1
|
Nicchio IG, Cirelli T, Quil LCDC, Camilli AC, Scarel-Caminaga RM, Leite FRM. Understanding the peroxisome proliferator-activated receptor gamma (PPAR-γ) role in periodontitis and diabetes mellitus: A molecular perspective. Biochem Pharmacol 2025; 237:116908. [PMID: 40157459 DOI: 10.1016/j.bcp.2025.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Periodontitis and Type 2 Diabetes Mellitus (T2DM) are chronic conditions with dysregulated immune responses. Periodontitis involves immune dysfunction and dysbiotic biofilms, leading to tissue destruction. T2DM is marked by insulin resistance and systemic inflammation, driving metabolic and tissue damage. Both conditions share activation of key pathways, including Nuclear Factor Kappa B (NF-κB), Activator Protein-1 (AP-1), and Signal Transducer and Activator of Transcription (STAT) proteins, reinforcing an inflammatory feedback loop. This review highlights the role of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), a transcription factor central to lipid and glucose metabolism, adipogenesis, and immune regulation. PPAR-γ activation has been shown to suppress inflammatory mediators such as Tumor Necrosis Factor Alpha (TNF-α) and Interleukin 6 (IL-6) through the inhibition of NF-κB, AP-1, and STAT pathways, thereby potentially disrupting the inflammatory-metabolic cycle that drives both diseases. PPAR-γ agonists, including thiazolidinediones (TZDs) and endogenous ligands such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), show promise in reducing inflammation and improving insulin sensitivity, but they are limited by adverse effects. Therapies, including Selective Peroxisome Proliferator-Activated Receptor Modulators (SPPARMs), have been developed to offer a more targeted approach, allowing for selective modulation of PPAR-γ activity to retain its anti-inflammatory benefits while minimizing their side effects. By integrating insights into PPAR-γ's molecular mechanisms, this review underscores its therapeutic potential in mitigating inflammation and enhancing metabolic control.
Collapse
Affiliation(s)
- Ingra Gagno Nicchio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Thamiris Cirelli
- Department of Dentistry, Centro Universitário das Faculdades Associadas, São João da Boa Vista 13870-377, SP, Brazil.
| | - Lucas César da Costa Quil
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Angelo Constantino Camilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Raquel Mantuaneli Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Fabio Renato Manzolli Leite
- National Dental Research Institute Singapore, National Dental Centre Singapore, 168938, Singapore; Oral Health Academic Clinical Programme, Duke-NUS Medical School, 169857, Singapore.
| |
Collapse
|
2
|
Moka MK, Rathakrishnan D, Sriram DK, George M. Overcoming barriers to unlock the therapeutic potential of saroglitazar for the management of metabolic dysfunction-associated steatotic liver disease. Clin Nutr 2025; 49:52-56. [PMID: 40250087 DOI: 10.1016/j.clnu.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025]
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is a severe and multifaceted condition that significantly impacts liver health and overall metabolic well-being. Despite its prevalence, effective pharmacological options for MASLD remain limited, and treatment largely depends on lifestyle modifications. Saroglitazar, a dual peroxisome proliferator-activated receptor (PPAR) alpha and gamma agonist, has demonstrated promising efficacy in managing MASLD by improving lipid metabolism, reducing liver fat accumulation, and enhancing insulin sensitivity. However, its clinical adoption and widespread utilization are hindered by several challenges, ranging from limited clinical data to regulatory and awareness barriers. This article explores the obstacles to saroglitazar acceptance, evaluates its therapeutic potential, and discusses strategies to integrate it into mainstream MASLD management.
Collapse
Affiliation(s)
- Murali Krishna Moka
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| | - Deepalaxmi Rathakrishnan
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| | - D K Sriram
- Department of Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| | - Melvin George
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India.
| |
Collapse
|
3
|
Sun Q, Cui X, Yin D, Li J, Li J, Du L. Molecular mechanisms of UCP1-independent thermogenesis: the role of futile cycles in energy dissipation. J Physiol Biochem 2025:10.1007/s13105-025-01090-x. [PMID: 40380026 DOI: 10.1007/s13105-025-01090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 05/01/2025] [Indexed: 05/19/2025]
Abstract
Adipose tissue thermogenesis has emerged as a prominent research focus for the treatment of metabolic diseases, particularly through mitochondrial uncoupling, which oxidizes nutrients to produce heat rather than synthesizing ATP. Uncoupling protein 1 (UCP1) has garnered significant attention as a core protein mediating non-shivering thermogenesis(NST). However, recent studies indicate that energy dissipation can also occur via UCP1-independent thermogenesis, partially driven by futile metabolic cycles. These cycles involve ATP depletion coupled with reversible energy reactions, resulting in futile energy expenditure. Unlike classical UCP1-mediated thermogenesis, futile cycling is not confined to brown and beige adipose tissue, suggesting a broader range of therapeutic targets. These findings open new avenues for targeting these pathways to enhance metabolic health. This review explores the characteristics and distinctions of the primary metabolic organs (adipose tissue, liver, and skeletal muscle) involved in the futile cycles of thermogenesis. It further elaborates on the cellular and molecular mechanisms underlying calcium, creatine, and lipid cycling, emphasizing their strengths, limitations, and roles beyond thermogenesis.
Collapse
Affiliation(s)
- Quanhao Sun
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Xinyue Cui
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Dong Yin
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Juan Li
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Jiarui Li
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Likun Du
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
4
|
Liu Y, Yu Z, Wang X, Yuan MQ, Lu MJ, Gong MR, Li Q, Xia YB, Yang GH, Xu B, Litscher G, Xu TC. Neurophysiological mechanisms of electroacupuncture in regulating pancreatic function and adipose tissue expansion. World J Diabetes 2025; 16. [DOI: doi:10.4239/wjd.v16.i5.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND
Electroacupuncture (EA) has been recognized for its beneficial effects on glucolipid metabolism, potentially through the regulation of sensory nerve coordination. The expandability of peripancreatic adipose tissue (PAT) is implicated in the transition from obesity to type 2 diabetes mellitus (T2DM). However, the specific pancreatic responses to EA require further elucidation.
AIM
To investigate the influence of EA on pancreatic glucolipid reduction level in a high-fat diet (HFD) rat model.
METHODS
To delineate the precise pathway through which EA mediates interactions between PAT and islets, we assessed the expression levels of NGF, TRPV1, insulin, as well as other proteins in the pancreas and PAT. This approach enabled us to identify the acupoints that are most conducive to optimizing glycolipid metabolism.
RESULTS
The ST25, LI11 and ST37 groups attenuated HFD-induced obesity and insulin resistance (IR) to distinct degrees, with ST25 group having the greatest effect. EA at ST25 was found to modify the local regulatory influence of PAT on the pancreatic intrinsic nervous system. Specifically, EA at ST25 obviously activated the TRPV1-CGRP-islet beta cell pathway, contributing to the relief of glucolipid metabolic stress. The beneficial effects were abrogated following the chemical silencing of TRPV1 sensory afferents, confirming their indispensable role in EA-mediated regulation of islet and PAT function. Furthermore, in TRPV1 knockout mice, a reduction in PAT inflammation was observed, along with the recovery of islet beta cell function. EA at LI11 and ST37 demonstrated anti-inflammatory properties and helped ameliorate IR.
CONCLUSION
The PAT ecological niche influenced the progression from obesity to T2DM through various immunometabolic pathways. EA at ST25 could regulate glucolipid metabolism via the TRPV1-CGRP-islet beta cell pathway.
Collapse
|
5
|
Liu Y, Yu Z, Wang X, Yuan MQ, Lu MJ, Gong MR, Li Q, Xia YB, Yang GH, Xu B, Litscher G, Xu TC. Neurophysiological mechanisms of electroacupuncture in regulating pancreatic function and adipose tissue expansion. World J Diabetes 2025; 16:101354. [DOI: 10.4239/wjd.v16.i5.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/12/2025] [Accepted: 03/14/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Electroacupuncture (EA) has been recognized for its beneficial effects on glucolipid metabolism, potentially through the regulation of sensory nerve coordination. The expandability of peripancreatic adipose tissue (PAT) is implicated in the transition from obesity to type 2 diabetes mellitus (T2DM). However, the specific pancreatic responses to EA require further elucidation.
AIM To investigate the influence of EA on pancreatic glucolipid reduction level in a high-fat diet (HFD) rat model.
METHODS To delineate the precise pathway through which EA mediates interactions between PAT and islets, we assessed the expression levels of NGF, TRPV1, insulin, as well as other proteins in the pancreas and PAT. This approach enabled us to identify the acupoints that are most conducive to optimizing glycolipid metabolism.
RESULTS The ST25, LI11 and ST37 groups attenuated HFD-induced obesity and insulin resistance (IR) to distinct degrees, with ST25 group having the greatest effect. EA at ST25 was found to modify the local regulatory influence of PAT on the pancreatic intrinsic nervous system. Specifically, EA at ST25 obviously activated the TRPV1-CGRP-islet beta cell pathway, contributing to the relief of glucolipid metabolic stress. The beneficial effects were abrogated following the chemical silencing of TRPV1 sensory afferents, confirming their indispensable role in EA-mediated regulation of islet and PAT function. Furthermore, in TRPV1 knockout mice, a reduction in PAT inflammation was observed, along with the recovery of islet beta cell function. EA at LI11 and ST37 demonstrated anti-inflammatory properties and helped ameliorate IR.
CONCLUSION The PAT ecological niche influenced the progression from obesity to T2DM through various immunometabolic pathways. EA at ST25 could regulate glucolipid metabolism via the TRPV1-CGRP-islet beta cell pathway.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xuan Wang
- College of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, Jiangsu Province, China
| | - Ming-Qian Yuan
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Meng-Jiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Mei-Rong Gong
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - You-Bing Xia
- Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Guan-Hu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH 45701, United States
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Gerhard Litscher
- High-Tech Acupuncture and Digital Chinese Medicine, Swiss University of Traditional Chinese Medicine, Bad Zurzach 5530, Switzerland
| | - Tian-Cheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
6
|
Björnsson HK, Björnsson ES. Risk factors and prediction for DILI in clinical practice. Expert Opin Drug Metab Toxicol 2025; 21:579-587. [PMID: 39957436 DOI: 10.1080/17425255.2025.2468200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/13/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
INTRODUCTION Drug-induced liver injury is an important adverse effect and can be caused by various medications, including novel therapeutic agents. The risk stratification of patients susceptible to DILI is a growing field. AREAS COVERED The current article highlights new studies on risk stratification regarding risk factors of DILI, prediction of liver injury, and predictors of severe outcomes. Studies on patient demographic and genetic risk factors are discussed, in addition to the potential role of concomitant medications that may affect the risk of DILI. EXPERT OPINION Although much is known about patient risk factors for DILI, a better combination of these factors into risk scores is needed to predict which patients are particularly susceptible. Knowledge of these risk factors might determine drug treatment in the near future, as well as the need for routine monitoring of liver tests.
Collapse
Affiliation(s)
- Helgi Kristinn Björnsson
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Einar Stefan Björnsson
- Division of Gastroenterology and Hepatology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
7
|
Sugihara T. Selective PPARα Modulator (SPPARMα) in the Era of the MASLD Pandemic: Current Insights and Future Prospects. Yonago Acta Med 2025; 68:91-105. [PMID: 40432737 PMCID: PMC12104582 DOI: 10.33160/yam.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 05/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a significant global health concern, affecting approximately 30% of the population. In Japan, its prevalence is also rising rapidly and is expected to reach 50% by 2040. This situation can be described as a "MASLD pandemic", emphasizing the urgent need for effective therapeutic interventions. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that play essential roles in lipid metabolism, inflammation regulation, and fibrosis modulation. Among them, PPARα is a key regulator of lipid homeostasis, primarily expressed in the liver and other metabolically active tissues. Its activation promotes fatty acid oxidation and improves lipid profiles, making it a crucial target for metabolic disorders. In Japan, a novel selective PPARα modulator (SPPARMα) was developed as a lipid-lowering agent for treating dyslipidemia. Over time, increasing clinical evidence has suggested that SPPARMα has beneficial effects on MASLD patients' liver function. This review aims to summarize the therapeutic potential of SPPARMα in MASLD by examining the functional mechanisms of PPARα, preclinical studies in animal models, and accumulating clinical evidence from MASLD patients. Furthermore, we provide an overview of ongoing clinical trials investigating SPPARMα for MASLD treatment.
Collapse
Affiliation(s)
- Takaaki Sugihara
- Division of Pathobiological Science and Technology, Major in Clinical Laboratory Science, School of Health Science, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| |
Collapse
|
8
|
Hu S, Ai Y, Hu C, Cassim Bawa FN, Xu Y. Transcription factors, metabolic dysfunction-associated fatty liver disease, and therapeutic implications. Genes Dis 2025; 12:101372. [PMID: 39911797 PMCID: PMC11795806 DOI: 10.1016/j.gendis.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 02/07/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) encompasses a spectrum of liver diseases ranging from metabolic dysfunction-associated fatty liver to metabolic dysfunction-associated steatohepatitis, which may progress to liver cirrhosis and hepatocellular carcinoma. Several mechanisms, including obesity, insulin resistance, dyslipidemia, inflammation, apoptosis, mitochondrial dysfunction, and reactive oxygen species, have been proposed to underlie the progression of MAFLD. Transcription factors are proteins that specifically bind to DNA sequences to regulate the transcription of target genes. Numerous transcription factors regulate MAFLD by modulating the transcription of genes involved in steatosis, inflammation, apoptosis, and fibrosis. Here, we review the pathological factors associated with MAFLD, with a particular emphasis on the transcription factors that contribute to the progression of MAFLD and their therapeutic implications.
Collapse
Affiliation(s)
- Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yingjie Ai
- Department of Pathology of School of Basic Medical Sciences, Department of Gastroenterology and Hepatology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chencheng Hu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fathima N. Cassim Bawa
- Institute of Diabetes, Obesity and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Frontier Innovation Center, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Tan W, Deng J, Qi L, Tan Z. The role of hepatic sinusoidal microenvironment in NASH: pathogenesis, animal models, and therapeutic prospects. Front Pharmacol 2025; 16:1467950. [PMID: 40356963 PMCID: PMC12066276 DOI: 10.3389/fphar.2025.1467950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
The incidence of nonalcoholic steatohepatitis (NASH) is increasing annually, posing a significant threat to human health. NASH is typified by hepatic steatosis, inflammation, and hepatocellular injury, frequently culminating in fibrosis and cirrhosis. Yet, the precise pathogenesis of NASH remains to be fully elucidated. The hepatic sinusoid, which serves as the fundamental structural and functional unit of the liver, is intricately composed of endothelial cells, Kupffer cells, and hepatic stellate cells. Consequently, the homeostasis of the hepatic sinusoidal microenvironment may exert a pivotal influence on the progression and prognosis of NASH. However, the limitations of current NASH animal models have significantly impeded advancements in understanding the disease's pathogenesis and the development of effective therapeutic interventions. In light of these challenges, this review endeavors to delve deeper into the critical role of hepatic sinusoidal microenvironment homeostasis in the pathogenesis of NASH, critically analyze the commonly employed animal models, and comprehensively summarize the most recent and promising developments in drug research and development. It is anticipated that these efforts will collectively expedite the advancement of the field of NASH research and therapeutic innovation.
Collapse
Affiliation(s)
- Wanying Tan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiangting Deng
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Chengdu, Sichuan, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lingjun Qi
- Affiliated Sichuan Gem Flower Hospital of North Sichuan Medical College, Chengdu, Sichuan, China
| | - Zhenghuai Tan
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Wang W, Gao X, Niu W, Yin J, He K. Targeting Metabolism: Innovative Therapies for MASLD Unveiled. Int J Mol Sci 2025; 26:4077. [PMID: 40362316 PMCID: PMC12071536 DOI: 10.3390/ijms26094077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The recent introduction of the term metabolic-dysfunction-associated steatotic liver disease (MASLD) has highlighted the critical role of metabolism in the disease's pathophysiology. This innovative nomenclature signifies a shift from the previous designation of non-alcoholic fatty liver disease (NAFLD), emphasizing the condition's progressive nature. Simultaneously, MASLD has become one of the most prevalent liver diseases worldwide, highlighting the urgent need for research to elucidate its etiology and develop effective treatment strategies. This review examines and delineates the revised definition of MASLD, exploring its epidemiology and the pathological changes occurring at various stages of the disease. Additionally, it identifies metabolically relevant targets within MASLD and provides a summary of the latest metabolically targeted drugs under development, including those in clinical and some preclinical stages. The review finishes with a look ahead to the future of targeted therapy for MASLD, with the goal of summarizing and providing fresh ideas and insights.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Xin Gao
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Wentong Niu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Jinping Yin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130041, China;
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| |
Collapse
|
11
|
Rohm TV, Dos Reis FCG, Cunha E Rocha K, Isaac R, Strayer S, Murphy C, Bandyopadhyay G, Gao H, Ganguly S, Nguyen T, Wang J, Youhanna JE, Pack D, Liu X, Kim HY, Jeelani I, Dhar D, Kisseleva T, Ying W, Olefsky JM. Metabolic Dysfunction-Associated Steatohepatitis Adipose Tissue Macrophages Secrete Extracellular Vesicles That Activate Liver Fibrosis in Obese Male Mice. Gastroenterology 2025:S0016-5085(25)00604-3. [PMID: 40204101 DOI: 10.1053/j.gastro.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND & AIMS Given the need for effective interventions in metabolic dysfunction-associated steatohepatitis (MASH), understanding the role of adipose tissue macrophage (ATM)-derived small extracellular vesicles (sEVs) is important. We aimed to evaluate the contribution of MASH-ATM-sEVs to the development of liver fibrosis in obese male mice. METHODS Using flow cytometry and nanoparticle tracking analysis, we characterized MASH-ATMs and their secreted sEVs. We assessed the fibrogenic effects of sEVs from MASH-ATMs or anti-inflammatory macrophages on stellate cells in vitro and in mice in vivo. In addition, we isolated Dicer knockdown microRNA (miRNA)-depleted sEVs from MASH-ATMs and cotreated stellate cells with MASH-ATM-sEVs and miR-155 or miR-34a antagomirs. RESULTS MASH-ATMs exhibited a pro-inflammatory and lipid-associated phenotype, secreting sEVs enriched in the fibrogenic miRNAs, miR-155 and miR-34a, which also down-regulate Pparg. In vitro, MASH-ATM-sEVs induced hepatic stellate cell activation and fibrogenesis and exacerbated liver fibrosis when administered to obese mice. In addition, anti-inflammatory macrophage sEVs mitigated fibrosis both in vitro and in vivo. miRNA-free Dicer knockdown-MASH-ATM-sEVs were without effects and cotreatment with miR-155/miR-34a antagomirs blocked the effects of MASH-ATM-sEVs to induce hepatic stellate cell activation. CONCLUSIONS This study demonstrated the role of MASH-ATM-sEVs in promoting liver fibrosis in obesity. Identification of the fibrogenic miRs, miR-155, and miR-34a, within MASH-ATM-sEVs, highlights the mechanistic importance of extrahepatic signals in MASH. These findings showed the therapeutic potential of modulating macrophage phenotypes and their sEV cargo to ameliorate MASH.
Collapse
Affiliation(s)
- Theresa V Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California.
| | | | - Karina Cunha E Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Roi Isaac
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Sean Strayer
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Cairo Murphy
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Gautam Bandyopadhyay
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Hong Gao
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Souradipta Ganguly
- Department of Medicine, School of Medicine, University of California, San Diego, California; Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Tram Nguyen
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Jinyue Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - John E Youhanna
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - David Pack
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Xiao Liu
- Department of Surgery, University of California San Diego, School of Medicine, La Jolla, California
| | - Hyun Young Kim
- Department of Medicine, School of Medicine, University of California, San Diego, California; Department of Surgery, University of California San Diego, School of Medicine, La Jolla, California
| | - Ishtiaq Jeelani
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Debanjan Dhar
- Department of Medicine, School of Medicine, University of California, San Diego, California; Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, School of Medicine, La Jolla, California
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
12
|
Wen Y, Li J, Mukama O, Huang R, Deng S, Li Z. New insights on mesenchymal stem cells therapy from the perspective of the pathogenesis of nonalcoholic fatty liver disease. Dig Liver Dis 2025:S1590-8658(25)00286-5. [PMID: 40158892 DOI: 10.1016/j.dld.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) manifests as chronic hepatic steatosis, occurring variably across people due to racial and genetic diversity. It represents a stage in the development of chronic liver disease, marked by fat accumulation, inflammatory responses, oxidative stress in the endoplasmic reticulum, and fibrosis as primary concerns. Understanding its underlying mechanisms remains a challenging and pivotal area of study. In the past, acute liver injury-related diseases were commonly treated with methods such as liver transplantation. However, the emergence of artificial liver has shifted focus to stem cell therapies. Unlike conventional drugs, stem cell therapies are continuously evolving. Despite being classified as drugs, stem cells demonstrated significant efficacy after multiple injections. Mesenchymal stem cells, unlike other types of stem cells, do not have the risk of tumor formation and low immunogenicity, reducing the hypersensitivity reactions associated with liver transplantation. Increasingly, studies suggest that mesenchymal stem cells hold promise in the treatment of chronic liver injury diseases. This review focuses on investigating the role of mesenchymal stem cells in chronic metabolic liver diseases, such as non-alcoholic fatty liver disease, and delves into their specific functions.
Collapse
Affiliation(s)
- Yanxuan Wen
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jiaxing Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Omar Mukama
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China
| | - Sihao Deng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China.
| |
Collapse
|
13
|
Park Y, Ko KS, Rhee BD. Non-Alcoholic Fatty Liver Disease (NAFLD) Management in the Community. Int J Mol Sci 2025; 26:2758. [PMID: 40141404 PMCID: PMC11943420 DOI: 10.3390/ijms26062758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has frequently been associated with obesity, type 2 diabetes (T2D), and dyslipidemia, all of which are shared by increased insulin resistance. It has become the most common liver disorder in Korea as well as in developed countries and is therefore associated with an increased health burden of morbidity and mortality. It has an association with T2D, and T2D increases the risk of cirrhosis and related complications. NAFLD encompasses a disease continuum from simple steatosis to non-alcoholic steatohepatitis which is characterized by faster fibrosis progression. Although its liver-related complication is estimated to be, at most, 10%, it will be a leading cause of cirrhosis and hepatocellular carcinoma soon in Korea. Although the main causes of death in people with NAFLD are cardiovascular disease and extra-hepatic malignancy, advanced liver fibrosis is a key prognostic marker for liver-related outcomes and can be assessed with combinations of non-invasive tests in the community. A number of components of metabolic syndrome involved could be another important prognostic information of NAFLD assessed easily in the routine care of the community. There is a few approved therapies for NAFLD, although several drugs, including antioxidants, attract practitioners' attention. Because of the modest effect of the present therapeutics, let alone complex pathophysiology and substantial heterogeneity of disease phenotypes, combination treatment is a viable option for many patients with NAFLD in the Korean community. Comprehensive approach taking healthy lifestyle and weight reduction into account remain a mainstay to the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Internal Medicine, Sanggye Paik Hospital, College of Medicine, Inje University, 1342 Dongil-ro, Nowon-gu, Seoul 01757, Republic of Korea; (K.S.K.); (B.D.R.)
| | | | | |
Collapse
|
14
|
Diaz LA, Arab JP, Idalsoaga F, Perelli J, Vega J, Dirchwolf M, Carreño J, Samith B, Valério C, Moreira RO, Acevedo M, Brahm J, Hernández N, Gadano A, Oliveira CP, Arrese M, Castro-Narro G, Pessoa MG. Updated recommendations for the management of metabolic dysfunction-associated steatotic liver disease (MASLD) by the Latin American working group. Ann Hepatol 2025:101903. [PMID: 40089151 DOI: 10.1016/j.aohep.2025.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/17/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the leading causes of chronic liver disease globally. Based on the 2023 definition, MASLD is characterized by the presence of metabolic dysfunction and limited alcohol consumption (<140 grams/week for women, <210 grams/week for men). Given the significant burden of MASLD in Latin America, this guidance was developed by the Latin American Association for the Study of the Liver (ALEH) Working Group to address key aspects of its clinical assessment and therapeutic strategies. In Latin America, ultrasonography is recommended as the initial screening tool for hepatic steatosis due to its accessibility, while Fibrosis-4 (FIB-4) is preferred for fibrosis risk stratification, with further evaluation using more specific techniques (i.e., vibration-controlled transient elastography or Enhanced Liver Fibrosis [ELF] test). A Mediterranean diet is advised for all MASLD patients, with a target of 7-10% weight loss for those with excess weight. Complete alcohol abstinence is recommended for patients with significant fibrosis, and smoking cessation is encouraged regardless of fibrosis stage. Pharmacological options should be tailored based on the presence of steatohepatitis, liver fibrosis, excess weight, and diabetes, including resmetirom, incretin-based therapies, pioglitazone, and sodium-glucose cotransporter-2 inhibitors. Bariatric surgery may be considered for MASLD patients with obesity unresponsive to lifestyle and medical interventions. Hepatocellular carcinoma screening is advised for all cirrhotic patients, with consideration given to those with advanced fibrosis based on individual risk. Finally, routine cardiovascular risk assessment and proper diabetes prevention and management remain crucial for all patients with MASLD.
Collapse
Affiliation(s)
- Luis Antonio Diaz
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, CA, USA; Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Francisco Idalsoaga
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
| | - Javiera Perelli
- Unidad de Diabetes y Nutrición Clínica, Clínica Universidad de los Andes, Santiago, Chile
| | - Javier Vega
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Javiera Carreño
- Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile
| | - Bárbara Samith
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cynthia Valério
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil
| | - Rodrigo Oliveira Moreira
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil; Faculdade de Medicina de Valença, Centro Universitário de Valença, Valença, RJ, Brasil; Faculdade de Medicina, Centro Universitário Presidente Antônio Carlos, Juiz de Fora, MG, Brasil
| | - Mónica Acevedo
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Brahm
- Unidad de Gastroenterología, Clínica Universidad de los Andes, Santiago, Chile
| | - Nelia Hernández
- Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile; Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Adrian Gadano
- Liver Unit, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; Department of Research, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Claudia P Oliveira
- Gastroenterology Department, Hospital das Clínicas (LIM07) HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile
| | - Graciela Castro-Narro
- Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile; Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico; Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Mario G Pessoa
- Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile; Gastroenterology Department, Hospital das Clínicas (LIM07) HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
15
|
Mehtani R. The SVIN-Trial-Just Another Brick in the Wall? J Clin Exp Hepatol 2025; 15:102449. [PMID: 39649151 PMCID: PMC11617671 DOI: 10.1016/j.jceh.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024] Open
Affiliation(s)
- Rohit Mehtani
- Department of Hepatology, Amrita Institute of Medical Sciences and Research Centre, Faridabad, Haryana, India
| |
Collapse
|
16
|
Ghabril M, Vuppalanchi R, Chalasani N. Drug-Induced Liver Injury in Patients With Chronic Liver Disease. Liver Int 2025; 45:e70019. [PMID: 39927421 PMCID: PMC11808633 DOI: 10.1111/liv.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/05/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVE Drug-induced liver injury (DILI) is a global problem and can develop from exposure to prescription or over-the-counter medications as well as herbal and dietary supplements. The diagnosis of DILI is clinically challenging, and liver injury can be severe leading to liver failure, death, or liver transplantation. Patients with underlying chronic liver diseases (CLD) may be at increased risk for DILI, which is associated with factors related to drug or liver disease. METHODS This review summarises current knowledge on the risk and outcomes of DILI in patients with CLD. RESULTS Patients with CLD may be at an increased risk for DILI. Additionally patients with underlying CLD are at risk for more severe liver injury and worse outcomes after DILI. DISCUSSION The risk for and poor outcomes from DILI are accentuated in patients with CLD and potentially leading to the worst-case scenario of acute-on-chronic liver failure. We highlight the key observations on DILI with a broad range of underlying liver diseases and the high-DILI risk agents implicated in those populations.
Collapse
Affiliation(s)
- Marwan Ghabril
- Gastroenterology and HepatologyIndiana University School of Medicine and Indiana University HealthIndianapolisIndianaUSA
| | - Raj Vuppalanchi
- Gastroenterology and HepatologyIndiana University School of Medicine and Indiana University HealthIndianapolisIndianaUSA
| | - Naga Chalasani
- Gastroenterology and HepatologyIndiana University School of Medicine and Indiana University HealthIndianapolisIndianaUSA
| |
Collapse
|
17
|
Li X, Rao Z, Hu W, Lu W, Luo Y. Treating metabolic dysfunction-associated steatohepatitis: The fat-trimming FGF21 approach. Obes Rev 2025; 26:e13861. [PMID: 39546893 DOI: 10.1111/obr.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/10/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a condition characterized by hepatosteatosis, inflammation, and tissue damage, with steatosis as the initial stage, which involves chronic, excess deposition of lipids in hepatic lipid droplets. Despite the growing prevalence and serious risks it poses, including liver decompensation, the need for transplantation, and increased patient mortality, MASH currently faces no approved pharmacotherapy. Several promising treatment candidates have emerged from recent clinical trials, including analogs of FGF21 and agonists of the associated FGFR1-KLB complex. These agents were well-tolerated in trials and have demonstrated significant improvements in both histological and biochemical markers of liver fat content, inflammation, injury, and fibrosis in patients with MASH. Endocrine FGF21 plays a vital role in maintaining homeostasis of lipid, glucose, and energy metabolism. It achieves this through pathways that target lipids or lipid droplets in adipocytes and hepatocytes. Mechanistically, pharmacological FGF21 acts as a potent catabolic factor to promote lipid or lipid droplet lipolysis, fatty acid oxidation, mitochondrial catabolic flux, and heat-dissipating energy expenditure, leading to effective clearance of hepatic and systemic gluco-lipotoxicity and inflammatory stress, thereby preventing obesity, diabetes, and MASH pathologies. In this review, we aim to provide an update on the outcomes of clinical trials for several FGF21 mimetics. We compare these outcomes with preclinical studies and offer a lipid-centric perspective on the mechanisms underlying the clinical benefits of these agents for MASH.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
| | - Zhiheng Rao
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
| | - Wenhao Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Yongde Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Knezović E, Hefer M, Blažanović S, Petrović A, Tomičić V, Srb N, Kirner D, Smolić R, Smolić M. Drug Pipeline for MASLD: What Can Be Learned from the Successful Story of Resmetirom. Curr Issues Mol Biol 2025; 47:154. [PMID: 40136408 PMCID: PMC11941580 DOI: 10.3390/cimb47030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), represent a growing global health problem linked to obesity, insulin resistance, and dyslipidemia. MASLD often leads to fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, therapeutic options are limited, emphasizing the need for novel, targeted pharmacological interventions. Resmetirom, a selective thyroid hormone receptor beta (THR-β) agonist, offers a promising approach by specifically enhancing hepatic metabolism while minimizing systemic effects. Clinical trials have demonstrated its capacity to reduce hepatic triglyceride accumulation and improve lipid profiles. Early- and advanced-phase studies, including the MAESTRO program, highlight significant reductions in hepatic fat content and favorable impacts on noninvasive biomarkers of fibrosis with minimal side effects. This review highlights evidence from pivotal studies, explores resmetirom's mechanism of action, and compares its efficacy and safety with other emerging therapeutic agents. While resmetirom marks a breakthrough in non-cirrhotic MASH management, further long-term studies are essential to fully evaluate its clinical benefits and potential regulatory approval for broader use in MASLD and MASH.
Collapse
Affiliation(s)
- Elizabeta Knezović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
- Clinical Institute of Translational Medicine, University Hospital Osijek, 31000 Osijek, Croatia
| | - Marija Hefer
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Suzana Blažanović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Ana Petrović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Vice Tomičić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Nika Srb
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Damir Kirner
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Robert Smolić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Martina Smolić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| |
Collapse
|
19
|
Devasia AG, Ramasamy A, Leo CH. Current Therapeutic Landscape for Metabolic Dysfunction-Associated Steatohepatitis. Int J Mol Sci 2025; 26:1778. [PMID: 40004240 PMCID: PMC11855529 DOI: 10.3390/ijms26041778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been proposed to better connect liver disease to metabolic dysfunction, which is the most common chronic liver disease worldwide. MASLD affects more than 30% of individuals globally, and it is diagnosed by the combination of hepatic steatosis and obesity, type 2 diabetes, or two metabolic risk factors. MASLD begins with the buildup of extra fat, often greater than 5%, within the liver, causing liver hepatocytes to become stressed. This can proceed to a more severe form, metabolic dysfunction-associated steatohepatitis (MASH), in 20-30% of people, where inflammation in the liver causes tissue fibrosis, which limits blood flow over time. As fibrosis worsens, MASH may lead to cirrhosis, liver failure, or even liver cancer. While the pathophysiology of MASLD is not fully known, the current "multiple-hits" concept proposes that dietary and lifestyle factors, metabolic factors, and genetic or epigenetic factors contribute to elevated oxidative stress and inflammation, causing liver fibrosis. This review article provides an overview of the pathogenesis of MASLD and evaluates existing therapies as well as pharmacological drugs that are currently being studied in clinical trials for MASLD or MASH.
Collapse
Affiliation(s)
- Arun George Devasia
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore;
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore;
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore;
| | - Chen Huei Leo
- Department of Biomedical Engineering, College of Design & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
20
|
Cazac-Panaite GD, Lăcătușu CM, Grigorescu ED, Foșălău AB, Onofriescu A, Mihai BM. Innovative Drugs First Implemented in Type 2 Diabetes Mellitus and Obesity and Their Effects on Metabolic Dysfunction-Associated Steatohepatitis (MASH)-Related Fibrosis and Cirrhosis. J Clin Med 2025; 14:1042. [PMID: 40004572 PMCID: PMC11857078 DOI: 10.3390/jcm14041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a progressive liver disease frequently associated with metabolic disorders such as type 2 diabetes mellitus (T2DM) and obesity, has the potential to progress symptomatically to liver cirrhosis and, in some cases, hepatocellular carcinoma. Hence, an urgent need arises to identify and approve new therapeutic options to improve patient outcomes. Research efforts have focused on either developing dedicated molecules or repurposing drugs already approved for other conditions, such as metabolic diseases. Among the latter, antidiabetic and anti-obesity agents have received the most extensive attention, with pivotal trial results anticipated shortly. However, the primary focus underlying successful regulatory approvals is demonstrating a substantial efficacy in improving liver fibrosis and preventing or ameliorating cirrhosis, the key advanced outcomes within MASLD progression. Besides liver steatosis, the ideal therapeutic candidate should reduce inflammation and fibrosis effectively. Although some agents have shown promise in lowering MASLD-related parameters, evidence of their impact on fibrosis and cirrhosis remains limited. This review aims to evaluate whether antidiabetic and anti-obesity drugs can be safely and effectively used in MASLD-related advanced fibrosis or cirrhosis in patients with T2DM. Our paper discusses the molecules closest to regulatory approval and the expectation that they can address the unmet needs of this increasingly prevalent disease.
Collapse
Affiliation(s)
- Georgiana-Diana Cazac-Panaite
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cristina-Mihaela Lăcătușu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Elena-Daniela Grigorescu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Adina-Bianca Foșălău
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Alina Onofriescu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan-Mircea Mihai
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
21
|
Geng W, Liao W, Cao X, Yang Y. Therapeutic Targets and Approaches to Manage Inflammation of NAFLD. Biomedicines 2025; 13:393. [PMID: 40002806 PMCID: PMC11853636 DOI: 10.3390/biomedicines13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), are the leading causes of chronic liver disease globally. They are driven by complex mechanisms where inflammation plays a pivotal role in disease progression. Current therapies, including lifestyle changes and pharmacological agents, are limited in efficacy, particularly in addressing the advanced stages of the disease. Emerging approaches targeting inflammation, metabolic dysfunction, and fibrosis offer promising new directions, though challenges such as treatment complexity and heterogeneity persist. This review concludes the main therapeutic targets and approaches to manage inflammation currently and emphasizes the critical need for future drug development and combination therapy for NAFLD/NASH management.
Collapse
Affiliation(s)
- Wanying Geng
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Wanying Liao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Xinyuan Cao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Yingyun Yang
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| |
Collapse
|
22
|
Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, Guo Y, Wang H, Dong E, Xiao J. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduct Target Ther 2025; 10:33. [PMID: 39904973 PMCID: PMC11794951 DOI: 10.1038/s41392-024-02072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
As a highly complex organ with digestive, endocrine, and immune-regulatory functions, the liver is pivotal in maintaining physiological homeostasis through its roles in metabolism, detoxification, and immune response. Various factors including viruses, alcohol, metabolites, toxins, and other pathogenic agents can compromise liver function, leading to acute or chronic injury that may progress to end-stage liver diseases. While sharing common features, liver diseases exhibit distinct pathophysiological, clinical, and therapeutic profiles. Currently, liver diseases contribute to approximately 2 million deaths globally each year, imposing significant economic and social burdens worldwide. However, there is no cure for many kinds of liver diseases, partly due to a lack of thorough understanding of the development of these liver diseases. Therefore, this review provides a comprehensive examination of the epidemiology and characteristics of liver diseases, covering a spectrum from acute and chronic conditions to end-stage manifestations. We also highlight the multifaceted mechanisms underlying the initiation and progression of liver diseases, spanning molecular and cellular levels to organ networks. Additionally, this review offers updates on innovative diagnostic techniques, current treatments, and potential therapeutic targets presently under clinical evaluation. Recent advances in understanding the pathogenesis of liver diseases hold critical implications and translational value for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yuan
- Aier Institute of Ophthalmology, Central South University, Changsha, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jinhang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangxin Kong
- Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Zhaodi Che
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yangkun Guo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| | - Erdan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
23
|
Tiwari K, Kumar B, Tiwari A, Dhamija P, Vardhan G, Dehade A, Kumar V. In Silico Analysis of Saroglitazar and Ferulic Acid Binding to Human Ketohexokinase: Implications for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cureus 2025; 17:e79437. [PMID: 40130107 PMCID: PMC11931454 DOI: 10.7759/cureus.79437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease renamed as metabolic dysfunction-associated steatotic liver disease (MASLD) and a global health issue that causes excessive liver fat deposition without alcohol usage. Basic fatty liver to non-alcoholic steatohepatitis can lead to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Role of research is vital due to the multifaceted, complex pathophysiology and the increasing incidence of a sedentary lifestyle. Computational network pharmacology, docking and dynamics studies of saroglitazar and ferulic acid with human ketohexokinase (KHK) were conducted to propose potential MASLD management. METHOD Utilized computational methodologies were utilized to examine binding interactions of saroglitazar (compound identifier (CID): 60151560) and ferulic acid (CID: 445858) with human ketohexokinase (KHK: P50053, Protein Data Bank (PDB) ID: 6W0W). Active site analysis was done by using the Conserved Domain Database (CDD) server (Collaborative Drug Discovery, Burlingame, California) and BIOVIA Discovery Studio 2019 (Dassault Systèmes, Vélizy-Villacoublay, France). The best PDB complex was used for molecular dynamics simulation and trajectory analysis on 100 ns, and functional associations were checked based on network analysis using the Search Tool for Interactions of Chemicals (STITCH) server (STITCH Consortium (EMBL), Heidelberg, Germany). RESULTS Human ketohexokinase (KHK) protein (UniProt ID: P50053) was obtained. Additional KHK PDB Structure (6W0W) was retrieved for docking calculation. PubChem Database 2 Structure-Data File (SDF) files (National Center for Biotechnology Information (NCBI), U.S. National Library of Medicine, Bethesda, Maryland), ferulic acid (CID: 445858) and saroglitazar (CID: 60151560) were used as ligands. Active site residues were identified using the CDD server and BIOVIA Discovery Studio 2019. Further, identified active site residues, i.e., Arg108, Trp225, Glu227, Gly229, Ala230, Pro246, Pro247, Val250, Thr253, Gly257, Cys282, Gly286, and Cys289 were used as potential active site for docking. D. E. Shaw Research Molecular Dynamics (DESMOND, Schrödinger, Inc., New York) was used for molecular dynamics simulation and trajectory analysis equilibrated after 40 ns in best-docked complex (saroglitazar (CID: 60151560) and KHK; binding energy: -21 kcal/mol). CONCLUSION The study shows that saroglitazar and ferulic acid are potent KHK inhibitors for metabolic diseases, including MASLD, suggesting multi-target treatments.
Collapse
Affiliation(s)
- Kalpana Tiwari
- Pharmacology, Institute of Medical Science, Banaras Hindu University, Varanasi, IND
| | - Brijesh Kumar
- Pharmacology and Therapeutics, Institute of Medical Science, Banaras Hindu University, Varanasi, IND
| | - Anurag Tiwari
- Gastroenterology, Institute of Medical Science, Banaras Hindu University, Varanasi, IND
| | - Puneet Dhamija
- Clinical Pharmacology, All India Institute of Medical Sciences, Rishikesh, IND
| | - Gyan Vardhan
- Pharmacology, All India Institute of Medical Sciences, Rishikesh, IND
| | - Amol Dehade
- Pharmacology, Institute of Medical Science, Banaras Hindu University, Varanasi, IND
| | - Vinay Kumar
- School of Biotechnology, Center for Bioinformatics, Institute of Medical Science, Banaras Hindu University, Varanasi, IND
| |
Collapse
|
24
|
Stefan N, Yki-Järvinen H, Neuschwander-Tetri BA. Metabolic dysfunction-associated steatotic liver disease: heterogeneous pathomechanisms and effectiveness of metabolism-based treatment. Lancet Diabetes Endocrinol 2025; 13:134-148. [PMID: 39681121 DOI: 10.1016/s2213-8587(24)00318-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024]
Abstract
The global epidemic of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. People with MASLD can progress to cirrhosis and hepatocellular carcinoma and are at increased risk of developing type 2 diabetes, cardiovascular disease, chronic kidney disease, and extrahepatic cancers. Most people with MASLD die from cardiac-related causes. This outcome is attributed to the shared pathogenesis of MASLD and cardiometabolic diseases, involving unhealthy dietary habits, dysfunctional adipose tissue, insulin resistance, and subclinical inflammation. In addition, the steatotic and inflamed liver affects the vasculature and heart via increased glucose production and release of procoagulant factors, dyslipidaemia, and dysregulated release of hepatokines and microRNAs. However, there is substantial heterogeneity in the contributors to the pathophysiology of MASLD, which might influence its rate of progression, its relationship with cardiometabolic diseases, and the response to therapy. The most effective non-pharmacological treatment approaches for people with MASLD include weight loss. Paradoxically, some effective pharmacological approaches to improve liver health in people with MASLD are associated with no change in bodyweight or even with weight gain, and similar response heterogeneity has been observed for changes in cardiometabolic risk factors. In this Review, we address the heterogeneity of MASLD with respect to its pathogenesis, outcomes, and metabolism-based treatment responses. Although there is currently insufficient evidence for the implementation of precision medicine for risk prediction, prevention, and treatment of MASLD, we discuss whether knowledge about this heterogeneity might help achieving this goal in the future.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | |
Collapse
|
25
|
Wan X, Ma J, Bai H, Hu X, Ma Y, Zhao M, Liu J, Duan Z. Drug Advances in NAFLD: Individual and Combination Treatment Strategies of Natural Products and Small-Synthetic-Molecule Drugs. Biomolecules 2025; 15:140. [PMID: 39858534 PMCID: PMC11764138 DOI: 10.3390/biom15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is closely associated with metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome. However, effective treatment strategies for NAFLD are still lacking. In recent years, progress has been made in understanding the pathogenesis of NAFLD, identifying multiple therapeutic targets and providing new directions for drug development. This review summarizes the recent advances in the treatment of NAFLD, focusing on the mechanisms of action of natural products, small-synthetic-molecule drugs, and combination therapy strategies. This review aims to provide new insights and strategies in treating NAFLD.
Collapse
Affiliation(s)
- Xing Wan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
- Institute of Integrated Traditional Chinese and Western Medicine, Dalian Medical University, Dalian 116051, China
| | - Jingyuan Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - He Bai
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Xuyang Hu
- The Second Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China;
| | - Yanna Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - Mingjian Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Jifeng Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Zhijun Duan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| |
Collapse
|
26
|
Michalopoulou E, Thymis J, Lampsas S, Pavlidis G, Katogiannis K, Vlachomitros D, Katsanaki E, Kostelli G, Pililis S, Pliouta L, Kountouri A, Papanikolaou IS, Lambadiari V, Ikonomidis I. The Triad of Risk: Linking MASLD, Cardiovascular Disease and Type 2 Diabetes; From Pathophysiology to Treatment. J Clin Med 2025; 14:428. [PMID: 39860434 PMCID: PMC11765821 DOI: 10.3390/jcm14020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an emerging global health concern, and it is not only the keystone precursor of eventual liver-related morbidity, but it also places patients at considerably higher cardiovascular risk, which is still a leading cause of death in these patients. The most important common underlying pathophysiological mechanisms in these diseases are primarily related to insulin resistance, chronic inflammation and oxidative stress. The presence of MASLD with cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) elevates the risk for poor outcomes, thus this review highlights a method to the therapeutic approaches. Given the intertwined nature of MASLD, T2DM, and CVD, there is an urgent need for therapeutic strategies that address all three conditions. Although lifestyle changes are important as treatment, medication plays a crucial role in managing hyperglycemia, enhancing liver function and lowering cardiovascular risk. The onset and progression of MASLD should be addressed through a multifaceted therapeutic approach, targeting inflammatory, immune, metabolic, oxidative stress, hormonal and gutaxis pathways, alongside the treatment strategies for T2DM. In this review, we discuss the effects of antidiabetic drugs with an impact on both liver outcomes and cardiovascular risk in patients affected by MASLD, T2DM and CDV.
Collapse
Affiliation(s)
- Eleni Michalopoulou
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - John Thymis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Stamatios Lampsas
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - George Pavlidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Konstantinos Katogiannis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Dimitrios Vlachomitros
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Eleni Katsanaki
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Gavriella Kostelli
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Sotirios Pililis
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Loukia Pliouta
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Aikaterini Kountouri
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Ioannis S. Papanikolaou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Attikon University Hospital, Rimini 1, Chaidari, 12462 Athens, Greece;
| | - Vaia Lambadiari
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Ignatios Ikonomidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| |
Collapse
|
27
|
Chen F, Liu Q, Ma L, Yan C, Zhang H, Zhou Z, Yi W. Identification of Novel Organo-Se BTSA-Based Derivatives as Potent, Reversible, and Selective PPARγ Covalent Modulators for Antidiabetic Drug Discovery. J Med Chem 2025; 68:819-831. [PMID: 39705161 DOI: 10.1021/acs.jmedchem.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Recent studies have identified selective peroxisome proliferator-activated receptor γ (PPARγ) modulators, which synergistically engage in the inhibition mechanism of PPARγ-Ser273 phosphorylation, as a promising approach for developing safer and more effective antidiabetic drugs. Herein, we present the design, synthesis, and evaluation of a new class of organo-Se compounds, namely, benzothiaselenazole-1-oxides (BTSAs), acting as potent, reversible, and selective PPARγ covalent modulators. Notably, 2n, especially (R)-2n, displayed a high binding affinity and superior antidiabetic effects with diminished side effects. This is mainly because it can reversibly form a unique covalent bond with the Cys285 residue in PPARγ-LBD. Further mechanistic investigations revealed that it manifested such desired pharmacological profiles primarily by effectively suppressing PPARγ-Ser273 phosphorylation, enhancing glucose metabolism, and selectively upregulating the expression of insulin-sensitive genes. Collectively, our results suggest that (R)-2n holds promise as a lead compound for treating T2DM and also provides an innovative reversible covalent warhead reference for future covalent drug design.
Collapse
Affiliation(s)
- Fangyuan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qingmei Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Cuishi Yan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Haiman Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
28
|
Vuppalanchi R, Cruz MM, Momin T, Shaikh F, Swint K, Patel H, Parmar D. Pharmacokinetic, Safety, and Pharmacodynamic Profiles of Saroglitazar Magnesium in Cholestatic Cirrhosis With Hepatic Impairment and Participants With Renal Impairment. Clin Pharmacol Ther 2025; 117:240-249. [PMID: 39355940 DOI: 10.1002/cpt.3450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024]
Abstract
Saroglitazar magnesium, a dual PPAR α/γ agonist, currently in Phase III for treating primary biliary cholangitis (PBC), was evaluated for its pharmacokinetic (PK) profile, safety, and pharmacodynamics in participants with cholestatic liver disease (CLD) across different levels of hepatic impairment (HI) and participants with severe renal impairment (RI). Three PK studies comparing saroglitazar with healthy controls were conducted: Study 1 involved daily oral doses of 1 or 2 mg for 4 weeks in 12 PBC cirrhosis participants with mild or moderate HI; Study 2 assessed single-dose PK (2 or 4 mg) in eight non-cirrhotic CLD participants; Study 3 evaluated single-dose PK (2 mg) in eight participants with severe RI. On day 1, saroglitazar exposure increased by 14.6-42% in mild HI vs. normal, but by day 28, levels were similar, indicating no accumulation. In moderate HI, exposure was significantly increased by 50.4-85% on days 1 and 28, with 34-46% lower clearance despite a similar half-life. The moderate HI group had a 59% higher exposure than the non-cirrhotic group. Saroglitazar (1 and 2 mg) reduced alkaline phosphatase (ALP) levels by 17-40% after 4 weeks in participants with abnormal baseline ALP. Single-dose PK in non-cirrhotic CLD (2 and 4 mg) and severe RI (2 mg) was comparable to matched controls without significant safety issues. Overall, saroglitazar (1 and 2 mg) was safe and well-tolerated in cholestatic cirrhosis with mild HI and participants with severe RI without major PK changes. Moderate HI increased exposure and decreased clearance without any safety concerns.
Collapse
Affiliation(s)
- Raj Vuppalanchi
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mary M Cruz
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | - Deven Parmar
- Zydus Therapeutics Inc., Pennington, New Jersey, USA
| |
Collapse
|
29
|
Lin KH, Amigo N, Ortiz P, Alonso C, Smolensky AV, Parmar D, Chalasani NP, Gawrieh S. The athero-contour: A novel tool for global and rapid assessment of atherogenic parameters. A use case in saroglitazar treatment of MAFLD patients. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2025; 37:100723. [PMID: 38945785 DOI: 10.1016/j.arteri.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND AND AIMS Comprehensive assessment of pharmacotherapy effects on atherogenic parameters (AP) that influence the risk of cardiovascular disease (CVD) is challenging due to interactions among a large number of parameters that modulate CVD risk. METHODS We developed an illustrative tool, athero-contour (AC), which incorporates weighted key lipid, lipo- and glycoprotein parameters, to readily illustrate their overall changes following pharmacotherapy. We demonstrate the applicability of AC to assess changes in AP in response to saroglitazar treatment in patients with metabolic associated fatty liver disease (MAFLD) in the EVIDENCES IV study. RESULTS The baseline AC of saroglitazar and placebo groups was worse than the mean of the general population. After 16-week treatment, AC improved significantly in the saroglitazar group due to alterations in very low-density lipoprotein, triglyceride, and glycoproteins. CONCLUSION Using AC, we could readily and globally evaluate and visualize changes in AP. AC improved in patients with MAFLD following saroglitazar therapy.
Collapse
Affiliation(s)
- Kung-Hung Lin
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | - Alexander V Smolensky
- Division of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Naga P Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
30
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
31
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
32
|
Niu QQ, Xi YT, Zhang CR, Li XY, Li CZ, Wang HD, Li P, Yin YL. Potential mechanism of perillaldehyde in the treatment of nonalcoholic fatty liver disease based on network pharmacology and molecular docking. Eur J Pharmacol 2024; 985:177092. [PMID: 39510336 DOI: 10.1016/j.ejphar.2024.177092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic metabolic liver diseases worldwide. Perillaldehyde (4-propyl-1-en-2-ylcyclohexene-1-aldehyde, PA) is a terpenoid compound extracted from Perilla, which has effective pharmacological activities such as anti-inflammatory, antidepressant, and anticancer. This study aimed to explore the pharmacological effects of PA in intervening with NAFLD and reveal its potential mechanisms. Firstly, we identified the core targets of PA intervention therapy for NAFLD through network pharmacology and molecular docking techniques. After that, in vitro animal experiments such as H&E and Masson staining, immunofluorescence, immunohistochemistry, and Western blot were conducted to validate the results network effectively pharmacology predicted. Network pharmacology analysis suggested that PPAR-α may be the core target of PA intervention in NAFLD. H&E and Masson staining showed that after low-dose (50 mg/kg) PA administration, there was a noticeable improvement in fat deposition in the livers of NAFLD mice, and liver tissue fibrosis was alleviated. Immunohistochemical and immunofluorescence analysis showed that low dose (50 mg/kg) PA could reduce hepatocyte apoptosis, decrease the content of pro-apoptosis protein Bax, and increase the expression of anti-apoptosis protein Bcl-2 in NAFLD mice. Western blot results confirmed that low-dose (50 mg/kg) PA could increase the expression of PPAR-α and inhibit the expression of NF-κB in NAFLD mice. Our study indicated that PA could enhance the activity of PPAR-α and reduce the level of NF-κB in NAFLD mice, which may positively affect the prevention of NAFLD.
Collapse
Affiliation(s)
- Qian-Qian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, 13200, Malaysia
| | - Yu-Ting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Chun-Rui Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Xi-Yue Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Cheng-Zhi Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Hui-Dan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China.
| | - Ya-Ling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
33
|
Katsarou A, Tsioulos G, Kassi E, Chatzigeorgiou A. Current and experimental pharmacotherapy for the management of non-alcoholic fatty liver disease. Hormones (Athens) 2024; 23:621-636. [PMID: 39112786 DOI: 10.1007/s42000-024-00588-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/17/2024] [Indexed: 10/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease, with its incidence increasing in parallel with the global prevalence of obesity and type 2 diabetes mellitus. Despite our steadily increasing knowledge of its pathogenesis, there is as yet no available pharmacotherapy specifically tailored for NAFLD. To define the appropriate management, it is important to clarify the context in which the disease appears. In the case of concurrent metabolic comorbidities, NAFLD patients are treated by targeting these comorbidities, such as diabetes and obesity. Thus, GLP-1 analogs, PPAR, and SGLT2 inhibitors have recently become central to the treatment of NAFLD. In parallel, randomized trials are being conducted to explore new agents targeting known pathways involved in NAFLD progression. However, there is an imperative need to intensify the effort to design new, safe drugs with biopsy-proven efficacy. Of note, the main target of the pharmacotherapy should be directed to the regression of fibrotic NASH, as this histologic stage has been correlated with increased overall as well as liver-related morbidity and mortality. Herein we discuss the drugs currently at the forefront of NAFLD treatment.
Collapse
Affiliation(s)
- Angeliki Katsarou
- 251 Hellenic Airforce General Hospital, 1 P.Kanellopoulou Str, Athens, 11525, Greece.
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens, 11527, Greece.
| | - Georgios Tsioulos
- 4th Department of Internal Medicine, Medical School, University General Hospital Attikon, National and Kapodistrian University of Athens, 1 Rimini Str, Athens, 12462, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens, 11527, Greece
| |
Collapse
|
34
|
Zhou D, Fan J. Drug treatment for metabolic dysfunction-associated steatotic liver disease: Progress and direction. Chin Med J (Engl) 2024; 137:2687-2696. [PMID: 39470028 PMCID: PMC11611247 DOI: 10.1097/cm9.0000000000003355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Indexed: 10/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), also called non-alcoholic fatty liver disease, is the most epidemic chronic liver disease worldwide. Metabolic dysfunction-associated steatohepatitis (MASH) is the critical stage of MASLD, and early diagnosis and treatment of MASH are crucial for reducing the incidence of intrahepatic and extrahepatic complications. So far, pharmacotherapeutics for the treatment of MASH are still a major challenge, because of the complexity of the pathogenesis and heterogeneity of MASH. Many agents under investigation have shown impressive therapeutic effects by targeting different key pathways, including the attenuation of steatohepatitis or fibrosis or both. It is notable that thyroid hormone receptor-β agonist, resmetirom has become the first officially approved drug for treating MASH with fibrosis. Other agents such as peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 analogs, and fibroblast growth factor 21 analogs are awaiting approval. This review focuses on the current status of drug therapy for MASH and summarizes the latest results of new medications that have completed phase 2 or 3 clinical trials, and presents the future directions and difficulties of new drug research for MASH.
Collapse
Affiliation(s)
- Da Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
35
|
Abdel-Samiee M, Ibrahim ES, Kohla M, Abdelsameea E, Salama M. Regression of hepatic fibrosis after pharmacological therapy for nonalcoholic steatohepatitis. World J Gastrointest Pharmacol Ther 2024; 15:97381. [PMID: 39534523 PMCID: PMC11551621 DOI: 10.4292/wjgpt.v15.i6.97381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is escalating considerably. NAFLD covers a range of liver conditions from simple steatosis to the more severe form known as nonalcoholic steatohepatitis, which involves chronic liver inflammation and the transformation of hepatic stellate cells into myofibroblasts that generate excess extracellular matrix, leading to fibrosis. Hepatocyte ballooning is a key catalyst for fibrosis progression, potentially advancing to cirrhosis and its decompensated state. Fibrosis is a critical prognostic factor for outcomes in patients with NAFLD; therefore, those with substantial fibrosis require timely intervention. Although liver biopsy is the most reliable method for fibrosis detection, it is associated with certain risks and limitations, particularly in routine screening. Consequently, various noninvasive diagnostic techniques have been introduced. This review examines the increasing prevalence of NAFLD, evaluates the noninvasive diagnostic techniques for fibrosis, and assesses their efficacy in staging the disease. In addition, it critically appraises current and emerging antifibrotic therapies, focusing on their mechanisms, efficacy, and potential in reversing fibrosis. This review underscores the urgent need for effective therapeutic strategies, given the dire consequences of advanced fibrosis.
Collapse
Affiliation(s)
- Mohamed Abdel-Samiee
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Essam Salah Ibrahim
- Department of Medicine, RCSI Medical University of Bahrain, Adliya 15503, Bahrain
| | - Mohamed Kohla
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Eman Abdelsameea
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Mohsen Salama
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| |
Collapse
|
36
|
Amorim R, Soares P, Chavarria D, Benfeito S, Cagide F, Teixeira J, Oliveira PJ, Borges F. Decreasing the burden of non-alcoholic fatty liver disease: From therapeutic targets to drug discovery opportunities. Eur J Med Chem 2024; 277:116723. [PMID: 39163775 DOI: 10.1016/j.ejmech.2024.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) presents a pervasive global pandemic, affecting approximately 25 % of the world's population. This grave health issue not only demands urgent attention but also stands as a significant economic concern on a global scale. The genesis of NAFLD can be primarily attributed to unhealthy dietary habits and a sedentary lifestyle, albeit certain genetic factors have also been recorded to contribute to its occurrence. NAFLD is characterized by fat accumulation in more than 5 % of hepatocytes according to histological analysis, or >5.6 % of lipid volume fraction in total liver weight in patients. The pathophysiology of NAFLD/non-alcoholic steatohepatitis (NASH) is multifactorial and the mechanisms underlying the progression to advanced forms remain unclear, thereby representing a challenge to disease therapy. Despite the substantial efforts from the scientific community and the large number of pre-clinical and clinical trials performed so far, only one drug was approved by the Food and Drug Administration (FDA) to treat NAFLD/NASH specifically. This review provides an overview of available information concerning emerging molecular targets and drug candidates tested in clinical studies for the treatment of NAFLD/NASH. Improving our understanding of NAFLD pathophysiology and pharmacotherapy is crucial not only to explore new molecular targets, but also to potentiate drug discovery programs to develop new therapeutic strategies. This knowledge endeavours scientific efforts to reduce the time for achieving a specific and effective drug for NAFLD or NASH management and improve patients' quality of life.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Teixeira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
37
|
Bandyopadhyay S, Samajdar SS, Chaudhuri S, Das S. An insight into the updated pharmacotherapy of metabolic-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatohepatitis (MASH) in lean individuals: a review. Hosp Pract (1995) 2024:1-7. [PMID: 39356238 DOI: 10.1080/21548331.2024.2412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatohepatitis (MASH) in lean individuals represents a distinctive subset of MASH. Current pharmacotherapies, for MASH as demonstrated in clinical trials, predominantly target obese patients with limited consideration for lean MASH. We aimed to systematically review the literature on the pharmacotherapy of lean MASH. We searched standard medical databases, such as PubMed, Embase, Scopus, Cochrane CENTRAL, and ClinicalTrials.gov to identify eligible studies published in English up to 31 December 2023 regarding the effect of pharmacological interventions in individuals with lean MASH. We have summarized the role of various drug classes including peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter 2 inhibitors, vitamin E, farnesoid X receptor agonists, selective thyroid hormone receptor-β agonists, and selective cholesterol absorption inhibitors. Consequently, lifestyle interventions, encompassing dietary modifications, exercise, and weight loss particularly directed at visceral obesity or achieving a reduction in body weight are recommended for all non-obese individuals with MASH. A highlight on the only available treatment recommendation for lean MASH is also presented. The available evidence regarding the efficacy of various drugs for the treatment of lean MASH is limited. Conclusive evidence is warranted from clinical trials exclusively involving lean individuals with MASH.
Collapse
Affiliation(s)
| | - Shambo Samrat Samajdar
- Department of Clinical and Experimental Pharmacology, Calcutta School of Tropical Medicine, Kolkata, India
| | | | - Saibal Das
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Puri S, Kirad S, Muzaffar-Ur-Rehman M, Mandal SK, Sharma PK, Sankaranarayanan M, Deepa PR. Lipogenic stearoyl-CoA desaturase-1 (SCD1) targeted virtual screening for chemical inhibitors: molecular docking / dynamics simulation and in vitro assessment of anti-NAFLD efficacy. RSC Adv 2024; 14:31797-31808. [PMID: 39380655 PMCID: PMC11459445 DOI: 10.1039/d4ra06037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Amidst rising global prevalence of metabolic syndrome, the associated risk of non-alcoholic fatty liver disease (NAFLD) is also rapidly increasing. The pathogenesis of NAFLD starts with fat accumulation and progresses through inflammation and fibrotic sequel, often involving complex molecular mechanisms involving de novo lipogenesis. Stearoyl-CoA desaturase 1 (SCD1) enzyme, expressed in liver and adipose tissue, converts saturated fatty acids to monounsaturated fatty acids (MUFAs), contributing to triglyceride and cholesterol ester formation. In this study, potential SCD1 inhibitors were screened using the ZINC database of curated medically-approved drugs by virtual screening, molecular docking, and molecular dynamics simulations. The top-scoring five ligands with strong binding affinity against SCD1 were ZINC000003831151 > ZINC000001540998 > ZINC000003830713 > ZINC000000897251 > ZINC000002005305, which showed stable protein-ligand complexation and favorable pharmacokinetic attributes. The top ligand, Montelukast, was experimentally validated for its pharmacological efficacy in an in vitro cell culture model of steatosis (NAFLD). Montelukast showed a dose-dependent decrease in hepatic fat accumulation, reduced levels of free radicals, and lowered oxidative stress (P < 0.05). These outcomes suggest Montelukast to be a potential SCD1 inhibitor, with anti-NAFLD efficacy. These findings open new avenues for therapeutic development of the top 5 ligands in metabolic disorders involving SCD1.
Collapse
Affiliation(s)
- Sonakshi Puri
- Biochemistry and Enzyme Biotechnology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91 1596 255881
| | - Shivani Kirad
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91-1596-255717
| | - Mohammed Muzaffar-Ur-Rehman
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91-1596-255717
| | - Sumit Kumar Mandal
- Biochemistry and Enzyme Biotechnology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91 1596 255881
| | - Pankaj Kumar Sharma
- Biochemistry and Enzyme Biotechnology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91 1596 255881
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91-1596-255717
| | - P R Deepa
- Biochemistry and Enzyme Biotechnology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91 1596 255881
| |
Collapse
|
39
|
Sharma N, Singh L, Sharma A, Kumar A, Mahajan D. NAFLD-associated hepatocellular carcinoma (HCC) - A compelling case for repositioning of existing mTORc1 inhibitors. Pharmacol Res 2024; 208:107375. [PMID: 39209081 DOI: 10.1016/j.phrs.2024.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) is a growing concern for the high incidence rate of hepatocellular carcinoma (HCC) globally. The progression of NAFLD to HCC is heterogeneous and non-linear, involving intermediate stages of non-alcoholic steatohepatitis (NASH), liver fibrosis, and cirrhosis. There is a high unmet clinical need for appropriate diagnostic, prognostic, and therapeutic options to tackle this emerging epidemic. Unfortunately, at present, there is no validated marker to identify the risk of developing HCC in patients suffering from NAFLD or NASH. Additionally, the current treatment protocols for HCC don't differentiate between viral infection or NAFLD-specific etiology of the HCC and have a limited success rate. The mammalian target of rapamycin complex 1 (mTORc1) is an important protein involved in many vital cellular processes like lipid metabolism, glucose homeostasis, and inflammation. These cellular processes are highly implicated in NAFLD and its progression to severe liver manifestations. Additionally, hyperactivation of mTORc1 is known to promote cell proliferation, which can contribute to the genesis and progression of tumors. Many mTORc1 inhibitors are being evaluated for different types of cancers under various phases of clinical trials. This paper deliberates on the strong pathological implication of the mTORc1 signaling pathway in NAFLD and its progression to NASH and HCC and advocates for a systematic investigation of known mTORc1 inhibitors in suitable pre-clinical models of HCC having NAFLD/NASH-specific etiology.
Collapse
Affiliation(s)
- Nutan Sharma
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India; Department of Chemistry, Faculty of Applied and Basic Sciences, SGT University, Gurugram 122505, India
| | - Lakhwinder Singh
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India
| | - Aditya Sharma
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India
| | - Ajay Kumar
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India
| | - Dinesh Mahajan
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India.
| |
Collapse
|
40
|
Sai M, van Herwijnen N, Merk D. Azologs of the Fatty Acid Mimetic Drug Cinalukast Enable Light-Induced PPARα Activation. ChemMedChem 2024; 19:e202400327. [PMID: 38895744 DOI: 10.1002/cmdc.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Photo-switchable nuclear receptor modulators ("photohormones") enable spatial and temporal control over transcription factor activity and are valuable precision tools for biological studies. We have developed a new photohormone chemotype by incorporating a light-switchable motif in the scaffold of a cinalukast-derived PPARα ligand and tuned light-controlled activity by systematic structural variation. An optimized photohormone exhibited PPARα agonism in its light-induced (Z)-configuration and strong selectivity over related lipid-activated transcription factors representing a valuable addition to the collection of light-controlled tools to study nuclear receptor activity.
Collapse
Affiliation(s)
- Minh Sai
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377, Munich, Germany
| | - Niels van Herwijnen
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377, Munich, Germany
| | - Daniel Merk
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377, Munich, Germany
| |
Collapse
|
41
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3:loae029. [PMID: 39872142 PMCID: PMC11749562 DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 01/03/2025]
Abstract
Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
42
|
Gish R, Fan JG, Dossaji Z, Fichez J, Laeeq T, Chun M, Boursier J. Review of current and new drugs for the treatment of metabolic-associated fatty liver disease. Hepatol Int 2024; 18:977-989. [PMID: 38850496 DOI: 10.1007/s12072-024-10698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Abstract
In the past 3 decades, metabolic-associated fatty liver disease (MAFLD) has emerged as a widespread liver condition, with its global prevalence on the rise. It ranks as a leading contributor to hepatocellular carcinoma (HCC) and necessitates liver transplantation. Under the multiple parallel hits model, the pathogenesis of MAFLD stems from various liver stressors, notably nutrient overload and sedentary lifestyles. While medical management for MAFLD is well-established, encompassing non-pharmaceutical and pharmaceutical interventions, determining the most effective pharmaceutical therapy has remained elusive. This review discusses diabetic medications for MAFLD treatment, emphasizing recent studies and emerging drugs while reviewing other nondiabetic agents. Emerging evidence suggests that combination therapies hold promise for resolving MAFLD and metabolic steatohepatitis (MASH) while managing side effects. Ongoing trials play a pivotal role in elucidating the effects of mono, dual, and triple receptor agonists in individuals with MASH. With the rising burden of MAFLD/MASH and its severe consequences, the need for effective treatments is more pressing than ever. This review provides a comprehensive overview of the current landscape of pharmaceutical interventions for MAFLD and MASH, shedding light on the potential of newer drugs especially diabetic medications and the importance of ongoing research in this field.
Collapse
Affiliation(s)
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Zahra Dossaji
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, 1800 W Charleston Blvd, Las Vegas, NV, 89102, USA.
| | - Jeanne Fichez
- Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, Angers, France
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| | - Tooba Laeeq
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, 1800 W Charleston Blvd, Las Vegas, NV, 89102, USA
| | - Magnus Chun
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, 1800 W Charleston Blvd, Las Vegas, NV, 89102, USA
| | - Jerome Boursier
- Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, Angers, France
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| |
Collapse
|
43
|
Khatoon S, Das N, Chattopadhyay S, Joharapurkar A, Singh A, Patel V, Nirwan A, Kumar A, Mugale MN, Mishra DP, Kumaravelu J, Guha R, Jain MR, Chattopadhyay N, Sanyal S. Apigenin-6-C-glucoside ameliorates MASLD in rodent models via selective agonism of adiponectin receptor 2. Eur J Pharmacol 2024; 978:176800. [PMID: 38950835 DOI: 10.1016/j.ejphar.2024.176800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Adiponectin plays key roles in energy metabolism and ameliorates inflammation, oxidative stress, and mitochondrial dysfunction via its primary receptors, adiponectin receptors -1 and 2 (AdipoR1 and AdipoR2). Systemic depletion of adiponectin causes various metabolic disorders, including MASLD; however adiponectin supplementation is not yet achievable owing to its large size and oligomerization-associated complexities. Small-molecule AdipoR agonists, thus, may provide viable therapeutic options against metabolic disorders. Using a novel luciferase reporter-based assay here, we have identified Apigenin-6-C-glucoside (ACG), but not apigenin, as a specific agonist for the liver-rich AdipoR isoform, AdipoR2 (EC50: 384 pM) with >10000X preference over AdipoR1. Immunoblot analysis in HEK-293 overexpressing AdipoR2 or HepG2 and PLC/PRF/5 liver cell lines revealed rapid AMPK, p38 activation and induction of typical AdipoR targets PGC-1α and PPARα by ACG at a pharmacologically relevant concentration of 100 nM (reported cMax in mouse; 297 nM). ACG-mediated AdipoR2 activation culminated in a favorable modulation of key metabolic events, including decreased inflammation, oxidative stress, mitochondrial dysfunction, de novo lipogenesis, and increased fatty acid β-oxidation as determined by immunoblotting, QRT-PCR and extracellular flux analysis. AdipoR2 depletion or AMPK/p38 inhibition dampened these effects. The in vitro results were recapitulated in two different murine models of MASLD, where ACG at 10 mg/kg body weight robustly reduced hepatic steatosis, fibrosis, proinflammatory macrophage numbers, and increased hepatic glycogen content. Together, using in vitro experiments and rodent models, we demonstrate a proof-of-concept for AdipoR2 as a therapeutic target for MASLD and provide novel chemicobiological insights for the generation of translation-worthy pharmacological agents.
Collapse
Affiliation(s)
- Shamima Khatoon
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nabanita Das
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sourav Chattopadhyay
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Abhinav Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Vishal Patel
- Zydus Research Center, Moraiya, Ahmedabad, 382213, Gujarat, India
| | - Abhishek Nirwan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Akhilesh Kumar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Madhav Nilakanth Mugale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Durga Prasad Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jagavelu Kumaravelu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
44
|
Bali AD, Rosenzveig A, Frishman WH, Aronow WS. Nonalcoholic Fatty Liver Disease and Cardiovascular Disease: Causation or Association. Cardiol Rev 2024; 32:453-462. [PMID: 36825899 DOI: 10.1097/crd.0000000000000537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a disease process that is gaining increasing recognition. The global prevalence of NAFLD is increasing in parallel with growing rates of risk factors for NAFLD such as hypertension, obesity, diabetes, and metabolic syndrome. NAFLD has been referred to as a risk factor for cardiovascular disease (CVD). As CVD is the leading cause of morbidity and mortality worldwide, there are constant efforts to describe and alleviate its risk factors. Although there is conflicting data supporting NAFLD as a causative or associative factor for CVD, NAFLD has been shown to be associated with structural, electrical, and atherosclerotic disease processes of the heart. Shared risk factors and pathophysiologic mechanisms between NAFLD and CVD warrant further explication. Pathologic mechanisms such as endothelial dysfunction, oxidative stress, insulin resistance, genetic underpinnings, and gut microbiota dysregulation have been described in both CVD and NAFLD. The mainstay of treatment for NAFLD is lifestyle intervention including physical exercise and hypocaloric intake in addition to bariatric surgery. Investigations into various therapeutic targets to alleviate hepatic steatosis and fibrosis by way of maintaining the balance between lipid synthesis and breakdown. A major obstacle preventing the success of many pharmacologic approaches has been the effects of these medications on CVD risk. The future of pharmacologic treatment of NAFLD is promising as effective medications with limited CVD harm are being investigated.
Collapse
Affiliation(s)
- Atul D Bali
- From the Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| | | | - William H Frishman
- From the Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Wilbert S Aronow
- From the Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
45
|
Petroni ML, Perazza F, Marchesini G. Breakthrough in the Treatment of Metabolic Associated Steatotic Liver Disease: Is it all over? Dig Liver Dis 2024; 56:1442-1451. [PMID: 38972788 DOI: 10.1016/j.dld.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 07/09/2024]
Abstract
On March 14, 2024, after more than 25 years of intense research and a long series of failures, the Food and Drug Administration approved resmetirom as first drug for the treatment of non-alcoholic steatohepatitis (NASH) with fibrosis (now Metabolic-Associated Steatotic Liver Disease - MASLD). The present review covers this difficult process, finally providing a drug to complement lifestyle intervention, that has long been the sole approved therapeutic intervention. However, the availability of a drug shown to reduce disease progression in advanced stages of diseases opens a series of questions that deserve even more intense research. How to continue ongoing trials? How to generate an appropriate use of resmetirom in the community, limiting treatment according to predefined criteria and according to individual risk assessment? How to guarantee that both hepatic and non-hepatic comorbidities are appropriately targeted? How to define cost-effective strategies that might prevent the generation of unacceptable differences within the population, given the high costs of novel drugs and the extremely high numbers of candidates to treatment? Only a close surveillance of drug use in the real world, generated by insurance databases and national healthcare system registries, might provide adequate answers to these compelling questions.
Collapse
Affiliation(s)
- Maria Letizia Petroni
- Unit of Clinical Nutrition and Metabolism, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federica Perazza
- Unit of Clinical Nutrition and Metabolism, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Alma Mater University, Bologna, Italy
| | | |
Collapse
|
46
|
Trusz GJ. Fibroblast growth factor 21. Differentiation 2024; 139:100793. [PMID: 38991938 DOI: 10.1016/j.diff.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Fibroblast growth factor 21 (FGF21) belongs to the FGF19 subfamily and acts systemically, playing a key role in inter-organ crosstalk. Ranging from metabolism, reproduction, and immunity, FGF21 is a pleiotropic hormone which contributes to various physiological processes. Although most of its production across species stems from hepatic tissues, expression of FGF21 in mice has also been identified in adipose tissue, thymus, heart, pancreas, and skeletal muscle. Elevated FGF21 levels are affiliated with various diseases and conditions, such as obesity, type 2 diabetes, preeclampsia, as well as cancer. Murine knockout models are viable and show modest weight gain, while overexpression and gain-of-function models display resistance to weight gain, altered bone volume, and enhanced immunity. In addition, FGF21-based therapies are at the forefront of biopharmaceutical strategies aimed at treating metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Guillaume J Trusz
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
47
|
Tavaglione F, Loomba R. Emerging Combination of Saroglitazar and Vitamin E for the Treatment of NAFLD and NASH. J Clin Exp Hepatol 2024; 14:101449. [PMID: 38881684 PMCID: PMC11170343 DOI: 10.1016/j.jceh.2024.101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Affiliation(s)
- Federica Tavaglione
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, United States
- Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, United States
- School of Public Health, University of California at San Diego, La Jolla, CA, United States
| |
Collapse
|
48
|
Tacke F, Horn P, Wai-Sun Wong V, Ratziu V, Bugianesi E, Francque S, Zelber-Sagi S, Valenti L, Roden M, Schick F, Yki-Järvinen H, Gastaldelli A, Vettor R, Frühbeck G, Dicker D. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol 2024; 81:492-542. [PMID: 38851997 DOI: 10.1016/j.jhep.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
49
|
Pi D, Liang Z, Pan J, Zhen J, Zheng C, Fan W, Song Q, Pan M, Yang Q, Zhang Y. Tanshinone IIA Inhibits the Endoplasmic Reticulum Stress-Induced Unfolded Protein Response by Activating the PPARα/FGF21 Axis to Ameliorate Nonalcoholic Steatohepatitis. Antioxidants (Basel) 2024; 13:1026. [PMID: 39334685 PMCID: PMC11428933 DOI: 10.3390/antiox13091026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a critical stage in the progression of nonalcoholic fatty liver disease (NAFLD). Tanshinone IIA (TIIA) is a tanshinone extracted from Salvia miltiorrhiza; due to its powerful anti-inflammatory and antioxidant biological activities, it is commonly used for treating cardiovascular and hepatic diseases. A NASH model was established by feeding mice a methionine and choline-deficient (MCD) diet. Liver surface microblood flow scanning, biochemical examination, histopathological examination, cytokine analysis through ELISA, lipidomic analysis, transcriptomic analysis, and Western blot analysis were used to evaluate the therapeutic effect and mechanism of TIIA on NASH. The results showed that TIIA effectively reduced lipid accumulation, fibrosis, and inflammation and alleviated endoplasmic reticulum (ER) stress. Lipidomic analysis revealed that TIIA normalized liver phospholipid metabolism in NASH mice. A KEGG analysis of the transcriptome revealed that TIIA exerted its effect by regulating the PPAR signalling pathway, protein processing in the ER, and the NOD-like receptor signalling pathway. These results suggest that TIIA alleviates NASH by activating the PPARα/FGF21 axis to negatively regulate the ER stress-induced unfolded protein response (UPR).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maoxing Pan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (D.P.); (Z.L.); (J.P.); (J.Z.); (C.Z.); (W.F.); (Q.S.)
| | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (D.P.); (Z.L.); (J.P.); (J.Z.); (C.Z.); (W.F.); (Q.S.)
| | - Yupei Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (D.P.); (Z.L.); (J.P.); (J.Z.); (C.Z.); (W.F.); (Q.S.)
| |
Collapse
|
50
|
Vu HT, Nguyen VD, Ikenaga H, Matsubara T. Application of PPAR Ligands and Nanoparticle Technology in Metabolic Steatohepatitis Treatment. Biomedicines 2024; 12:1876. [PMID: 39200340 PMCID: PMC11351628 DOI: 10.3390/biomedicines12081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is a major disease worldwide whose effective treatment is challenging. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and function as ligand-activated transcription factors. To date, three distinct subtypes of PPARs have been characterized: PPARα, PPARβ/δ, and PPARγ. PPARα and PPARγ are crucial regulators of lipid metabolism that modulate the transcription of genes involved in fatty acid (FA), bile acid, and cholesterol metabolism. Many PPAR agonists, including natural (FAs, eicosanoids, and phospholipids) and synthetic (fibrate, thiazolidinedione, glitazar, and elafibranor) agonists, have been developed. Furthermore, recent advancements in nanoparticles (NPs) have led to the development of new strategies for MASLD/MASH therapy. This review discusses the applications of specific cell-targeted NPs and highlights the potential of PPARα- and PPARγ-targeted NP drug delivery systems for MASLD/MASH treatment.
Collapse
Affiliation(s)
- Hung Thai Vu
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Vien Duc Nguyen
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Hiroko Ikenaga
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, Sakai 599-8570, Osaka, Japan
| |
Collapse
|