1
|
Zheng W, Lin X, Chen H, Yang Z, Zhao H, Li S, Song T, Sun Y. Gut microbiota and endometrial cancer: research progress on the pathogenesis and application. Ann Med 2025; 57:2451766. [PMID: 39810645 PMCID: PMC11737052 DOI: 10.1080/07853890.2025.2451766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
As one of the three major malignant tumors in women, the morbidity of endometrial cancer is second only to that of cervical cancer and is increasing yearly. Its etiological mechanism is not clear, and the risk factors are numerous and common and are closely related to obesity, hypertension, diabetes, etc. The gut microbiota has many strains, which play a considerable part in normal digestion and absorption in the human body and the regulation of the immune response. In the last few years, research on the gut microbiota has been unprecedentedly popular, and it has been confirmed that the gut microbiota closely correlates with the occurrence and development of all kinds of benign and malignant diseases. In this article, the effects of the gut microbiota and its metabolites on the occurrence and development of endometrial cancer is reviewed, and its application in the prevention, diagnosis and treatment of endometrial cancer is explored.
Collapse
Affiliation(s)
- Weiqin Zheng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaowen Lin
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huixin Chen
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziling Yang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Zhao
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Li
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhui Sun
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Cui L, Liu B, Ling Z, Liu K, Tan S, Gong Z, Xiao W. Characterization of physicochemical properties of different epigallocatechin-3-gallate nanoparticles and their effect on bioavailability. Food Chem 2025; 480:143935. [PMID: 40147275 DOI: 10.1016/j.foodchem.2025.143935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
Epigallocatechin-3-gallate (EGCG), a major catechin in green tea, exhibits potent antioxidant and disease-preventive properties, but its application is limited by poor stability and bioavailability. This study aimed to address these challenges by preparing and characterizing three EGCG-loaded nanoparticles: chitosan-EGCG-tripolyphosphate nanoparticles (CE-NPs), β-cyclodextrin-EGCG (BE-NPs), and EGCG-nanostructured lipid carriers (NE-NPs). BE-NPs exhibited the highest loading performance and retention rate under thermal environment (89.78 % after 10 h at 80 °C). NE-NPs had the highest EGCG stability in alkaline condition (45 % after 4 h at pH 7.4). Compared to free EGCG, all NPs significantly improved in vitro bioaccessibility following incubation in simulated gastrointestinal digestion for 4 h; BE-NPs enhanced oral bioavailability by 1.71 times in vivo. Additionally, CE-NPs and NE-NPs increased the relative abundance of Faecalibaculum, Erysipelotrichaceae, and Bifidobacterium in the colons of Sprague-Dawley rats. These findings suggest that BE-NPs are a promising nano-delivery system for enhancing EGCG stability and bioavailability in healthy organisms.
Collapse
Affiliation(s)
- Lidan Cui
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Baogui Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Zhihui Ling
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Kehong Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Simin Tan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| |
Collapse
|
3
|
Sahebi K, Arianejad M, Azadi S, Hosseinpour-Soleimani F, Kazemi R, Tajbakhsh A, Negahdaripour M. The interplay between gut microbiome, epigenetics, and substance use disorders: from molecular to clinical perspectives. Eur J Pharmacol 2025; 998:177630. [PMID: 40252900 DOI: 10.1016/j.ejphar.2025.177630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/27/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Substance use disorders (SUDs) involve a complex series of central and peripheral pathologies, leading to impairments in cognitive, behavioral, and physiological processes. Emerging evidence indicates a more significant role for the microbiome-gut-brain axis (MGBA) in SUDs than previously recognized. The MGBA is interconnected with various body systems by producing numerous metabolites, most importantly short-chain fatty acids (SCFAs), cytokines, and neurotransmitters. These mediators influence the human body's epigenome and transcriptome. While numerous epigenetic alterations in different brain regions have been reported in SUD models, the intricate relationship between SUDs and the MGBA suggests that the gut microbiome may partially contribute to the underlying mechanisms of SUDs. Promising results have been observed with gut microbiome-directed interventions in patients with SUDs, including prebiotics, probiotics, antibiotics, and fecal microbiota transplantation. Nonetheless, the long-term epigenetic effects of these interventions remain unexplored. Moreover, various confounding factors and study limitations have hindered the identification of molecular mechanisms and clinical applications of gut microbiome interventions in SUDs. In the present review, we will (i) provide a comprehensive discussion on how the gut microbiome influences SUDs, with an emphasis on epigenetic alterations; (ii) discuss the current evidence on the bidirectional relationship of gut microbiome and SUDs, highlighting potential targets for intervention; and (iii) review recent advances in gut microbiome-directed therapies, along with their limitations and future directions.
Collapse
Affiliation(s)
- Keivan Sahebi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mona Arianejad
- Department of Molecular Medicine, School of Advanced Technologies of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soha Azadi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Radmehr Kazemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Rawat N, Sivanesan S, Kanade GS, Bafana A. Interaction of environmental fluoride exposure and gut microbes: Potential implication in the development of fluorosis in human subjects. Food Chem Toxicol 2025; 200:115388. [PMID: 40086585 DOI: 10.1016/j.fct.2025.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Fluoride exposure primarily occurs through contaminated water and leads to fluorosis, which is a global health concern. After ingestion, fluoride is absorbed via gastrointestinal tract, where it interacts with the gut microbiota. While animal studies have explored fluoride's effects on gut microbiota, no human studies have yet been conducted. Most research emphasizes metagenomic diversity, neglecting isolation and characterization of pure cultures for further applications. Additionally, the association between gut microbiota with fluorosis outcomes in fluoride-exposed populations is unexplored. This study characterizes and compares the cultivable gut microbiota in the fluoride-exposed population with (symptomatic, group II) or without (asymptomatic, group I) signs of skeletal fluorosis along with unexposed control (group III). Group I displayed higher abundance of Firmicutes (58.58 %), group II had predominance of Proteobacteria (61.25 %) while group III showed similar abundance of Proteobacteria (50.38 %) and Firmicutes (49.51 %). On analyzing short-chain fatty acid (SCFA) profiles, group I isolates produced higher isobutyric acid (1.31 ± 0.9 mM) than group II (0.71 ± 0.35 mM), while group II produced more isovaleric acid (0.8 ± 0.41 mM) than group I (0.61 ± 0.08 mM) (p < 0.05). These findings suggest that gut microbiota and SCFAs alteration may influence bone metabolism, affecting the fluorosis progression.
Collapse
Affiliation(s)
- Neha Rawat
- CSIR-NEERI (National Environmental Engineering Research Institute), Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Saravanadevi Sivanesan
- CSIR-NEERI (National Environmental Engineering Research Institute), Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gajanan Sitaramji Kanade
- CSIR-NEERI (National Environmental Engineering Research Institute), Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Amit Bafana
- CSIR-NEERI (National Environmental Engineering Research Institute), Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Ejiugwo MA, Gawenda JV, Janis AD, McNamara DA, O'Donnell ST, Browne S. Understanding the Impact of Ostomy Dejecta Constituents on Peristomal Skin Health and Models for Its Characterisation. Int Wound J 2025; 22:e70514. [PMID: 40400213 DOI: 10.1111/iwj.70514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 05/23/2025] Open
Abstract
An ostomy, or stoma, is a surgically created percutaneous aperture from a hollow organ (e.g., small intestine) to the body's surface. Physicians may recommend an ostomy as a temporary or permanent solution to a range of disorders of the gastrointestinal tract, with up to 130 000 ostomies performed annually in the United States. An ostomy facilitates the expulsion of waste products, termed dejecta and circumvents the compromised organs. While an ostomy can be a lifesaving treatment, it is a disruption of regular digestive flow and has a number of associated complications including hernia, prolapse and necrosis. The most commonly observed complications are peristomal skin complications (PSCs), attributed to the leakage of dejecta onto the peristomal skin or the skin directly surrounding the stoma. Despite the prevalence of PSCs, little is known about the precise etiological factors that play a role in PSC formation. This review discusses the constituents of dejecta and their possible roles in PSC formation. Additionally, we identify a number of in vitro and in vivo skin models that could be used to study PSCs. Identification of the components of dejecta and understanding their interaction with skin models can facilitate the development of interventions to treat and prevent PSCs.
Collapse
Affiliation(s)
- Mirella A Ejiugwo
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Julie V Gawenda
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | | | | | - Sinéad T O'Donnell
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Shane Browne
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| |
Collapse
|
6
|
Hawton K, Shirodkar D, Siese T, Hamilton-Shield JP, Giri D. A recent update on childhood obesity: aetiology, treatment and complications. J Pediatr Endocrinol Metab 2025; 38:429-441. [PMID: 40105362 DOI: 10.1515/jpem-2024-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Obesity is a complex, chronic condition characterised by excess adiposity. Rates of obesity in childhood and adolescence are increasing worldwide, with a corresponding increase in adulthood. The aetiology of obesity is multifactorial and results from a combination of endocrine, genetic, environmental and societal factors. Population level approaches to reduce the prevalence of childhood obesity worldwide are urgently needed. There are wide-ranging complications from excess weight affecting every system in the body, which lead to significant morbidity and reduced life expectancy. Treatment of obesity and its complications requires a multi-faceted, biopsychosocial approach incorporating dietary, exercise and psychological treatments. Pharmacological treatments for treating childhood obesity have recently become available, and there is further development of new anti-obesity medications in the pipeline. In addition, bariatric surgery is being increasingly recognised as a treatment option for obesity in adolescence providing the potential to reverse complications related to excess weight. In this review, we present an update on the prevalence, aetiology, complications and treatment of childhood obesity.
Collapse
Affiliation(s)
- Katherine Hawton
- 156596 Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust , Bristol, UK
- University of Bristol, Bristol, UK
| | - Diksha Shirodkar
- 156596 Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust , Bristol, UK
- University of Bristol, Bristol, UK
| | | | - Julian P Hamilton-Shield
- 156596 Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust , Bristol, UK
- NIHR Biomedical Research Centre (Nutrition Theme), University Hospitals Bristol and Weston NHS Foundations Trust, Bristol, UK
| | - Dinesh Giri
- 156596 Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust , Bristol, UK
- University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Rahmati R, Zarimeidani F, Ghanbari Boroujeni MR, Sadighbathi S, Kashaniasl Z, Saleh M, Alipourfard I. CRISPR-Assisted Probiotic and In Situ Engineering of Gut Microbiota: A Prospect to Modification of Metabolic Disorders. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10561-y. [PMID: 40377871 DOI: 10.1007/s12602-025-10561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/18/2025]
Abstract
The gut microbiota, a substantial group of microorganisms residing in the human body, profoundly impacts various physiological and pathological mechanisms. Recent studies have elucidated the association between gut dysbiosis and multiple organ diseases. Gut microbiota plays a crucial role in maintaining gastrointestinal stability, regulating the immune system and metabolic processes not only within the gastrointestinal tract but also in other organs such as the brain, lungs, and skin. Dysbiosis of the gut microbiota can disrupt biological functioning and contribute to the development of metabolic disorders. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated proteins (Cas) modules are adaptive immune systems in numerous archaea and bacteria. CRISPR/Cas is a versatile gene-editing tool that enables modification of the genome in live cells, including those within the gut microbiota. This technique has revolutionized gene editing due to its simplicity and effectiveness. It finds extensive applications in diverse scientific arenas, facilitating the functional screening of genomes during various biological processes. Additionally, CRISPR has been instrumental in creating model organisms and cell lines for research purposes and holds great potential for developing personalized medical treatments through precise genetic alterations. This review aims to explore and discuss the possibilities of CRISPR/Cas and the current trends in using this technique for editing gut microbiota genes in various metabolic disorders. By uncovering the valuable potential of CRISPR/Cas in modifying metabolic disorders through the human gut microbiota, we shed light on its promising applications.
Collapse
Affiliation(s)
- Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Sepideh Sadighbathi
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
- Faculty of Chemistry, Department of Comparative Biochemistry, RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Zeinab Kashaniasl
- College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Mobina Saleh
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
- Lab of Regenerative Medicine, Center of Preclinical Studies (CePT), Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
8
|
Belelli D, Lambert JJ, Wan MLY, Monteiro AR, Nutt DJ, Swinny JD. From bugs to brain: unravelling the GABA signalling networks in the brain-gut-microbiome axis. Brain 2025; 148:1479-1506. [PMID: 39716883 PMCID: PMC12074267 DOI: 10.1093/brain/awae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Convergent data across species paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function, mediating most neuronal inhibition. Until recently, GABA's role and specific molecular targets in the periphery within the BGM axis had received limited attention. Yet, GABA is produced by neuronal and non-neuronal elements of the BGM, and recently, GABA-modulating bacteria have been identified as key players in GABAergic gut systems, indicating that GABA-mediated signalling is likely to transcend physiological boundaries and species. We review the available evidence to better understand how GABA facilitates the integration of molecularly and functionally disparate systems to bring about overall homeostasis and how GABA perturbations within the BGM axis can give rise to multi-system medical disorders, thereby magnifying the disease burden and the challenges for patient care. Analysis of transcriptomic databases revealed significant overlaps between GABAAR subunits expressed in the human brain and gut. However, in the gut, there are notable expression profiles for a select number of subunits that have received limited attention to date but could be functionally relevant for BGM axis homeostasis. GABAergic signalling, via different receptor subtypes, directly regulates BGM homeostasis by modulating the excitability of neurons within brain centres responsible for gastrointestinal (GI) function in a sex-dependent manner, potentially revealing mechanisms underlying the greater prevalence of GI disturbances in females. Apart from such top-down regulation of the BGM axis, a diverse group of cell types, including enteric neurons, glia, enteroendocrine cells, immune cells and bacteria, integrate peripheral GABA signals to influence brain functions and potentially contribute to brain disorders. We propose several priorities for this field, including the exploitation of available technologies to functionally dissect components of these GABA pathways within the BGM, with a focus on GI and brain-behaviour-disease. Furthermore, in silico ligand-receptor docking analyses using relevant bacterial metabolomic datasets, coupled with advances in knowledge of GABAAR 3D structures, could uncover new ligands with novel therapeutic potential. Finally, targeted design of dietary interventions is imperative to advancing their therapeutic potential to support GABA homeostasis across the BGM axis.
Collapse
Affiliation(s)
- Delia Belelli
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Jeremy J Lambert
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
| | - Murphy Lam Yim Wan
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Ana Rita Monteiro
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - David J Nutt
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Jerome D Swinny
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
9
|
Wang W, Gu W, Schweitzer R, Koren O, Khatib S, Tseng G, Konnikova L. In utero human intestine contains maternally derived bacterial metabolites. MICROBIOME 2025; 13:116. [PMID: 40329366 PMCID: PMC12054239 DOI: 10.1186/s40168-025-02110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Understanding when host-microbiome interactions are first established is crucial for comprehending normal development and identifying disease prevention strategies. Furthermore, bacterially derived metabolites play critical roles in shaping the intestinal immune system. Recent studies have demonstrated that memory T cells infiltrate human intestinal tissue early in the second trimester, suggesting that microbial components such as peptides that can prime adaptive immunity and metabolites that can influence the development and function of the immune system are also present in utero. Our previous study reported a unique fetal intestinal metabolomic profile with an abundance of several bacterially derived metabolites and aryl hydrocarbon receptor (AHR) ligands implicated in mucosal immune regulation. RESULTS In the current study, we demonstrate that a number of microbiome-associated metabolites present in the fetal intestines are also present in the placental tissue, and their abundance is different across the fetal intestine, fetal meconium, fetal placental villi, and the maternal decidua. The fetal gastrointestinal samples and maternal decidua samples show substantially higher positive correlation on the abundance of these microbial metabolites than the correlation between the fetal gastrointestinal samples and meconium samples. The expression of genes associated with the transport and signaling of some microbial metabolites is also detectable in utero. CONCLUSIONS We suggest that the microbiome-associated metabolites are maternally derived and vertically transmitted to the fetus. Notably, these bacterially derived metabolites, particularly short-chain fatty acids and secondary bile acids, are likely biologically active and functional in regulating the fetal immune system and preparing the gastrointestinal tract for postnatal microbial encounters, as the transcripts for their various receptors and carrier proteins are present in second trimester intestinal tissue through single-cell transcriptomic data. Video Abstract.
Collapse
Affiliation(s)
- Wenjia Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Weihong Gu
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Ron Schweitzer
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Kiryat Shmona, Israel
- Department of Natural Compounds and Analytical Chemistry, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Soliman Khatib
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Kiryat Shmona, Israel
- Department of Natural Compounds and Analytical Chemistry, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06519, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
- Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT, USA.
- Human Translational Immunology Program, Yale School of Medicine, New Haven, CT, USA.
- Center for Systems and Engineering Immunology, Yale School of Medicine, 375 Congress Avenue, New Haven, CT, 06519, USA.
| |
Collapse
|
10
|
Zhu Z, Xue B, Li H, Wang X, Li Y, Huang J, Cai S, Zeng X, Chen M, Zhang S, Chen F, Cai C, Zeng X. Maternal Tryptophan Supplementation Enhances Sow Reproductive Performance by Influencing Hormones, Tryptophan Metabolism, and Gut Microbiome. J Nutr 2025:S0022-3166(25)00277-9. [PMID: 40334786 DOI: 10.1016/j.tjnut.2025.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Enhancing the early embryo survival rate is important for increasing sow reproductive efficiency. Whether and how tryptophan influences early embryo survival and pregnancy outcomes in sows remains unknown. OBJECTIVES The objective of this study was to investigate the effects of dietary tryptophan supplementation on the reproductive performance of sows. METHODS A total of 128 multiparous Large White × Landrace sows were randomly assigned to 4 groups including the control group (dietary tryptophan concentration was 0.18% from weaning to estrus and 0.10% from day 1 to day 28 of pregnancy) or the low, medium, and high dose of tryptophan supplementation groups (dietary tryptophan levels were 0.27%, 0.36%, and 0.45% from weaning to estrus and 0.15%, 0.20%, and 0.25% from day 1 to day 28 of pregnancy). Primary porcine granulosa cells were isolated from porcine ovaries and treated with selected tryptophan metabolites to assess hormone levels in the cell supernatant. RESULTS Compared with the control group, the dietary high levels of tryptophan group increased the litter weight (P < 0.05) and showed an increasing trend in the born alive per litter (P = 0.06). Serum concentration of progesterone and estradiol and levels of tryptophan, kynurenine, xanthurenic acid, 2-aminobenzoic acid, and indoleamine 2,3-dioxygenase on day 28 of pregnancy were increased in the high concentration of tryptophan group (P < 0.05). In vitro experiments using primary porcine granulosa cell culture showed that tryptophan and 2-aminobenzoic acid increased progesterone and estradiol levels in the cell supernatant (P < 0.05). Dietary tryptophan supplementation increased the abundances of fecal beneficial bacteria such as Hydrogenoanaerobacterium and Lachnospiraceae in sows (P < 0.05). CONCLUSIONS Dietary tryptophan supplementation may enhance the pregnancy outcome of sows through the increase of tryptophan metabolites to strengthen steroid hormone secretion and the abundance of beneficial microbes.
Collapse
Affiliation(s)
- Zhekun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio feed Additives, China Agricultural University, Beijing, China
| | - Bangxing Xue
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio feed Additives, China Agricultural University, Beijing, China
| | - Huan Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio feed Additives, China Agricultural University, Beijing, China
| | - Xinyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio feed Additives, China Agricultural University, Beijing, China
| | - Yanlong Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio feed Additives, China Agricultural University, Beijing, China
| | - Jun Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio feed Additives, China Agricultural University, Beijing, China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio feed Additives, China Agricultural University, Beijing, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio feed Additives, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio feed Additives, China Agricultural University, Beijing, China
| | - Shihai Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio feed Additives, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Werner M, Vigani A. The Microbiome in Critical Illness. Vet Clin North Am Small Anim Pract 2025; 55:443-458. [PMID: 40316371 DOI: 10.1016/j.cvsm.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Evidence suggests that the intestinal microbiome may play an important role in the pathogenesis and progression of acute critical illness in humans and other mammals, although evidence in small animal medicine is sparse. Moreover, the intestinal microbiota plays many important metabolic roles (production of short-chain fatty acids, trimethylamine-N-oxide, and normal bile acid metabolism) and is crucial for immunity as well as defense against enteropathogens. The use of probiotics and fecal microbiota transplantation as instruments to modulate the intestinal microbiota seems to be safe and effective in studies on critically ill dogs with acute gastrointestinal diseases.
Collapse
Affiliation(s)
- Melanie Werner
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, Winterthurerstrasse 260, Zurich 8057, Switzerland.
| | - Alessio Vigani
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, Winterthurerstrasse 260, Zurich 8057, Switzerland
| |
Collapse
|
12
|
Arioglu‐Tuncil S. A Comparative Assessment of Flaxseed ( Linum usitatissimum L.) and Chia Seed ( Salvia hispanica L.) in Modulating Fecal Microbiota Composition and Function In Vitro. Food Sci Nutr 2025; 13:e70243. [PMID: 40321609 PMCID: PMC12048700 DOI: 10.1002/fsn3.70243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/13/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
Flaxseed (Linum usitatissimum L.) and chia seed (Salvia hispanica L.) have become increasingly popular in the design of various functional food products. However, information on their functional properties is scarce. The aim of this study is to comparatively evaluate the effects of the dietary fibers (DFs) of flaxseed and chia seed on colonic microbiota composition and metabolic outputs. The neutral and acidic monosaccharide compositions of DFs of flaxseed and chia seed were determined using gas chromatography/mass spectrometry (GC/MS) and spectrophotometer, respectively. Next, in vitro fecal fermentation assays were applied, and samples were collected at different time points for short-chain fatty acids (SCFA) measurements using GC, and fecal microbiota changes before and after fermentation were evaluated through 16S rRNA sequencing. The results revealed that DFs of flaxseed were dominated by xylose and uronic acid moieties, while that of chia seed was dominated by glucose units, indicating that their DFs are structurally different. Higher SCFA generations were observed in the case of flaxseed, suggesting that flaxseed DFs are more readily fermentable by gut microbiota. Flaxseed and chia seed DFs differentially impacted the microbiota compositions at the OTU level; for example, significant increases in the relative abundances of Acidaminococcaceae and Bacteroides stercoris related OTUs, which are known to be propionate producers, were observed in the case of flaxseed, but not chia seed. Interestingly, flaxseed, but not chia seed, DFs suppressed the growth of some pathogenic bacteria. Overall, this study suggests that the functionality of flaxseed and chia seed DFs in relation to colonic microbiota may differ, with flaxseed being more readily fermented and potentially promoting beneficial microbes to a greater extent. Thus, flaxseed could hold promise for developing functional food recipes aimed at supporting colonic health.
Collapse
Affiliation(s)
- Seda Arioglu‐Tuncil
- Department of Nutrition and DieteticsNecmettin Erbakan UniversityKonyaTürkiye
| |
Collapse
|
13
|
Wei S, Wu M, Qin Q, Chen C, Huang H, Wen Z, Huang J, Xie X, Su R, Zhou X, Qin J, Liu X, Chen X. Dose-dependent effects of chlorpyrifos on liver injury, intestinal dysbiosis, and metabolic perturbations in C57BL/6J mice. Toxicol Lett 2025; 407:73-82. [PMID: 40158758 DOI: 10.1016/j.toxlet.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/10/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
The organophosphorus pesticide chlorpyrifos (CPF) is widely utilized in agriculture to protect crops from pests and diseases. Concerns regarding its extensive use have emerged due to the substance's persistence, bioaccumulation, endocrine disruption, and associated toxicity, which may lead to various adverse reactions. In this study, 32 male C57BL/6 J mice were orally administered varying doses of CPF over a period of two weeks. Metabolic perturbations resulting from subacute exposure to CPF were assessed using LC-MS/MS-based untargeted metabolomics, alongside biochemical analysis and histopathological techniques. The 16S rRNA gene sequencing method was employed to evaluate changes in the gut microbial community within the cecal contents of mice exposed to CPF. In vivo studies have shown that CPF exposure induced dose-dependent damage and dysregulation of the intestinal microbiota in mouse colonic tissues. This was characterized by significant alterations in the gut microbiota, increased intestinal permeability and elevated levels of lipopolysaccharides. These changes may have compromised intestinal barrier function and facilitated the transfer of intestinal microbial metabolites and endotoxins to the liver, subsequently leading to liver injury. Collectively, this study elucidates a potential mechanism by which CPF triggers liver injury through alterations in the intestinal microbial community and increased intestinal permeability. These findings not only enhance our understanding of the toxicological effects of CPF but also contribute to the assessment of health risks associated with CPF exposure.
Collapse
Affiliation(s)
- Shuilin Wei
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Mengjing Wu
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Quanzhi Qin
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Chunxia Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Huan Huang
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Zhongqing Wen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Junli Huang
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Xixiang Xie
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Rixiang Su
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Xing Zhou
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Jian Qin
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China.
| | - Xiaoxia Liu
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China.
| | - Xiaoyu Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China.
| |
Collapse
|
14
|
Yilmaz EG, Hacıosmanoğlu N, Jordi SBU, Yilmaz B, Inci F. Revolutionizing IBD research with on-chip models of disease modeling and drug screening. Trends Biotechnol 2025; 43:1062-1078. [PMID: 39523166 DOI: 10.1016/j.tibtech.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) comprises chronic inflammatory conditions with complex mechanisms and diverse manifestations, posing significant clinical challenges. Traditional animal models and ethical concerns in human studies necessitate innovative approaches. This review provides an overview of human intestinal architecture in health and inflammation, emphasizing the role of microfluidics and on-chip technologies in IBD research. These technologies allow precise manipulation of cellular and microbial interactions in a physiologically relevant context, simulating the intestinal ecosystem microscopically. By integrating cellular components and replicating 3D tissue architecture, they offer promising models for studying host-microbe interactions, wound healing, and therapeutic approaches. Continuous refinement of these technologies promises to advance IBD understanding and therapy development, inspiring further innovation and cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Eylul Gulsen Yilmaz
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Nedim Hacıosmanoğlu
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Sebastian Bruno Ulrich Jordi
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010, Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010, Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland.
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.
| |
Collapse
|
15
|
Xie X, Chen X, Wang X, Wang S, Qi P. Dual regulatory effects of gut microbiota and their metabolites in rheumatoid arthritis: balancing pathogenic and protective mechanisms. Front Immunol 2025; 16:1584023. [PMID: 40370449 PMCID: PMC12075411 DOI: 10.3389/fimmu.2025.1584023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disorder characterized by destructive, symmetric joint inflammation and synovitis, resulting in substantial disability that profoundly compromises patients' quality of life. Its pathogenesis encompasses complex interactions between genetic and environmental factors. Recent advances in bacterial DNA sequencing technologies have uncovered a significant correlation between the human gut microbiota composition and rheumatoid arthritis progression. Growing clinical and experimental evidence establishes the gut-joint axis as a crucial mediator in rheumatoid arthritis pathogenesis. Comprehensive investigation of gut microbial communities and their metabolites' influence on rheumatoid arthritis mechanisms, coupled with the elucidation of microbiome's bidirectional regulatory effects in disease development, not only deepens our understanding of pathological processes but also establishes a theoretical framework for developing novel diagnostic biomarkers and personalized therapeutic interventions to enhance patient outcomes.
Collapse
Affiliation(s)
- Xingwen Xie
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xin Chen
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xuetao Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Sunli Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
16
|
Yang X, Cheng J, Xu D, Li C, Zhang D, Zhang Y, Huang K, Li X, Zhao Y, Zhao L, Xu Q, Ma Z, Tian H, Weng X, Peng J, Zhang X, Wang W. Differences in production performance, fore-digestive tract microbiota, and expression levels of nutrient transporters of Hu sheep with different feed conversion ratio. Microbiol Spectr 2025:e0142324. [PMID: 40243371 DOI: 10.1128/spectrum.01423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/19/2025] [Indexed: 04/18/2025] Open
Abstract
Increasing strain on feed resources has led to a gradual increase in feed input costs, making it necessary to improve feed efficiency in livestock and poultry. In this study, Hu sheep were divided into two groups (high and low feed conversion ratio [FCR]) according to the FCR. Based on 16S rDNA amplicon sequencing technology to compare rumen and small intestine microbial composition, the differences and similarities of production performance, expression level of intestinal nutrient-specific carrier, digestive enzyme activity, short-chain fatty acid (SCFA) content, muscle conventional nutrient content, and blood biochemical indexes of Hu sheep in high- and low-FCR groups were investigated, and correlation analysis was conducted. The results showed that Hu sheep in the low-FCR group had higher feed efficiency, average daily gain, and less fat deposition (P < 0.05). The difference in rumen microbial composition between the high- and low-FCR groups was significant (P < 0.05). Spearman's correlation analysis showed that FCR was significantly associated with production performance such as body weight, fat deposition, and dressing percentage (P < 0.05). The levels of digestive enzyme activity and nutrient transporter carrier expression in the small intestine were higher in the low-FCR group than in the high-FCR group. Therefore, FCR can be one of the important targets of concern in Hu sheep production. Combining FCR and regulating the gastrointestinal environment of Hu sheep by nutritional means can greatly improve the production performance and economic benefit of Hu sheep. IMPORTANCE Feed costs account for a large portion of housed sheep. The purpose of comparing the performance and intestinal microbial composition of different FCR Hu sheep is to regulate the gastrointestinal microecology in production practice. This helps livestock producers choose low-FCR Hu sheep to maximize production costs, improve efficiency, and achieve the purpose of low-carbon production.
Collapse
Affiliation(s)
- Xiaobin Yang
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Jiangbo Cheng
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Xu
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Deyin Zhang
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yukun Zhang
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Kai Huang
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Li
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Zhao
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Liming Zhao
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Quanzhong Xu
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Zongwu Ma
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Huibin Tian
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiuxiu Weng
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Jie Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Weimin Wang
- 1State Key Laboratory of Herbage lmprovement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Collegeof Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
17
|
Hetta HF, Sirag N, Elfadil H, Salama A, Aljadrawi SF, Alfaifi AJ, Alwabisi AN, AbuAlhasan BM, Alanazi LS, Aljohani YA, Ramadan YN, Abd Ellah NH, Algammal AM. Artificial Sweeteners: A Double-Edged Sword for Gut Microbiome. Diseases 2025; 13:115. [PMID: 40277825 PMCID: PMC12025785 DOI: 10.3390/diseases13040115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
Background and Aim: The human gut microbiome plays a crucial role in maintaining health. Artificial sweeteners, also known as non-nutritive sweeteners (NNS), have garnered attention for their potential to disrupt the balance of the gut microbiome. This review explores the complex relationship between NNS and the gut microbiome, highlighting their potential benefits and risks. By synthesizing current evidence, we aim to provide a balanced perspective on the role of AS in dietary practices and health outcomes, emphasizing the need for targeted research to guide their safe and effective use. Methods: A comprehensive literature review was conducted through searches in PubMed and Google Scholar, focusing on the effects of artificial sweeteners on gut microbiota. The search utilized key terms including "Gut Microbiome", "gut microbiota", "Eubiosis", "Dysbiosis", "Artificial Sweeteners", and "Nonnutritive Sweeteners". Results: NNS may alter the gut microbiome, but findings remain inconsistent. Animal studies often report a decrease in beneficial bacteria like Bifidobacterium and Lactobacillus, and an increase in harmful strains such as Clostridium difficile and E. coli, potentially leading to inflammation and gut imbalance. Disruptions in short-chain fatty acid (SCFA) production and gut hormone signaling have also been observed. However, human studies generally show milder or no significant changes, highlighting the limitations in translating animal model findings directly to humans. Differences in study design, dosage, exposure time, and sweetener type likely contribute to these varied outcomes. Conclusions: While NNS offer certain benefits, including reduced caloric intake and improved blood sugar regulation, their impact on gut microbiome health raises important concerns. The observed reduction in beneficial bacteria and the rise in pathogenic strains underscore the need for caution in NNS consumption. Furthermore, the disruption of SCFA production and metabolic pathways illustrates the intricate relationship between diet and gut health.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Nizar Sirag
- Division of Pharmacognosy, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Sara F. Aljadrawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (A.J.A.); (A.N.A.); (B.M.A.); (L.S.A.); (Y.A.A.)
| | - Amani J. Alfaifi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (A.J.A.); (A.N.A.); (B.M.A.); (L.S.A.); (Y.A.A.)
| | - Asma N. Alwabisi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (A.J.A.); (A.N.A.); (B.M.A.); (L.S.A.); (Y.A.A.)
| | - Bothinah M. AbuAlhasan
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (A.J.A.); (A.N.A.); (B.M.A.); (L.S.A.); (Y.A.A.)
| | - Layan S. Alanazi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (A.J.A.); (A.N.A.); (B.M.A.); (L.S.A.); (Y.A.A.)
| | - Yara A. Aljohani
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (A.J.A.); (A.N.A.); (B.M.A.); (L.S.A.); (Y.A.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Noura H. Abd Ellah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Badr University in Assiut, Naser City 2014101, Assiut, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
18
|
Ioannou P, Katsoulieris E, Afratis NA. Matrix Dynamics and Microbiome Crosstalk: Matrix Metalloproteinases as Key Players in Disease and Therapy. Int J Mol Sci 2025; 26:3621. [PMID: 40332093 PMCID: PMC12027064 DOI: 10.3390/ijms26083621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are key enzymes involved in extracellular matrix (ECM) remodeling, regulating a wide range of cellular and immune processes in both homeostatic and pathological conditions. Host-microbiota interactions play a critical role in maintaining ECM balance; however, during dysbiosis, this regulation is disrupted, leading to compromised barrier integrity, pathogen translocation into circulation, and the development of systemic diseases and cancer. This review highlights the bidirectional relationship between MMP expression/activity and microbiota dysbiosis, emphasizing tissue-specific alterations in MMP activity that contribute to disease progression. In addition, it integrates interdisciplinary evidence to illustrate the MMP-dependent mechanisms underlying various pathologies associated with oral and gut microbiome dysbiosis, including long-range effects through the gut-skin and gut-brain axes. Thus, this review introduces the emerging field of MatrixBiome, which explores the complex interactions between the ECM, microbiota, and host tissues. Finally, it also outlines therapeutic strategies to modulate MMP levels, either indirectly through microbiome-targeted approaches (e.g., prebiotics, probiotics, and postbiotics) or directly using MMP inhibitors, offering promising avenues for future clinical interventions.
Collapse
Affiliation(s)
- Paraskevi Ioannou
- Laboratory of Biotechnology and Molecular Analysis, Department of Agricultural Development, Agri-Food & Management of Natural Resources, National and Kapodistrian University of Athens, Evripos Campus, 34400 Psachna, Evia, Greece (E.K.)
| | - Elias Katsoulieris
- Laboratory of Biotechnology and Molecular Analysis, Department of Agricultural Development, Agri-Food & Management of Natural Resources, National and Kapodistrian University of Athens, Evripos Campus, 34400 Psachna, Evia, Greece (E.K.)
| | - Nikolaos A. Afratis
- Laboratory of Biotechnology and Molecular Analysis, Department of Agricultural Development, Agri-Food & Management of Natural Resources, National and Kapodistrian University of Athens, Evripos Campus, 34400 Psachna, Evia, Greece (E.K.)
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
19
|
Zhou R, Weng S, He J. Bacterial Infection Disrupts the Intestinal Bacterial Community and Facilitates the Enrichment of Pathogenic Bacteria in the Intestines of Penaeus vannamei. Microorganisms 2025; 13:864. [PMID: 40284700 PMCID: PMC12029295 DOI: 10.3390/microorganisms13040864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Pathogenic infections can reshape the intestinal microbiota of aquatic animals, thereby impacting their health status. In this study, we aimed to investigate whether Vibrio parahaemolyticus infection induces dysbiosis in the intestinal bacterial community of Penaeus vannamei and to assess the associated ecological risks. Our findings revealed the deterministic processes in intestinal bacterial community assembly during bacterial infections, indicating that host selection, i.e., host immune response post-infection, has a significant influence on intestinal microbes. More importantly, we found that bacterial infection reshaped the intestinal community by reducing the relative abundance of probiotic Ruegeria species (e.g., R. atlantica, R. lacuscaerulensis, R. conchae, R. profundi, R. arenilitoris, R. pomeroyi) and increasing the relative abundance of Vibrio species (V. harveyi, V. sinaloensis, V. coralliilyticus, and V. brasiliensis). Significant negative correlations were observed between the relative abundance of these Ruegeria species and the relative abundance of Vibrio species. Moreover, the control P. vannamei contained a substantially higher number of keystone species belonging to Ruegeria in the bacterial community network, whereas bacterial infection individuals had few or no keystone species belonging to Ruegeria, with keystone species belonging to Vibrio becoming more prominent. Thus, the significant increase in Vibrio species abundance in the P. vannamei intestine following bacterial infection was associated with the marked reduction in Ruegeria species. Our findings will provide valuable insights into the complex interactions among bacterial infection, intestinal microbiota, and host health, and they provide guidance for the development of probiotics in promoting the healthy culture of P. vannamei.
Collapse
Affiliation(s)
- Renjun Zhou
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Life Sciences/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai)/China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Life Sciences/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai)/China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
20
|
Dash SK, Marques CNH, Mahler GJ. Small Intestine on a Chip Demonstrates Physiologic Mucus Secretion in the Presence of Lacticaseibacillus rhamnosus Biofilm. Biotechnol Bioeng 2025. [PMID: 40197633 DOI: 10.1002/bit.28989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
The small intestine is an area of the digestive system difficult to access using current medical procedures, which prevents studies on the interactions between food, drugs, the small intestinal epithelium, and resident microbiota. Therefore, there is a need to develop novel microfluidic models that mimic the intestinal biological and mechanical environments. These models can be used for drug discovery and disease modeling and have the potential to reduce reliance on animal models. The goal of this study was to develop a small intestine on a chip with both enterocyte (Caco-2) and goblet (HT29-MTX) cells cocultured with Lacticaseibacillus rhamnosus biofilms, which is of one of several genera present in the small intestinal microbiota. L. rhamnosus was introduced following the establishment of the epithelial barrier. The shear stress within the device was kept in the lower physiological range (0.3 mPa) to enable biofilm development over the in vitro epithelium. The epithelial barrier differentiated after 5 days of dynamic culture with cell polarity and permeability similar to the human small intestine. The presence of biofilms did not alter the barrier's permeability in dynamic conditions. Under fluid flow, the complete model remained viable and functional for more than 5 days, while the static model remained functional for only 1 day. The presence of biofilm increased the secretion of acidic and neutral mucins by the epithelial barrier. Furthermore, the small intestine on a chip also showed increased MUC2 production, which is a dominant gel-forming mucin in the small intestine. This model builds on previous publications as it establishes a stable environment that closely mimics in vivo conditions and can be used to study intestinal physiology, food-intestinal interactions, and drug development.
Collapse
Affiliation(s)
- Sanat Kumar Dash
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York, USA
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Cláudia N H Marques
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
21
|
He X, Xiao T, Fang J, Zhang P, Luo S, Han S, Wu Y, Li L, Cao Z, Ji Y, Dong G, Deng B. Uncovering the Effects of Different Formulae of Milk Powders on the Fecal Microorganisms and Metabolites of Bengal Tiger ( Panthera tigris spp. tigris) Cubs. Animals (Basel) 2025; 15:1053. [PMID: 40218446 PMCID: PMC11988094 DOI: 10.3390/ani15071053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
In order to optimize diets for Bengal tiger cubs and improve their health condition and survival rates, we conducted microbiota and metabolomics analyses on fecal samples from Bengal tiger cubs fed goat and dog milk replacer formulae. The results showed that there were significant differences in fecal microorganisms and metabolites between the two groups. At the phylum level, the major components of the microbial composition in the feces of cubs were Firmicutes, Actinobacteriota, Proteobacteria, Bacteroidota and Fusobacteriota. In addition, the abundance of gut microbiota varied significantly between the two groups of tiger cubs. The fecal microbiota of the tiger cubs fed dog milk replacer powder exhibited an increase in probiotic bacteria (Anaerostipes and Clostridium_scindens) (p < 0.05), and the microbial community tended to be more balanced. Metabolomics data further elucidated that feeding different milk formulae significantly affected the fecal metabolites and metabolic pathways in the Bengal tiger cubs. In the dog milk replacer powder group, 76 metabolites were up-regulated (p < 0.05), and 278 metabolites were down-regulated (p < 0.05), particularly affecting the metabolism of vitamin D3, vitamin B5, isoleucine, valine, phenylalanine and oleic acid. At the same time, 19 metabolic pathways were affected (p < 0.05), including the amino acid metabolism, lipid metabolism and nucleotide metabolism pathways. In conclusion, this study confirms that milk formula composition affects the gut microbiota and metabolism of Bengal tiger cubs. These findings may provide new insights into how different milk powder formulae and dietary strategies influence the regulation of gut microbiota and overall health in Bengal tiger cubs.
Collapse
Affiliation(s)
- Xuanzhen He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Xiao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jing Fang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Chimelong Group Co., Guangzhou 511430, China
| | - Peng Zhang
- Chimelong Group Co., Guangzhou 511430, China
| | | | - Sufang Han
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuansheng Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lizhen Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhihao Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuhan Ji
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guixin Dong
- Chimelong Group Co., Guangzhou 511430, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Marano G, Rossi S, Sfratta G, Traversi G, Lisci FM, Anesini MB, Pola R, Gasbarrini A, Gaetani E, Mazza M. Gut Microbiota: A New Challenge in Mood Disorder Research. Life (Basel) 2025; 15:593. [PMID: 40283148 PMCID: PMC12028401 DOI: 10.3390/life15040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
The gut microbiome has emerged as a novel and intriguing focus in mood disorder research. Emerging evidence demonstrates the significant role of the gut microbiome in influencing mental health, suggesting a bidirectional communication between the gut and the brain. This review examines the latest findings on the gut-microbiota-brain axis and elucidates how alterations in gut microbiota composition can influence this axis, leading to changes in brain function and behavior. Although dietary interventions, prebiotics, probiotics, and fecal microbiota transplantation have yielded encouraging results, significant advances are needed to establish next-generation approaches that precisely target the neurobiological mechanisms of mood disorders. Future research must focus on developing personalized treatments, facilitated by innovative therapies and technological progress, which account for individual variables such as age, sex, drug history, and lifestyle. Highlighting the potential therapeutic implications of targeting the gut microbiota, this review emphasizes the importance of integrating microbiota research into psychiatric studies to develop more effective and personalized treatment strategies for mood disorders.
Collapse
Affiliation(s)
- Giuseppe Marano
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sara Rossi
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Greta Sfratta
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Ospedale Isola Tiberina-Gemelli Isola, 00186 Rome, Italy
| | - Francesco Maria Lisci
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Benedetta Anesini
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roberto Pola
- Section of Internal Medicine and Thromboembolic Diseases, Department of Internal Medicine, Fondazione Poli-Clinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Eleonora Gaetani
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unit of Internal Medicine, Cristo Re Hospital, 00167 Rome, Italy
| | - Marianna Mazza
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
23
|
Wu X, Yu W, Luo R, Lin J, Yang Q, Zeng S, Dai B, Wang D. Modified Shi Hui San decoction ameliorates murine experimental colitis through multiple mechanisms. Fitoterapia 2025; 182:106485. [PMID: 40112896 DOI: 10.1016/j.fitote.2025.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Modified Shi Hui San (MSHS) has shown excellent therapeutic effects on ulcerative colitis (UC) patients clinically in China. However, the exact mechanism underlying its effect remains unclear and needs to further investigation. AIMS This study aimed to investigate the therapeutic effects of modified Shi Hui San decoction (MSHSD) in murine experimental colitis and explore its underlying mechanisms. METHODS To examine the effects of MSHSD on UC, a murine model of colitis was induced using 2.5 % dextran sodium sulfate (DSS). The mice were then treated with MSHSD at the doses of 6.25 or 25 g/kg for 10 days. The progression of colitis was evaluated through clinical symptoms, histopathological analysis, evaluation of mucosal barrier integrity, biochemical assays, and analysis of the gut microbiota composition. RESULTS MSHSD administration markedly ameliorated experimental colitis in DSS-treated mice by suppressing inflammation, restoring the intestinal mucus barrier, alleviating oxidative stress, and reestablishing immunity. More importantly, it transformed the gut microbiota structure from an imbalanced state to a normal state. CONCLUSIONS These findings for the first time extend our understanding of the mechanisms, by which MSHSD ameliorates murine experimental colitis, and support the clinical use of MSHS for UC treatment.
Collapse
Affiliation(s)
- Xinyi Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenwen Yu
- Department of Pharmacy, Yuyao Hospital of Traditional Chinese Medicine, Ningbo 315400, China
| | - Ruichang Luo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Lin
- Department of Medical Experiment, Ningbo No.2 Hospital, Ningbo 315410, China
| | - Qiujie Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuchun Zeng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Binbin Dai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
24
|
Saadh MJ, Ahmed HH, Kareem RA, Sanghvi G, Ganesan S, Agarwal M, Kaur P, Taher WM, Alwan M, Jawad MJ, Hamad AK. Short-chain fatty acids in Huntington's disease: Mechanisms of action and their therapeutic implications. Pharmacol Biochem Behav 2025; 249:173972. [PMID: 39983928 DOI: 10.1016/j.pbb.2025.173972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and emotional instability, primarily resulting from the abnormal accumulation of mutant huntingtin protein. Growing research highlights the role of intestinal microbiota and their metabolites, particularly short-chain fatty acids (SCFAs), in modulating HD progression. SCFAs, including acetate, propionate, and butyrate, are produced by gut bacteria through dietary fiber fermentation and are recognized for their neuroprotective properties. Evidence suggests that SCFAs regulate neuroinflammation, neuronal communication, and metabolic functions within the central nervous system (CNS). In HD, these compounds may support neuronal health, reduce oxidative stress, and enhance blood-brain barrier (BBB) integrity. Their mechanisms of action involve binding to G-protein-coupled receptors (GPCRs) and modulating gene expression through epigenetic pathways, underscoring their therapeutic potential. This analysis examines the significance of SCFAs in HD, emphasizing the gut-brain axis and the benefits of dietary interventions aimed at modifying gut microbiota composition and promoting SCFA production. Further research into these pathways may pave the way for novel HD management strategies and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mohit Agarwal
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University, Rajasthan, Jaipur,302131, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | |
Collapse
|
25
|
Wang X, Qiu Y, Di Y, Shaohua H, Wu W, Wang W, Liu H, Li P. Potential causal association between gut microbiota, inflammatory cytokines, and acute pancreatitis: A Mendelian randomization study. JOURNAL OF INTENSIVE MEDICINE 2025; 5:185-192. [PMID: 40241835 PMCID: PMC11997579 DOI: 10.1016/j.jointm.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 04/18/2025]
Abstract
Background Acute pancreatitis (AP) ranks among the most frequently encountered gastrointestinal diseases in the emergency department. Recent studies have increasingly emphasized the substantial connection among gut microbiota, inflammatory cytokines, and AP. Methods A two-sample Mendelian randomization (MR) study was conducted using summary statistics of gut microbiota (GM) from the largest available meta-analysis of genome-wide association studies conducted by the MiBioGen consortium (n=18,340). For cytokines, the data were obtained from a study that investigated genome variant associations with 41 inflammatory cytokines and growth factors (n=8293). The summary statistics of AP were obtained from the FinnGen consortium version R5 data (3022 cases and 195,144 controls). The inverse variance weighted (IVW) method was used as the main analysis, with MR-Egger and weighted median as complementary analytical methods. Sensitivity analyses were performed using Cochran's Q-test, MR-Egger intercept test, leave-one-out analyses, and MR-PRESSO. In addition, we employed the reverse MR analysis and MR Steiger method to estimate the orientations of exposure and outcome. Result Among the 211 examined GM taxa, the IVW method revealed that Bacteroidales (odds ratio [OR]=1.412, 95% confidence interval [CI]:1.057 to 1.885, P=0.019), Eubacterium fissicatena group (OR=1.240, 95% CI:1.045 to 1.470, P=0.014), and Coprococcus3 (OR=1.481, 95 % CI:1.049 to 2.090, P=0.026) exhibited a positive association with AP. Conversely, Prevotella9 (OR=0.821, 95% CI:0.680 to 0.990, P=0.038), RuminococcaceaeUCG004 (OR=0.757, 95% CI:0.577 to 0.994, P=0.045), and Ruminiclostridium6 (OR=0.696, 95% CI:0.548 to 0.884, P=0.003) displayed a negative correlation with AP. Among the 41 inflammatory cytokines, only macrophage colony-stimulating factor (M_CSF, OR=0.894, 95% CI:0.847 to 0.943, P=0.037) exhibited a negative association with AP. Sensitivity analyses revealed no evidence of pleiotropy or heterogeneity. Nevertheless, the mediation analysis showed that M_CSF did not act as a mediating factor. Conclusion This two-sample MR study revealed causal associations between specific GM and inflammatory cytokines with AP, respectively. However, inflammatory cytokines did not appear to act as mediating factors in the pathway from GM to AP.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Critical Care Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Qiu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Di
- Intensive Care Unit, Shaanxi Provincial Rehabilitation Hospital, Xi'an, Shaanxi, China
| | - Hou Shaohua
- School of Life Sciences and Medicine, Northwest University, Xi ‘an, Shaanxi, China
| | - Wei Wu
- Department of Critical Care Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Weiyi Wang
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Liu
- Department of Critical Care Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Pu Li
- Department of Critical Care Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
26
|
Jiang Y, Aton M, Zhu Q, Lu YY. Modeling microbiome-trait associations with taxonomy-adaptive neural networks. MICROBIOME 2025; 13:87. [PMID: 40158141 PMCID: PMC11954268 DOI: 10.1186/s40168-025-02080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
The human microbiome, a complex ecosystem of microorganisms inhabiting the body, plays a critical role in human health. Investigating its association with host traits is essential for understanding its impact on various diseases. Although shotgun metagenomic sequencing technologies have produced vast amounts of microbiome data, analyzing such data is highly challenging due to its sparsity, noisiness, and high feature dimensionality. Here, we develop MIOSTONE, an accurate and interpretable neural network model for microbiome-disease association that simulates a real taxonomy by encoding the relationships among microbial features. The taxonomy-encoding architecture provides a natural bridge from variations in microbial taxa abundance to variations in traits, encompassing increasingly coarse scales from species to domains. MIOSTONE has the ability to determine whether taxa within the corresponding taxonomic group provide a better explanation in a data-driven manner. MIOSTONE serves as an effective predictive model, as it not only accurately predicts microbiome-trait associations across extensive simulated and real datasets but also offers interpretability for scientific discovery. Both attributes are crucial for facilitating in silico investigations into the biological mechanisms underlying such associations among microbial taxa. Video Abstract.
Collapse
Affiliation(s)
- Yifan Jiang
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Matthew Aton
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Yang Young Lu
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
27
|
Shao J, Zheng Q, Chen Z, Zhu W, Ren Q, Yuan K, Yang L. Enzyme-Treated Soybean Meal Serves as an Effective Alternative to Fishmeal in the Diet of the Shrimp Penaeus vannamei. AQUACULTURE NUTRITION 2025; 2025:2312302. [PMID: 40166384 PMCID: PMC11957856 DOI: 10.1155/anu/2312302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Research on finding alternative protein sources to replace fishmeal (FM) has become a central issue in the nutrition field. Extensive research has been carried out on the replacement of FM with soybean meal (SBM); however, little is known about the replacement of FM with enzyme-treated SBM (ESBM). In this study, five isolipidic and isonitrogenous diets were formulated by substituting FM with ESBM at the levels of 0% (FM, control diet), 5% (ESBM25), 10% (ESBM50), and 15% (ESBM75) which were fed to juvenile shrimp for 8 weeks. And we found that replacing FM with ESBM at 5%-10% levels in shrimp diets had no impact on shrimp growth performance and feed utilization. However, substituting 10% ESBM for FM in the shrimp diets promoted the expression of growth-related genes and maintained consistent intestinal microbiota compared to the control group. Replacing FM with 15% ESBM in the shrimp diets inhibited shrimp growth, suppressed mTOR gene expression, and promoted the proliferation of harmful intestinal bacteria. Furthermore, replacing FM with different ESBM did not affect the intestinal health of shrimp. Taken together, our research provides that replacing FM with 10% ESBM is feasible. These findings not only enrich our knowledge of FM proteinogen replacement but also provide a reference for the use of ESBM as a substitute for FM in commercial feeds for shrimp Penaeus vannamei as well as other shrimp species.
Collapse
Affiliation(s)
- Jianchun Shao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qingyin Zheng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | | | - Wenbo Zhu
- Fuzhou Haima Feed Co., Ltd., Fuzhou, Fujian, China
| | - Qiulei Ren
- Fuzhou Haima Feed Co., Ltd., Fuzhou, Fujian, China
| | - Kai Yuan
- School of Life Science, Huizhou University, Huizhou, Guangdong, China
| | - Linwei Yang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
28
|
Hohmann M, Iliasov D, Larralde M, Johannes W, Janßen KP, Zeller G, Mascher T, Gulder TAM. Heterologous Expression of a Cryptic BGC from Bilophila sp. Provides Access to a Novel Family of Antibacterial Thiazoles. ACS Synth Biol 2025; 14:967-978. [PMID: 39999339 PMCID: PMC11934131 DOI: 10.1021/acssynbio.5c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Human health is greatly influenced by the gut microbiota and microbiota imbalance can lead to the development of diseases. It is widely acknowledged that the interaction of bacteria within competitive ecosystems is influenced by their specialized metabolites, which act, e.g., as antibacterials or siderophores. However, our understanding of the occurrence and impact of such natural products in the human gut microbiome remains very limited. As arylthiazole siderophores are an emerging family of growth-promoting molecules in pathogenic bacteria, we analyzed a metagenomic data set from the human microbiome and thereby identified the bil-BGC, which originates from an uncultured Bilophila strain. Through gene synthesis and BGC assembly, heterologous expression and mutasynthetic experiments, we discovered the arylthiazole natural products bilothiazoles A-F. While established activities of related molecules indicate their involvement in metal-binding and -uptake, which could promote the growth of pathogenic strains, we also found antibiotic activity for some bilothiazoles. This is supported by biosensor-experiments, where bilothiazoles C and E show PrecA-suppressing activity, while bilothiazole F induces PblaZ, a biosensor characteristic for β-lactam antibiotics. These findings serve as a starting point for investigating the role of bilothiazoles in the pathogenicity of Bilophila species in the gut.
Collapse
Affiliation(s)
- Maximilian Hohmann
- Chair
of Technical Biochemistry, TUD Dresden University
of Technology, Bergstraße 66, 01069 Dresden, Germany
| | - Denis Iliasov
- General
Microbiology, TUD Dresden University of
Technology, Zellescher
Weg 20b, 01217 Dresden, Germany
| | - Martin Larralde
- Leiden
University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Widya Johannes
- Department
of Surgery, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Klaus-Peter Janßen
- Department
of Surgery, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Georg Zeller
- Leiden
University Center for Infectious Diseases (LUCID) and Center for Microbiome
Analyses and Therapeutics (CMAT), Leiden
University Medical Center, 2333 ZA Leiden, Netherlands
| | - Thorsten Mascher
- General
Microbiology, TUD Dresden University of
Technology, Zellescher
Weg 20b, 01217 Dresden, Germany
| | - Tobias A. M. Gulder
- Chair
of Technical Biochemistry, TUD Dresden University
of Technology, Bergstraße 66, 01069 Dresden, Germany
- Department
of Natural Product Biotechnology, Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Centre for Infection Research
(HZI) and Department of Pharmacy, PharmaScienceHub (PSH), Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
29
|
Luo Z, Ou H, Tan Z, Jiao J. Rumen-protected methionine and lysine supplementation to the low protein diet improves animal growth through modulating colonic microbiome in lambs. J Anim Sci Biotechnol 2025; 16:46. [PMID: 40102971 PMCID: PMC11917156 DOI: 10.1186/s40104-025-01183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Dietary protein level and amino acid (AA) balance are crucial determinants of animal health and productivity. Supplementing rumen-protected AAs in low-protein diets was considered as an efficient strategy to improve the growth performance of ruminants. The colon serves as a crucial conduit for nutrient metabolism during rumen-protected methionine (RPMet) and rumen-protected lysine (RPLys) supplementation, however, it has been challenging to clarify which specific microbiota and their metabolites play a pivotal role in this process. Here, we applied metagenomic and metabolomic approaches to compare the characteristic microbiome and metabolic strategies in the colon of lambs fed a control diet (CON), a low-protein diet (LP) or a LP diet supplemented with RPMet and RPLys (LR). RESULTS The LP treatment decreased the average daily weight gain (ADG) in lambs, while the LR treatment tended to elicit a remission in ADG. The butyrate molar concentration was greater (P < 0.05), while acetate molar concentration (P < 0.05) was lower for lambs fed the LP and LR diets compared to those fed the CON diet. Moreover, the LP treatment remarkably decreased total AA concentration (P < 0.05), while LR treatment showed an improvement in the concentrations of methionine, lysine, leucine, glutamate, and tryptophan. Metagenomic insights proved that the microbial metabolic potentials referring to biosynthesis of volatile fatty acids (VFAs) and AAs in the colon were remarkably altered by three dietary treatments. Metagenomic binning identified distinct microbial markers for the CON group (Alistipes spp., Phocaeicola spp., and Ruminococcus spp.), LP group (Fibrobacter spp., Prevotella spp., Ruminococcus spp., and Escherichia coli), and LR group (Akkermansia muciniphila and RUG099 spp.). CONCLUSIONS Our findings suggest that RPMet and RPLys supplementation to the low-protein diet could enhance the microbial biosynthesis of butyrate and amino acids, enriche the beneficial bacteria in the colon, and thereby improve the growth performance of lambs.
Collapse
Affiliation(s)
- Zhibin Luo
- State Key Laboratory of Forage Breeding-by-Design and Utilization, CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Huimin Ou
- State Key Laboratory of Forage Breeding-by-Design and Utilization, CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Zhiliang Tan
- State Key Laboratory of Forage Breeding-by-Design and Utilization, CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Jinzhen Jiao
- State Key Laboratory of Forage Breeding-by-Design and Utilization, CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
| |
Collapse
|
30
|
Rosati S, Maiuro L, Lombardi SJ, Iaffaldano N, Di Iorio M, Cariglia M, Lopez F, Cofelice M, Tremonte P, Sorrentino E. Integrated Biotechnological Strategies for the Sustainability and Quality of Mediterranean Sea Bass ( Dicentrarchus labrax) and Sea Bream ( Sparus aurata). Foods 2025; 14:1020. [PMID: 40232063 PMCID: PMC11941681 DOI: 10.3390/foods14061020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
This review examines the current state of the supply chain management for Dicentrarchus labrax (sea bass) and Sparus aurata (sea bream), two key commercial fish species in the Mediterranean. It provides a comprehensive analysis of sustainable innovations in aquaculture, processing, and packaging, with particular attention to circular economy-based biopreservation techniques. A major focus is on the Integrated Multi-Trophic Aquaculture (IMTA) system, an advanced farming approach that enhances sustainability, promotes circular resource utilization, and improves fish welfare. By fostering ecological balance through the co-cultivation of multiple species, IMTA contributes to the overall quality of fish products for human consumption. Beyond aquaculture, the review addresses the critical challenge of food loss, which stems from the high perishability of fish during storage and processing. In this regard, it highlights recent advancements in biopreservation strategies, including the application of antagonistic microorganisms, their metabolites, and plant-derived extracts. Particular attention is given to the development of edible antimicrobial films, with a focus on the valorization of citrus processing by-products for their production. By centering on innovations specific to the Mediterranean context, this review underscores that a holistic, integrative approach to supply chain management is essential for transitioning the aquaculture sector toward greater efficiency and sustainability.
Collapse
Affiliation(s)
- Sebastiano Rosati
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via Francesco de Sanctis snc, 86100 Campobasso, Italy; (S.R.); (N.I.); (M.D.I.); (F.L.); (M.C.); (P.T.); (E.S.)
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Lucia Maiuro
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via Francesco de Sanctis snc, 86100 Campobasso, Italy; (S.R.); (N.I.); (M.D.I.); (F.L.); (M.C.); (P.T.); (E.S.)
| | - Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via Francesco de Sanctis snc, 86100 Campobasso, Italy; (S.R.); (N.I.); (M.D.I.); (F.L.); (M.C.); (P.T.); (E.S.)
| | - Nicolaia Iaffaldano
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via Francesco de Sanctis snc, 86100 Campobasso, Italy; (S.R.); (N.I.); (M.D.I.); (F.L.); (M.C.); (P.T.); (E.S.)
| | - Michele Di Iorio
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via Francesco de Sanctis snc, 86100 Campobasso, Italy; (S.R.); (N.I.); (M.D.I.); (F.L.); (M.C.); (P.T.); (E.S.)
| | - Michela Cariglia
- Gargano Pesca Società Agricola Consortile Arl-Società Benefit, Via Rucher 5, Interno 1/C, 71043 Manfredonia, Italy;
- Gargano Shell Fish Farm Societa’ Cooperativa Agricola Arl, Pontile Alti Fondali, SC, 71043 Manfredonia, Italy
| | - Francesco Lopez
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via Francesco de Sanctis snc, 86100 Campobasso, Italy; (S.R.); (N.I.); (M.D.I.); (F.L.); (M.C.); (P.T.); (E.S.)
| | - Martina Cofelice
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via Francesco de Sanctis snc, 86100 Campobasso, Italy; (S.R.); (N.I.); (M.D.I.); (F.L.); (M.C.); (P.T.); (E.S.)
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via Francesco de Sanctis snc, 86100 Campobasso, Italy; (S.R.); (N.I.); (M.D.I.); (F.L.); (M.C.); (P.T.); (E.S.)
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via Francesco de Sanctis snc, 86100 Campobasso, Italy; (S.R.); (N.I.); (M.D.I.); (F.L.); (M.C.); (P.T.); (E.S.)
| |
Collapse
|
31
|
Lewis N, Villani A, Lagopoulos J. Gut dysbiosis as a driver of neuroinflammation in attention-deficit/hyperactivity disorder: A review of current evidence. Neuroscience 2025; 569:298-321. [PMID: 39848564 DOI: 10.1016/j.neuroscience.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
There is mounting evidence for the involvement of the immune system, neuroinflammation and disturbed gut microbiota, or dysbiosis, in attention-deficit/hyperactivity disorder (ADHD). Gut dysbiosis is strongly implicated in many physical, autoimmune, neurological, and neuropsychiatric conditions, however knowledge of its particular pathogenic role in ADHD is sparse. As such, this narrative review examines and synthesizes the available evidence related to inflammation, dysbiosis, and neural processes in ADHD. Minimal differences in microbiota diversity measures between cases and controls were found, however many relative abundance differences were observed at all classification levels (phylum to strain). Compositional differences of taxa important to key gut-brain axis pathways, in particular Bacteroides species and Faecalibacterium, may contribute to inflammation, brain functioning differences, and symptoms, in ADHD. We have identified one possible model of ADHD etiopathogenesis involving systemic inflammation, an impaired blood-brain barrier, and neural disturbances as downstream consequences of gut dysbiosis. Nevertheless, studies conducted to date have varied degrees of methodological rigour and involve diverse participant characteristics and analytical techniques, highlighting a need for additional research.
Collapse
Affiliation(s)
- Naomi Lewis
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia; Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya, QLD 4575, Australia.
| | - Anthony Villani
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia.
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Eccles Blvd, Birtinya, QLD 4575, Australia.
| |
Collapse
|
32
|
Kim MJ, Lee YJ, Hussain Z, Park H. Effect of Probiotics on Improving Intestinal Mucosal Permeability and Inflammation after Surgery. Gut Liver 2025; 19:207-218. [PMID: 39327843 PMCID: PMC11907258 DOI: 10.5009/gnl240170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Aims We explored the mechanisms underlying the improvement of postoperative ileus (POI) following probiotic pretreatment. We assessed intestinal permeability, inflammation, tight junction (TJ) protein expression in the gut epithelium, and plasma interleukin (IL)-17 levels in a guinea pig model of POI. Methods Guinea pigs were divided into control, POI, and probiotic groups. The POI and probiotic groups underwent surgery, but the probiotic group received probiotics before the procedure. The ileum and proximal colon were harvested. Intestinal permeability was measured via horseradish peroxidase permeability. Inflammation was evaluated via leukocyte count in the intestinal wall muscle layer, and calprotectin expression in each intestinal wall layer was analyzed immunohistochemically. TJ proteins were analyzed using immunohistochemical staining, and plasma IL-17 levels were measured using an enzyme-linked immunosorbent assay. Results The POI group exhibited increased intestinal permeability and inflammation, whereas probiotic pretreatment reduced the extent of these POI-induced changes. Probiotics restored the expression of TJ proteins occludin and zonula occludens-1 in the proximal colon, which were increased in the POI group. Calprotectin expression significantly increased in the muscle layer of the POI group and was downregulated in the probiotic group; however, no distinct differences were observed between the mucosal and submucosal layers. Plasma IL-17 levels did not significantly differ among the groups. Conclusions Probiotic pretreatment may relieve POI by reducing intestinal permeability and inflammation and TJ protein expression in the gut epithelium. These findings suggest a potential therapeutic approach for POI management.
Collapse
Affiliation(s)
- Min-Jae Kim
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ju Lee
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Zahid Hussain
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Xialu S, Faqiang M. Mechanisms of action of intestinal microorganisms and advances in head and neck tumors. Discov Oncol 2025; 16:303. [PMID: 40072772 PMCID: PMC11903988 DOI: 10.1007/s12672-025-02035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
In the last decade, it has been discovered that intestinal flora can affect various organ-specific cancers by altering the body's energy balance, synthesizing genetic toxins and small signaling molecules, and initiating and modulating immune responses. In this review, we will focus on elucidating the role of intestinal flora based on its molecular mechanisms and its possible impact on head and neck cancers in the near future, and explore how it may be a novel approach to treating head and neck cancers in the future.
Collapse
Affiliation(s)
- Su Xialu
- Graduate School of Guizhou Medical University, Guiyang, 550000, China
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Ma Faqiang
- Graduate School of Guizhou Medical University, Guiyang, 550000, China.
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China.
| |
Collapse
|
34
|
Al-Qadami G, Raposo A, Chien CC, Ma C, Priebe I, Hor M, Fung K. Intestinal organoid coculture systems: current approaches, challenges, and future directions. Am J Physiol Gastrointest Liver Physiol 2025; 328:G252-G276. [PMID: 39716040 DOI: 10.1152/ajpgi.00203.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
The intestinal microenvironment represents a complex and dynamic ecosystem, comprising a diverse range of epithelial and nonepithelial cells, a protective mucus layer, and a diverse community of gut microbiota. Understanding the intricate interplay between these components is essential for uncovering the mechanisms underlying intestinal health and disease. The development of intestinal organoids, three-dimensional (3-D) mini-intestines that closely mimic the architecture, cellular diversity, and functionality of the intestine, offers a powerful platform for investigating different aspects of intestinal physiology and pathology. However, current intestinal organoid models, mainly adult stem cell-derived organoids, lack the nonepithelial and microbial components of the intestinal microenvironment. As such, several coculture systems have been developed to coculture intestinal organoids with other intestinal elements including microbes (bacteria and viruses) and immune, stromal, and neural cells. These coculture models allow researchers to recreate the complex intestinal environment and study the intricate cross talk between different components of the intestinal ecosystem under healthy and pathological conditions. Currently, there are several approaches and methodologies to establish intestinal organoid cocultures, and each approach has its own strengths and limitations. This review discusses the existing methods for coculturing intestinal organoids with different intestinal elements, focusing on the methodological approaches, strengths and limitations, and future directions.
Collapse
Affiliation(s)
| | - Anita Raposo
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| | - Chia-Chi Chien
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Chenkai Ma
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| | - Ilka Priebe
- Health and Biosecurity, CSIRO, Adelaide, South Australia, Australia
| | - Maryam Hor
- Health and Biosecurity, CSIRO, Adelaide, South Australia, Australia
| | - Kim Fung
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Westerbeke FHM, Attaye I, Rios‐Morales M, Nieuwdorp M. Glycaemic sugar metabolism and the gut microbiota: past, present and future. FEBS J 2025; 292:1421-1436. [PMID: 39359099 PMCID: PMC11927047 DOI: 10.1111/febs.17293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/02/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Non-communicable diseases (NCDs), such as type 2 diabetes (T2D) and metabolic dysfunction-associated fatty liver disease, have reached epidemic proportions worldwide. The global increase in dietary sugar consumption, which is largely attributed to the production and widespread use of cheap alternatives such as high-fructose corn syrup, is a major driving factor of NCDs. Therefore, a comprehensive understanding of sugar metabolism and its impact on host health is imperative to rise to the challenge of reducing NCDs. Notably, fructose appears to exert more pronounced deleterious effects than glucose, as hepatic fructose metabolism induces de novo lipogenesis and insulin resistance through distinct mechanisms. Furthermore, recent studies have demonstrated an intricate relationship between sugar metabolism and the small intestinal microbiota (SIM). In contrast to the beneficial role of colonic microbiota in complex carbohydrate metabolism, sugar metabolism by the SIM appears to be less beneficial to the host as it can generate toxic metabolites. These fermentation products can serve as a substrate for fatty acid synthesis, imposing negative health effects on the host. Nevertheless, due to the challenging accessibility of the small intestine, our knowledge of the SIM and its involvement in sugar metabolism remains limited. This review presents an overview of the current knowledge in this field along with implications for future research, ultimately offering potential therapeutic avenues for addressing NCDs.
Collapse
Affiliation(s)
- Florine H. M. Westerbeke
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Melany Rios‐Morales
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| |
Collapse
|
36
|
Goto K, Matsusue R, Degawa K, Miki A, Nakanishi H, Hata H, Narita M, Yamaguchi T. Surgical site infection reduction bundle in stoma closure: A retrospective cohort study. SURGERY IN PRACTICE AND SCIENCE 2025; 20:100277. [PMID: 40104439 PMCID: PMC11914828 DOI: 10.1016/j.sipas.2025.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction Advances in minimally invasive surgeries and pre-operative treatments allow the preservation of anal function through lower anastomosis in patients with rectal cancer, often necessitating temporary diverting stomas owing to the risk of anastomotic leakage. Stoma closure is associated with a high rate of surgical site infections (SSIs). Various measures, including purse-string skin sutures and negative-pressure wound therapy, have been implemented, and some guidelines recommend purse-string skin sutures as the standard method of stoma closure. However, at our institution, we used linear skin closure with an SSI reduction bundle. This study describes our stoma closure method and retrospectively analyses surgical outcomes. Materials and Methods This retrospective study included patients aged ≥ 20 years who underwent loop stoma closure using linear skin sutures at our institution between January 2006 and March 2021. Our protocol emphasises the following: (1) pre-operative oral anti-microbials, (2) a surgical technique that distinctly separates clean and contaminated regions, and (3) wound closure to eliminate dead space. We evaluated the surgical outcomes, including the incidence of SSIs and other post-operative complications. Results Ninety-two patients (53 men, 39 women; mean age, 59.4 years) underwent loop stoma closure. SSIs occurred in two patients (2.2%). No risk factors for SSIs were identified. Conclusion In our department, the incidence of SSIs after linear skin closure of stomas was low. Adherence to proper infection prevention practices can effectively mitigate SSIs, even with linear skin closure.
Collapse
Affiliation(s)
- Kentaro Goto
- Department of Surgery, National Hospital Organisation Kyoto Medical Centre, Kyoto, Japan
- Division of Gastrointestinal Surgery, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Ryo Matsusue
- Department of Surgery, National Hospital Organisation Kyoto Medical Centre, Kyoto, Japan
- Department of Gastroenterological Surgery, Tenri Hospital, Nara, Japan
| | - Kanako Degawa
- Department of Surgery, National Hospital Organisation Kyoto Medical Centre, Kyoto, Japan
| | - Akimori Miki
- Department of Surgery, National Hospital Organisation Kyoto Medical Centre, Kyoto, Japan
| | - Hiroki Nakanishi
- Department of Surgery, National Hospital Organisation Kyoto Medical Centre, Kyoto, Japan
| | - Hiroaki Hata
- Department of Surgery, National Hospital Organisation Kyoto Medical Centre, Kyoto, Japan
- Department of Infection Control, National Hospital Organisation Kyoto Medical Centre, Kyoto, Japan
| | - Masato Narita
- Department of Surgery, National Hospital Organisation Kyoto Medical Centre, Kyoto, Japan
- Department of Surgery, Kobe City Medical Centre General Hospital, Kobe, Japan
| | - Takashi Yamaguchi
- Department of Surgery, National Hospital Organisation Kyoto Medical Centre, Kyoto, Japan
| |
Collapse
|
37
|
Di Napoli A, Pasquini L, Visconti E, Vaccaro M, Rossi-Espagnet MC, Napolitano A. Gut-brain axis and neuroplasticity in health and disease: a systematic review. LA RADIOLOGIA MEDICA 2025; 130:327-358. [PMID: 39718685 DOI: 10.1007/s11547-024-01938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
The gut microbiota emerged as a potential modulator of brain connectivity in health and disease. This systematic review details current evidence on the gut-brain axis and its influence on brain connectivity. The initial set of studies included 532 papers, updated to January 2024. Studies were selected based on employed techniques. We excluded reviews, studies without connectivity focus, studies on non-human subjects. Forty-nine papers were selected. Employed techniques in healthy subjects included 15 functional magnetic resonance imaging studies (fMRI), 5 diffusion tensor imaging, (DTI) 1 electroencephalography (EEG), 6 structural magnetic resonance imaging, 2 magnetoencephalography, 1 spectroscopy, 2 arterial spin labeling (ASL); in patients 17 fMRI, 6 DTI, 2 EEG, 9 structural MRI, 1 transcranial magnetic stimulation, 1 spectroscopy, 2 R2*MRI. In healthy subjects, the gut microbiota was associated with connectivity of areas implied in cognition, memory, attention and emotions. Among the tested areas, amygdala and temporal cortex showed functional and structural differences based on bacteria abundance, as well as frontal and somatosensory cortices, especially in patients with inflammatory bowel syndrome. Several studies confirmed the connection between microbiota and brain functions in healthy subjects and patients affected by gastrointestinal to renal and psychiatric diseases.
Collapse
Affiliation(s)
- Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, 00189, Rome, Italy
| | - Luca Pasquini
- Radiology Department, Memorial Sloan Kettering Cancer Center, New York City, 10065, USA.
- Radiology Department, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA.
| | | | - Maria Vaccaro
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | | | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| |
Collapse
|
38
|
Mehta I, Juneja K, Nimmakayala T, Bansal L, Pulekar S, Duggineni D, Ghori HK, Modi N, Younas S. Gut Microbiota and Mental Health: A Comprehensive Review of Gut-Brain Interactions in Mood Disorders. Cureus 2025; 17:e81447. [PMID: 40303511 PMCID: PMC12038870 DOI: 10.7759/cureus.81447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2025] [Indexed: 05/02/2025] Open
Abstract
The human gut flora of trillions of bacteria is vital for general health and greatly influences digestion, immune system function, and brain development. Through neuronal, hormonal, and immunological channels, the gut-brain axis (GBA), a bidirectional communication network, links the gut microbiota to the central nervous system (CNS). This relationship has been linked to affective diseases, including depression and anxiety, as well as mental health issues. This review explores the intricate relationship between gut bacteria and mood disorders, focusing on how gut microbiota-host interactions, immune system modulation, and neurotransmitter control support mental health. The function of important microbial metabolites, including short-chain fatty acids (SCFAs), in preserving blood-brain barrier integrity and modulating neuroinflammation is covered in this review. It also examines the bidirectional impact between gut health and mental health, including how dysbiosis could aggravate mood disorders and how depressed states might change the composition of gut bacteria. Furthermore, we discuss how psychotropic drugs affect gut flora and consider other elements such as nutrition and lifestyle that affect gut microbiome composition. Potential paths for treating mood disorders through gut microbiota modification are presented as emerging treatment techniques, including probiotics, nutritional therapies, and precision medicine. The development of new therapeutic approaches for mood disorders depends on the awareness of the GBA. Gut bacteria significantly affect mental health through immune modulation, neurotransmitter generation, and other intricate processes. Future studies should concentrate on large, varied populations to better understand these interactions and to create customized treatments that combine gut microbiota modulation with conventional mental health therapies.
Collapse
Affiliation(s)
- Ishani Mehta
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | | | - Tharun Nimmakayala
- Medicine and Surgery, Apollo Institute of Medical Sciences and Research, Chittoor, IND
| | - Lajpat Bansal
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | - Shivani Pulekar
- General Practice, Davao Medical School Foundation, Davao, PHL
| | | | | | - Nishi Modi
- Medicine, Government Medical College, Surat, Surat, IND
| | - Salma Younas
- Pharmacy, Punjab University College of Pharmacy, Lahore, PAK
| |
Collapse
|
39
|
Yu T, Chae M, Wang Z, Ryu G, Kim GB, Lee SY. Microbial Technologies Enhanced by Artificial Intelligence for Healthcare Applications. Microb Biotechnol 2025; 18:e70131. [PMID: 40100535 PMCID: PMC11917392 DOI: 10.1111/1751-7915.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
The combination of artificial intelligence (AI) with microbial technology marks the start of a major transformation, improving applications throughout biotechnology, especially in healthcare. With the capability of AI to process vast amounts of biological big data, advanced microbial technology allows for a comprehensive understanding of complex biological systems, advancing disease diagnosis, treatment and the development of microbial therapeutics. This mini review explores the impact of AI-integrated microbial technologies in healthcare, highlighting advancements in microbial biomarker-based diagnosis, the development of microbial therapeutics and the microbial production of therapeutic compounds. This exploration promises significant improvements in the design and implementation of health-related solutions, steering a new era in biotechnological applications.
Collapse
Affiliation(s)
- Taeho Yu
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four)KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeonRepublic of Korea
| | - Minjee Chae
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four)KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeonRepublic of Korea
- Graduate School of Engineering BiologyKAISTDaejeonRepublic of Korea
| | - Ziling Wang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four)KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeonRepublic of Korea
| | - Gahyeon Ryu
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four)KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeonRepublic of Korea
| | - Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four)KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeonRepublic of Korea
- BioProcess Engineering Research CenterKAISTDaejeonRepublic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four)KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeonRepublic of Korea
- Graduate School of Engineering BiologyKAISTDaejeonRepublic of Korea
- BioProcess Engineering Research CenterKAISTDaejeonRepublic of Korea
- Center for Synthetic BiologyKAISTDaejeonRepublic of Korea
| |
Collapse
|
40
|
Wu XQ, Wan JW, Yang ZN, Liu HJ, Chang Y, Peng SB, Niu XT, Kong YD, Li M, Chen XM, Wang GQ. Protection of glutamine: The NF-κB/MLCK/MLC2 signaling pathway mediated by tight junction affects oxidative stress, inflammation and apoptosis in snakehead (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110131. [PMID: 39826630 DOI: 10.1016/j.fsi.2025.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Lipopolysaccharide (LPS) destroys intestinal mechanical barrier and causes apoptosis by triggering oxidative stress and inflammatory responses. Glutamine (Gln) can maintain normal intestinal function under various stressed or pathological conditions. Thereby, this study aims to evaluate the protection of glutamine on intestinal health of snakehead (Channa argus), specifically regarding the NF-κB/MLCK/MLC2 signaling pathway mediated by tight junction affecting oxidative stress, inflammation and apoptosis. In this work, a model of intestinal tight junction injury in intestine of snakehead was constructed by injecting 4 mg/mL LPS into anus for 96 h. Before constructing the model, fish were treated with different levels of alanyl-glutamine (Ala-Gln) (0 %, 0.3 %, 0.6 %, 0.9 %, 1.2 % and 1.5 %) for 56 days. Microstructure and ultra microstructure showed that LPS-induced obvious intestinal damage and tight connection destruction, while Gln effectively alleviated these phenomena. In addition, results also showed that Gln can effectively inhibit LPS-induced damage to intestinal tight junction (zo-1, occludin, claudin5, claudin1, nf-κb p65, mlck and mlc2), alleviate oxidative stress (nrf2, sod, gsh, gpx and cat), ameliorate intestinal inflammation (tnf-α, il-1β, il-8, tlr5 and tlr2), thereby reduce apoptosis (p38mapk, caspase9, caspase8, caspase3 and bax). Crucially, the above results were related to NF-κB/MLCK/MLC2 signaling pathway mediated by tight junction. In conclusion, Gln has a good protective effect on LPS-induced intestinal injury in northern snakehead, providing a new perspective for regulating fish intestinal health.
Collapse
Affiliation(s)
- Xue-Qin Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ji-Wu Wan
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Zhi-Nan Yang
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Hong-Jian Liu
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Yue Chang
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Si-Bo Peng
- Jilin Academy of Fishery Sciences, Changchun, 130033, China
| | - Xiao-Tian Niu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yi-di Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
41
|
Džidić Krivić A, Begagić E, Hadžić S, Bećirović A, Bećirović E, Hibić H, Tandir Lihić L, Kadić Vukas S, Bečulić H, Kasapović T, Pojskić M. Unveiling the Important Role of Gut Microbiota and Diet in Multiple Sclerosis. Brain Sci 2025; 15:253. [PMID: 40149775 PMCID: PMC11939953 DOI: 10.3390/brainsci15030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), characterized by neurodegeneration, axonal damage, demyelination, and inflammation. Recently, gut dysbiosis has been linked to MS and other autoimmune conditions. Namely, gut microbiota has a vital role in regulating immune function by influencing immune cell development, cytokine production, and intestinal barrier integrity. While balanced microbiota fosters immune tolerance, dysbiosis disrupts immune regulation, damages intestinal permeability, and heightens the risk of autoimmune diseases. The critical factor in shaping the gut microbiota and modulating immune response is diet. Research shows that high-fat diets rich in saturated fats are associated with disease progression. Conversely, diets rich in fruits, yogurt, and legumes may lower the risk of MS onset and progression. Specific dietary interventions, such as the Mediterranean diet (MD) and ketogenic diet, have shown potential to reduce inflammation, support neuroprotection, and promote CNS repair. Probiotics, by restoring microbial balance, may also help mitigate immune dysfunction noted in MS. Personalized dietary strategies targeting the gut microbiota hold promise for managing MS by modulating immune responses and slowing disease progression. Optimizing nutrient intake and adopting anti-inflammatory diets could improve disease control and quality of life. Understanding gut-immune interactions is essential for developing tailored nutritional therapies for MS patients.
Collapse
Affiliation(s)
- Amina Džidić Krivić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Physiology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Emir Begagić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
- Department of Doctoral Studies, School of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Semir Hadžić
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
- Department of Physiology, School of Medicine, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina
| | - Amir Bećirović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Emir Bećirović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Harisa Hibić
- Department of Maxillofacial Surgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Lejla Tandir Lihić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Neurology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Neurology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Tarik Kasapović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|
42
|
Wang K, Hu Y, Wu Y, Xu J, Zhao Y, Yang J, Li X. The Therapeutic Potential of Gut-Microbiota-Derived Metabolite 4-Phenylbutyric Acid in Escherichia coli-Induced Colitis. Int J Mol Sci 2025; 26:1974. [PMID: 40076603 PMCID: PMC11901052 DOI: 10.3390/ijms26051974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 03/14/2025] Open
Abstract
Pathogenic Escherichia coli (E. coli) is a widely distributed pathogen that can cause varying degrees of zoonotic diseases, and infected animals often experience intestinal inflammation accompanied by diarrhea and dysbiosis. Previously, for the first time, we isolated Escherichia coli primarily of type B2 from a large-scale dairy farm in Yunnan, China. The 16s rRNA sequencing showed significant differences in the gut microbiota of calves infected with B2 E. coli, with higher abundance of harmful bacteria and lower abundance of beneficial bacteria compared with healthy calves. The metabolomics indicated that the concentrations of oxoadipic acid, 16-oxopalmitate, oerillyl alcohol, palmitoleic acid, and 4-phenylbutyrate (4-PBA) were significantly higher in the healthy group than in the infected group. The mouse model was established to assess the regulatory effect of 4-PBA on E. coli-induced colitis. Both oral administration of 4-PBA and fecal microbiota transplantation (FMT) had strong resistance to E. coli infection, improved survival rate and body weight, reduced intestinal tissue damage, decreased the levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), and restrained TLR4/MyD88/NF-κB pathway. Our study demonstrated that 4-PBA could relieve E. coli-induced colitis by improving gut microbiota structure and inhibiting the expression of pro-inflammatory cytokines through the TLR4/MyD88/NF-κB pathway. The present finding reveals the therapeutic potential of the gut-microbiota-derived metabolite 4-PBA for the treatment of colitis caused by E. coli.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Yang
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming 650201, China; (K.W.); (Y.H.); (Y.W.); (J.X.); (Y.Z.)
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming 650201, China; (K.W.); (Y.H.); (Y.W.); (J.X.); (Y.Z.)
| |
Collapse
|
43
|
Chen F, Zhao L, Huang L, Zhuo Y, Xu S, Lin Y, Che L, Feng B, Wu D, Fang Z. Synergistic effects of multi-enzyme supplementation on nutrient digestion and absorption in the foregut and hindgut. Front Vet Sci 2025; 12:1554919. [PMID: 40070914 PMCID: PMC11893834 DOI: 10.3389/fvets.2025.1554919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
This study was conducted to investigate the effect of dietary multi-enzyme (MCPC) supplementation on synergistically enhancing the functions of both the foregut and hindgut, ultimately improving the nutrient digestion and utilization throughout the gastrointestinal tract. In vitro results demonstrated that MCPC increased the phosphorus and reducing sugar levels in the supernatant during enzymatic hydrolysis. Furthermore, during the fermentation of the enzymatic hydrolysis products, MCPC significantly increased the FRD0 value of the enzymatic hydrolysis products from both the positive control (PC) and negative control 1 (NC1) diets (p < 0.05). MCPC reduced the T1/2 value of in vitro fermentation products from the PC diet (p < 0.01), and decreased the VF (p = 0.082) and K (p < 0.05) values for the NC1 diet. Additionally, 72 crossbred barrows [Duroc × (Landrace × Yorkshire)], weighing 25 kg, were fed one of six diets until their live weight approached 50 kg. The basal diets consisted of PC, NC1 and negative control 2 (NC2), while the remaining three diets were prepared by adding 100 mg/kg MCPC to the respective basal diets. The results showed that MCPC supplementation significantly upregulated the expression of solute carrier family 17 member 4 (SLC17A4) and vitamin D receptor (VDR) genes in the duodenum (p < 0.05), while downregulating the expression of Calbindin-D28k (CaBP-D28K) and solute carrier family 1 member 4 (SLC1A4) genes (p < 0.05) in growing pigs. Moreover, MCPC supplementation significantly upregulated the expression of VDR, glucose transporter 2 (GLUT2) and intestinal fatty acid binding protein (FABP2) genes in the jejunum of growing pigs. Furthermore, MCPC supplementation significantly increased the relative abundances of Bacteroidota, Prevotella and Phascolarctobacterium (p < 0.05), while reducing the relative abundances of Verrucomicrobiota and Clostridium_sensu_stricto_1 (p < 0.05) in the colon of growing pigs. In conclusion, MCPC enhances nutrient digestion and absorption in the foregut, provides fermentable substrates for hindgut microbial fermentation, and improves gut microbiota composition. This improves hindgut fermentation and supports the synergistic interaction between the foregut and hindgut, ultimately improving nutrient utilization and benefiting animal health.
Collapse
Affiliation(s)
- Fangyuan Chen
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianpeng Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lingjie Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| |
Collapse
|
44
|
Kushkevych I, Dvořáková M, Dordevic D, Futoma-Kołoch B, Gajdács M, Al-Madboly LA, Abd El-Salam M. Advances in gut microbiota functions in inflammatory bowel disease: Dysbiosis, management, cytotoxicity assessment, and therapeutic perspectives. Comput Struct Biotechnol J 2025; 27:851-868. [PMID: 40115534 PMCID: PMC11925123 DOI: 10.1016/j.csbj.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, have become increasingly prevalent across all human generations. Despite advances in diagnosis, effective long-term therapeutic options remain limited, with many patients experiencing recurrent symptoms after treatment. The multifactorial origins of ulcerative colitis are widely recognized, but the intestinal microbiome, particularly bacteria from the Desulfovibrionaceae family, is thought to play a central role in the pathogenesis of the disease. These bacteria contribute significantly to gut microbial functions, yet their cytotoxic and viability characteristics under disease conditions remain poorly understood. Our review provides insights on recent advancements in methodologies for assessing the cytotoxicity and viability of anaerobic intestinal bacteria, with a specific focus on their relevance to gut health and disease. We introduce overview from current literature on modern techniques including flow cytometry, high-throughput screening, and molecular-based assays, highlighting their applications in understanding the role of Desulfovibrionaceae and other gut microbes in IBD pathogenesis. By bridging methodological advancements with functional implications, this review aims to enhance our understanding of gut microbiota-host interactions, which are crucial for maintaining health and preventing disease through immune modulation, where microbiota help regulate immune responses and prevent excessive inflammation; nutrient metabolism, including the breakdown of dietary fibers into short-chain fatty acids that support gut health; and colonization resistance, where beneficial microbes outcompete harmful pathogens to maintain microbial balance.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Michaela Dvořáková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno 612 42, Czech Republic
| | - Bożena Futoma-Kołoch
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, ul. S. Przybyszewskiego 63, Wrocław 51-148, Poland
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 62-64, Szeged 6720, Hungary
| | - Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa 11152, Egypt
- Instituto de Formación Continua IL3, University of Barcelona, Barcelona 08018, Spain
| |
Collapse
|
45
|
Zhou L, Chen SZ, Li YY, Xue RY, Duan X, Lin XY, Chen S, Zhou D, Li HB. Gut Dysbiosis Exacerbates Intestinal Absorption of Cadmium and Arsenic from Cocontaminated Rice in Mice Due to Impaired Intestinal Barrier Functions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3459-3471. [PMID: 39945512 DOI: 10.1021/acs.est.5c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Globally, humans face gut microbiota dysbiosis; however, its impact on the bioavailability of cadmium (Cd) and arsenic (As) from rice consumption─a major source of human exposure to these metals─remains unclear. In this study, we compared Cd and As accumulation in the liver and kidneys of mice with disrupted gut microbiota (administered cefoperazone sodium), restored microbiota (administered probiotics and prebiotics following antibiotic exposure), and normal microbiota, all after consuming cocontaminated rice. Compared to normal mice, microbiota-disrupted mice exhibited 30.9-119% and 30.0-100% (p < 0.05) higher Cd and As levels in tissues after a 3 week exposure period. The increased Cd and As bioavailability was not due to changes in the duodenal expression of Cd-related transporters or As speciation biotransformation in the intestine. Instead, it was primarily attributed to a damaged mucus layer and depleted tight junctions associated with gut dysbiosis, which increased intestinal permeability. These mechanisms were confirmed by observing 34.3-74.3% and 25.0-75.0% (p < 0.05) lower Cd and As levels in the tissues of microbiota-restored mice with rebuilt intestinal barrier functions. This study enhances our understanding of the increased risk of dietary metal(loid) exposure in individuals with gut microbiota dysbiosis due to impaired intestinal barrier functions.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Sheng-Zhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuan-Yuan Li
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
46
|
Jiang Y, Liao D, Zhu Q, Lu YY. PhyloMix: enhancing microbiome-trait association prediction through phylogeny-mixing augmentation. Bioinformatics 2025; 41:btaf014. [PMID: 39799515 PMCID: PMC11849959 DOI: 10.1093/bioinformatics/btaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
MOTIVATION Understanding the associations between traits and microbial composition is a fundamental objective in microbiome research. Recently, researchers have turned to machine learning (ML) models to achieve this goal with promising results. However, the effectiveness of advanced ML models is often limited by the unique characteristics of microbiome data, which are typically high-dimensional, compositional, and imbalanced. These characteristics can hinder the models' ability to fully explore the relationships among taxa in predictive analyses. To address this challenge, data augmentation has become crucial. It involves generating synthetic samples with artificial labels based on existing data and incorporating these samples into the training set to improve ML model performance. RESULTS Here, we propose PhyloMix, a novel data augmentation method specifically designed for microbiome data to enhance predictive analyses. PhyloMix leverages the phylogenetic relationships among microbiome taxa as an informative prior to guide the generation of synthetic microbial samples. Leveraging phylogeny, PhyloMix creates new samples by removing a subtree from one sample and combining it with the corresponding subtree from another sample. Notably, PhyloMix is designed to address the compositional nature of microbiome data, effectively handling both raw counts and relative abundances. This approach introduces sufficient diversity into the augmented samples, leading to improved predictive performance. We empirically evaluated PhyloMix on six real microbiome datasets across five commonly used ML models. PhyloMix significantly outperforms distinct baseline methods including sample-mixing-based data augmentation techniques like vanilla mixup and compositional cutmix, as well as the phylogeny-based method TADA. We also demonstrated the wide applicability of PhyloMix in both supervised learning and contrastive representation learning. AVAILABILITY AND IMPLEMENTATION The Apache-licensed source code is available at (https://github.com/batmen-lab/phylomix).
Collapse
Affiliation(s)
- Yifan Jiang
- Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Disen Liao
- Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, United States
| | - Yang Young Lu
- Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
47
|
Han EJ, Ahn JS, Choi YJ, Kim DH, Choi JS, Chung HJ. Exploring the gut microbiome: A potential biomarker for cancer diagnosis, prognosis, and therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189251. [PMID: 39719176 DOI: 10.1016/j.bbcan.2024.189251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
The gut microbiome, a complex community of trillions of microorganisms in the intestines, is crucial in maintaining human health. Recent advancements in microbiome research have unveiled a compelling link between the gut microbiome and cancer development and progression. Alterations in the composition and function of the gut microbiome, known as dysbiosis, have been implicated in various types of cancer, including, esophageal, liver, colon, pancreatic, and gastrointestinal. However, the specific gut microbial strains associated with the development or progression of cancers in various tissues remain largely unclear. Here, we summarize current research findings on the gut microbiome of multiple cancers. This review aims to identify key gut microbial targets that closely influence cancer development based on current research findings. To accurately evaluate the effectiveness of the gut microbiome as a clinical tool for cancer, further research is needed to explore its potential as a biomarker and therapeutic strategy.
Collapse
Affiliation(s)
- Eui-Jeong Han
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Yu-Jin Choi
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Da-Hye Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Jong-Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea; College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea.
| |
Collapse
|
48
|
Arnone AA, Ansley K, Heeke AL, Howard-McNatt M, Cook KL. Gut microbiota interact with breast cancer therapeutics to modulate efficacy. EMBO Mol Med 2025; 17:219-234. [PMID: 39820166 PMCID: PMC11822015 DOI: 10.1038/s44321-024-00185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
The gut microbiome, or the community of microorganisms residing in the gastrointestinal tract, has emerged as an important factor in breast cancer etiology and treatment. Specifically, the impact of gut bacterial populations on breast cancer therapeutic outcomes is an emerging area of research. The microbiota's role in modifying the pharmacokinetics of chemotherapy and endocrine-targeting therapies can alter drug efficacy and toxicity profiles. In addition, the gut microbiome's capacity to regulate systemic inflammation and immune responses may influence the effectiveness of both conventional and immunotherapeutic strategies for the treatment of breast cancer. Overall, while the bidirectional interactions between the gut microbiome and breast cancer therapies are still being studied, its impact is increasingly recognized. Future research may provide more definitive insights and help develop personalized therapeutic strategies to harness the microbiome to improve breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Katherine Ansley
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Arielle L Heeke
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Marissa Howard-McNatt
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
49
|
Carías Domínguez AM, de Jesús Rosa Salazar D, Stefanolo JP, Cruz Serrano MC, Casas IC, Zuluaga Peña JR. Intestinal Dysbiosis: Exploring Definition, Associated Symptoms, and Perspectives for a Comprehensive Understanding - a Scoping Review. Probiotics Antimicrob Proteins 2025; 17:440-449. [PMID: 39235661 PMCID: PMC11832579 DOI: 10.1007/s12602-024-10353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Dysbiosis is a clinical condition marked by altered gut microbiota resulting from external and internal host factors. It is strongly associated with gastrointestinal and extraintestinal alterations, so its symptomatology is broad and nonspecific. To date, gaps remain that limit professionals from making a timely diagnosis and prescribing the appropriate treatment. We aim to synthesize existing literature regarding clinical parameters for the early detection of patients with intestinal dysbiosis and the clinical events in which the use of probiotics as adjuvant therapy is most frequently reported. A scoping review of the literature was conducted in PubMed, Embase, Cochrane, and BVS (Biblioteca Virtual en Salud in Spanish) databases for articles published in the last 5 years. Primary studies and literature reviews related to clinical presentation, dysbiosis screening, and probiotics as adjuvant therapy for adult and pediatric patients were included. Twenty-three articles were retrieved in which the most frequently reported symptoms were abdominal distension, abdominal pain, and diarrhea. Chronic and metabolic diseases where the conditions most strongly associated with dysbiosis. Depending on symptomatology and etiology, dysbiosis is often treated with probiotics. Dysbiosis, often linked to diarrhea, should be considered with other symptoms like abdominal distension and pain, along with predisposing conditions and patient risk factors. Probiotics are commonly used as co-adjuvant treatments for antibiotic-associated diarrhea, irritable bowel syndrome, and childhood allergic diseases. The most commonly used probiotics were Weizmannia coagulans (formerly B. coagulans), Alkalihalobacillus clausii (formerly Bacillus clausii), Lacticaseibacillus rhamnosus, Limosilactobacillus reuteri, and Saccharomyces boulardii.
Collapse
Affiliation(s)
- Ailim Margarita Carías Domínguez
- Fundación Santa Fe de Bogotá (Santa Fe de Bogotá Foundation), Bogotá, Colombia.
- Universidad de los Andes (University of the Andes), Bogotá, Colombia.
- Colegio Colombiano de Gastroenterología, Hepatología y Nutrición Pediátrica (Colombian College of Gastroenterology, Hepatology and Pediatric Nutrition) (COLGAHNP), Bogotá, Colombia.
- LASPGHAN, Bogotá, Colombia.
- NASPGHAN, Bogotá, Colombia.
| | - Dimas de Jesús Rosa Salazar
- Grupo de Investigación del Caribe y Centroamérica Para La Microbiota, Probióticos y Prebióticos (Research Group of the Caribbean and Central America for Microbiota, Probiotics and Prebiotics) (GICCAMPP), Bogotá, Colombia
- Asociación Colombiana de Probióticos y Prebióticos (Colombian Association of Probiotics and Prebiotics) (ACoPyP), Bogotá, Colombia
- Sociedad Iberoamericana de Microbiota, Probióticos y Prebióticos (Ibero-American Society of Microbiota, Probiotics and Prebiotics) (SIAMPYP), Bogotá, Colombia
| | - Juan Pablo Stefanolo
- Hospital de Gastroenterología Carlos Bonorino Udaondo (Carlos Bonorino Udaondo Gastroenterology Hospital), CABA-Buenos Aires, Argentina
| | | | | | | |
Collapse
|
50
|
Tiwari A, Nadeem A, Paul D, Siddiqui N, Panda KK, Singh RK, Mahadevan GD, Kumar P. Whole-Genome Insights into the Probiotic Prospects of Blautia producta. Ind Biotechnol (New Rochelle N Y) 2025; 21:81-94. [DOI: 10.1089/ind.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Affiliation(s)
- Akshita Tiwari
- Amity Institute of Biotechnology, Amity University, Noida, India-201310
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Debarati Paul
- Centre for Plant and Environmental Biotech, AmitIy Institute of Biotechnology, Amity University, Noida, India-201310
| | - Nahid Siddiqui
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India-201310
| | - Kusuma Kumari Panda
- Centre for Plant and Environmental Biotech, AmitIy Institute of Biotechnology, Amity University, Noida, India-201310
| | - Ravi Kant Singh
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University, Noida, India-201310
| | - Gurumurthy Dummi Mahadevan
- Centre for Cellular and Molecular Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India-201310
| | - Prabhanshu Kumar
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University, Noida, India-201310
| |
Collapse
|