics, Department of Medical-Surgical Specialties, School of Dentistry, University of Catania, Policlinico Universitario "V. Emanuele," Catania, Italy
| | - Alessio Paiusco
- Section of Orthodontics, Department of Surgery and Interdisciplinary Medicine, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Marco Baldoni
- Section of Orthodontics, Department of Surgery and Interdisciplinary Medicine, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Gianluigi Caccianiga
- Section of Orthodontics, Department of Surgery and Interdisciplinary Medicine, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
19
|
Ortega SM, Gonçalves MLL, da Silva T, Horliana ACRT, Motta LJ, Altavista OM, Olivan SR, dos Santos AECG, Martimbianco ALC, Mesquita-Ferrari RA, Fernandes KPS, Bussadori SK. Evaluation of the use of photobiomodulation following the placement of elastomeric separators: Protocol for a randomized controlled clinical trial. Medicine (Baltimore) 2019; 98:e17325. [PMID: 31651838 PMCID: PMC6824799 DOI: 10.1097/md.0000000000017325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pain stemming from the placement of elastomeric separators and the exchanging of wires and accessories is the greatest reason for abandoning orthodontic treatment. Indeed, discomfort related to treatment exerts a negative impact on quality of life due to the difficulty chewing and biting. This paper proposes a study to evaluate the analgesic effects of photomiobodulation (PBM) on individuals undergoing orthodontic treatment. METHODS The sample will be composed of 72 individuals who receiving elastomeric separators on the mesial and distal faces of the maxillary first molars. The patients will be randomly allocated to 2 groups: an experimental group irradiated with low-level laser and a sham group submitted to simulated laser irradiation. Upon the placement of the separators, the experimental group will receive a single application of PBM on the mesial and distal cervical portion and apical third of the molars. Perceived pain will be analyzed after one hour using the visual analog scale in both groups. Samples will be taken of the gingival crevice with absorbent paper for 30 seconds for the analysis of cytokines using ELISA and the results of the 2 groups will be compared. The patients will sign a statement of informed consent. Statistical analysis will be performed with the Student's t test and analysis of variance (ANOVA). DISCUSSION The expectation is that the patients in the irradiated group will have a lower perception of pain and lower quantity of cytokines compared to those in the sham group. The purpose of the study is to establish an effective method for PBM with the use of low-level infrared laser (Ga-Al-As with a wavelength of 808 nm and output power of 100 mW) for reductions in pain and inflammatory cytokines related to orthodontic treatment. TRIAL REGISTRATION This protocol was registered in ClinicalTrial.gov, under number NCT03939988. It was first posted and last updated in May 6, 2019.
Collapse
Affiliation(s)
| | | | - Tamiris da Silva
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho, UNINOVE
| | | | | | | | | | | | | | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho, UNINOVE
| |
Collapse
|
20
|
Serrage H, Heiskanen V, Palin WM, Cooper PR, Milward MR, Hadis M, Hamblin MR. Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light. Photochem Photobiol Sci 2019; 18:1877-1909. [PMID: 31183484 PMCID: PMC6685747 DOI: 10.1039/c9pp00089e] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/30/2019] [Indexed: 12/31/2022]
Abstract
Photobiomodulation (PBM) describes the application of light at wavelengths ranging from 400-1100 nm to promote tissue healing, reduce inflammation and promote analgesia. Traditionally, red and near-infra red (NIR) light have been used therapeutically, however recent studies indicate that other wavelengths within the visible spectrum could prove beneficial including blue and green light. This review aims to evaluate the literature surrounding the potential therapeutic effects of PBM with particular emphasis on the effects of blue and green light. In particular focus is on the possible primary and secondary molecular mechanisms of PBM and also evaluation of the potential effective parameters for application both in vitro and in vivo. Studies have reported that PBM affects an array of molecular targets, including chromophores such as signalling molecules containing flavins and porphyrins as well as components of the electron transport chain. However, secondary mechanisms tend to converge on pathways induced by increases in reactive oxygen species (ROS) production. Systematic evaluation of the literature indicated 72% of publications reported beneficial effects of blue light and 75% reported therapeutic effects of green light. However, of the publications evaluating the effects of green light, reporting of treatment parameters was uneven with 41% failing to report irradiance (mW cm-2) and 44% failing to report radiant exposure (J cm-2). This review highlights the potential of PBM to exert broad effects on a range of different chromophores within the body, dependent upon the wavelength of light applied. Emphasis still remains on the need to report exposure and treatment parameters, as this will enable direct comparison between different studies and hence enable the determination of the full potential of PBM.
Collapse
Affiliation(s)
- Hannah Serrage
- College of Medical and Dental Sciences, University of Birmingham, UK.
| | | | | | | | | | | | | |
Collapse
|
21
|
Fridoni M, Kouhkheil R, Abdollhifar MA, Amini A, Ghatrehsamani M, Ghoreishi SK, Chien S, Bayat S, Bayat M. Improvement in infected wound healing in type 1 diabetic rat by the synergistic effect of photobiomodulation therapy and conditioned medium. J Cell Biochem 2018; 120:9906-9916. [PMID: 30556154 DOI: 10.1002/jcb.28273] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/24/2018] [Indexed: 02/02/2023]
Abstract
We investigated the effects of photobiomodulation therapy (PBMT) and conditioned medium (CM) of human bone marrow mesenchymal stem cells (hBM-MSC) individually and/or in combination on the stereological parameters and the expression of basic fibroblast growth factor (bFGF), hypoxia-inducible factor (HIF-1α), and stromal cell-derived factor-1α (SDF-1α) in a wound model infected with methicillin-resistant Staphylococcus aureus (MRSA) in diabetic rats. CM was provided by culturing hBM-MSCs. Type 1 diabetes mellitus (T1DM) was induced in 72 rats, divided into four groups, harboring 18 rats each: group 1 served as a control group, group 2 received PBMT, group 3 received CM, and group 4 received CM + PBMT. On days 4, 7, and 15, six animals from each group were euthanized and the skin samples were separated for stereology examination and gene expression analysis by real-time polymerase chain reaction. In the CM + PBMT, CM, and PBMT groups, significant decreases were induced in the number of neutrophils (1460 ± 93, 1854 ± 138, 1719 ± 248) and macrophages (539 ± 69, 804 ± 63, 912 ± 41), and significant increases in the number of fibroblasts (1073 ± 116, 836 ± 75, 912 ± 41) and angiogenesis (15 230 ± 516, 13 318 ± 1116, 14 041 ± 867), compared with those of the control group (2690 ± 371, 1139 ± 145, 566 ± 90, 12 585 ± 1219). Interestingly, the findings of the stereological examination in the CM + PBMT group were statistically more significant than those in the other groups. In the PBMT group, in most cases, the expression of bFGF, HIF-1α, and SDF-1α, on day 4 (27.7 ± 0.14, 28.8 ± 0.52, 27.5 ± 0.54) and day 7 (26.8 ± 1.4, 29.6 ± 1.4, 28.3 ± 1.2) were more significant than those in the control (day 4, 19.3 ± 0.42, 25.5 ± 0.08, 22.6 ± 0.04; day 7, 22.3 ± 0.22, 28.3 ± 0.59, 24.3 ± 0.19) and other treatment groups. The application of PBMT + CM induced anti-inflammatory and angiogenic activities, and hastened wound healing process in a T1 DM model of MRSA infected wound.
Collapse
Affiliation(s)
- Mohammadjavad Fridoni
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences and Price Institue Of Surgical Research, University of Louisville, Kentucky, Zanjan, Iran
| | - Reza Kouhkheil
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences and Price Institue Of Surgical Research, University of Louisville, Kentucky, Zanjan, Iran
| | - Mohammad-Amin Abdollhifar
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky
| | | | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| |
Collapse
|
22
|
Barin LM, Barcelos RCS, Vey LT, Pillusky FM, Palma VM, Kantorski KZ, Bürger ME, Maciel RM, Danesi CC. Role of the adjunctive antimicrobial photodynamic therapy to periodontal treatment at plasmatic oxidative stress and vascular behavior. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:538-544. [PMID: 28692925 DOI: 10.1016/j.jphotobiol.2017.06.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND To evaluate for the first time in vivo the effects of methylene blue (MB) photosensitizer dissolved in ethanol in antimicrobial photodynamic therapy (aPDT) as adjuvant periodontal treatment, at plasmatic oxidative stress and vascular behavior in rat model. METHODS Wistar rats were divided into negative control (NC, no periodontitis) and positive control (PC, with periodontitis, without any treatment). The other groups had periodontitis and were treated with scaling and root planing (SRP); SRP+aPDT+MB dissolved in water (aPDT I); SRP+aPDT+MB dissolved in ethanol (aPDT II). The periodontitis was induced by ligature at the mandibular right first molar. At 7/15/30days, rats were euthanized, the plasma was used to determine oxidative stress parameters and gingival tissue for histomorphometric analysis. RESULTS PC showed higher thiobarbituric acid reactive substances levels in 7/15/30days. aPDT II was able to block the lipid peroxidation, especially between 15th and 30th days. Glutathione reduced levels were consumed in PC, aPDT I and II groups throughout the experiment. aPDT II increased the vitamin C levels which were restored in this group in the 30th day. aPDT II group showed the highest number of blood vessels. CONCLUSION In summary, the aPDT with MB dissolved in ethanol provides better therapeutic responses in periodontitis treatment.
Collapse
Affiliation(s)
- L M Barin
- Post-Graduation Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - R C S Barcelos
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - L T Vey
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - F M Pillusky
- Post-Graduation Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - V M Palma
- Department of Pathology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - K Z Kantorski
- Post-Graduation Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Stomatology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - M E Bürger
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - R M Maciel
- Post-Graduation Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - C C Danesi
- Post-Graduation Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Pathology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
23
|
Caccianiga G, Paiusco A, Perillo L, Nucera R, Pinsino A, Maddalone M, Cordasco G, Lo Giudice A. Does Low-Level Laser Therapy Enhance the Efficiency of Orthodontic Dental Alignment? Results from a Randomized Pilot Study. Photomed Laser Surg 2017; 35:421-426. [PMID: 28253073 DOI: 10.1089/pho.2016.4215] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To assess if low-level laser therapy (LLLT) enhances the efficiency of orthodontic dental alignment. BACKGROUND There is no evidence of the effect of LLLT on the orthodontic treatment time from randomized clinical trials. METHODS Thirty-six subjects were included in this interventional pilot study and randomly assigned for treatment with fixed appliance and LLLT (test group) or with fixed appliance only (control group). A single monthly administration of LLLT was performed intraorally using a Diode laser (980 nm, 1 W, continuous wave, total energy density = 150 J/cm2; Doctor Smile-Lambda Spa). The date of brackets bonding (T1) and the date of complete resolution of dental crowding (T2) were recorded. The alignment treatment time was defined in days as T2 - T1. The number of monthly scheduled control visits was also recorded. Treatment time duration was assessed in both groups with the log-rank (Mantel-Cox) Test for survival analysis. Mann-Whitney U tests was used to compare the number of control visits from T1 to T2 between the two groups. RESULTS Patients' age, sex, and amount of crowding were equally distributed between the two groups. The alignment treatment time was significantly shorter (p < 0.001) in the tested group (211.8 days) compared to the control (284.1 days). Consequently, control visits (p < 0.001) were lower in the test group (7 visits, median value) compared to the control group (9.5 visits, median value). CONCLUSIONS The results of this pilot study suggest that the administration of LLLT might significantly increase the efficiency of orthodontic treatment during dental alignment.
Collapse
Affiliation(s)
| | - Alessio Paiusco
- 1 School of Medicine and Surgery, University of Milano-Bicocca , Milan, Italy
| | - Letizia Perillo
- 2 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| | - Riccardo Nucera
- 3 Department of Biomedical and Dental Sciences and Morphofunctional Imaging-Section of Orthodontics, School of Dentistry, University of Messina , Messina, Italy
| | - Alberto Pinsino
- 4 Division of Cardiology, Department of Medicine, Columbia University Medical Center , New York Presbyterian Hospital, New York, New York
| | - Marcello Maddalone
- 1 School of Medicine and Surgery, University of Milano-Bicocca , Milan, Italy
| | - Giancarlo Cordasco
- 3 Department of Biomedical and Dental Sciences and Morphofunctional Imaging-Section of Orthodontics, School of Dentistry, University of Messina , Messina, Italy
| | - Antonino Lo Giudice
- 3 Department of Biomedical and Dental Sciences and Morphofunctional Imaging-Section of Orthodontics, School of Dentistry, University of Messina , Messina, Italy
| |
Collapse
|
24
|
Kelkar SS, McCabe-Lankford E, Albright R, Harrington P, Levi-Polyachenko NH. Dual wavelength stimulation of polymeric nanoparticles for photothermal therapy. Lasers Surg Med 2016; 48:893-902. [PMID: 27636556 DOI: 10.1002/lsm.22583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Photothermal therapy (PTT) has several applications in the areas of wound healing, pain management, bacterial infection control, and cancer treatment dependent on the temperature that is generated. PTT is often used exclusively with near infrared (NIR) light and most nanoparticles (NP) used for PTT are designed to absorb within one narrow range of wavelengths. We have developed a dual-wavelength photothermal therapy by capitalizing on the dual absorption of nanoparticles in the blue and NIR range. MATERIALS AND METHODS Our lab has previously developed NP based on the semiconducting, conjugated polymer poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe). The NP have strong absorption in the blue and NIR regions. In this report, we have explored the heat generated by PCPDTBSe NP using simultaneous delivery of 450 and 800 nm light, either independently or together for photothermal ablation of mouse colorectal cancer cells. RESULTS The heat generation studies indicated that the use of either 450 or 800 nm wavelengths at the same fluences produced approximately the same temperature change of deionized water. Fluences of 114.6 and 229.2 J/cm2 , utilizing 450 or 800 nm light applied individually resulted in temperatures of 8-47°C above ambient temperature, leading to a 90% reduction in cell viability. Simultaneous stimulation of the PCPDTBSe NP with 450 and 800 nm light effectively doubles the effective power delivered, resulting in temperatures 18-63°C above ambient and 100% photothermal ablation of the colorectal cancer cells. CONCLUSION The results of this study demonstrate that PCPDTBSe polymer NP can be utilized as effective PTT agents by capitalizing on their dual absorption of both blue and NIR light. Lasers Surg. Med. 48:893-902, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sneha S Kelkar
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Eleanor McCabe-Lankford
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | | | - Phil Harrington
- K-Laser USA, 1185 West Main Street, Franklin, Tennessee 37064
| | - Nicole H Levi-Polyachenko
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157.
| |
Collapse
|
25
|
Blue light does not impair wound healing in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:53-60. [DOI: 10.1016/j.jphotobiol.2016.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022]
|
26
|
Low-level laser therapy in 3D cell culture model using gingival fibroblasts. Lasers Med Sci 2016; 31:973-8. [DOI: 10.1007/s10103-016-1945-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
|
27
|
Sperandio FF, Simões A, Corrêa L, Aranha ACC, Giudice FS, Hamblin MR, Sousa SCOM. Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. JOURNAL OF BIOPHOTONICS 2015; 8:795-803. [PMID: 25411997 PMCID: PMC4583360 DOI: 10.1002/jbio.201400064] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/29/2014] [Accepted: 10/10/2014] [Indexed: 05/21/2023]
Abstract
Low-level laser therapy (LLLT) has been extensively employed to improve epithelial wound healing, though the exact response of epithelium maturation and stratification after LLLT is unknown. Thus, this study aimed to assess the in vitro growth and differentiation of keratinocytes (KCs) and in vivo wound healing response when treated with LLLT. Human KCs (HaCaT cells) showed an enhanced proliferation with all the employed laser energy densities (3, 6 and 12 J/cm(2) , 660 nm, 100 mW), together with an increased expression of Cyclin D1. Moreover, the immunoexpression of proteins related to epithelial proliferation and maturation (p63, CK10, CK14) all indicated a faster maturation of the migrating KCs in the LLLT-treated wounds. In that way, an improved epithelial healing was promoted by LLLT with the employed parameters; this improvement was confirmed by changes in the expression of several proteins related to epithelial proliferation and maturation. Immunofluorescent expression of cytokeratin 10 (red) and Cyclin D1 (green) in (A) Control keratinocytes and (B) Low-level laser irradiated cells. Blue color illustrates the nuclei of the cells (DAPI staining).
Collapse
Affiliation(s)
- Felipe F Sperandio
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-000, MG, Brazil. ,
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. ,
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA. ,
| | - Alyne Simões
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Luciana Corrêa
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Ana Cecília C Aranha
- Department of Restorative Dentistry, Special Laboratory of Lasers in Dentistry (LELO), School of Dentistry, University of São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Fernanda S Giudice
- A. C. Camargo Cancer Center, National Institute of Oncogenomics and National Institute of Translational Neurosciences, São Paulo, 01508010, SP, Brazil
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Suzana C O M Sousa
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, 05508-000, SP, Brazil
| |
Collapse
|
28
|
Jung YR, Kim SJ, Sohn KC, Lee Y, Seo YJ, Lee YH, Whang KU, Kim CD, Lee JH, Im M. Regulation of lipid production by light-emitting diodes in human sebocytes. Arch Dermatol Res 2015; 307:265-73. [PMID: 25690162 DOI: 10.1007/s00403-015-1547-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 10/24/2022]
Abstract
Light-emitting diodes (LED) have been used to treat acne vulgaris. However, the efficacy of LED on sebaceous lipid production in vitro has not been examined. This study investigated the efficacy of 415 nm blue light and 630 nm red light on lipid production in human sebocytes. When applied to human primary sebocytes, 415 nm blue light suppressed cell proliferation. Based on a lipogenesis study using Oil Red O, Nile red staining, and thin-layered chromatography, 630 nm red light strongly downregulated lipid production in sebocytes. These results suggest that 415 nm blue light and 630 nm red light influence lipid production in human sebocytes and have beneficial effects on acne by suppressing sebum production.
Collapse
Affiliation(s)
- Yu Ra Jung
- Department of Dermatology, College of Medicine, Chungnam National University, 282-Munhwa-ro, Jung-Gu, Daejeon, 301-721, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Amaroli A, Parker S, Dorigo G, Benedicenti A, Benedicenti S. Paramecium: A Promising Non-Animal Bioassay to Study the Effect of 808 nm Infrared Diode Laser Photobiomodulation. Photomed Laser Surg 2015; 33:35-40. [DOI: 10.1089/pho.2014.3829] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Andrea Amaroli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Gianluca Dorigo
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Alberico Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
30
|
Dungel P, Hartinger J, Chaudary S, Slezak P, Hofmann A, Hausner T, Strassl M, Wintner E, Redl H, Mittermayr R. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg Med 2014; 46:773-80. [PMID: 25363448 DOI: 10.1002/lsm.22299] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Low-level light therapy (LLLT) has been revealed as a potential means to improve wound healing. So far, most studies are being performed with irradiation in the red to near-infrared spectra. Recently, we showed that blue light (470 nm) can significantly influence biological systems such as nitric oxide (NO) metabolism and is able to release NO from nitrosyl-hemoglobin or mitochondrial protein complexes. Therefore, the aim of this study was to evaluate and compare the therapeutic value of blue or red light emitting diodes (LEDs) on wound healing in an ischemia disturbed rodent flap model. STUDY DESIGN/MATERIALS AND METHODS An abdominal flap was rendered ischemic by ligation of one epigastric bundle and subjected to LED illumination with a wavelength of 470 nm (blue, n = 8) or 629 nm (red, n = 8) each at 50 mW/cm(2) and compared to a non-treated control group (n = 8). Illumination was performed for 10 minutes on five consecutive days. RESULTS LED therapy with both wavelengths significantly increased angiogenesis in the sub-epidermal layer and intramuscularly (panniculus carnosus muscle) which was associated with significantly improved tissue perfusion 7 days after the ischemic insult. Accordingly, tissue necrosis was significantly reduced and shrinkage significantly less pronounced in the LED-treated groups of both wavelengths. CONCLUSIONS LED treatment of ischemia challenged tissue improved early wound healing by enhancing angiogenesis irrespective of the wavelength thus delineating this noninvasive means as a potential, cost effective tool in complicated wounds.
Collapse
Affiliation(s)
- Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Keszler A, Brandal G, Baumgardt S, Ge ZD, Pratt PF, Riess ML, Bienengraeber M. Far red/near infrared light-induced protection against cardiac ischemia and reperfusion injury remains intact under diabetic conditions and is independent of nitric oxide synthase. Front Physiol 2014; 5:305. [PMID: 25202275 PMCID: PMC4141548 DOI: 10.3389/fphys.2014.00305] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/26/2014] [Indexed: 12/27/2022] Open
Abstract
Far red/near-infrared light (NIR) promotes a wide range of biological effects including tissue protection but whether and how NIR is capable of acutely protecting myocardium against ischemia and reperfusion injury in vivo is not fully elucidated. Our previous work indicates that NIR exposure immediately before and during early reperfusion protects the myocardium against infarction through mechanisms that are nitric oxide (NO)-dependent. Here we tested the hypothesis that NIR elicits protection in a diabetic mouse model where other cardioprotective interventions such as pre- and postconditioning fail, and that the protection is independent of nitric oxide synthase (NOS). NIR reduced infarct size dose dependently. Importantly, NIR-induced protection was preserved in a diabetic mouse model (db/db) and during acute hyperglycemia, as well as in endothelial NOS(-/-) mice and in wild type mice treated with NOS inhibitor L-NAME. In in vitro experiments NIR light liberates NO from nitrosyl hemoglobin (HbNO) and nitrosyl myoglobin (MbNO) in a wavelength-(660-830 nm) and dose-dependent manner. Irradiation at 660 nm yields the highest release of NO, while at longer wavelengths a dramatic decrease of NO release can be observed. Similar wavelength dependence was observed for the protection of mice against cardiac ischemia and reperfusion injury in vivo. NIR-induced NO release from deoxymyoglobin in the presence of nitrite mildly inhibits respiration of isolated mitochondria after hypoxia. In summary, NIR applied during reperfusion protects the myocardium against infarction in an NO-dependent, but NOS-independent mechanisms, whereby mitochondria may be a target of NO released by NIR, leading to reduced reactive oxygen species generation during reperfusion. This unique mechanism preserves protection even during diabetes where other protective strategies fail.
Collapse
Affiliation(s)
- Agnes Keszler
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
| | - Garth Brandal
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
| | - Shelley Baumgardt
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
| | - Zhi-Dong Ge
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
| | - Phillip F. Pratt
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
| | - Matthias L. Riess
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Anesthesiology, Clement J. Zablocki VA Medical CenterMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
| | - Martin Bienengraeber
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, WI, USA
| |
Collapse
|
32
|
Shedding light on a new treatment for diabetic wound healing: a review on phototherapy. ScientificWorldJournal 2014; 2014:398412. [PMID: 24511283 PMCID: PMC3913345 DOI: 10.1155/2014/398412] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022] Open
Abstract
Impaired wound healing is a common complication associated with diabetes with complex pathophysiological underlying mechanisms and often necessitates amputation. With the advancement in laser technology, irradiation of these wounds with low-intensity laser irradiation (LILI) or phototherapy, has shown a vast improvement in wound healing. At the correct laser parameters, LILI has shown to increase migration, viability, and proliferation of diabetic cells in vitro; there is a stimulatory effect on the mitochondria with a resulting increase in adenosine triphosphate (ATP). In addition, LILI also has an anti-inflammatory and protective effect on these cells. In light of the ever present threat of diabetic foot ulcers, infection, and amputation, new improved therapies and the fortification of wound healing research deserves better prioritization. In this review we look at the complications associated with diabetic wound healing and the effect of laser irradiation both in vitro and in vivo in diabetic wound healing.
Collapse
|
33
|
Long H, Zhou Y, Xue J, Liao L, Ye N, Jian F, Wang Y, Lai W. The effectiveness of low-level laser therapy in accelerating orthodontic tooth movement: a meta-analysis. Lasers Med Sci 2013; 30:1161-70. [DOI: 10.1007/s10103-013-1507-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
|
34
|
Cury V, Moretti AIS, Assis L, Bossini P, Crusca JDS, Neto CB, Fangel R, de Souza HP, Hamblin MR, Parizotto NA. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 125:164-70. [PMID: 23831843 DOI: 10.1016/j.jphotobiol.2013.06.004] [Citation(s) in RCA: 352] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 05/10/2013] [Accepted: 06/10/2013] [Indexed: 11/24/2022]
Abstract
It is known that low level laser therapy is able to improve skin flap viability by increasing angiogenesis. However, the mechanism for new blood vessel formation is not completely understood. Here, we investigated the effects of 660 nm and 780 nm lasers at fluences of 30 and 40 J/cm(2) on three important mediators activated during angiogenesis. Sixty male Wistar rats were used and randomly divided into five groups with twelve animals each. Groups were distributed as follows: skin flap surgery non-irradiated group as a control; skin flap surgery irradiated with 660 nm laser at a fluence of 30 or 40 J/cm(2) and skin flap surgery irradiated with 780 nm laser at a fluence of 30 or 40 J/cm(2). The random skin flap was performed measuring 10×4 cm, with a plastic sheet interposed between the flap and the donor site. Laser irradiation was performed on 24 points covering the flap and surrounding skin immediately after the surgery and for 7 consecutive days thereafter. Tissues were collected, and the number of vessels, angiogenesis markers (vascular endothelial growth factor, VEGF and hypoxia inducible factor, HIF-1α) and a tissue remodeling marker (matrix metalloproteinase, MMP-2) were analyzed. LLLT increased an angiogenesis, HIF-1α and VEGF expression and decrease MMP-2 activity. These phenomena were dependent on the fluences, and wavelengths used. In this study we showed that LLLT may improve the healing of skin flaps by enhancing the amount of new vessels formed in the tissue. Both 660 nm and 780 nm lasers were able to modulate VEGF secretion, MMP-2 activity and HIF-1α expression in a dose dependent manner.
Collapse
Affiliation(s)
- Vivian Cury
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hoffman M, Monroe DM. Low intensity laser therapy speeds wound healing in hemophilia by enhancing platelet procoagulant activity. Wound Repair Regen 2012; 20:770-7. [PMID: 22882528 DOI: 10.1111/j.1524-475x.2012.00828.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/05/2012] [Indexed: 12/12/2022]
Abstract
Our group has previously shown that cutaneous wound healing is delayed and histologically abnormal in a mouse model of hemophilia. Hemostasis is not only required to stop bleeding at the time of wounding, but also produces bioactive substances that promote appropriate inflammatory and proliferative responses during healing. Low intensity laser therapy (LILT) has been reported to enhance impaired wound healing in a variety of animal and human studies. The current studies were conducted to test the hypothesis that LILT can improve healing in a hemophilia B mouse model. Three daily treatments with 12 J/sq cm of 650 nm laser illumination reduced the time to closure of a 3-mm cutaneous punch biopsy wound in the hemophilic mice. All wounds were closed at 13 days in the sham-treated hemophilic mice, compared with 10 days in the LILT-treated hemophilic mice, and 9 days in wild-type mice. While LILT can speed healing by enhancing proliferation of cutaneous cells, we found that an additional mechanism likely contributes to the efficacy of LILT in the hemophilic mice. LILT enhanced the mechanical rigidity and platelet activity of clots formed from human platelet-rich plasma. Illumination of isolated platelets increased the mitochondrial membrane potential and enhanced binding of coagulation factors to the surface of activated platelets. Thus, while LILT can directly promote proliferative responses during healing, it also appears to enhance hemostasis in an animal model with impaired coagulation. These data suggest that trials of LILT as an adjunct to the usual hemostatic therapies in hemophilia are warranted.
Collapse
Affiliation(s)
- Maureane Hoffman
- Department of Pathology, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina 27705, USA.
| | | |
Collapse
|
36
|
Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat 2012; 15:223-36. [PMID: 22846406 DOI: 10.1016/j.drup.2012.07.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023]
Abstract
Blue light, particularly in the wavelength range of 405-470 nm, has attracted increasing attention due to its intrinsic antimicrobial effect without the addition of exogenous photosensitizers. In addition, it is commonly accepted that blue light is much less detrimental to mammalian cells than ultraviolet irradiation, which is another light-based antimicrobial approach being investigated. In this review, we discussed the blue light sensing systems in microbial cells, antimicrobial efficacy of blue light, the mechanism of antimicrobial effect of blue light, the effects of blue light on mammalian cells, and the effects of blue light on wound healing. It has been reported that blue light can regulate multi-cellular behavior involving cell-to-cell communication via blue light receptors in bacteria, and inhibit biofilm formation and subsequently potentiate light inactivation. At higher radiant exposures, blue light exhibits a broad-spectrum antimicrobial effect against both Gram-positive and Gram-negative bacteria. Blue light therapy is a clinically accepted approach for Propionibacterium acnes infections. Clinical trials have also been conducted to investigate the use of blue light for Helicobacter pylori stomach infections and have shown promising results. Studies on blue light inactivation of important wound pathogenic bacteria, including Staphylococcus aureus and Pseudomonas aeruginosa have also been reported. The mechanism of blue light inactivation of P. acnes, H. pylori, and some oral bacteria is proved to be the photo-excitation of intracellular porphyrins and the subsequent production of cytotoxic reactive oxygen species. Although it may be the case that the mechanism of blue light inactivation of wound pathogens (e.g., S. aureus, P. aeruginosa) is the same as that of P. acnes, this hypothesis has not been rigorously tested. Limited and discordant results have been reported regarding the effects of blue light on mammalian cells and wound healing. Under certain wavelengths and radiant exposures, blue light may cause cell dysfunction by the photo-excitation of blue light sensitizing chromophores, including flavins and cytochromes, within mitochondria or/and peroxisomes. Further studies should be performed to optimize the optical parameters (e.g., wavelength, radiant exposure) to ensure effective and safe blue light therapies for infectious disease. In addition, studies are also needed to verify the lack of development of microbial resistance to blue light.
Collapse
|
37
|
Marotti J, Tortamano P, Cai S, Ribeiro MS, Franco JEM, de Campos TT. Decontamination of dental implant surfaces by means of photodynamic therapy. Lasers Med Sci 2012; 28:303-9. [PMID: 22790655 PMCID: PMC3536948 DOI: 10.1007/s10103-012-1148-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 06/22/2012] [Indexed: 11/24/2022]
Abstract
Several implant surface debridement methods have been reported for the treatment of peri-implantitis, however, some of them can damage the implant surface or promote bacterial resistance. Photodynamic therapy (PDT) is a new treatment option for peri-implantitis. The aim of this in vitro study was to analyze implant surface decontamination by means of PDT. Sixty implants were equally distributed (n = 10) into four groups and two subgroups. In group G1 there was no decontamination, while in G2 decontamination was performed with chlorhexidine. G3 (PDT − laser + dye) and G4 (laser, without dye) were divided into two subgroups each; with PDT performed for 3 min in G3a and G4a, and for 5 min in G3b and G4b. After 5 min in contact with methylene blue dye (G3), the implants were irradiated (G3 and G4) with a low-level laser (GaAlAs, 660 nm, 30 mW) for 3 or 5 min (7.2 and 12 J). After the dilutions, culture media were kept in an anaerobic atmosphere for 1 week, and then colony forming units were counted. There was a significant difference (p < 0.001) between G1 and the other groups, and between G4 in comparison with G2 and G3. Better decontamination was obtained in G2 and G3, with no statistically significant difference between them. The results of this study suggest that photodynamic therapy can be considered an efficient method for reducing bacteria on implant surfaces, whereas laser irradiation without dye was less efficient than PDT.
Collapse
Affiliation(s)
- Juliana Marotti
- Department of Prosthodontics and Dental Materials, Medical Faculty, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Fixler D, Duadi H, Ankri R, Zalevsky Z. Determination of coherence length in biological tissues. Lasers Surg Med 2011; 43:339-43. [DOI: 10.1002/lsm.21047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Carroll JD. Photomedicine and LLLT literature watch. Photomed Laser Surg 2010; 28:849-50. [PMID: 21142728 DOI: 10.1089/pho.2010.9923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|