1
|
Paranthaman S, Uthaiah CA, Md S, Alkreathy HM. Comprehensive strategies for constructing efficient CRISPR/Cas based cancer therapy: Target gene selection, sgRNA optimization, delivery methods and evaluation. Adv Colloid Interface Sci 2025; 341:103497. [PMID: 40157335 DOI: 10.1016/j.cis.2025.103497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/17/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Cancer is a complicated disease that results from the interplay between specific changes in cellular genetics and diverse microenvironments. The application of high-performance and customizable clustered regularly interspaced palindromic repeats/associated protein (CRISPR/Cas) nuclease systems has significantly enhanced genome editing for accurate cancer modeling and facilitated simultaneous genetic modification for cancer therapy and mutation identification. Achieving an effective CRISPR/Cas platform for cancer treatment depends on the identification, selection, and optimization of specific mutated genes in targeted cancer tissues. However, overcoming the off-target effects, specificity, and immunogenicity are additional challenges that must be addressed while developing a gene editing system for cancer therapy. From this perspective, we briefly covered the pipeline of CRISPR/Cas cancer therapy, identified target genes to optimize gRNAs and sgRNAs, and explored alternative delivery modalities, including viral, non-viral, and extracellular vesicles. In addition, the list of patents and current clinical trials related to this unique cancer therapy method is discussed. In summary, we have discussed comprehensive start-to-end pipeline strategies for CRISPR/Cas development to advance the precision, effectiveness, and safety of clinical applications for cancer therapy.
Collapse
Affiliation(s)
- Sathishbabu Paranthaman
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563103, Karnataka, India.
| | - Chinnappa A Uthaiah
- Genetics Laboratory, Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raipur, Chhattisgarh 492099, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Dayanc B, Eris S, Gulfirat NE, Ozden-Yilmaz G, Cakiroglu E, Coskun Deniz OS, Karakülah G, Erkek-Ozhan S, Senturk S. Integrative multi-omics identifies AP-1 transcription factor as a targetable mediator of acquired osimertinib resistance in non-small cell lung cancer. Cell Death Dis 2025; 16:414. [PMID: 40414926 DOI: 10.1038/s41419-025-07711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/18/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Osimertinib, a third-generation EGFR tyrosine kinase inhibitor (EGFR-TKI), has dramatically transformed the treatment landscape for patients with EGFR-mutant NSCLC. However, the long-term success of this therapy is often compromised by the onset of acquired resistance, with non-genetic mechanisms increasingly recognized as pivotal contributors. Here, we exploit a multi-omics approach to profile genome-wide chromatin accessibility and transcriptional landscapes between drug sensitive and resistant EGFR-mutant cells. Our findings reveal a robust concordance between epigenetic regulome and transcriptomic changes that characterize the osimertinib resistant state. Through CRISPR-based functional genomics screen targeting epigenetic regulators and transcription factors, we uncover a critical regulatory network featuring key members of the NuRD and PRC2 complexes that mediate resistance. Most critically, our screen identifies FOSL1 and JUN, two subunits of the AP-1 transcription factor within this network, as the most significant hits. Mechanistically, we demonstrate that cis-regulatory elements exhibiting altered chromatin accessibility in the resistant state are enriched for cognate AP-1 binding motifs, enabling AP-1 to orchestrate a gene expression program that underpins the druggable MEK/ERK signaling axis, potentially enhancing cell viability and fitness of resistant cells. Importantly, genetic depletion or pharmacological inhibition of AP-1 reinstates cellular and molecular sensitivity, and reverts resistance-associated phenotypes, such as epithelial-to-mesenchymal transition, upon anti-EGFR rechallenge by repressing AKT and ERK signaling. These findings provide novel insights into the epigenetic and transcriptional control of osimertinib resistance in EGFR-mutant NSCLC, highlighting AP-1 as a targetable vulnerability of resistance-related hallmarks and offering a promising avenue for developing resistance reversal strategies.
Collapse
Affiliation(s)
- Bengisu Dayanc
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Sude Eris
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Nazife Ege Gulfirat
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Gulden Ozden-Yilmaz
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Ece Cakiroglu
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Ozlem Silan Coskun Deniz
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Serap Erkek-Ozhan
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, Türkiye.
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye.
| |
Collapse
|
3
|
Henkel E, Li Z, Uvehag D, Schmierer B, Henkel M, Wermeling F. Green Listed v2.0: A Web Application for Streamlined Design of Custom CRISPR Screens. CRISPR J 2025. [PMID: 40329823 DOI: 10.1089/crispr.2025.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Custom CRISPR screens are powerful tools for rapid, hypothesis-driven discovery, but their design is often complex and time-consuming. Green Listed v2.0 simplifies this process with an intuitive workflow for designing custom CRISPR spacer libraries and supports downstream analysis for all users, irrespective of their computational experience. The web application features a user-friendly graphical interface freely accessible at https://greenlisted.cmm.se. Version 2.0 includes significant upgrades to the original 2016 version that were implemented based on user feedback. This includes a new gene synonym tool, expanded library options, optimized output lists, performance improvements, and linked scripts for the rational design of custom CRISPR screen gene sets.
Collapse
Affiliation(s)
- Esbjörn Henkel
- Center for Molecular Medicine (CMM), Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Zhaojun Li
- Center for Molecular Medicine (CMM), Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Uvehag
- Center for Molecular Medicine (CMM), Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Bernhard Schmierer
- Department of Medical Biochemistry and Biophysics, CRISPR Functional Genomics, SciLifeLab and Karolinska Institutet, Solna, Sweden
| | - Martin Henkel
- Department of Computer and Systems Sciences, Stockholm University, Kista, Sweden
| | - Fredrik Wermeling
- Center for Molecular Medicine (CMM), Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Chang J, Li Q, Zhang T, Sun H, Jia Z, Li Y, Zhang S, Sun T, Ma S, Cao J. Genome-wide CRISPR screening of genes and pathways for insect cell responding to abnormal environmental pH. Int J Biol Macromol 2025; 305:141000. [PMID: 39952507 DOI: 10.1016/j.ijbiomac.2025.141000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cells are bathed in the extracellular fluids in which the extracellular pH (pHe) is maintained to a narrow range, and abnormal pHe is related to multiple diseases. However, the genes and signaling pathways underlying cell response to abnormal pHe remain unclear. Identification of genes responsive to extreme pHe challenge has great value in both basic research and medicine. Here, we performed genome-wide CRISPR screening to reveal genes and pathways related to insect cell response to abnormal pHe. Cells of the Bombyx mori embryonic cell line (BmE) genome-scale CRISPR screening cell library (BmEGCKLib) were cultured in different pHe (the physiological pH 6.3 as control; pH 5.0, 5.5, 6.6 and 6.95 as abnormal pHe). In the four extreme pH groups, we identified 44 overlapped fitness genes and 24 overlapped positive selected genes respectively. We also performed Kyoto Encyclopedia of Genes and Genomes pathways enrichment analysis for the selected genes. The "phosphatidylinositol signaling system", "mRNA surveillance pathway" and "spliceosome pathway" were significantly enriched in the negative selection, suggesting that cellular signal transduction and mRNA quality play essential roles for cells to resist to abnormal pHe. This is the first time to provide insight into insect cell response to abnormal pHe on a genome-scale.
Collapse
Affiliation(s)
- Jiasong Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Qi Li
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Tong Zhang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Hao Sun
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhangrong Jia
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yiying Li
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Shengxiao Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Teng Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China.
| | - Sanyuan Ma
- Biological Science Research Center, Southwest University, Chongqing, China.
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
5
|
Tian S, Qin Y, Wu Y, Dong M. Design, performance, processing, and validation of a pooled CRISPR perturbation screen for bacterial toxins. Nat Protoc 2025; 20:1158-1195. [PMID: 39487259 DOI: 10.1038/s41596-024-01075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/18/2024] [Indexed: 11/04/2024]
Abstract
Unbiased forward genetic screens have been extensively employed in biological research to elucidate functional genomics. In pooled clustered regularly interspaced short palindromic repeats (CRISPR) perturbation screens, various genetically encoded gain-of-function or loss-of-function mutations are introduced into a heterogeneous population of cells. Subsequently, these cells are screened for phenotypes, perturbation-associated genotypes are analyzed and a connection between genotype and phenotype is determined. CRISPR screening techniques enable the investigation of important biological questions, such as how bacterial toxins kill cells and cause disease. However, the broad spectrum of effects caused by diverse toxins presents a challenge when selecting appropriate screening strategies. Here, we provide a step-by-step protocol for a genome-wide pooled CRISPR perturbation screen to study bacterial toxins. We describe technical considerations, pilot experiments, library construction, screen execution, result analysis and validation of the top enriched hits. These screens are applicable for many different types of toxins and are anticipated to reveal a repertoire of host factors crucial in the intoxication pathway, such as receptors, trafficking/translocation factors and substrates. The entire protocol takes 21-27 weeks and does not require specialized knowledge beyond basic biology.
Collapse
Affiliation(s)
- Songhai Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yuhang Qin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuxuan Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Rafimanzelat MR. Global stabilization of Boolean networks with applications to biomolecular network control. Sci Rep 2025; 15:15201. [PMID: 40307350 PMCID: PMC12043903 DOI: 10.1038/s41598-025-97684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Boolean networks (BNs) are vital modeling tools in systems biology for biomolecular regulatory networks. After a transient phase, BNs converge to attractors that represent distinct cell types or conditions. Therefore, methods to control the long-term behavior of BNs have important implications for biological and genetic applications. In this paper, we propose a method to enforce convergence of a BN to a desired attractor from any initial state through a simple intervention: fixing a specific subset of network variables at definite values. We refer to this method as the global stabilization of a BN to a target attractor. Utilizing the algebraic state space representation of BNs, we introduce novel matrix tools to formulate this intervention method, as well as develop a foundation for analyzing the stabilizability of BNs. We derive necessary and sufficient conditions for the global stabilizability of BNs and utilize these criteria to identify a minimal subset of network variables-termed the global stabilizing kernel-whose regulation ensures that the BN converges to the desired attractor. Finally, we apply our proposed method to determine the stabilizing kernels of several biomolecular regulatory network models and demonstrate how they can be steered to their target attractors, showcasing the applicability of our approach. We also apply our method to identify the stabilizing kernels of 480 randomly generated BNs. Our experiments suggest that, on average, only a relatively small portion (approximately 25%) of the network nodes need to be manipulated for the networks to converge to their primary attractors.
Collapse
|
7
|
Moison C, Mendoza-Sanchez R, Gracias D, Schuetz DA, Spinella JF, Girard S, Thavonekham B, Chagraoui J, Durand A, Fortier S, MacRae T, Bonneil E, Rose Y, Mayotte N, Boivin I, Thibault P, Hébert J, Ruel R, Marinier A, Sauvageau G. DDB1 engagement defines the selectivity of S656 analogs for cyclin K degradation over CDK inhibition. EMBO Rep 2025:10.1038/s44319-025-00448-y. [PMID: 40295725 DOI: 10.1038/s44319-025-00448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
In efforts to identify additional therapeutic targets for Acute Myeloid Leukemia (AML), we performed a high-throughput screen that includes 56 primary specimens tested with 10,000 structurally diverse small molecules. One specific hit, called S656 acts as a molecular glue degrader (MGD), that mediates the CRL4-dependent proteolysis of cyclin K. Structurally, S656 features a moiety that binds to the ATP binding site of cyclin-dependent kinases (CDKs), allowing the recruitment of the CDK12-cyclin K complex, along with a binding site for DDB1 bridging the CRL4 complex. Structure activity relationship studies reveal that minimal modifications to the dimethylaniline moiety of S656 improve its cyclin K MGD function over CDK inhibition by promoting DDB1 engagement. This includes full occupation of the DDB1 pocket, preferably with hydrophobic terminal groups, and cation-π interaction with Arg928. Additionally, we demonstrate that despite structural diversity, cyclin K degraders exhibit similar functional activity in AML which is distinct from direct CDK12 inhibition.
Collapse
Affiliation(s)
- Céline Moison
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Rodrigo Mendoza-Sanchez
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Deanne Gracias
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Doris A Schuetz
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-François Spinella
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Simon Girard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Bounkham Thavonekham
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Jalila Chagraoui
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Aurélie Durand
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Simon Fortier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Tara MacRae
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Yannick Rose
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Nadine Mayotte
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Isabel Boivin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada
| | - Josée Hébert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Institut universitaire d'hémato-oncologie et de thérapie cellulaire, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Réjean Ruel
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada.
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.
- Institut universitaire d'hémato-oncologie et de thérapie cellulaire, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Seale C, Gonçalves JP. X-CRISP: Domain-Adaptable and Interpretable CRISPR Repair Outcome Prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636858. [PMID: 39974883 PMCID: PMC11839120 DOI: 10.1101/2025.02.06.636858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Motivation Controlling the outcomes of CRISPR editing is crucial for the success of gene therapy. Since donor template-based editing is often inefficient, alternative strategies have emerged that leverage mutagenic end-joining repair instead. Existing machine learning models can accurately predict end-joining repair outcomes, however: generalisability beyond the specific cell line used for training remains a challenge, and interpretability is typically limited by suboptimal feature representation and model architecture. Results We propose X-CRISP, a flexible and interpretable neural network for predicting repair outcome frequencies based on a minimal set of outcome and sequence features, including microhomologies (MH). Outperforming prior models on detailed and aggregate outcome predictions, X-CRISP prioritised MH location over MH sequence properties such as GC content for deletion outcomes. Through transfer learning, we adapted X-CRISP pre-trained on wild-type mESC data to target human cell lines K562, HAP1, U2OS, and mESC lines with altered DNA repair function. Adapted X-CRISP models improved over direct training on target data from as few as 50 samples, suggesting that this strategy could be leveraged to build models for new domains using a fraction of the data required to train models from scratch. Availability An implementation of X-CRISP is available at github.com/joanagoncalveslab/xcrisp .
Collapse
|
9
|
Fidelito G, Todorovski I, Cluse L, Vervoort SJ, Taylor RA, Watt MJ. Lipid-metabolism-focused CRISPR screens identify enzymes of the mevalonate pathway as essential for prostate cancer growth. Cell Rep 2025; 44:115470. [PMID: 40146774 DOI: 10.1016/j.celrep.2025.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/22/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Dysregulated lipid metabolism plays an important role in prostate cancer, although the understanding of the essential regulatory processes in tumorigenesis is incomplete. We employ a CRISPR-Cas9 screen using a custom human lipid metabolism knockout library to identify essential genes for prostate cancer survival. Screening in three prostate cancer cell lines reveals 63 shared dependencies, with enrichment in terpenoid backbone synthesis and N-glycan biosynthesis. Independent knockout of key genes of the mevalonate pathway reduces cell proliferation. Further investigation focuses on NUS1, a subunit of cis-prenyltransferase required for dolichol synthesis. NUS1 knockout decreases tumor growth in vivo and viability in patient-derived xenograft (PDX)-derived organoids. Mechanistic studies reveal that loss of NUS1 promotes oxidative stress, lipid peroxidation and ferroptosis sensitivity, endoplasmic reticulum (ER) stress, and G1 cell-cycle arrest, and it dampens androgen receptor (AR) signaling, collectively leading to growth arrest. This study highlights the critical role of the mevalonate-dolichol-N-glycan biosynthesis pathway, particularly NUS1, in prostate cancer survival and growth.
Collapse
Affiliation(s)
- Gio Fidelito
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Izabela Todorovski
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Leonie Cluse
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephin J Vervoort
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Melbourne Urological Research Alliance (MURAL), Monash University, Clayton, VIC 3168, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia.
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
10
|
Zhang Y, Jin Z, Liu L, Zhang D. The Strategy and Application of Gene Attenuation in Metabolic Engineering. Microorganisms 2025; 13:927. [PMID: 40284763 PMCID: PMC12029929 DOI: 10.3390/microorganisms13040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Metabolic engineering has a wide range of applications, spanning key sectors such as energy, pharmaceuticals, agriculture, chemicals, and environmental sustainability. Its core focus is on precisely modulating metabolic pathways to achieve efficient, sustainable, and environmentally friendly biomanufacturing processes, offering new possibilities for societal sustainable development. Gene attenuation is a critical technique within metabolic engineering, pivotal in optimizing metabolic fluxes and improving target metabolite yields. This review article discusses gene attenuation mechanisms, the applications across various biological systems, and implementation strategies. Additionally, we address potential future challenges and explore its potential to drive further advancements in the field.
Collapse
Affiliation(s)
- Yahui Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
11
|
Chen B, Lyssiotis CA, Shah YM. Mitochondria-organelle crosstalk in establishing compartmentalized metabolic homeostasis. Mol Cell 2025; 85:1487-1508. [PMID: 40250411 DOI: 10.1016/j.molcel.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 04/20/2025]
Abstract
Mitochondria serve as central hubs in cellular metabolism by sensing, integrating, and responding to metabolic demands. This integrative function is achieved through inter-organellar communication, involving the exchange of metabolites, lipids, and signaling molecules. The functional diversity of metabolite exchange and pathway interactions is enabled by compartmentalization within organelle membranes. Membrane contact sites (MCSs) are critical for facilitating mitochondria-organelle communication, creating specialized microdomains that enhance the efficiency of metabolite and lipid exchange. MCS dynamics, regulated by tethering proteins, adapt to changing cellular conditions. Dysregulation of mitochondrial-organelle interactions at MCSs is increasingly recognized as a contributing factor in the pathogenesis of multiple diseases. Emerging technologies, such as advanced microscopy, biosensors, chemical-biology tools, and functional genomics, are revolutionizing our understanding of inter-organellar communication. These approaches provide novel insights into the role of these interactions in both normal cellular physiology and disease states. This review will highlight the roles of metabolite transporters, lipid-transfer proteins, and mitochondria-organelle interfaces in the coordination of metabolism and transport.
Collapse
Affiliation(s)
- Brandon Chen
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Yatrik M Shah
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Loughran AJ, Narina S, Klein J, Siwak JF, Connelly JP, Pruett-Miller SM. Rapid and robust validation of pooled CRISPR knockout screens using CelFi. Sci Rep 2025; 15:13358. [PMID: 40247031 PMCID: PMC12006381 DOI: 10.1038/s41598-025-96095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/26/2025] [Indexed: 04/19/2025] Open
Abstract
Pooled CRISPR screens are vital in the unbiased interrogation of gene function and are instrumental in uncovering therapeutic targets and biological processes. However, follow-up hit validation is critical to confirm observed results. Researchers need a simple and robust approach to rapidly verify putative hits and test resulting observations. Thus, we developed a CRISPR-based method for hit validation that tests the effect of a genetic perturbation on cell fitness. By editing target loci and monitoring the indel profiles over time, we have created a Cellular Fitness (CelFi) assay that can elucidate cellular vulnerabilities and verify hits from pooled CRISPR knockout screens. Unlike traditional cellular fitness assays that evaluate viability over time, the CelFi assay correlates changes in the indel profile at the target gene with a selective growth advantage or disadvantage in individual cells over time. Moreover, the CelFi assay can be utilized to evaluate gene dependencies and test new hypotheses, regardless of variations in single guide RNA optimization, ribonucleoprotein concentration, and gene copy number.
Collapse
Affiliation(s)
- Allister J Loughran
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shilpa Narina
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jonathon Klein
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jamaica F Siwak
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
13
|
Wang Y, Sun X, Lu B, Zhang D, Yin Y, Liu S, Chen L, Zhang Z. Current applications, future Perspectives and challenges of Organoid technology in oral cancer research. Eur J Pharmacol 2025; 993:177368. [PMID: 39947346 DOI: 10.1016/j.ejphar.2025.177368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Oral cancer poses significant health risks with an increasing incidence annually. Despite advancements in treatment methods, their efficacy is frequently constrained by cancer heterogeneity and drug resistance, leading to minimal improvement in the 5-year survival rate. Therefore, there is a critical need for new treatment methods leaded by representative preclinical research models. Compared to other models, organoids can more precisely simulate the tissue structure, genetic characteristics, and tumor microenvironment (TME) of in vivo tumors, exhibiting high tumor specificity. This makes organoid technology a valuable tool in investigating tumor development, mechanisms of metastasis, drug screening, prediction of clinical responses, and personalized patient treatment. Moreover, integrating organoid technology with other biotechnologies could expand its applications in tissue regeneration. Although organoid technology is increasingly utilized in oral cancer research, a systematic review in this field is absent. This paper is to bridge the gap by reviewing the development and current status of organoid research, highlighting its applications, future prospects, and challenges in oral cancer. It aims to provide novel insights into the role of organoids in precision treatment and regenerative medicine for oral cancer.
Collapse
Affiliation(s)
- Yunyi Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiang Sun
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bingxu Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Danya Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yaping Yin
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Shuguang Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| | - Lei Chen
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Menon AV, Song B, Chao L, Sriram D, Chansky P, Bakshi I, Ulianova J, Li W. Unraveling the future of genomics: CRISPR, single-cell omics, and the applications in cancer and immunology. Front Genome Ed 2025; 7:1565387. [PMID: 40292231 PMCID: PMC12021818 DOI: 10.3389/fgeed.2025.1565387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
The CRISPR system has transformed many research areas, including cancer and immunology, by providing a simple yet effective genome editing system. Its simplicity has facilitated large-scale experiments to assess gene functionality across diverse biological contexts, generating extensive datasets that boosted the development of computational methods and machine learning/artificial intelligence applications. Integrating CRISPR with single-cell technologies has further advanced our understanding of genome function and its role in many biological processes, providing unprecedented insights into human biology and disease mechanisms. This powerful combination has accelerated AI-driven analyses, enhancing disease diagnostics, risk prediction, and therapeutic innovations. This review provides a comprehensive overview of CRISPR-based genome editing systems, highlighting their advancements, current progress, challenges, and future opportunities, especially in cancer and immunology.
Collapse
Affiliation(s)
- A. Vipin Menon
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Lumen Chao
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Diksha Sriram
- The George Washington University, Washington, DC, DC, United States
| | - Pamela Chansky
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Integrated Biomedical Sciences (IBS) Program, The George Washington University, Washington, DC, DC, United States
| | - Ishnoor Bakshi
- The George Washington University, Washington, DC, DC, United States
| | - Jane Ulianova
- Integrated Biomedical Sciences (IBS) Program, The George Washington University, Washington, DC, DC, United States
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| |
Collapse
|
15
|
Gabaev I, Rowland A, Jovanovic E, Gawden-Bone CM, Crozier TWM, Teixeira-Silva A, Greenwood EJD, Gerber PP, Wit N, Nathan JA, Matheson NJ, Lehner PJ. CRISPR-Cas9 genetic screens reveal regulation of TMPRSS2 by the Elongin BC-VHL complex. Sci Rep 2025; 15:11907. [PMID: 40195420 PMCID: PMC11976923 DOI: 10.1038/s41598-025-95644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
The TMPRSS2 cell surface protease is used by a broad range of respiratory viruses to facilitate entry into target cells. Together with ACE2, TMPRSS2 represents a key factor for SARS-CoV-2 infection, as TMPRSS2 mediates cleavage of viral spike protein, enabling direct fusion of the viral envelope with the host cell membrane. Since the start of the COVID-19 pandemic, TMPRSS2 has gained attention as a therapeutic target for protease inhibitors which would inhibit SARS-CoV-2 infection, but little is known about TMPRSS2 regulation, particularly in cell types physiologically relevant for SARS-CoV-2 infection. Here, we performed an unbiased genome-wide CRISPR-Cas9 library screen, together with a library targeted at epigenetic modifiers and transcriptional regulators, to identify cellular factors that modulate cell surface expression of TMPRSS2 in human colon epithelial cells. We find that endogenous TMPRSS2 is regulated by the Elongin BC-VHL complex and HIF transcription factors. Depletion of Elongin B or treatment of cells with PHD inhibitors resulted in downregulation of TMPRSS2 and inhibition of SARS-CoV-2 infection. We show that TMPRSS2 is still utilised by SARS-CoV-2 Omicron variants for entry into colonic epithelial cells. Our study enhances our understanding of the regulation of endogenous surface TMPRSS2 in cells physiologically relevant to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexandra Rowland
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Emilija Jovanovic
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Christian M Gawden-Bone
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Thomas W M Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ana Teixeira-Silva
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Edward J D Greenwood
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Pehuén Pereyra Gerber
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Niek Wit
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - James A Nathan
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
16
|
Yuan H, Song C, Xu H, Sun Y, Anthon C, Bolund L, Lin L, Benabdellah K, Lee C, Hou Y, Gorodkin J, Luo Y. An Overview and Comparative Analysis of CRISPR-SpCas9 gRNA Activity Prediction Tools. CRISPR J 2025; 8:89-104. [PMID: 40151952 DOI: 10.1089/crispr.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Design of guide RNA (gRNA) with high efficiency and specificity is vital for successful application of the CRISPR gene editing technology. Although many machine learning (ML) and deep learning (DL)-based tools have been developed to predict gRNA activities, a systematic and unbiased evaluation of their predictive performance is still needed. Here, we provide a brief overview of in silico tools for CRISPR design and assess the CRISPR datasets and statistical metrics used for evaluating model performance. We benchmark seven ML and DL-based CRISPR-Cas9 editing efficiency prediction tools across nine CRISPR datasets covering six cell types and three species. The DL models CRISPRon and DeepHF outperform the other models exhibiting greater accuracy and higher Spearman correlation coefficient across multiple datasets. We compile all CRISPR datasets and in silico prediction tools into a GuideNet resource web portal, aiming to facilitate and streamline the sharing of CRISPR datasets. Furthermore, we summarize features affecting CRISPR gene editing activity, providing important insights into model performance and the further development of more accurate CRISPR prediction models.
Collapse
Affiliation(s)
- Hao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Chunping Song
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Huixin Xu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ying Sun
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Ciaran Lee
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Yong Hou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
17
|
Li DF, Wang S, Suarez CE, Xuan X, He L, Zhao JL. Pushing the frontiers of babesiosis research: in vitro culture and gene editing. Trends Parasitol 2025; 41:317-329. [PMID: 40089452 DOI: 10.1016/j.pt.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/17/2025]
Abstract
Babesiosis is a tick-borne parasitic disease that poses a significant risk to both animal and human health. A comprehensive understanding of Babesia biology necessitates the application of advanced laboratory techniques. This review explores recent advancements in gene editing technologies of Babesia, emphasizing the foundational importance of in vitro culture systems. We highlight the historical challenges encountered in establishing effective in vitro culture and discuss the need for optimizing these methods to enhance gene editing efficiency. Here, we describe recent progress in Babesia transfection, different gene manipulation systems, and the applications of gene editing. This review aims to provide essential insights and technical guidance for future studies in Babesia genetics, highlighting the transformative potential of gene manipulation in combating this important parasitic disease.
Collapse
Affiliation(s)
- Dong-Fang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province 430070, PR China
| | - Sen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province 430070, PR China
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Lan He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province 430070, PR China.
| | - Jun-Long Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
18
|
Natale CA, Mercado S, Zhuang R, Aguirre-Portolés C, Olayide I, Arnatt CK, Seykora JT, Garyantes TK, Luke W, Ridky TW. LNS8801: An Enantiomerically Pure Agonist of the G Protein-Coupled Estrogen Receptor Suitable for Clinical Development. CANCER RESEARCH COMMUNICATIONS 2025; 5:556-568. [PMID: 40066851 PMCID: PMC11969138 DOI: 10.1158/2767-9764.crc-24-0632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
SIGNIFICANCE GPER is broadly expressed in human tissues and has tumor-suppressive activity. No FDA-approved agents selectively target GPER. LNS8801 is a synthetic, orally bioavailable, enantiomerically pure, GPER agonist with potent anticancer activity in vivo. LNS8801 response is attenuated by a common germline coding variant present in roughly half of humans.
Collapse
Affiliation(s)
- Christopher A. Natale
- Linnaeus Therapeutics, Haddonfield, New Jersey
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sophia Mercado
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard Zhuang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cristina Aguirre-Portolés
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Israel Olayide
- Department of Chemistry and Biochemistry, Saint Louis University, St. Louis, Missouri
| | - Christopher K. Arnatt
- Department of Chemistry and Biochemistry, Saint Louis University, St. Louis, Missouri
| | - John T. Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Wayne Luke
- Linnaeus Therapeutics, Haddonfield, New Jersey
| | - Todd W. Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Mukhare R, Gandhi KA, Kadam A, Raja A, Singh A, Madhav M, Chaubal R, Pandey S, Gupta S. Integration of Organoids With CRISPR Screens: A Narrative Review. Biol Cell 2025; 117:e70006. [PMID: 40223602 PMCID: PMC11995251 DOI: 10.1111/boc.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
Organoids represent a significant advancement in disease modeling, demonstrated by their capacity to mimic the physiological/pathological structure and functional characteristics of the native tissue. Recently CRISPR/Cas9 technology has emerged as a powerful tool in combination with organoids for the development of novel therapies in preclinical settings. This review explores the current literature on applications of pooled CRISPR screening in organoids and the emerging role of these models in understanding cancer. We highlight the evolution of genome-wide CRISPR gRNA library screens in organoids, noting their increasing adoption in the field over the past decade. Noteworthy studies utilizing these screens to investigate oncogenic vulnerabilities and developmental pathways in various organoid systems are discussed. Despite the promise organoids hold, challenges such as standardization, reproducibility, and the complexity of data interpretation remain. The review also addresses the ideas of assessing tumor organoids (tumoroids) against established cancer hallmarks and the potential of studying intercellular cooperation within these models. Ultimately, we propose that organoids, particularly when personalized for patient-specific applications, could revolutionize drug screening and therapeutic approaches, minimizing the reliance on traditional animal models and enhancing the precision of clinical interventions.
Collapse
Affiliation(s)
- Rushikesh Mukhare
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
- Training School ComplexHomi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Hospital, Tata Memorial CentreMumbaiMaharashtraIndia
| | - Khushboo A. Gandhi
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Anushree Kadam
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Aishwarya Raja
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
- Training School ComplexHomi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Hospital, Tata Memorial CentreMumbaiMaharashtraIndia
| | - Ankita Singh
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Mrudula Madhav
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Rohan Chaubal
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
- Training School ComplexHomi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Surgical OncologyTata Memorial Hospital, Tata Memorial CentreMumbaiMaharashtraIndia
| | - Shwetali Pandey
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Sudeep Gupta
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Hospital, Tata Memorial CentreMumbaiMaharashtraIndia
| |
Collapse
|
20
|
Dort EN, Feau N, Hamelin RC. Novel application of ribonucleoprotein-mediated CRISPR-Cas9 gene editing in plant pathogenic oomycete species. Microbiol Spectr 2025; 13:e0301224. [PMID: 40014012 PMCID: PMC11960053 DOI: 10.1128/spectrum.03012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
CRISPR-Cas9 gene editing has become an important tool for the study of plant pathogens, allowing researchers to functionally characterize specific genes involved in phytopathogenicity, virulence, and fungicide resistance. Protocols for CRISPR-Cas9 gene editing have already been developed for Phytophthoras, an important group of oomycete plant pathogens; however, these efforts have exclusively focused on agricultural pathosystems, with research lacking for forest pathosystems. We sought to develop CRISPR-Cas9 gene editing in two forest pathogenic Phytophthoras, Phytophthora cactorum and P. ramorum, using a plasmid-ribonucleoprotein (RNP) co-transformation approach. Our gene target in both species was the ortholog of PcORP1, which encodes an oxysterol-binding protein that is the target of the fungicide oxathiapiprolin in the agricultural pathogen P. capsici. We delivered liposome complexes, each containing plasmid DNA and CRISPR-Cas9 RNPs, to Phytophthora protoplasts using a polyethylene glycol-mediated transformation protocol. We obtained two ORP1 mutants in P. cactorum but were unable to obtain any mutants in P. ramorum. The two P. cactorum mutants exhibited decreased resistance to oxathiapiprolin, as measured by their radial growth relative to wild-type cultures on oxathiapiprolin-supplemented medium. Our results demonstrate the potential for RNP-mediated CRISPR-Cas9 gene editing in P. cactorum and provide a foundation for future optimization of our protocol in other forest pathogenic Phytophthora species.IMPORTANCECRISPR-Cas9 gene editing has become a valuable tool for characterizing the genetics driving virulence and pathogenicity in plant pathogens. CRISPR-Cas9 protocols are now well-established in several Phytophthora species, an oomycete genus with significant economic and ecological impact globally. These protocols, however, have been developed for agricultural Phytophthora pathogens only; CRISPR-Cas9 systems have not yet been developed for any forest pathogenic Phytophthoras. In this study, we sought to establish CRISPR-Cas9 gene editing in two forest Phytophthora pathogens that cause widespread tree mortality: P. cactorum and P. ramorum. We successfully obtained gene mutations in P. cactorum and demonstrated a decrease in fungicide resistance, a trait that could impact the pathogen's ability to cause disease. However, the same protocol did not yield any mutants in P. ramorum. The results of our study will serve as a baseline for the development of CRISPR-Cas9 gene editing in forest Phytophthoras and other oomycetes.
Collapse
Affiliation(s)
- Erika N. Dort
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Feau
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, Canada
| | - Richard C. Hamelin
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
21
|
Zhang J, Zhou Y, Qiao J, Liu Y. Recent advances in spatiotemporal control of the CRISPR/Cas9 system. Colloids Surf B Biointerfaces 2025; 248:114474. [PMID: 39732069 DOI: 10.1016/j.colsurfb.2024.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The CRISPR/Cas9 gene-editing technology, derived from the adaptive immune mechanisms of bacteria, has demonstrated remarkable advantages in fields such as gene function research and the treatment of genetic diseases due to its simplicity in design, precise targeting, and ease of use. Despite challenges such as off-target effects and cytotoxicity, effective spatiotemporal control strategies have been achieved for the CRISPR/Cas9 system through precise regulation of Cas9 protein activity as well as engineering of guide RNAs (gRNAs). This review provides a comprehensive analysis of the core components and functional mechanisms underlying the CRISPR/Cas9 system, highlights recent advancements in spatiotemporal control strategies, and discusses future directions for development.
Collapse
Affiliation(s)
- Junqi Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China; School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, Hubei 430042, China
| | - Yuzi Zhou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Jie Qiao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China.
| | - Yi Liu
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, Hubei 430042, China.
| |
Collapse
|
22
|
Sun C, Xu X, Chen Z, Zhou F, Wang W, Chen J, Sun M, Wang F, Jiang L, Ji M, Liu S, Xu J, He M, Su B, Liu X, Gao Y, Wei H, Li J, Wang X, Zhao M, Yu J, Ma Y. Selective translational control by PABPC1 phase separation regulates blast crisis and therapy resistance in chronic myeloid leukaemia. Nat Cell Biol 2025; 27:683-695. [PMID: 40102686 DOI: 10.1038/s41556-024-01607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 12/23/2024] [Indexed: 03/20/2025]
Abstract
Tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL1 fusion tyrosine kinase have revolutionized the treatment of chronic myeloid leukaemia (CML). However, the development of TKI resistance and the subsequent transition from the chronic phase (CP) to blast crisis (BC) threaten patients with CML. Accumulating evidence suggests that translational control is crucial for cancer progression. Our high-throughput CRISPR-Cas9 screening identified poly(A) binding protein cytoplasmic 1 (PABPC1) as a driver for CML progression in the BC stage. PABPC1 preferentially improved the translation efficiency of multiple leukaemogenic mRNAs with long and highly structured 5' untranslated regions by forming biomolecular condensates. Inhibiting PABPC1 significantly suppressed CML cell proliferation and attenuated disease progression, with minimal effects on normal haematopoiesis. Moreover, we identified two PABPC1 inhibitors that inhibited BC progression and overcame TKI resistance in murine and human CML. Overall, our work identifies PABPC1 as a selective translation enhancing factor in CML-BC, with its genetic or pharmacological inhibition overcoming TKI resistance and suppressed BC progression.
Collapse
MESH Headings
- Blast Crisis/genetics
- Blast Crisis/pathology
- Blast Crisis/metabolism
- Blast Crisis/drug therapy
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Animals
- Drug Resistance, Neoplasm/genetics
- Protein Kinase Inhibitors/pharmacology
- Mice
- Poly(A)-Binding Protein I/genetics
- Poly(A)-Binding Protein I/metabolism
- Poly(A)-Binding Protein I/antagonists & inhibitors
- Protein Biosynthesis/drug effects
- Cell Proliferation/drug effects
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Leukemic
- Female
- Phase Separation
Collapse
Affiliation(s)
- Chenguang Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xi Xu
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongyang Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fanqi Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junzhu Chen
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengyao Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Linjia Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Ji
- Institute of Materia Medica and Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, China
| | - Siqi Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiayue Xu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Manman He
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bowei Su
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoling Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoshuang Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China.
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Meng Zhao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China.
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Yanni Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
23
|
Chia BS, Seah YFS, Wang B, Shen K, Srivastava D, Chew WL. Engineering a New Generation of Gene Editors: Integrating Synthetic Biology and AI Innovations. ACS Synth Biol 2025; 14:636-647. [PMID: 39999982 PMCID: PMC11934138 DOI: 10.1021/acssynbio.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025]
Abstract
CRISPR-Cas technology has revolutionized biology by enabling precise DNA and RNA edits with ease. However, significant challenges remain for translating this technology into clinical applications. Traditional protein engineering methods, such as rational design, mutagenesis screens, and directed evolution, have been used to address issues like low efficacy, specificity, and high immunogenicity. These methods are labor-intensive, time-consuming, and resource-intensive and often require detailed structural knowledge. Recently, computational strategies have emerged as powerful solutions to these limitations. Using artificial intelligence (AI) and machine learning (ML), the discovery and design of novel gene-editing enzymes can be streamlined. AI/ML models predict activity, specificity, and immunogenicity while also enhancing mutagenesis screens and directed evolution. These approaches not only accelerate rational design but also create new opportunities for developing safer and more efficient genome-editing tools, which could eventually be translated into the clinic.
Collapse
Affiliation(s)
- Bing Shao Chia
- Genome
Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Yu Fen Samantha Seah
- Genome
Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Bolun Wang
- Genome
Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Kimberle Shen
- Genome
Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Diya Srivastava
- Genome
Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Wei Leong Chew
- Genome
Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
24
|
Yu H, Wang Z, Ma J, Wang R, Yao S, Gu Z, Lin K, Li J, Young RS, Yu Y, Yu Y, Jin M, Chen D. The establishment and regulation of human germ cell lineage. Stem Cell Res Ther 2025; 16:139. [PMID: 40102947 PMCID: PMC11921702 DOI: 10.1186/s13287-025-04171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/23/2025] [Indexed: 03/20/2025] Open
Abstract
The specification of primordial germ cells (PGCs) during early embryogenesis initiates the development of the germ cell lineage that ensures the perpetuation of genetic and epigenetic information from parents to offspring. Defects in germ cell development may lead to infertility or birth defects. Historically, our understanding of human PGCs (hPGCs) regulation has primarily been derived from studies in mice, given the ethical restrictions and practical limitations of human embryos at the stage of PGC specification. However, recent studies have increasingly highlighted significant mechanistic differences for PGC development in humans and mice. The past decade has witnessed the establishment of human pluripotent stem cell (hPSC)-derived hPGC-like cells (hPGCLCs) as new models for studying hPGC fate specification and differentiation. In this review, we systematically summarize the current hPSC-derived models for hPGCLC induction, and how these studies uncover the regulatory machinery for human germ cell fate specification and differentiation, forming the basis for reconstituting gametogenesis in vitro from hPSCs for clinical applications and disease modeling.
Collapse
Affiliation(s)
- Honglin Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ziqi Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Jiayue Ma
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ruoming Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Shuo Yao
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Zhaoyu Gu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Kexin Lin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Jinlan Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Robert S Young
- Center for Global Health Research, Usher Institute, University of Edinburgh, 5-7 Little France Road, Edinburgh, EH16 4UX, UK
- Zhejiang University - University of Edinburgh Institute, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ya Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - You Yu
- Center for Infection Immunity, Cancer of Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Min Jin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, 314400, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Fallon TK, Knouse KA. A roadmap toward genome-wide CRISPR screening throughout the organism. CELL GENOMICS 2025; 5:100777. [PMID: 39999849 PMCID: PMC11960495 DOI: 10.1016/j.xgen.2025.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Genome-wide CRISPR screening in the organism has tremendous potential to answer long-standing questions of mammalian physiology and disease. However, bringing this powerful technology in vivo presents unique challenges, including delivering a genome-wide sgRNA library to the appropriate cell type, achieving sufficient coverage of the library, and selecting for the phenotype of interest. In this review, we highlight recent advances in sgRNA delivery, library design, and phenotypic readout that can help overcome these technical challenges and thereby bring high-throughput genetic dissection to an increasing number of tissues and questions. We are excited about the potential for ongoing innovation in these areas to ultimately enable genome-wide CRISPR screening in any cell type of interest in the organism, allowing for unprecedented investigation into diverse questions of mammalian physiology and disease.
Collapse
Affiliation(s)
- Tess K Fallon
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristin A Knouse
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Li B, Pan Y, Wu J, Miao C, Wang Z. Large-scale genomic-wide CRISPR screening revealed PRC1 as a tumor essential candidate in clear cell renal cell carcinoma. Int J Med Sci 2025; 22:1658-1671. [PMID: 40093809 PMCID: PMC11905274 DOI: 10.7150/ijms.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is a prevalent and aggressive subtype of kidney cancer, often associated with metastasis and recurrence. Identifying key genes involved in ccRCC progression is critical for improving treatment strategies and patient outcomes. Methods: We performed a large-scale genome-wide CRISPR screening to identify genes crucial to ccRCC progression using the DepMap database. For discovery and validation, we integrated multi-omics data from The Cancer Genome Atlas (TCGA), GEO, and the NJMU-ccRCC clinical cohort. Bioinformatics analyses, including differential expression, pathway enrichment, and protein-protein interaction network analysis, were conducted to elucidate the biological functions. To validate our findings, we employed immunohistochemistry, qRT-PCR, and various cellular assays to investigate the role of PRC1 in ccRCC. Results: CRISPR screening identified PRC1 as a key gene significantly overexpressed in ccRCC tissues from the DepMap database. Elevated PRC1 expression was associated with poor overall survival, disease-specific survival, and progression-free interval. Silencing PRC1 in ccRCC cell lines inhibited cell proliferation, migration, and colony formation. Functional enrichment analyses revealed that PRC1 is involved in essential processes such as cell cycle regulation, mitosis, and cytokinesis. Additionally, PRC1 expression was correlated with the activation of the Wnt/β-catenin pathway, suggesting that PRC1 plays a pivotal role in tumor progression. Conclusion: PRC1 emerges as a promising biomarker and therapeutic target for ccRCC. Elevated PRC1 expression is associated with poor prognosis, and its inhibition suppresses ccRCC cell proliferation and migration. Our findings underscore the crucial role of PRC1 in ccRCC progression and highlight the need for further investigation into its molecular mechanisms and therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jiajin Wu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Chenkui Miao
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Zengjun Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| |
Collapse
|
27
|
Jiang L, Dalgarno C, Papalexi E, Mascio I, Wessels HH, Yun H, Iremadze N, Lithwick-Yanai G, Lipson D, Satija R. Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens. Nat Cell Biol 2025; 27:505-517. [PMID: 40011560 PMCID: PMC12083445 DOI: 10.1038/s41556-025-01622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
Recent advancements in functional genomics have provided an unprecedented ability to measure diverse molecular modalities, but predicting causal regulatory relationships from observational data remains challenging. Here, we leverage pooled genetic screens and single-cell sequencing (Perturb-seq) to systematically identify the targets of signalling regulators in diverse biological contexts. We demonstrate how Perturb-seq is compatible with recent and commercially available advances in combinatorial indexing and next-generation sequencing, and perform more than 1,500 perturbations split across six cell lines and five biological signalling contexts. We introduce an improved computational framework (Mixscale) to address cellular variation in perturbation efficiency, alongside optimized statistical methods to learn differentially expressed gene lists and conserved molecular signatures. Finally, we demonstrate how our Perturb-seq derived gene lists can be used to precisely infer changes in signalling pathway activation for in vivo and in situ samples. Our work enhances our understanding of signalling regulators and their targets, and lays a computational framework towards the data-driven inference of an 'atlas' of perturbation signatures.
Collapse
Affiliation(s)
| | | | - Efthymia Papalexi
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Isabella Mascio
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | | | | | | | | | - Rahul Satija
- New York Genome Center, New York, NY, USA.
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| |
Collapse
|
28
|
Kwok DW, Stevers NO, Etxeberria I, Nejo T, Colton Cove M, Chen LH, Jung J, Okada K, Lakshmanachetty S, Gallus M, Barpanda A, Hong C, Chan GKL, Liu J, Wu SH, Ramos E, Yamamichi A, Watchmaker PB, Ogino H, Saijo A, Du A, Grishanina NR, Woo J, Diaz A, Hervey-Jumper SL, Chang SM, Phillips JJ, Wiita AP, Klebanoff CA, Costello JF, Okada H. Tumour-wide RNA splicing aberrations generate actionable public neoantigens. Nature 2025; 639:463-473. [PMID: 39972144 PMCID: PMC11903331 DOI: 10.1038/s41586-024-08552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/19/2024] [Indexed: 02/21/2025]
Abstract
T cell-based immunotherapies hold promise in treating cancer by leveraging the immune system's recognition of cancer-specific antigens1. However, their efficacy is limited in tumours with few somatic mutations and substantial intratumoural heterogeneity2-4. Here we introduce a previously uncharacterized class of tumour-wide public neoantigens originating from RNA splicing aberrations in diverse cancer types. We identified T cell receptor clones capable of recognizing and targeting neoantigens derived from aberrant splicing in GNAS and RPL22. In cases with multi-site biopsies, we detected the tumour-wide expression of the GNAS neojunction in glioma, mesothelioma, prostate cancer and liver cancer. These neoantigens are endogenously generated and presented by tumour cells under physiologic conditions and are sufficient to trigger cancer cell eradication by neoantigen-specific CD8+ T cells. Moreover, our study highlights a role for dysregulated splicing factor expression in specific cancer types, leading to recurrent patterns of neojunction upregulation. These findings establish a molecular basis for T cell-based immunotherapies addressing the challenges of intratumoural heterogeneity.
Collapse
Affiliation(s)
- Darwin W Kwok
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Iñaki Etxeberria
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| | - Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Maggie Colton Cove
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lee H Chen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jangham Jung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kaori Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Abhilash Barpanda
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Gary K L Chan
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jerry Liu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Samuel H Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Emilio Ramos
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hirokazu Ogino
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Atsuro Saijo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aidan Du
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nadia R Grishanina
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - James Woo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
29
|
Lin SJ, Huang K, Petree C, Qin W, Varshney P, Varshney G. Optimizing gRNA selection for high-penetrance F0 CRISPR screening for interrogating disease gene function. Nucleic Acids Res 2025; 53:gkaf180. [PMID: 40103232 PMCID: PMC11915512 DOI: 10.1093/nar/gkaf180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Genes and genetic variants associated with human disease are continually being discovered, but validating their causative roles and mechanisms remains a significant challenge. CRISPR/Cas9 genome editing in model organisms like zebrafish can enable phenotypic characterization of founder generation (F0) knockouts (Crispants), but existing approaches are not amenable to high-throughput genetic screening due to high variability, cost, and low phenotype penetrance. To overcome these challenges, here we provide guide RNA (gRNA) selection rules that enable high phenotypic penetrance of up to three simultaneous knockouts in F0 animals following injection of 1-2 gRNAs per gene. We demonstrate a strong transcriptomic overlap in our F0 knockouts and stable knockout lines that take several months to generate. We systematically evaluated this approach across 324 gRNAs targeting 125 genes and demonstrated its utility in studying epistasis, characterizing paralogous genes, and validating human disease gene phenotypes across multiple tissues. Applying our approach in a high-throughput manner, we screened and identified 10 novel neurodevelopmental disorders and 50 hearing genes not previously studied in zebrafish. Altogether, our approach achieves high phenotypic penetrance using low numbers of gRNAs per gene in F0 zebrafish, offering a robust pipeline for rapidly characterizing candidate human disease genes.
Collapse
Affiliation(s)
- Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Wei Qin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Pratishtha Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| |
Collapse
|
30
|
Schwartz HT, Sternberg PW. A sequencing-based screening method identifies regulators of EGFR signaling from nonviable mutants in Caenorhabditis elegans. Sci Signal 2025; 18:eadp9377. [PMID: 39999212 DOI: 10.1126/scisignal.adp9377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Suppressor screens can identify genetic modifiers of biochemical pathways but generally require that the suppressed mutant be viable and fertile. We developed a screening method that obviated this requirement and enabled the identification of mutations that partially suppressed the early developmental arrest and lethality caused by loss of the epidermal growth factor (EGF) receptor ortholog LET-23 in Caenorhabditis elegans. We chemically mutagenized animals carrying the loss-of-function allele let-23(sy15), recovered let-23(sy15) homozygotes that escaped early developmental arrest but were nevertheless inviable, and sequenced their genomes. Testing of candidate causal mutations identified 11 genes that, when mutated, mitigated the early lethality caused by loss of EGF signaling. These included genes encoding homologs of the small guanosine triphosphatase (GTPase) Ras (let-60), which is a downstream effector of LET-23, and of regulators of the small GTPase Rho, including the homolog of the phosphotyrosine-binding protein TENSIN (tns-1). We also recovered suppressing mutations in genes encoding nuclear proteins that protect against DNA damage, including the homolog of MutS homolog 4 (him-14). Genetic experiments were consistent with the repression of Rho activity or the activation of the DNA damage response compensating for the loss of EGF signaling. This sequencing-based, whole-animal screening method may be adapted to other organisms to enable the identification of mutations for which the phenotype does not allow the recovery of viable animals.
Collapse
Affiliation(s)
- Hillel T Schwartz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
31
|
Zhang S, Liu K, Liu Y, Hu X, Gu X. The role and application of bioinformatics techniques and tools in drug discovery. Front Pharmacol 2025; 16:1547131. [PMID: 40017606 PMCID: PMC11865229 DOI: 10.3389/fphar.2025.1547131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
The process of drug discovery and development is both lengthy and intricate, demanding a substantial investment of time and financial resources. Bioinformatics techniques and tools can not only accelerate the identification of drug targets and the screening and refinement of drug candidates, but also facilitate the characterization of side effects and the prediction of drug resistance. High-throughput data from genomics, transcriptomics, proteomics, and metabolomics make significant contributions to mechanics-based drug discovery and drug reuse. This paper summarizes bioinformatics technologies and tools in drug research and development and their roles and applications in drug research and development, aiming to provide references for the development of new drugs and the realization of precision medicine.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kaijie Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yafeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Medical Key Laboratory of Gastrointestinal Microecology and Hepatology, Luoyang, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
32
|
Caragine CM, Le VT, Mustafa M, Diaz BJ, Morris JA, Müller S, Mendez-Mancilla A, Geller E, Liscovitch-Brauer N, Sanjana NE. Comprehensive dissection of cis-regulatory elements in a 2.8 Mb topologically associated domain in six human cancers. Nat Commun 2025; 16:1611. [PMID: 39948336 PMCID: PMC11825950 DOI: 10.1038/s41467-025-56568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Cis-regulatory elements (CREs), such as enhancers and promoters, are fundamental regulators of gene expression and, across different cell types, the MYC locus utilizes a diverse regulatory architecture driven by multiple CREs. To better understand differences in CRE function, we perform pooled CRISPR inhibition (CRISPRi) screens to comprehensively probe the 2.8 Mb topologically-associated domain containing MYC in 6 human cancer cell lines with nucleotide resolution. We map 32 CREs where inhibition leads to changes in cell growth, including 8 that overlap previously identified enhancers. Targeting specific CREs decreases MYC expression by as much as 60%, and cell growth by as much as 50%. Using 3-D enhancer contact mapping, we find that these CREs almost always contact MYC but less than 10% of total MYC contacts impact growth when silenced, highlighting the utility of our approach to identify phenotypically-relevant CREs. We also detect an enrichment of lineage-specific transcription factors (TFs) at MYC CREs and, for some of these TFs, find a strong, tumor-specific correlation between TF and MYC expression not found in normal tissue. Taken together, these CREs represent systematically identified, functional regulatory regions and demonstrate how the same region of the human genome can give rise to complex, tissue-specific gene regulation.
Collapse
Affiliation(s)
- Christina M Caragine
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Victoria T Le
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Meer Mustafa
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Bianca Jay Diaz
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - John A Morris
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Simon Müller
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Alejandro Mendez-Mancilla
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Evan Geller
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Noa Liscovitch-Brauer
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Henke DM, Renwick A, Zoeller JR, Meena JK, Neill NJ, Bowling EA, Meerbrey KL, Westbrook TF, Simon LM. Bio-primed machine learning to enhance discovery of relevant biomarkers. NPJ Precis Oncol 2025; 9:39. [PMID: 39915634 PMCID: PMC11802771 DOI: 10.1038/s41698-025-00825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Precision medicine relies on identifying reliable biomarkers for gene dependencies to tailor individualized therapeutic strategies. The advent of high-throughput technologies presents unprecedented opportunities to explore molecular disease mechanisms but also challenges due to high dimensionality and collinearity among features. Traditional statistical methods often fall short in this context, necessitating novel computational approaches that harness the full potential of big data in bioinformatics. Here, we introduce a novel machine learning approach extending the Least Absolute Shrinkage and Selection Operator (LASSO) regression framework to incorporate biological knowledge, such as protein-protein interaction databases, into the regularization process. This bio-primed approach prioritizes variables that are both statistically significant and biologically relevant. Applying our method to multiple dependency datasets, we identified biomarkers which traditional methods overlooked. Our biologically informed LASSO method effectively identifies relevant biomarkers from high-dimensional collinear data, bridging the gap between statistical rigor and biological insight. This method holds promise for advancing personalized medicine by uncovering novel therapeutic targets and understanding the complex interplay of genetic and molecular factors in disease.
Collapse
Affiliation(s)
- David M Henke
- Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Joseph R Zoeller
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jitendra K Meena
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicholas J Neill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elizabeth A Bowling
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kristen L Meerbrey
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Thomas F Westbrook
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lukas M Simon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Sander PN, Gillen Miller JT, Lairson LL. Induced cell phenotype activity recording of DNA-tagged ligands. RSC Chem Biol 2025; 6:273-280. [PMID: 39776788 PMCID: PMC11701724 DOI: 10.1039/d4cb00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Based on their ability to canvas vast genetic or chemical space at low cost and high speed, DNA-encoded libraries (DEL) have served to enable both genomic and small molecule discovery. Current DEL chemical library screening approaches focus primarily on in vitro target-based affinity or activity. Here we describe an approach to record the phenotype-based activity of DNA-encoded small molecules on their cognate barcode in living cells. We transfected chloroalkane-derivatized DNA barcodes carrying photoreleasable small molecules into cells. Following photorelease, bioactive compounds induced expression of a reporter gene cassette containing self-labeling HaloTag protein that becomes covalently modified by encoding barcodes. We demonstrate that we can recover activity information from cells that received active compound following immunoprecipitation-based enrichment. This generalizable approach should enable future strategies that facilitate phenotype-based screens of DNA-encoded chemical libraries in complex cellular or organism level systems.
Collapse
Affiliation(s)
- Philipp N Sander
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jared T Gillen Miller
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
35
|
Abbasi AF, Asim MN, Dengel A. Transitioning from wet lab to artificial intelligence: a systematic review of AI predictors in CRISPR. J Transl Med 2025; 23:153. [PMID: 39905452 PMCID: PMC11796103 DOI: 10.1186/s12967-024-06013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 02/06/2025] Open
Abstract
The revolutionary CRISPR-Cas9 system leverages a programmable guide RNA (gRNA) and Cas9 proteins to precisely cleave problematic regions within DNA sequences. This groundbreaking technology holds immense potential for the development of targeted therapies for a wide range of diseases, including cancers, genetic disorders, and hereditary diseases. CRISPR-Cas9 based genome editing is a multi-step process such as designing a precise gRNA, selecting the appropriate Cas protein, and thoroughly evaluating both on-target and off-target activity of the Cas9-gRNA complex. To ensure the accuracy and effectiveness of CRISPR-Cas9 system, after the targeted DNA cleavage, the process requires careful analysis of the resultant outcomes such as indels and deletions. Following the success of artificial intelligence (AI) in various fields, researchers are now leveraging AI algorithms to catalyze and optimize the multi-step process of CRISPR-Cas9 system. To achieve this goal AI-driven applications are being integrated into each step, but existing AI predictors have limited performance and many steps still rely on expensive and time-consuming wet-lab experiments. The primary reason behind low performance of AI predictors is the gap between CRISPR and AI fields. Effective integration of AI into multi-step CRISPR-Cas9 system demands comprehensive knowledge of both domains. This paper bridges the knowledge gap between AI and CRISPR-Cas9 research. It offers a unique platform for AI researchers to grasp deep understanding of the biological foundations behind each step in the CRISPR-Cas9 multi-step process. Furthermore, it provides details of 80 available CRISPR-Cas9 system-related datasets that can be utilized to develop AI-driven applications. Within the landscape of AI predictors in CRISPR-Cas9 multi-step process, it provides insights of representation learning methods, machine and deep learning methods trends, and performance values of existing 50 predictive pipelines. In the context of representation learning methods and classifiers/regressors, a thorough analysis of existing predictive pipelines is utilized for recommendations to develop more robust and precise predictive pipelines.
Collapse
Affiliation(s)
- Ahtisham Fazeel Abbasi
- Smart Data and Knowledge Services, German Research Center for Artificial Intelligence, 67663, Kaiserslautern, Germany.
- Department of Computer Science, Rhineland-Palatinate Technical University Kaiserslautern-Landau, 67663, Kaiserslautern, Germany.
| | - Muhammad Nabeel Asim
- Department of Computer Science, Rhineland-Palatinate Technical University Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Andreas Dengel
- Smart Data and Knowledge Services, German Research Center for Artificial Intelligence, 67663, Kaiserslautern, Germany
- Department of Computer Science, Rhineland-Palatinate Technical University Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| |
Collapse
|
36
|
Su KC, Radul E, Maier NK, Tsang MJ, Goul C, Moodie B, Marescal O, Keys HR, Cheeseman IM. Functional genetics reveals modulators of antimicrotubule drug sensitivity. J Cell Biol 2025; 224:e202403065. [PMID: 39570287 PMCID: PMC11590752 DOI: 10.1083/jcb.202403065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/04/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Microtubules play essential roles in diverse cellular processes and are important pharmacological targets for treating human disease. Here, we sought to identify cellular factors that modulate the sensitivity of cells to antimicrotubule drugs. We conducted a genome-wide CRISPR/Cas9-based functional genetics screen in human cells treated with the microtubule-destabilizing drug nocodazole or the microtubule-stabilizing drug paclitaxel. We further conducted a focused secondary screen to test drug sensitivity for ∼1,400 gene targets across two distinct human cell lines and to additionally test sensitivity to the KIF11 inhibitor, STLC. These screens defined gene targets whose loss enhances or suppresses sensitivity to antimicrotubule drugs. In addition to gene targets whose loss sensitized cells to multiple compounds, we observed cases of differential sensitivity to specific compounds and differing requirements between cell lines. Our downstream molecular analysis further revealed additional roles for established microtubule-associated proteins and identified new players in microtubule function.
Collapse
Affiliation(s)
- Kuan-Chung Su
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Elena Radul
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Nolan K. Maier
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mary-Jane Tsang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Claire Goul
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Océane Marescal
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather R. Keys
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
37
|
Zhang L, Zhang H, Wang T, Li M, Chan AK, Kang H, Foong LC, Liu Q, Pokharel SP, Mattson NM, Singh P, Elsayed Z, Kuang B, Wang X, Rosen ST, Chen J, Yang L, Chou T, Su R, Chen CD. Nuclear Control of Mitochondrial Homeostasis and Venetoclax Efficacy in AML via COX4I1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404620. [PMID: 39716856 PMCID: PMC11809339 DOI: 10.1002/advs.202404620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/14/2024] [Indexed: 12/25/2024]
Abstract
Cell signaling pathways are enriched for biological processes crucial for cellular communication, response to external stimuli, and metabolism. Here, a cell signaling-focused CRISPR screen identified cytochrome c oxidase subunit 4 isoform 1 (COX4I1) as a novel vulnerability in acute myeloid leukemia (AML). Depletion of COX4I1 hindered leukemia cell proliferation and impacted in vivo AML progression. Mechanistically, loss of COX4I1 induced mitochondrial stress and ferroptosis, disrupting mitochondrial ultrastructure and oxidative phosphorylation. CRISPR gene tiling scans, coupled with mitochondrial proteomics, dissected critical regions within COX4I1 essential for leukemia cell survival, providing detailed insights into the mitochondrial Complex IV assembly network. Furthermore, COX4I1 depletion or pharmacological inhibition of Complex IV (using chlorpromazine) synergized with venetoclax, providing a promising avenue for improved leukemia therapy. This study highlights COX4I1, a nuclear encoded mitochondrial protein, as a critical mitochondrial checkpoint, offering insights into its functional significance and potential clinical implications in AML.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Humans
- Mitochondria/metabolism
- Mitochondria/drug effects
- Mitochondria/genetics
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Electron Transport Complex IV/metabolism
- Electron Transport Complex IV/genetics
- Animals
- Mice
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Homeostasis/drug effects
- Cell Line, Tumor
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Leisi Zhang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of HematologyThe First Affiliated Hospital of Soochow University296 Shizi StSuzhouJiangsu215005China
| | - Honghai Zhang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Ting‐Yu Wang
- Proteome Exploration LaboratoryCalifornia Institute of Technology1200 E California BlvdPasadenaCA91125USA
| | - Mingli Li
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Anthony K.N. Chan
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Hyunjun Kang
- Department of Hematologic Malignancies Translational ScienceBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010
| | - Lai C. Foong
- Proteome Exploration LaboratoryCalifornia Institute of Technology1200 E California BlvdPasadenaCA91125USA
| | - Qiao Liu
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Sheela Pangeni Pokharel
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Nicole M. Mattson
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Priyanka Singh
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Zeinab Elsayed
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Benjamin Kuang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Xueer Wang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Steven T. Rosen
- City of Hope Comprehensive Cancer Center1500 E Duarte RdDuarteCA91010USA
| | - Jianjun Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- City of Hope Comprehensive Cancer Center1500 E Duarte RdDuarteCA91010USA
| | - Lu Yang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Tsui‐Fen Chou
- Proteome Exploration LaboratoryCalifornia Institute of Technology1200 E California BlvdPasadenaCA91125USA
| | - Rui Su
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- City of Hope Comprehensive Cancer Center1500 E Duarte RdDuarteCA91010USA
| | - Chun‐Wei David Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- City of Hope Comprehensive Cancer Center1500 E Duarte RdDuarteCA91010USA
| |
Collapse
|
38
|
Yang F, Wei N, Cai S, Liu J, Lan Q, Zhang H, Shang L, Zheng B, Wang M, Liu Y, Zhang L, Fei C, Tong W, Liu C, Kuang E, Tong G, Gu F. Genome-wide CRISPR screens identify CLC-2 as a drug target for anti-herpesvirus therapy: tackling herpesvirus drug resistance. SCIENCE CHINA. LIFE SCIENCES 2025; 68:515-526. [PMID: 39428427 DOI: 10.1007/s11427-023-2627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/23/2024] [Indexed: 10/22/2024]
Abstract
The emergence of drug resistance to virus (i.e., acyclovir (ACV) to herpesviruses) has been termed one of the common clinical issues, emphasizing the discovery of new antiviral agents. To address it, a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screening was performed in mouse haploid embryonic stem cells infected with pseudorabies virus (PRV), an α-herpesvirus causing human and pig diseases. The results demonstrated that type 2 voltage-gated chloride channels (CLC-2) encoded by one of the identified genes, CLCN2, is a potential drug target for anti-herpesvirus therapy. CLC-2 inhibitors, omeprazole (OME) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), can efficiently inhibit infection of multiple herpesviruses in cellulo (i.e., PRV, HSV and EBV), and effectively treat murine herpes simplex encephalitis (HSE). Additionally, DIDS was found to inhibit HSV-1 replication by blocking the PI3K/Akt pathway. Most importantly, both DIDS and OME were able to inhibit ACV-resistant HSV-1 strain infection. The study's findings suggest that targeting host-cell factors such as CLC-2 may be a promising approach to tackling herpesvirus drug resistance. The discovery of CLC-2 as a potential drug target for anti-herpesvirus therapy provides a new direction for the development of novel antiviral agents.
Collapse
Affiliation(s)
- Fayu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Nan Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Shuo Cai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Jing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Qingping Lan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Bo Zheng
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China.
| |
Collapse
|
39
|
Arshad S, Qadir ML, Hussain N, Ali Q, Han S, Ali D. Advances in CRISPR/Cas9 technology: shaping the future of photosynthetic microorganisms for biofuel production. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24255. [PMID: 39932844 DOI: 10.1071/fp24255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Use of fossil fuels causes environmental issues due to its inefficiency and and imminent depletion. This has led to interest in identifying alternative and renewable energy sources such as biofuel generation from photosynthetic organisms. A wide variety of prokaryotic and eukaryotic microorganisms, known as microalgae, have the potential to be economical and ecologically sustainable in the manufacture of biofuels such as bio-hydrogen, biodiesel, bio-oils, and bio-syngas. By using contemporary bioengineering techniques, the innate potential of algae to produce biomass of superior quality may be enhanced. In algal biotechnology, directed genome modification via RNA-guided endonucleases is a new approach. CRISPR/Cas systems have recently been frequently used to modify the genetic makeup of several aquatic and freshwater microalgae. The majority of research has used the Cas9-driven Type II system, one of two classes and six unique kinds of CRISPR systems, to specifically target desired genes in algae, and knock them out and down, or both. Using CRISPR technology to modify its genetic makeup, microalgae has produced more biomass and increased in lipid content. This review highlights the attempts made so far to target microalgae genome modification, discusses the prospects for developing the CRISPR platform for large-scale genome modification of microalgae, and identifies the opportunities and challenges in the development and distribution of CRISPR/Cas9 components.
Collapse
Affiliation(s)
- Samreen Arshad
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Luqman Qadir
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
40
|
Karami Fath M, Najafiyan B, Morovatshoar R, Khorsandi M, Dashtizadeh A, Kiani A, Farzam F, Kazemi KS, Nabi Afjadi M. Potential promising of synthetic lethality in cancer research and treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1403-1431. [PMID: 39305329 DOI: 10.1007/s00210-024-03444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 02/14/2025]
Abstract
Cancer is a complex disease driven by multiple genetic changes, including mutations in oncogenes, tumor suppressor genes, DNA repair genes, and genes involved in cancer metabolism. Synthetic lethality (SL) is a promising approach in cancer research and treatment, where the simultaneous dysfunction of specific genes or pathways causes cell death. By targeting vulnerabilities created by these dysfunctions, SL therapies selectively kill cancer cells while sparing normal cells. SL therapies, such as PARP inhibitors, WEE1 inhibitors, ATR and ATM inhibitors, and DNA-PK inhibitors, offer a distinct approach to cancer treatment compared to conventional targeted therapies. Instead of directly inhibiting specific molecules or pathways, SL therapies exploit genetic or molecular vulnerabilities in cancer cells to induce selective cell death, offering benefits such as targeted therapy, enhanced treatment efficacy, and minimized harm to healthy tissues. SL therapies can be personalized based on each patient's unique genetic profile and combined with other treatment modalities to potentially achieve synergistic effects. They also broaden the effectiveness of treatment across different cancer types, potentially overcoming drug resistance and improving patient outcomes. This review offers an overview of the current understanding of SL mechanisms, advancements, and challenges, as well as the preclinical and clinical development of SL. It also discusses new directions and opportunities for utilizing SL in targeted therapy for anticancer treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Behnam Najafiyan
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdieh Khorsandi
- Department of Biotechnology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Arash Kiani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
41
|
Madorsky Rowdo FP, Martini R, Ackermann SE, Tang CP, Tranquille M, Irizarry A, Us I, Alawa O, Moyer JE, Sigouros M, Nguyen J, Assaad MA, Cheng E, Ginter PS, Manohar J, Stonaker B, Boateng R, Oppong JK, Adjei EK, Awuah B, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Gyan KK, Hoda S, Newman L, Mosquera JM, Sboner A, Elemento O, Dow LE, Davis MB, Martin ML. Kinome-Focused CRISPR-Cas9 Screens in African Ancestry Patient-Derived Breast Cancer Organoids Identify Essential Kinases and Synergy of EGFR and FGFR1 Inhibition. Cancer Res 2025; 85:551-566. [PMID: 39891928 PMCID: PMC11790258 DOI: 10.1158/0008-5472.can-24-0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/10/2024] [Accepted: 11/20/2024] [Indexed: 02/03/2025]
Abstract
Precision medicine approaches to cancer treatment aim to exploit genomic alterations that are specific to individual patients to tailor therapeutic strategies. Yet, some targetable genes and pathways are essential for tumor cell viability even in the absence of direct genomic alterations. In underrepresented populations, the mutational landscape and determinants of response to existing therapies are poorly characterized because of limited inclusion in clinical trials and studies. One way to reveal tumor essential genes is with genetic screens. Most screens are conducted on cell lines that bear little resemblance to patient tumors, after years of culture under nonphysiologic conditions. To address this problem, we aimed to develop a CRISPR screening pipeline in three-dimensionally grown patient-derived tumor organoid (PDTO) models. A breast cancer PDTO biobank that focused on underrepresented populations, including West African patients, was established and used to conduct a negative-selection kinome-focused CRISPR screen to identify kinases essential for organoid growth and potential targets for combination therapy with EGFR or MEK inhibitors. The screen identified several previously unidentified kinase targets, and the combination of FGFR1 and EGFR inhibitors synergized to block organoid proliferation. Together, these data demonstrate the feasibility of CRISPR-based genetic screens in patient-derived tumor models, including PDTOs from underrepresented patients with cancer, and identify targets for cancer therapy. Significance: Generation of a breast cancer patient-derived tumor organoid biobank focused on underrepresented populations enabled kinome-focused CRISPR screening that identified essential kinases and potential targets for combination therapy with EGFR or MEK inhibitors. See related commentary by Trembath and Spanheimer, p. 407.
Collapse
Affiliation(s)
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, GA, USA
| | - Sarah E. Ackermann
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Colin P. Tang
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Marvel Tranquille
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Adriana Irizarry
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ilkay Us
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Omar Alawa
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenna E. Moyer
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - John Nguyen
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Majd Al Assaad
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Paula S. Ginter
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Brian Stonaker
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | - Ishmael Kyei
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | | | | | - Kofi K. Gyan
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Syed Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lukas E. Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA
| | - Melissa B. Davis
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, GA, USA
| | - M. Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
42
|
Zhou B, Liu Y, Ma H, Zhang B, Lu B, Li S, Liu T, Qi Y, Wang Y, Zhang M, Qiu J, Fu R, Li W, Lu L, Tian S, Liu Q, Gu Y, Huang R, Lawrence T, Kong E, Zhang L, Li T, Liang Y. Zdhhc1 deficiency mitigates foam cell formation and atherosclerosis by inhibiting PI3K-Akt-mTOR signaling pathway through facilitating the nuclear translocation of p110α. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167577. [PMID: 39566590 DOI: 10.1016/j.bbadis.2024.167577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Monocyte-to-macrophage differentiation and subsequent foam cell formation are key processes that contribute to plaque build-up during the progression of atherosclerotic lesions. Palmitoylation enzymes are known to play pivotal roles in the development and progression of inflammatory diseases. However, their specific impact on atherosclerosis development remains unclear. In this study, we discovered that the knockout of zDHHC1 in THP-1 cells, as well as Zdhhc1 in mice, markedly reduces the uptake of oxidized low-density lipoprotein (ox-LDL) by macrophages, thereby inhibiting foam cell formation. Moreover, the absence of Zdhhc1 in ApoE-/- mice significantly suppresses atherosclerotic plaque formation. Mass spectrometry coupled with bioinformatic analysis revealed an enrichment of the PI3K-Akt-mTOR signaling pathway. Consistent with this, we observed that knockout of zDHHC1 significantly decreases the palmitoylation levels of p110α, a crucial subunit of PI3K. Notably, the deletion of Zdhhc1 facilitates the nuclear translocation of p110α in macrophages, leading to a significant reduction in the downstream phosphorylation of Akt at Ser473 and mTOR at Ser2448. This cascade results in a decreased number of macrophages within plaques and ultimately mitigates the severity of atherosclerosis. These findings unveil a novel role for zDHHC1 in regulating foam cell formation and the progression of atherosclerosis, suggesting it as a promising target for clinical intervention in atherosclerosis therapy.
Collapse
Affiliation(s)
- Binhui Zhou
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yang Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Haoyuan Ma
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bowen Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Beijia Lu
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China
| | - Sainan Li
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China
| | - Tingting Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingcheng Qi
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China
| | - Mengjie Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Juanjuan Qiu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui Fu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wushan Li
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuanghua Tian
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiaoli Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yanrong Gu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Rong Huang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Toby Lawrence
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London SE1 1UL, UK; Centre de Immunologie Marseille-Luminy, CNRS, INSERM, Aix-Marseille Universite, 13009 Marseille, France
| | - Eryan Kong
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China.
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Tianhan Li
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; Basic Medical College, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China; Center of Disease Model and Immunology, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| |
Collapse
|
43
|
Azam S, Yang F, Wu X. Finding functional microproteins. Trends Genet 2025; 41:107-118. [PMID: 39753408 PMCID: PMC11794006 DOI: 10.1016/j.tig.2024.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 02/06/2025]
Abstract
Genome-wide translational profiling has uncovered the synthesis in human cells of thousands of microproteins, a class of proteins traditionally overlooked in functional studies. Although an increasing number of these microproteins have been found to play critical roles in cellular processes, the functional relevance of the majority remains poorly understood. Studying these low-abundance, often unstable proteins is further complicated by the challenge of disentangling their functions from the noncoding roles of the associated DNA, RNA, and the act of translation. This review highlights recent advances in functional genomics that have led to the discovery of >1000 human microproteins required for optimal cell proliferation. Ongoing technological innovations will continue to clarify the roles and mechanisms of microproteins in both normal physiology and disease, potentially opening new avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Sikandar Azam
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Feiyue Yang
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xuebing Wu
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
44
|
Pena IA, Shi JS, Chang SM, Yang J, Block S, Adelmann CH, Keys HR, Ge P, Bathla S, Witham IH, Sienski G, Nairn AC, Sabatini DM, Lewis CA, Kory N, Vander Heiden MG, Heiman M. SLC25A38 is required for mitochondrial pyridoxal 5'-phosphate (PLP) accumulation. Nat Commun 2025; 16:978. [PMID: 39856062 PMCID: PMC11760969 DOI: 10.1038/s41467-025-56130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown. In this study, we used a genome-wide CRISPR interference screen in erythroleukemia cells and organellar metabolomics to identify the mitochondrial inner membrane protein SLC25A38 as a regulator of mitochondrial pyridoxal 5'-phosphate. Loss of SLC25A38 causes depletion of mitochondrial, but not cellular, pyridoxal 5'-phosphate, and impairs cellular proliferation under both physiological and low vitamin B6 conditions. Metabolic changes associated with SLC25A38 loss suggest impaired mitochondrial pyridoxal 5'-phosphate-dependent enzymatic reactions, including serine to glycine conversion catalyzed by serine hydroxymethyltransferase-2 as well as ornithine aminotransferase. The proliferation defect of SLC25A38-null K562 cells in physiological and low vitamin B6 media can be explained by the loss of serine hydroxymethyltransferase-2-dependent production of one-carbon units and downstream de novo nucleotide synthesis. Our work points to a role for SLC25A38 in mitochondrial pyridoxal 5'-phosphate accumulation and provides insights into the pathology of congenital sideroblastic anemia.
Collapse
Affiliation(s)
- Izabella A Pena
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada.
| | - Jeffrey S Shi
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
| | - Sarah M Chang
- Department of Biology, MIT, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Jason Yang
- Department of Biology, MIT, Cambridge, MA, USA
| | - Samuel Block
- Department of Biology, MIT, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Charles H Adelmann
- Department of Biology, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heather R Keys
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Preston Ge
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Shveta Bathla
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Isabella H Witham
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | | | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - David M Sabatini
- Institute of Organic Chemistry and Biochemistry, IOCB, Prague, Czechia
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- UMass Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA
| | - Nora Kory
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew G Vander Heiden
- Department of Biology, MIT, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
45
|
Zhang E, Peng L, Yuan K, Ding Z, Yi Q. HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis. FRONT BIOSCI-LANDMRK 2025; 30:26426. [PMID: 39862081 DOI: 10.31083/fbl26426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection. However, the function and localization mechanisms of ATRX at mitotic centromeres remain largely unresolved. METHODS The clustered regularly interspaced short palindromic repeats with CRISPR-associated protein 9 (CRISPR-Cas9) system and overexpression approaches were employed alongside immunofluorescence to investigate the mechanism of ATRX localization at the centromere. To study the binding mechanism between ATRX and heterochromatin protein 1 (HP1), both full-length and truncated mutants of hemagglutinin (HA)-ATRX were generated for co-immunoprecipitation and glutathione S-transferase (GST)-pull assays. Wild-type ATRX and HP1 binding-deficient mutants were created to investigate the role of ATRX binding to HP1 during mitosis, with the Z-Leu-Leu-Leu-al (MG132) maintenance assay, cohesion function assay, and kinetochore distance measurement. RESULTS AND CONCLUSIONS Our research demonstrated that HP1α, HP1β, and HP1γ facilitate the positioning of ATRX within the mitotic centromere area through their interaction with the first two [P/L]-X-V-X-[M/L/V] (PxVxL)motifs at the N-terminus of ATRX. ATRX deficiency causes aberrant mitosis and decreased centromeric cohesion. Furthermore, reducing Wapl activity can bypass the need for ATRX to protect centromeric cohesion. These results provide insights into the mechanism of ATRX's centromeric localization and its critical function in preserving centromeric cohesion by reducing Wapl activity in human cells.
Collapse
Affiliation(s)
- Erchen Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China
- Central South University Institute of Reproduction and Stem Cell Engineering, 410013 Changsha, Hunan, China
| | - Lei Peng
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China
| | - Kejia Yuan
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China
| | - Zexian Ding
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China
| | - Qi Yi
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China
| |
Collapse
|
46
|
Ding S, Zheng J, Jia C. DeepMEns: an ensemble model for predicting sgRNA on-target activity based on multiple features. Brief Funct Genomics 2025; 24:elae043. [PMID: 39528429 PMCID: PMC11735754 DOI: 10.1093/bfgp/elae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The CRISPR/Cas9 system developed from Streptococcus pyogenes (SpCas9) has high potential in gene editing. However, its successful application is hindered by the considerable variability in target efficiencies across different single guide RNAs (sgRNAs). Although several deep learning models have been created to predict sgRNA on-target activity, the intrinsic mechanisms of these models are difficult to explain, and there is still scope for improvement in prediction performance. To overcome these issues, we propose an ensemble interpretable model termed DeepMEns based on deep learning to predict sgRNA on-target activity. By using five different training and validation datasets, we constructed five sub-regressors, each comprising three parts. The first part uses one-hot encoding, wherein 0-1 representation of the secondary structure is used as the input to the convolutional neural network (CNN) with Transformer encoder. The second part uses the DNA shape feature matrix as the input to the CNN with Transformer encoder. The third part uses positional encoding feature matrices as the proposed input into a long short-term memory network with an attention mechanism. These three parts are concatenated through the flattened layer, and the final prediction result is the average of the five sub-regressors. Extensive benchmarking experiments indicated that DeepMEns achieved the highest Spearman correlation coefficient for 6 of 10 independent test datasets as compared to previous predictors, this finding confirmed that DeepMEns can accomplish state-of-the-art performance. Moreover, the ablation analysis also indicated that the ensemble strategy may improve the performance of the prediction model.
Collapse
Affiliation(s)
- Shumei Ding
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Jia Zheng
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
47
|
Lin H, Ye X, Chen W, Hong D, Liu L, Chen F, Sun N, Ye K, Hong J, Zhang Y, Lu F, Li L, Huang J. Modular organization of enhancer network provides transcriptional robustness in mammalian development. Nucleic Acids Res 2025; 53:gkae1323. [PMID: 39817516 PMCID: PMC11736433 DOI: 10.1093/nar/gkae1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/27/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
Enhancer clusters, pivotal in mammalian development and diseases, can organize as enhancer networks to control cell identity and disease genes; however, the underlying mechanism remains largely unexplored. Here, we introduce eNet 2.0, a comprehensive tool for enhancer networks analysis during development and diseases based on single-cell chromatin accessibility data. eNet 2.0 extends our previous work eNet 1.0 by adding network topology, comparison and dynamics analyses to its network construction function. We reveal modularly organized enhancer networks, where inter-module interactions synergistically affect gene expression. Moreover, network alterations correlate with abnormal and dynamic gene expression in disease and development. eNet 2.0 is robust across diverse datasets. To facilitate application, we introduce eNetDB (https://enetdb.huanglabxmu.com), an enhancer network database leveraging extensive scATAC-seq (single-cell assay for transposase-accessible chromatin sequencing) datasets from human and mouse tissues. Together, our work provides a powerful computational tool and reveals that modularly organized enhancer networks contribute to gene expression robustness in mammalian development and diseases.
Collapse
Affiliation(s)
- Hongli Lin
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Xinyun Ye
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Wenyan Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Guangqiao Road, Shenzhen 518055, China
| | - Danni Hong
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Lifang Liu
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Feng Chen
- Chengdu Wiser Matrix Technology Co. Ltd, No. 399, Fucheng Road, Chengdu, Sichuan 614001, China
| | - Ning Sun
- Chengdu Wiser Matrix Technology Co. Ltd, No. 399, Fucheng Road, Chengdu, Sichuan 614001, China
| | - Keying Ye
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Jizhou Hong
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Yalin Zhang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 2, Beichen West Road, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Beijing 101408, China
| | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Guangqiao Road, Shenzhen 518055, China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
48
|
Golchin A, Shams F, Moradi F, Sadrabadi AE, Parviz S, Alipour S, Ranjbarvan P, Hemmati Y, Rahnama M, Rasmi Y, Aziz SGG. Single-cell Technology in Stem Cell Research. Curr Stem Cell Res Ther 2025; 20:9-32. [PMID: 38243989 DOI: 10.2174/011574888x265479231127065541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 01/22/2024]
Abstract
Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing on the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Moradi
- Department of Tissue Engineering, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Shima Parviz
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parviz Ranjbarvan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Hemmati
- Department of Prosthodontics, Dental Faculty, Urmia University of Medical Science, Urmia, Iran
| | - Maryam Rahnama
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
49
|
Smith DJ, Lunj S, Adamson AD, Nagarajan S, Smith TAD, Reeves KJ, Hoskin PJ, Choudhury A. CRISPR-Cas9 potential for identifying novel therapeutic targets in muscle-invasive bladder cancer. Nat Rev Urol 2025; 22:55-65. [PMID: 38951705 DOI: 10.1038/s41585-024-00901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 07/03/2024]
Abstract
Gene editing technologies help identify the genetic perturbations driving tumour initiation, growth, metastasis and resistance to therapeutics. This wealth of information highlights tumour complexity and is driving cancer research towards precision medicine approaches based on an individual's tumour genetics. Bladder cancer is the 11th most common cancer in the UK, with high rates of relapse and low survival rates in patients with muscle-invasive bladder cancer (MIBC). MIBC is highly heterogeneous and encompasses multiple molecular subtypes, each with different responses to therapeutics. This evidence highlights the need to identify innovative therapeutic targets to address the challenges posed by this heterogeneity. CRISPR-Cas9 technologies have been used to advance our understanding of MIBC and determine novel drug targets through the identification of drug resistance mechanisms, targetable cell-cycle regulators, and novel tumour suppressor and oncogenes. However, the use of these technologies in the clinic remains a substantial challenge and will require careful consideration of dosage, safety and ethics. CRISPR-Cas9 offers considerable potential for revolutionizing bladder cancer therapies, but substantial research is required for validation before these technologies can be used in the clinical setting.
Collapse
Affiliation(s)
- Danielle J Smith
- Division of Cancer Sciences, University of Manchester, Manchester, UK.
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Antony D Adamson
- Faculty of Biology, Medicine and Health Research and Innovation, University of Manchester, Manchester, UK
| | - Sankari Nagarajan
- Division of Molecular and Cellular Function, University of Manchester, Manchester, UK
| | - Tim A D Smith
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Nuclear Futures Institute, Bangor University, Bangor, UK
| | | | - Peter J Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
50
|
Bolomsky A, Choi J, Phelan JD. Genotype from Phenotype: Using CRISPR Screens to Dissect Lymphoma Biology. Methods Mol Biol 2025; 2865:241-257. [PMID: 39424727 DOI: 10.1007/978-1-0716-4188-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Genome-wide screens are a powerful technique to dissect the complex network of genes regulating diverse cellular phenotypes. The recent adaptation of the CRISPR-Cas9 system for genome engineering has revolutionized functional genomic screening. Here, we present protocols used to introduce Cas9 into human lymphoma cell lines, produce high-titer lentivirus of a genome-wide sgRNA library, transduce and culture cells during the screen, select cells with a specified phenotype, isolate genomic DNA, and prepare a custom library for next-generation sequencing. These protocols were tailored for loss-of-function CRISPR screens in human B-cell lymphoma cell lines but are highly amenable for other experimental purposes.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|