1
|
Li G, Che X, Wang S, Liu D, Xie D, Jiang B, Zheng Z, Zheng X, Wu G. The role of cisplatin in modulating the tumor immune microenvironment and its combination therapy strategies: a new approach to enhance anti-tumor efficacy. Ann Med 2025; 57:2447403. [PMID: 39757995 PMCID: PMC11705547 DOI: 10.1080/07853890.2024.2447403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 11/23/2024] [Indexed: 01/07/2025] Open
Abstract
Cisplatin is a platinum-based drug that is frequently used to treat multiple tumors. The anti-tumor effect of cisplatin is closely related to the tumor immune microenvironment (TIME), which includes several immune cell types, such as the tumor-associated macrophages (TAMs), cytotoxic T-lymphocytes (CTLs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and natural killer (NK) cells. The interaction between these immune cells can promote tumor survival and chemoresistance, and decrease the efficacy of cisplatin monotherapy. Therefore, various combination treatment strategies have been devised to enhance patient responsiveness to cisplatin therapy. Cisplatin can augment anti-tumor immune responses in combination with immune checkpoint blockers (such as PD-1/PD-L1 or CTLA4 inhibitors), lipid metabolism disruptors (like FASN inhibitors and SCD inhibitors) and nanoparticles (NPs), resulting in better outcomes. Exploring the interaction between cisplatin and the TIME will help identify potential therapeutic targets for improving the treatment outcomes in cancer patients.
Collapse
Affiliation(s)
- Guandu Li
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shijin Wang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Deqian Xie
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Jiang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zunwen Zheng
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Xu Y, Da X, Jian Y, Zhou W, Wu A, Wu Y, Peng Y, Liu X, Shi Y, Wang X, Zhou Q. A highly positively charged Ru(II) complex with photo-labile ligands for selective and efficient photo-inactivation of intracellular Staphylococcus aureus. J Inorg Biochem 2025; 268:112908. [PMID: 40209460 DOI: 10.1016/j.jinorgbio.2025.112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Due to the protection afforded by host cells, intracellular Staphylococcus aureus (S. aureus), particularly methicillin-resistant S. aureus (MRSA), poses a significantly greater challenge to eliminate compared to the extracellular counterparts. It is highly desirable to develop novel antibacterial agents which are capable of selectively and efficiently eradicating intracellular bacteria, including drug-resistant strains, while being less prone to induce bacterial resistance. In this work, two Ru(II) complexes (Ru1 and Ru2) with photo-labile ligands were designed and synthesized. Both Ru1 and Ru2 could covalently bind to DNA after photo-induced ligand dissociation. Compared to Ru1, the incorporation of a triphenylamine group adorned with two positively charged cationic pyridine units significantly boosts the DNA binding constant, bacterial binding/uptake level, and subsequently, the antibacterial activity of Ru2. Ru2 could selectively photo-inactivate intracellular S. aureus and MRSA, being more efficient than vancomycin both in vitro and in vivo. Interestingly, after 20 days' treatment at sublethal concentrations, S. aureus cells exhibited no obvious drug resistance towards Ru2 upon irradiation. Such appealing results may provide new sights for developing novel antibacterial agents against intractable intracellular pathogens and also prevalent drug resistance.
Collapse
Affiliation(s)
- Yunli Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuwen Da
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yao Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanpeng Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aifeng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yatong Peng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulian Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
3
|
Yan Z, Bu X, Chen H, Ren C, Li J, Wu Y, Xing J. The Stem Cell Transcription Factor OCT4 Silences Target DNA Methyltransferase 1 to Strengthen DNA Damage Response in Cisplatin-Treated Gastric Cancer Cells. Biotechnol Appl Biochem 2025. [PMID: 40433841 DOI: 10.1002/bab.2777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/21/2025] [Indexed: 05/29/2025]
Abstract
OCT4 plays a crucial role in the DNA damage response(DDR) mechanism, whereas cisplatin (CDDP) acts as an anti-tumor agent by inducing DDR. This study aimed to investigate the role of OCT4 in regulating DNA methyltransferase 1 (DNMT1) in CDDP-treated gastric cancer (GC). A dual-luciferase reporter assay was performed to detect the relationship between DNMT1 and OCT4. Human GC cell lines HGC-27 and MGC-803 were transfected with siRNA-OCT4 or ov-DNMT1 to construct interfering cell lines; CDDP of 0, 2.5, 5, 10, and 20 µM was used to treat GC cell lines, respectively. As follows, γ-H2AX immunofluorescence was used to detect DDR. The protein expressions of OCT4 and DNMT1 were detected by Western blot (WB), and the effects of CDDP treatment on cell apoptosis and proliferation were assessed using CCK8, cell cloning, and flow cytometry. The IC50 of CDDP-treated GC cells was reduced by OCT4 silence but enhanced by DNMT1 overexpression. A targeted regulatory relationship exists between OCT4 and DNMT1. The expression of OCT4 and DNMT1 was increased in CDDP-treated cells, and DNMT1 was decreased in the siRNA-OCT4 group. In the CDDP-treated GC cells, DNMT1 overexpression significantly reversed the siRNA-OCT4-induced cell apoptosis, γ-H2AX upregulation, and proliferation decrease. OCT4 silence may target DNMT1 to induce DDR in GC cells to strengthen the CDDP-induced cell apoptosis and proliferation inhibition.
Collapse
Affiliation(s)
- Zhengzheng Yan
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, Shanxi, China
| | - Xiaoqian Bu
- The Department of Tumor Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, Shanxi, China
| | - Haixia Chen
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, Shanxi, China
| | - Chongren Ren
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, Shanxi, China
| | - Ji Li
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, Shanxi, China
| | - Yongjie Wu
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, Shanxi, China
| | - Jun Xing
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Tao X, Ke X, Xu G. *Mechanisms of circular RNA in drug resistance of lung cancer: therapeutic targets, biomarkers, and future research directions. Discov Oncol 2025; 16:896. [PMID: 40410444 PMCID: PMC12102044 DOI: 10.1007/s12672-025-02713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 05/14/2025] [Indexed: 05/25/2025] Open
Abstract
Lung cancer is one of the most prevalent malignant tumors globally, posing significant challenges to treatment outcomes. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have emerged as crucial regulators in cancer biology, influencing drug resistance, progression, and prognosis. Due to their closed-loop structure, circRNAs demonstrate high stability and resistance to degradation, making them promising diagnostic and therapeutic targets. Here we summarize the mechanisms by which circRNAs mediate drug resistance in lung cancer, focusing on their roles in chemotherapy, targeted therapies, and immunotherapy. We highlight how circRNAs interact with microRNAs (miRNAs) and proteins to regulate signaling pathways and alter drug sensitivity. Additionally, circRNA expression patterns hold potential as biomarkers for predicting treatment response. By synthesizing the latest research, we offer new insights into circRNA functions and suggest future directions for overcoming drug resistance in lung cancer.
Collapse
Affiliation(s)
- Xuanlin Tao
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
5
|
Nofal Z, Malakhov P, Pustovalova M, Sakr N, Leonov S. Recurring cycles of deprivation of serum and migration in confined spaces augments ganglioside SSEA-4 expression, boosting clonogenicity and cisplatin resistance in TNBC cell line. Sci Rep 2025; 15:16738. [PMID: 40369257 PMCID: PMC12078623 DOI: 10.1038/s41598-025-99828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025] Open
Abstract
The remarkable biophysical properties of metastatic migrating cells, such as their exceptional motility and deformability, enable them to migrate through physical confinements created by neighboring cells or extracellular matrix. This study explores the adaptive responses of breast cancer (BC) cell sublines derived from the highly aggressive, metastatic triple-negative MDA-MB-231 and the non-metastatic MCF7 human BC cell lines, after undergoing three rounds of confined migration (CM) stress. Our findings demonstrate that CM elicits common and cell-type specific adaptive responses in BC cell sublines. In particular, both cell sublines exhibit a similar enhancement of clonogenicity and nanoparticle (NP) uptake activity, indicating tumorigenic potential. We have, for the first time, shown that stimulation with CM induces a hybrid epithelial-to-mesenchymal transition (EMT) phenotype of MDA-MB-231 cells. This transition is characterized by a significant rise in the expression of stage-specific embryonic antigen-4 (SSEA4), alongside a substantial decline in the population of CD133+ cells and a marked reduction in Ki67 expression in the MDA-MB-231-derived subline following Cis-Platin treatment. These changes are likely associated with heightened resistance of this subline to cisplatin. In contrast, CM induces far fewer such alterations in the MCF7-derived counterpart with a notable increase of CD133+ population, which seems to be insufficient to change cell susceptibility to cisplatin exposure. This study contributes to our understanding of the adaptive mechanisms underlying metastasis and drug resistance in breast cancer, emphasizing the need for personalized approaches in cancer treatment that consider the heterogeneous responses of different cancer subtypes to environmental stresses.
Collapse
Affiliation(s)
- Zain Nofal
- Institute of Future Biophysics, Moscow Institute of Physics and Technology, MIPT, Phystech, Dolgoprudny, Russia, 141701
| | - Philipp Malakhov
- Institute of Future Biophysics, Moscow Institute of Physics and Technology, MIPT, Phystech, Dolgoprudny, Russia, 141701
| | - Margarita Pustovalova
- Institute of Future Biophysics, Moscow Institute of Physics and Technology, MIPT, Phystech, Dolgoprudny, Russia, 141701
| | - Nawar Sakr
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia, 125315
| | - Sergey Leonov
- Institute of Future Biophysics, Moscow Institute of Physics and Technology, MIPT, Phystech, Dolgoprudny, Russia, 141701.
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russia, 142290.
| |
Collapse
|
6
|
Ferraro G, Pracharova J, Gotte G, Massai L, Berecka M, Starha P, Messori L, Merlino A. Cytotoxicity and Binding to DNA, Lysozyme, Ribonuclease A, and Human Serum Albumin of the Diiodido Analog of Picoplatin. Inorg Chem 2025; 64:8895-8905. [PMID: 40312957 PMCID: PMC12076543 DOI: 10.1021/acs.inorgchem.4c05424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Here we investigated cytotoxicity and DNA and protein binding of an iodido analog of picoplatin, the cis-ammine-diiodido(2-methylpyridine)platinum(II) complex (I-picoplatin). I-picoplatin (IC50 = 3.7-12.4 μM) outperforms picoplatin (IC50 = 11.8-22.6 μM) in the human cancer cell lines used and shows a greater ability to overcome the cisplatin resistance of A2780 ovarian cancer cells than does picoplatin. I-picoplatin also induces different cell cycle changes (reduced S-phase fraction and an increase in the G2/M phase arrest) in HeLa cervical carcinoma cells compared to both picoplatin and cisplatin. Binding of the metal compound to DNA model systems was investigated by ethidium bromide displacement assay and circular dichroism. Its reactivity with lysozyme (HEWL) and pancreatic RNase A was studied by X-ray diffraction and mass spectrometry experiments. I-picoplatin binds the DNA double helix and is able to retain the 2-methylpyridine ligand and at least one of the two iodido ligands when bound to the two proteins. Various Pt-containing moieties, including one based on the isomerized structure of I-picoplatin, coordinate the His and Met residues. A low-resolution structure of the I-picoplatin/human serum albumin (HSA) adduct has also been solved. The side chains of His146, Met289, and Met329 are the primary binding sites of the I-picoplatin moieties on HSA.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso
Universitario di Monte Sant’Angelo, via Cinthia 21, Naples 80126, Italy
| | - Jitka Pracharova
- Department
of Biophysics, Faculty of Science, Palacký
University Olomouc, Slechtitelu
27, Olomouc 783 71, Czech Republic
| | - Giovanni Gotte
- Department
of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry
Section, University of Verona, Strada Le Grazie 8, Verona I-37134, Italy
| | - Lara Massai
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3–13, Sesto Fiorentino 50019, Florence, Italy
| | - Michal Berecka
- Department
of Biophysics, Faculty of Science, Palacký
University Olomouc, Slechtitelu
27, Olomouc 783 71, Czech Republic
| | - Pavel Starha
- Department
of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17 listopadu 1192/12, Olomouc 771 46, Czech Republic
| | - Luigi Messori
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3–13, Sesto Fiorentino 50019, Florence, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso
Universitario di Monte Sant’Angelo, via Cinthia 21, Naples 80126, Italy
| |
Collapse
|
7
|
Cai L, Chen H, Wang Y, Zhang J, Song D, Tan Y, Guo Z, Wang X. Platinum(IV) Complexes Trigger Death Receptors and Natural Killer Cells to Suppress Breast Cancer. J Med Chem 2025; 68:9162-9175. [PMID: 39886904 DOI: 10.1021/acs.jmedchem.4c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Chemoimmunotherapy is an alternative treatment against cancers. Platinum(IV) complexes FMP and DFMP, coupling formononetin derivative as axial ligand(s), were designed to suppress triple-negative breast cancer (TNBC) by activating death receptors (DRs) and natural killer (NK) cells. These complexes show great potential to overcome the resistance of TNBC to chemotherapy by inducing both intrinsic and extrinsic apoptosis in cancer cells. Particularly, FMP with one axial formononetin derivative not only induced the caspase-3-dependent intrinsic apoptosis but also upregulated the expression of DRs and caspase-8, triggered the extrinsic apoptosis, and enhanced the cytotoxic ability of NK92 cells. Moreover, FMP increased the release of granzyme B, restrained the proliferation and differentiation of myeloid-derived suppressor cells, and the secretion of IL-10, thus inhibiting the TNBC in vitro and in vivo. The results demonstrate that FMP overcomes the chemoresistance and immune escape of TNBC through a new mechanism involving the synergy of chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Linxiang Cai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hanhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jingwen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yehong Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
8
|
Zhang J, Huang X, Li M, Zhang W, Yang H. CSF1R inhibition agents protect against cisplatin ototoxicity and synergize with immunotherapy for Head and Neck Squamous Cell Carcinoma. Int Immunopharmacol 2025; 152:114428. [PMID: 40073814 DOI: 10.1016/j.intimp.2025.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/25/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Immunotherapy has emerged as a promising therapeutic approach. However, limited research exists on combining cisplatin with CSF1/CSF1R immunotherapy in Head and Neck Squamous Cell Carcinoma. Furthermore, few studies have investigated concurrent immunotherapeutic strategies to mitigate cisplatin-induced ototoxicity.Developing otoprotective agents that simultaneously reduce cisplatin resistance and enhance therapeutic efficacy holds significant implications for future treatment modalities. In this investigation, we evaluated the safety and efficacy profile of CSF1R inhibitor (PLX3397). Our findings demonstrate that PLX3397 confers otoprotection in cisplatin-induced ototoxicity through cochlear macrophage depletion, synergizes with cisplatin inhibited tumor cell survival, migration, and invasion in vitro. Additionally, it significantly suppressed xenograft tumor lesion growth and angiogenesis in zebrafish models while modulating the polarization state of tumor-associated macrophages in vitro and inducing tumor immune activation. Our findings suggest that PLX3397 represents a promising immunotherapeutic agent, and its combination with cisplatin may constitute a novel therapeutic strategy for attenuating cisplatin-induced ototoxicity while synergistically enhancing immunotherapy for Head and Neck Squamous Cell Carcinoma.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaotong Huang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Moyang Li
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Weijian Zhang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
9
|
Bai D, Nowak M, Lu D, Wang Q, Fitzgerald M, Zhang H, MacDonald R, Xu Z, Luo L. The outcast of medicine: metals in medicine--from traditional mineral medicine to metallodrugs. Front Pharmacol 2025; 16:1542560. [PMID: 40260378 PMCID: PMC12010122 DOI: 10.3389/fphar.2025.1542560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/07/2025] [Indexed: 04/23/2025] Open
Abstract
Metals have long held a significant role in the human body and have been utilized as mineral medicines for thousands of years. The modern advancement of metals in pharmacology, particularly as metallodrugs, has become crucial in disease treatment. As the machanism of metallodurgsare increasingly uncovered, some metallodrugs are already approved by FDA and widely used in treating antitumor, antidiabetes, and antibacterial. Therefore, a thorough understanding of metallodrug development is essential for advancing future study. This review offers an in-depth examination of the evolution of mineral medicines and the applications of metallodrugs within contemporary medicine. We specifically aim to summarize the historical trajectory of metals and mineral medicines in Traditional Chinese Mineral Medicine by analyzing key historical texts and representative mineral medicines. Additionally, we discuss recent advancements in understanding metallodrugs' mechanisms, such as protein interactions, enzyme inhibition, DNA interactions, reactive oxygen species (ROS) generation, and cellular structure targeting. Furthermore, we address the challenges in metallodrug development and propose potential solutions. Lastly, we outline future directions for metallodrugs to enhance their efficacy and effectiveness. The progression of metallodrugs has broadened their applications and contributed significantly to patient health, creating good healthcare solutions for the global population.
Collapse
Affiliation(s)
- Donghan Bai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Michal Nowak
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Dajun Lu
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Qiaochu Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | | | - Hui Zhang
- Institute of Traditional Chinese Medicine, European University of Chinese Medicine, Horsens, Denmark
| | - Remy MacDonald
- Department of Statistics, George Mason University, Virginia, VA, United States
| | - Ziwen Xu
- Department of Nursing, The University of Melbourne, Parkville, VIC, Australia
| | - Lu Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Cives-Losada C, Asensio M, Briz O, Chinchilla-Tábora LM, Barranco MM, Río-Álvarez ÁD, Martinez-Chantar ML, Avila MA, Cairo S, Armengol C, Marin JJG, Macias RIR. Relevance of transportome among the mechanisms of chemoresistance in hepatoblastoma. Biochem Pharmacol 2025; 237:116914. [PMID: 40185314 DOI: 10.1016/j.bcp.2025.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Approximately 20 % of hepatoblastomas (HBs) exhibit a poor response to conventional chemotherapy due to mechanisms of chemoresistance (MOCs), such as reduced intracellular drug accumulation. This study evaluated the role of transportome in the multidrug resistance (MDR) of HB. Paired HB and adjacent liver tissue samples (n = 19) and HB-derived cell lines (HepG2, HuH6) were analyzed for their resistome characterization at mRNA (RT-qPCR, Taqman Low-Density Array, sequencing) and protein (western blot, immunohistochemistry, immunofluorescence) levels. Cell viability (MTT test) proliferation and migration (holographic microscopy) were determined. The impact of short-term (72 h) and long-term (>10 months) exposure of HB cells to cisplatin or doxorubicin on the transportome was investigated. Solute carrier (SLC) family of transporters showed minor relevance in HB MDR, while drug export pumps, particularly MRP2, were associated with poor response to chemotherapy. Exposure of HB cells to doxorubicin or cisplatin up-regulated MDR1, MRP1 and MRP2. In cells with induced persistent chemoresistance, the expression of genes involved in other MOCs, and epigenetic machinery was altered. Chemoresistant cells showed cross-resistance to several anticancer drugs but maintained sensitivity to cabozantinib. In conclusion, drug export pumps, but not SLC uptake transporters, are key contributors to HB chemoresistance. Cabozantinib emerges as a potential therapeutic option for HBs resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain
| | | | - María Manuela Barranco
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain; Childhood Liver Oncology Group, Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Álvaro Del Río-Álvarez
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain; Childhood Liver Oncology Group, Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Maria Luz Martinez-Chantar
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CICbioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Matias A Avila
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 31008 Pamplona, Spain
| | | | - Carolina Armengol
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain; Childhood Liver Oncology Group, Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain.
| |
Collapse
|
11
|
Kirimura S, Kurata M, Ishibashi H, Taniguchi Y, Kinowaki Y, Sugita K, Okubo K. Cytoplasmic HuR Expression Enhances Chemoresistance in Pleural Mesothelioma Through Increased Expression of CALB2, Promotion of the E2F Pathway, and Suppression of the p53 Pathway. Thorac Cancer 2025; 16:e70062. [PMID: 40200787 PMCID: PMC11979354 DOI: 10.1111/1759-7714.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/06/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025] Open
Abstract
INTRODUCTION Chemotherapy is crucial for treating pleural mesothelioma; however, the outcomes are poor, necessitating an urgent need to study the mechanism of chemotherapy resistance in mesothelioma cells. Human antigen R (HuR), an RNA-binding protein and key post-transcriptional regulator of mRNA, is linked to poor prognosis in cancers like mesothelioma. We investigated the involvement of cytoplasmic HuR expression in drug resistance mechanisms in mesothelioma. METHODS We retrospectively evaluated cytoplasmic HuR expression in 30 patients with pleural mesothelioma who underwent surgical resection using immunohistochemistry. We also examined the role of forced cytoplasmic expression of HuR in drug resistance using mesothelioma cell lines and performed RNA-Seq analysis to identify gene expression changes responsible for drug resistance acquisition via HuR cytoplasmic expression. RESULTS Patients with mesotheliomas who expressed cytoplasmic HuR exhibited significantly worse disease-free survival following post-operative chemotherapy. Forced cytoplasmic HuR expression in mesothelioma cell lines increased chemotherapy resistance through increased expression of CALB2, upregulation of the E2F pathway and suppression of the p53 pathway. CONCLUSIONS Cytoplasmic HuR expression increases the chemoresistance and postoperative recurrence risk of pleural mesothelioma, making it a potential biomarker for predicting therapeutic prognosis. However, the mechanism of HuR transfer to the cytoplasm remains unclear for therapeutic application.
Collapse
Affiliation(s)
- Susumu Kirimura
- Division of PathologyInstitute of Science Tokyo HospitalTokyoJapan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental SciencesInstitute of Science TokyoTokyoJapan
| | - Hironori Ishibashi
- Department of Thoracic Surgery, Graduate School of Medical and Dental SciencesInstitute of Science TokyoTokyoJapan
| | - Yusuke Taniguchi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental SciencesInstitute of Science TokyoTokyoJapan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental SciencesInstitute of Science TokyoTokyoJapan
| | - Keisuke Sugita
- Department of Comprehensive Pathology, Graduate School of Medical and Dental SciencesInstitute of Science TokyoTokyoJapan
- Department of PathologyThe Cancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Kenichi Okubo
- Department of Thoracic Surgery, Graduate School of Medical and Dental SciencesInstitute of Science TokyoTokyoJapan
| |
Collapse
|
12
|
Nakahara M, Arai R, Tokuoka I, Fukumura K, Mayeda A, Yashiro M, Nakahara H. RBM17 Promotes the Chemoresistance of Oral Squamous Cancer Cells Through Checkpoint Kinase 1. Int J Mol Sci 2025; 26:3127. [PMID: 40243905 PMCID: PMC11989059 DOI: 10.3390/ijms26073127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common types of cancer in the head and neck region. In advanced stages of OSCC, chemotherapy is commonly used for treatment, despite some cancer cells having low sensitivity to anticancer drugs. We focused on RBM17/SPF45 as an essential drug-sensitizing factor in the context of malignant cells acquiring chemoresistance. Here, we demonstrate how RBM17 affects anticancer drug resistance in OSCC and we suggest the possible mechanism underlying its effects. After exposing oral cancer cell lines to fluorouracil (5-FU) and cisplatin, but not paclitaxel, the gene and protein expression of RBM17 increased. We found that siRNA-mediated RBM17-knockdown of the cell lines gained a significantly higher sensitivity to 5-FU, which was remarkably followed by a decrease in the expression of checkpoint kinase 1 (CHEK1) protein, whereas treatment with a CHEK1 inhibitor did not affect RBM17 protein expression in the oral cancer cell lines. These results indicate that RBM17 is a factor involved in the development of resistance to cytotoxic chemotherapy. We propose the underlying mechanism that RBM17 promotes CHEK1 protein expression in the ATM/ATR pathway, triggering the development of chemoresistance in cancer cells.
Collapse
Affiliation(s)
- Miyuka Nakahara
- Department of Oral and Maxillofacial Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Ryosuke Arai
- Department of Oral and Maxillofacial Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan; (R.A.); (I.T.)
| | - Isao Tokuoka
- Department of Oral and Maxillofacial Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan; (R.A.); (I.T.)
| | - Kazuhiro Fukumura
- Oncology Innovation Center, Fujita Health University, Toyoake 470-1192, Japan; (K.F.); (A.M.)
| | - Akila Mayeda
- Oncology Innovation Center, Fujita Health University, Toyoake 470-1192, Japan; (K.F.); (A.M.)
- xFOREST Therapuetics, Co., Ltd., Kyoto 602-0841, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan;
| | - Hirokazu Nakahara
- Department of Oral and Maxillofacial Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan; (R.A.); (I.T.)
| |
Collapse
|
13
|
Wu Y, Zeng Y, Wu Y, Ha X, Feng Z, Liu C, Liu Z, Wang J, Ju X, Huang S, Liang L, Zheng B, Yang L, Wang J, Wu X, Li S, Wen H. HIF-1α-induced long noncoding RNA LINC02776 promotes drug resistance of ovarian cancer by increasing polyADP-ribosylation. Clin Transl Med 2025; 15:e70244. [PMID: 40118782 PMCID: PMC11928293 DOI: 10.1002/ctm2.70244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Chemoresistance remains a major hurdle in ovarian cancer (OC) treatment, as many patients eventually develop resistance to platinum-based chemotherapy and/or PARP inhibitors (PARPi). METHODS We performed transcriptome-wide analysis by RNA sequencing (RNA-seq) data of platinum-resistant and -sensitive OC tissues. We demonstrated the role of LINC02776 in platinum resistance in OC cells, mice models and patient-derived organoid (PDO) models. RESULTS We identify the long noncoding RNA LINC02776 as a critical factor of platinum resistance. Elevated expression of LINC02776 is observed in platinum-resistant OC and serves as an independent prognostic factor for OC patients. Functionally, silencing LINC02776 reduces proliferation and DNA damage repair in OC cells, thereby enhancing sensitivity to platinum and PARPi in both xenograft mouse models and patient-derived organoid (PDO) models with acquired chemoresistance. Mechanistically, LINC02776 binds to the catalytic domain of poly (ADP-ribose) polymerase 1 (PARP1), promoting PARP1-dependent polyADP-ribosylation (PARylation) and facilitating homologous recombination (HR) restoration. Additionally, high HIF-1α expression in platinum-resistant tissues further stimulates LINC02776 transcription. CONCLUSIONS Our findings suggest that targeting LINC02776 represents a promising therapeutic strategy for OC patients who have developed resistance to platinum or PARPi. KEY POINTS LINC02776 promotes OC cell proliferation by regulating DNA damage and apoptosis signaling pathways. LINC02776 binds PARP1 to promote DNA damage-triggered PARylation in OC cells. LINC02776 mediates cisplatin and olaparib resistance in OC cells by enhancing PARP1-mediated PARylation activity and regulating the PARP1-mediated HR pathway. The high expression of LINC02776 is induced by HIF-1α in platinum-resistant OC cells and tissues.
Collapse
Affiliation(s)
- Yangjun Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yu Zeng
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic DiseasesShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yong Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xinyu Ha
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Zheng Feng
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Chaohua Liu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ziqi Liu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Jiajia Wang
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xingzhu Ju
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shenglin Huang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
| | - Linhui Liang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
| | - Bin Zheng
- Accurate International Biotechnology Co. Ltd.GuangzhouChina
| | - Lulu Yang
- Wuhan Benagen Technology Co., LtdWuhanChina
| | - Jun Wang
- Wuhan Benagen Technology Co., LtdWuhanChina
| | - Xiaohua Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shengli Li
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic DiseasesShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Wen
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
14
|
Saadh MJ, Ehymayed HM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Anbari HHA, Shallal MM, Alsaikhan F, Farhood B. Role of circRNAs in regulating cell death in cancer: a comprehensive review. Cell Biochem Biophys 2025; 83:109-133. [PMID: 39243349 DOI: 10.1007/s12013-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Despite multiple diagnostic and therapeutic advances, including surgery, radiation therapy, and chemotherapy, cancer preserved its spot as a global health concern. Prompt cancer diagnosis, treatment, and prognosis depend on the discovery of new biomarkers and therapeutic strategies. Circular RNAs (circRNAs) are considered as a stable, conserved, abundant, and varied group of RNA molecules that perform multiple roles such as gene regulation. There is evidence that circRNAs interact with RNA-binding proteins, especially capturing miRNAs. An extensive amount of research has presented the substantial contribution of circRNAs in various types of cancer. To fully understand the linkage between circRNAs and cancer growth as a consequence of various cell death processes, including autophagy, ferroptosis, and apoptosis, more research is necessary. The expression of circRNAs could be controlled to limit the occurrence and growth of cancer, providing a more encouraging method of cancer treatment. Consequently, it is critical to understand how circRNAs affect various forms of cancer cell death and evaluate whether circRNAs could be used as targets to induce tumor death and increase the efficacy of chemotherapy. The current study aims to review and comprehend the effects that circular RNAs exert on cell apoptosis, autophagy, and ferroptosis in cancer to investigate potential cancer treatment targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Surgical Dentistry and Dental Implantology, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
Wei QQ, Xiao Y, Wu Q, Jing C, Dong ZQ, Chen P, Pan MH. The Natural Antherea pernyi Sericin Protein Suppresses Gastric Cancer Formation by Inhibiting Cell Proliferation and Inducing Cell Apoptosis. Int J Mol Sci 2025; 26:1890. [PMID: 40076516 PMCID: PMC11900216 DOI: 10.3390/ijms26051890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Sericin, a natural macromolecular protein and the main component of silkworm cocoons, exhibits biocompatibility, excellent mechanical properties, and biodegradability. Previous research has confirmed that the sericin protein possesses anticancer properties. Gastric cancer (GC) poses a serious hazard to human health, with a low rate of early diagnosis and a poor prognosis. Investigating the safety and effectiveness of drugs for their used in treatment is imperative. In this study, we confirmed that Antherea pernyi sericin (APS) inhibited the proliferation, migration, and clonal formation of GC cells and caused apoptosis in the cells by regulating the expression of Bcl2 and Bax. Moreover, our data show that APS did not exhibit significant toxicity in normal gastric mucosal cells and mice. Furthermore, the results show that APS suppressed the proliferation of cisplatin-resistant GC cells and promoted cellular apoptosis; however, it had no synergistic effects with cisplatin. All the results indicated that APS exhibits antitumor activity against GC and is a prospective medicinal agent for the clinical treatment of GC, with minimal toxicity and adverse side effects. This research can provide a theoretical basis for sericin in the field of tumor treatment, especially for the application of natural macromolecular polypeptide drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Q.W.); (C.J.); (Z.-Q.D.)
| | - Min-Hui Pan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Q.W.); (C.J.); (Z.-Q.D.)
| |
Collapse
|
16
|
Shrestha D, Kimutai B, Chow CS. Impacts of amino acid-linked platinum(II) complexes on DNA structure. J Biol Inorg Chem 2025; 30:87-101. [PMID: 39853368 PMCID: PMC11913917 DOI: 10.1007/s00775-025-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
The discovery of cisplatin (cisPt) as an effective anticancer agent was a milestone in the health industry. Despite its success, undesired side effects and acquired resistance still limit the therapeutic usefulness of cisPt. Intrastrand adduct formation at consecutive purines and structural modifications of DNA caused by platinum(II) complexes are important factors for antitumor efficacy. In this study, we examined amino acid-linked platinum(II) complexes, collectively referred to as AAPt, for antiproliferative activity and ability to induce DNA bending. The antiproliferative activity of one AAPt complex tested against a prostate cancer cell line was comparable to that of cisPt, whereas only activity of the AAPt complex was lower in a normal human prostate cell line. Various AAPt analogues were examined for impact on the structures of DNAs with four different purine dinucleotide target sites (GG, AG, GA, and AA) and compared to the parent cisPt. The roles of side-chain identity, chirality, and coordination type (e.g., (N,O) vs. (N,N)) of AAPt complexes are discussed with respect to DNA adduct formation and ability to induce DNA bending. Although the AAPt complexes display different nucleotide preferences (A for AAPt vs. G for cisPt), DNAs containing GG-platinum adducts display a greater degree of bending compared to DNAs with AA-platinum adducts.
Collapse
Affiliation(s)
- Deepak Shrestha
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Bett Kimutai
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
17
|
Lee KY, Oh SY, Lee HJ, Kwon TG, Kim JW, Shin CG, Hong SH, Choi SY. MTMR6 downregulation contributes to cisplatin resistance in oral squamous cell carcinoma. Cancer Cell Int 2025; 25:30. [PMID: 39891222 PMCID: PMC11783708 DOI: 10.1186/s12935-025-03654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The therapeutic effectiveness of cisplatin, a widely used chemotherapy drug for oral squamous cell carcinoma (OSCC), is often compromised by resistance, making it difficult to predict treatment outcomes. The role of myotubularin and myotubularin-related (MTMR) genes in cisplatin resistance remains unclear. We aimed to elucidate the molecular mechanisms underlying MTMR6 with cisplatin resistance in OSCC. METHODS MTMR6 expression was compared between UMSCC1 and cisplatin-resistant UM-Cis cells. Gain- and loss-of-function experiments involving MTMR6 was performed to evaluate its impact on cisplatin resistance. The regulatory role of hsa-miR-544a on MTMR6 expression was explored via antagomir and miRNA mimic assays. The relationship between MTMR6 protein levels and cisplatin sensitivity was assessed in OSCC patient tissues classified as sensitive or resistant to cisplatin monotherapy. A survival analysis based on The Cancer Genome Atlas (TCGA) head and neck squamous cell carcinoma (HNSCC) dataset was performed to evaluate the correlation between MTMR6 expression and patient outcomes following cisplatin treatment. In vivo cisplatin resistance was examined using mouse xenografts derived from MTMR6-knockdown UMSCC1 cells. RESULTS MTMR6 expression was markedly reduced in cisplatin-resistant UM-Cis cells compared to UMSCC1 cells. Functional analyses revealed that modulating MTMR6 activity alters cisplatin resistance. A luciferase assay confirmed that hsa-miR-544a regulates MTMR6 gene expression. Additionally, antagomir and miRNA mimics demonstrated that hsa-miR-544a enhances cisplatin resistance by suppressing MTMR6 expression. In OSCC patient tissues, higher MTMR6 protein levels were associated with cisplatin sensitivity, while cisplatin-resistant tissues had lower MTMR6 expression. Survival analysis of the TCGA HNSCC dataset indicated that low MTMR6 expression correlates with poorer outcomes in cisplatin-treated patients compared to those with high MTMR6 expression. Mouse xenografts derived from MTMR6-knockdown UMSCC1 cells exhibited increased resistance to cisplatin compared to controls. CONCLUSION Assessing mRNA levels of MTMR6 and has-miR-544a in biopsy samples could help predict cisplatin responsiveness in OSCC.
Collapse
Affiliation(s)
- Kah Young Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Su Young Oh
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jin-Wook Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Chang-Geol Shin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
18
|
Finke J, Oldengott J, Stammler A, Glaser T. A Multistep Oxidative Cascade Reaction from a Naphthalenediol-Based Pre-Ligand to a Tetranuclear Perylenequinone-Based Fe III Complex. Chemistry 2025; 31:e202403690. [PMID: 39560173 DOI: 10.1002/chem.202403690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
We have developed a family of dinuclear complexes using 2,7-disubstituted 1,8-naphthalenediol ligands that bind by molecular recognition to two neighboring phosphate diesters of the DNA backbone with the dinuclear CuII and NiII complexes exhibiting a severe cytotoxicity for human cancer cells. To increase the binding affinity, we intended to synthesize the corresponding dinuclear FeIII complex. Surprisingly, we obtained a tetranuclear FeIII perylene-based complex instead of the expected dinuclear FeIII naphthalene-based complex. In order to establish a rational and reproducible synthesis, we carefully analyzed this reaction. This revealed a multistep oxidative cascade reaction including the pre-coordination of FeII ions in the N3-binding pockets, the Lewis-acid assisted MOM-deprotection of the pre-ligand by the pre-oriented FeII ions, two oxidative aromatic C-C coupling reactions, oxidation of the perylene-based backbone and of FeII to FeIII. The careful analysis of bond lengths, HOMA indices (harmonic oscillation model of aromaticity), FTIR and UV-Vis-NIR spectra supported by DFT calculations reveals the presence of an aromatic 18-electron oxidized perylenequinone ligand backbone. In summary, a multistep cascade reaction involving in total a 10-electron oxidation has been established for the straight-forward synthesis of an unprecedented perylenequinone-based ligand system.
Collapse
Affiliation(s)
- Jasmin Finke
- Department of Chemistry, Bielefeld Universtity, Universitätsstr. 25, D-33615, Bielefeld, Germany
| | - Jan Oldengott
- Department of Chemistry, Bielefeld Universtity, Universitätsstr. 25, D-33615, Bielefeld, Germany
| | - Anja Stammler
- Department of Chemistry, Bielefeld Universtity, Universitätsstr. 25, D-33615, Bielefeld, Germany
| | - Thorsten Glaser
- Department of Chemistry, Bielefeld Universtity, Universitätsstr. 25, D-33615, Bielefeld, Germany
| |
Collapse
|
19
|
Troisi R, Galardo F, Ferraro G, Lucignano R, Picone D, Marano A, Trifuoggi M, Sica F, Merlino A. Cisplatin/Apo-Transferrin Adduct: X-ray Structure and Binding to the Transferrin Receptor 1. Inorg Chem 2025; 64:761-765. [PMID: 39711171 DOI: 10.1021/acs.inorgchem.4c04435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Here, we report the X-ray structure of the adduct formed upon reaction of cisplatin, one of the most prescribed anticancer agents for the clinic treatment of solid tumors, with the apo-form of human serum transferrin (hTF). Two Pt binding sites were identified in both molecules of the adduct present in the crystal asymmetric unit: Pt binds close to the side chains of Met256 and Met499 at the N- and C-lobe, respectively. In the crystal structure, the cisplatin moiety bound to Met256 also interacts with Ser616 from a symmetry related molecule. Structural analyses, together with in solution data, demonstrate that the presence of iron does not affect the ability of hTF to bind cisplatin and that the cisplatin binding does not significantly alter the overall conformation of the different forms of the protein that remain able to form a complex with the transferrin receptor 1 (TfR1). These data suggest that the different hTF forms can be used as nanocarriers for targeted (combined) metallodrug delivery.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Francesco Galardo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Rosanna Lucignano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| |
Collapse
|
20
|
Lyu SY, Meshesha SM, Hong CE. Synergistic Effects of Mistletoe Lectin and Cisplatin on Triple-Negative Breast Cancer Cells: Insights from 2D and 3D In Vitro Models. Int J Mol Sci 2025; 26:366. [PMID: 39796221 PMCID: PMC11719730 DOI: 10.3390/ijms26010366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Triple-negative breast cancer (TNBC) remains a challenging subtype due to its aggressive nature and limited treatment options. This study investigated the potential synergistic effects of Korean mistletoe lectin (Viscum album L. var. coloratum agglutinin, VCA) and cisplatin on MDA-MB-231 TNBC cells using both 2D and 3D culture models. In 2D cultures, the combination of VCA and cisplatin synergistically inhibited cell proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase. Also, the combination treatment significantly reduced cell migration and invasion. Gene expression analysis showed significant changes in specific genes related to apoptosis (Bax, Bcl-2), metastasis (MMP-2, MMP-9), and EMT (E-cadherin, N-cadherin). Three-dimensional spheroid models corroborated these findings, demonstrating enhanced cytotoxicity and reduced invasion with the combination treatment. Significantly, the 3D models exhibited differential drug sensitivity compared to 2D cultures, emphasizing the importance of utilizing physiologically relevant models in preclinical studies. The combination treatment also reduced the expression of angiogenesis-related factors VEGF-A and HIF-1α. This comprehensive study provides substantial evidence for the potential of VCA and cisplatin combination therapy in TNBC treatment and underscores the significance of integrating 2D and 3D models in preclinical cancer research.
Collapse
Affiliation(s)
- Su-Yun Lyu
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-Y.L.)
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Saporie Melaku Meshesha
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-Y.L.)
| | - Chang-Eui Hong
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-Y.L.)
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
21
|
Wang Z, Kregel M, Meijers JL, Franch J, Cuijpers VMJI, Ahlers D, Karst U, Slootweg P, van der Geest IC, Leeuwenburgh SC, van den Beucken JJ. Cisplatin-functionalized dual-functional bone substitute granules for bone defect treatment after bone tumor resection. Acta Biomater 2025; 191:158-176. [PMID: 39551330 DOI: 10.1016/j.actbio.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Invasive bone tumors pose a significant healthcare challenge, often requiring systemic chemotherapy and limb salvage surgery. However, these strategies are hampered by severe side effects, complex post-resection bone defects, and high local recurrence rates. To address this, we developed dual-functional bone substitute biomaterials by functionalizing commercially available bone substitute granules (Bio-Oss® and MBCP®+) with the established anticancer agent cisplatin. Physicochemical characterization revealed that Bio-Oss® granules possess a higher surface area and lower crystallinity compared to MBCP®+ granules, which enhances their capacity for cisplatin adsorption and release. In co-cultures with metastatic breast and prostate cancer cells (MDA-MB-231 and PC3) and bone marrow stromal cells (hBMSCs), cisplatin-functionalized granules and their releasates exhibited dose-dependent cytotoxic effects on cancer cells while having less impact on hBMSCs. Furthermore, investigations on the mechanism of action indicated that cisplatin induced significant cell cycle arrest and apoptosis in MDA-MB-231 and PC3 cells, contrasting with minimal effects on hBMSCs. In a rat femoral condyle defect model, cisplatin-functionalized granules did not evoke adverse effects on bone tissue ingrowth or new bone formation. Importantly, local application of cisplatin-functionalized granules resulted in negligible cisplatin accumulation without signs of apoptotic damage in kidneys and livers. Taken together, we here provide hard evidence that cisplatin-functionalized granules maintain a favorable balance between biosafety, anticancer efficacy, and bone regenerative capacity. Consequently, loading granular bone substitutes with cisplatin holds promise for local treatment of bone defects following bone tumor resections, presenting a safe and potentially more effective alternative to systemic cisplatin administration. STATEMENT OF SIGNIFICANCE: Current treatments in combating malignant bone tumors are hampered by severe side effects, high local tumor recurrence, and complex bone defects after surgery. This study explores a facile manufacturing method to render two types of commercially available bone substitute granules (Bio-Oss® and MBCP®+) suitable for local delivery of cisplatin. The use of cisplatin-functionalized granules has shown promising results both in killing cancer cells in a dose-dependent manner and in aiding bone regeneration. Importantly, this local treatment strategy avoids the systemic toxicity associated with traditional chemotherapy to excretory organs. This dual-functional strategy represents a significant advancement in bone cancer treatment, offering a safe and more efficient alternative that could improve outcomes for patients following bone tumor resection.
Collapse
Affiliation(s)
- Zhule Wang
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands
| | - Mark Kregel
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Jean-Luc Meijers
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Jordi Franch
- Department of Small Animal Medicine and Surgery, Veterinary School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Vincent M J I Cuijpers
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - David Ahlers
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Piet Slootweg
- Department of Pathology, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, the Netherlands
| | - Ingrid Cm van der Geest
- Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands; Department of Orthopedics, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, the Netherlands
| | - Sander Cg Leeuwenburgh
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands
| | - Jeroen Jjp van den Beucken
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands.
| |
Collapse
|
22
|
Shaukat A, Shakeel L, Khan A, Irfan H, Akilimali A. Addressing the challenge of platinum-resistant ovarian cancer: the role of mirvetuximab soravtansine. Ann Med Surg (Lond) 2025; 87:1-7. [PMID: 40109581 PMCID: PMC11918762 DOI: 10.1097/ms9.0000000000002759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/08/2024] [Indexed: 03/22/2025] Open
Affiliation(s)
- Ayesha Shaukat
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Laiba Shakeel
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Afsheen Khan
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Hamza Irfan
- Department of Internal Medicine, Shaikh Khalifa Bin Zayed Al Nahyan Medical and Dental College, Lahore, Pakistan
| | - Aymar Akilimali
- Department of Research, Medical Research circle, Goma, Democratic Republic of the Congo
| |
Collapse
|
23
|
Li W, Chen G, Wang Y, Jiang Y, Wu N, Hu M, Wu T, Yue W. Functional Analysis of BARD1 Missense Variants on Homology-Directed Repair in Ovarian and Breast Cancers. Mol Carcinog 2025; 64:91-107. [PMID: 39387837 DOI: 10.1002/mc.23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/07/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Women with germline BRCA1 mutations face an increased risk of developing breast and ovarian cancers. BARD1 (BRCA1 associated RING domain 1) is an essential heterodimeric partner of BRCA1, and mutations in BARD1 are also associated with these cancers. While BARD1 mutations are recognized for their cancer susceptibility, the exact roles of numerous BARD1 missense mutations remain unclear. In this study, we conducted functional assays to assess the homology-directed DNA repair (HDR) activity of all BARD1 missense substitutions identified in 55 breast and ovarian cancer samples, using the real-world data from the COSMIC and cBioPortal databases. Seven BARD1 variants (V85M, P187A, G491R, R565C, P669L, T719R, and Q730L) were confirmed to impair DNA damage repair. Furthermore, cells harboring these BARD1 variants exhibited increased sensitivity to the chemotherapeutic drugs, cisplatin, and olaparib, compared to cells expressing wild-type BARD1. These findings collectively suggest that these seven missense BARD1 variants are likely pathogenic and may respond well to cisplatin-olaparib combination therapy. This study not only enhances our understanding of BARD1's role in DNA damage repair but also offers valuable insights into predicting therapy responses in patients with specific BARD1 missense mutations.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Guansheng Chen
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yuening Jiang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
| | - Nanlin Wu
- Department of Pathology, Chuzhou First People's Hospital, Anhui, China
| | - Mingjie Hu
- School of Life Science, Bengbu Medical University, Anhui, China
| | - Taju Wu
- School of Life Science, Bengbu Medical University, Anhui, China
| | - Wei Yue
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Interdisciplinary Eye Research Institute (EYE-X Institute), Bengbu Medical University, Anhui, China
| |
Collapse
|
24
|
Kumari S, Thakur M, Chauhan C, Kumari M. Synthesis, characterization, biological activity and computation-based efficacy of cobalt(II) complexes of biphenyl-2-ol against SARS-CoV-2 virus. J Biomol Struct Dyn 2025; 43:483-497. [PMID: 37990487 DOI: 10.1080/07391102.2023.2283144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Cobalt(II) complexes of biphenyl-2-ol of composition, CoCl2-n(OC6H4C6H5-2)n(H2O)4 (where n = 1 or 2), were prepared by reacting cobaltous(II) chloride with equi- and bimolar ratios of sodium salt of biphenyl-2-ol. The structural characterization of the synthesized complexes was accomplished by NMR, FTIR, thermogravimetry (TGA), high resolution mass spectroscopy (HRMS), electronic spectroscopic techniques coupled with density functional theory (DFT). The stability of the complexes in different pH media of solvent was studied. Chemical reactivity parameters of the newly synthesized complexes, computed using DFT, indicated greater reactivity of complex 2 over complex 1 and free ligand as indicated by its low HOMO-LUMO energy gap corresponding to 1.71 eV. Molecular docking (MD) studies were carried out in order to study the binding affinities between amino acid residues of DNA duplex (PDB ID: 1BNA) and SARS-CoV-2 (PDB ID: 7T9K) with newly synthesized complexes. Complex 2 has shown promising antivirus behaviour with an inhibition constant value of 0.0423 µmol-1 with amino acid residues of SARS-CoV-2 virus. Toxicity of the complexes was predicted using ProTox-II online server. Antibacterial studies have indicated the complexes to exhibit greater efficacy than the free ligand, while the antioxidant activities have suggested them to display enhanced antioxidant behaviour as compared to reference compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shalima Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Maridula Thakur
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Chetan Chauhan
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Meena Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| |
Collapse
|
25
|
Liu L, Zou C, Shen J, Huang R, Zhang F, Du Y, Luo X, Yang A, Zhang J, Guan Y, Yan X. MUL1 identified as mitochondria-linked biomarker promoting cisplatin resistance in OC cells. Gene 2024; 930:148841. [PMID: 39134101 DOI: 10.1016/j.gene.2024.148841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Ovarian cancer (OC) ranks among the prevalent tumors affecting the female reproductive system. The aim of this study was to evaluate mitochondria-associated platinum resistance genes using organoid models. Univariate Cox regression, LASSO and multivariate Cox regression analyses were performed on The Cancer Genome Atlas (TCGA) database to construct 2-gene prognostic signature (MUL1 and SSBP1), and GSE26712 dataset was used for external validation. In addition, the relationship between MUL1 and platinum resistance was examined by organoid culture, lentiviral transduction, CCK8 assay, and Western blot. The results showed that patients in the high-risk group exhibited significantly worse OS (P = 0.002, P = 0.017). Drug sensitivity analysis revealed that platinum resistance increased with the upregulation of MUL1 expression (Cor = 0.5154, P = 0.02). Our experimental findings demonstrated that knockout of the MUL1 gene significantly increased apoptosis and enhanced the sensitivity of the OC cell line A2780 to cisplatin. Through this study, we have provided strong evidence for further research on prognostic risk factors and individualized treatment in OC patients, and provided new insights into addressing platinum resistance in OC.
Collapse
Affiliation(s)
- Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Chengyang Zou
- The Affiliated Central Hospital of Lishui, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui 323000, China.
| | - Jingtian Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Rong Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fubin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Yongming Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Xishao Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Aiwu Yang
- Department of Obstetrics and Gynecology, The Wenzhou People's Hospital, Wenzhou, Zhejiang, China.
| | - Jinsan Zhang
- Department of Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yutao Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Xiaojian Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
26
|
Liao AQ, Wen J, Wei JC, Xu BB, Jin N, Lin HY, Qin XY. Syntheses, crystal structures of copper (II)-based complexes of sulfonamide derivatives and their anticancer effects through the synergistic effect of anti-angiogenesis, anti-inflammation, pro-apoptosis and cuproptosis. Eur J Med Chem 2024; 280:116954. [PMID: 39406115 DOI: 10.1016/j.ejmech.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/25/2024]
Abstract
Three novel copper(II)-based complexes Cu-1, Cu-2, and Cu-3 containing sulfamethoxazole or sulfamethazine ligand were obtained, and their single structures were characterized. Both Cu-1 and Cu-3 show a broad spectrum of cytotoxicity than Cu-2, and Cu-1 is more cytotoxic than Cu-3. What's interesting is that Cu-1 can exhibit obvious inhibitory effect on the growth of human triple-negative breast cancer in vivo and vitro through anti-proliferative, anti-angiogenic, anti-inflammatory, pro-apoptotic and cuproptotic synergistic effects. Though Cu-3 shows no significant cytotoxicity against MDA-MB-231 cells, it can significantly inhibit the growth of SKOV3 cells in vitro by down-regulating the expression of some key proteins in the VEGF/VEGFR2 signaling pathway and the expression of some pro-inflammatory cytokines, and by disrupting the balance of intracellular reactive oxygen species levels.
Collapse
Affiliation(s)
- Ai-Qiu Liao
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Juan Wen
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guangxi, Guilin, 541001, China
| | - Jing-Chen Wei
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Bing-Bing Xu
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Nan Jin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Hong-Yu Lin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Xiu-Ying Qin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China.
| |
Collapse
|
27
|
Airik M, Clayton K, Wipf P, Airik R. JP4-039 Mitigates Cisplatin-Induced Acute Kidney Injury by Inhibiting Oxidative Stress and Blocking Apoptosis and Ferroptosis in Mice. Antioxidants (Basel) 2024; 13:1534. [PMID: 39765862 PMCID: PMC11727076 DOI: 10.3390/antiox13121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent in the treatment of a wide array of cancers. Due to its active transport into the kidney proximal tubule cells, cisplatin treatment can cause a buildup of this nephrotoxic compound in the kidney, resulting in acute kidney injury (AKI). About 30% of patients receiving cisplatin chemotherapy develop cisplatin-induced AKI. JP4-039 is a mitochondria-targeted reactive oxygen species (ROS) and electron scavenger. Recent studies have shown that JP4-039 mitigates a variety of genotoxic insults in preclinical studies in rodents by suppressing oxidative stress-mediated tissue damage and blocking apoptosis and ferroptosis. However, the benefits of JP4-039 treatment have not been tested in the setting of AKI. In this study, we investigated the potential renoprotective effect of JP4-039 on cisplatin-induced AKI. To address this goal, we treated mice with JP4-039 before or after cisplatin administration and analyzed them for functional and molecular changes in the kidney. JP4-039 co-administration attenuated cisplatin-induced renal dysfunction and histopathological changes. Upregulation of tubular injury markers was also suppressed by JP4-039. Mechanistically, JP4-039 suppressed lipid peroxidation, prevented tissue oxidative stress, and preserved the glutathione levels in cisplatin-injected mice. An increase in cisplatin-induced apoptosis and ferroptosis was also alleviated by the compound. Moreover, JP4-039 inhibited cytokine overproduction in cisplatin-injected mice. Together, our findings demonstrate that JP4-039 is a promising therapeutic agent against cisplatin-induced kidney injury.
Collapse
Affiliation(s)
- Merlin Airik
- Division of Nephrology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kacian Clayton
- Division of Nephrology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rannar Airik
- Division of Nephrology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
28
|
Biswas M, Chaudhary K, Padhi SS, Banerjee A, Bharathavikru RS, Bandaru S, Panda SJ, Purohit CS, Das NR, Pathak RK. TTFA-Platin Conjugate: Deciphering the Therapeutic Roles of Combo-Prodrug through Evaluating Stability-Activity Relationship. J Med Chem 2024; 67:20986-21008. [PMID: 39611754 DOI: 10.1021/acs.jmedchem.4c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
This work introduces a novel Pt(II) based prodrug TTFA-Platin that integrates a β-diketonate ligand TTFA with a platinum scaffold to structurally resemble carboplatin and offers intermediate kinetic lability between cisplatin and carboplatin, striking a balance between therapeutic efficacy and safety. A comprehensive stability and speciation study was conducted in various biological media, mapping the therapeutic effects of TTFA-Platin. A control molecule, TMK-Platin, was synthesized to further validate the structural-stability relationship, which displayed poor activatable features in biological systems. In vitro studies against a panel of cancer cell lines revealed that TTFA-Platin exhibited significantly higher potency compared to TMK-Platin. In vivo studies revealed that TTFA-Platin exhibited significantly lower toxicity than the reference platinum compounds. Thus, leveraging ligands that fine-tune kinetic lability and offer therapeutic benefits can help develop more effective and safer cancer treatments, addressing the limitations of existing therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Sateesh Bandaru
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
| | - Nihar Ranjan Das
- Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| | | |
Collapse
|
29
|
Olajossy B, Wronski N, Madej E, Komperda J, Szczygieł M, Wolnicka-Glubisz A. RIPK4 Downregulation Reduces ABCG2 Expression, Increasing BRAF-Mutated Melanoma Cell Susceptibility to Cisplatin- and Doxorubicin-Induced Apoptosis. Biomolecules 2024; 14:1573. [PMID: 39766280 PMCID: PMC11674099 DOI: 10.3390/biom14121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Melanoma cells remain resistant to chemotherapy with cisplatin (CisPt) and doxorubicin (DOX). The abnormal expression of Receptor-Interacting Protein Kinase 4 (RIPK4) in certain melanomas contributes to tumour growth through the NFκB and Wnt/β-catenin signalling pathways, which are known to regulate chemoresistance and recurrence. Despite this, the role of RIPK4 in response to chemotherapeutics in melanoma has not been reported. In this study, we examined how the downregulation and overexpression of RIPK4 affect the sensitivity of BRAF-mutated melanoma cells (A375 and WM266.4) to CisPt and DOX along with determining the underlying mechanism. Using two RIPK4 silencing methods (siRNA and CRISPR/Cas9) and overexpression (dCas9-VPR), we assessed CisPt and DOX-induced apoptosis using caspase 3/7 activity, annexin V/7AAD staining, and FASC analysis. In addition, qRT-PCR and Western blotting were used to detect apoptosis-related genes and proteins such as cleaved PARP, p53, and cyclin D1. We demonstrated that the overexpression of RIPK4 inhibits, while its downregulation enhances, CisPt- or DOX-induced apoptosis in melanoma cells. The effects of downregulation are similar to those observed with pre-incubation with cyclosporin A, an ABCG2 inhibitor. Additionally, our findings provide preliminary evidence of crosstalk between RIPK4, BIRC3, and ABCG2. The results of these studies suggest the involvement of RIPK4 in the observed resistance to CisPt or DOX.
Collapse
Affiliation(s)
- Bartlomiej Olajossy
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Norbert Wronski
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Ewelina Madej
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
| | - Joanna Komperda
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
| | - Małgorzata Szczygieł
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
| |
Collapse
|
30
|
Fan W, Huang J, Tian F, Hong X, Zhu K, Zhan Y, Li X, Wang X, Wang X, Cai L, Xing Y. m 6A-Modified SNRPA Controls Alternative Splicing of ERCC1 Exon 8 to Induce Cisplatin Resistance in Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404609. [PMID: 39555714 DOI: 10.1002/advs.202404609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Alternative splicing (AS) generates protein diversity and is exploited by cancer cells to drive tumor progression and resistance to many cancer therapies, including chemotherapy. SNRPA is first identified as a spliceosome-related gene that potentially modulates resistance to platinum chemotherapy. Both the knockout or the knockdown of SNRPA via CRISPR/Cas9 and shRNA techniques can reverse the resistance of cisplatin-resistant lung adenocarcinoma (LUAD) cells to cisplatin. SNRPA overexpression enhanced the resistance of cisplatin-sensitive LUAD cells. Gene Ontology (GO) analysis reveals that SNRPA is associated with DNA damage repair. Depletion of SNRPA induced ERCC1 exon 8 skipping and reduced ERCC1-XPF complex formation, whereas SNRPA overexpression exerted the opposite effect. siRNAs targeting isoforms containing ERCC1 exon 8 [ERCC1-E8 (+)] reversed SNRPA-enhanced cisplatin resistance and DNA damage repair. Furthermore, the IGF2BP protein, an m6A reader, and the ELAVL1 protein, an RNA stabilizer recruited by IGF2BP1, are found to bind to the SNRPA mRNA. ELAVL1 promoted cisplatin resistance, DNA repair and ERCC1-E8 (+) expression in an SNRPA-dependent manner. In a mouse xenograft model, SNRPA-KO CRISPR enhanced the sensitivity of LUAD cells to cisplatin. Overall, this study illuminates the role of SNRPA in platinum-based drug resistance, thereby providing a novel avenue to potentially enhance chemosensitivity and improve the prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Weina Fan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Fanglin Tian
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Xin Hong
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Kexin Zhu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Yuning Zhan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Xin Li
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Xiangyu Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Xin Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| |
Collapse
|
31
|
Lou J, Wu F, He W, Hu R, Cai Z, Chen G, Zhao W, Zhang Z, Si Y. Hesperidin activates Nrf2 to protect cochlear hair cells from cisplatin-induced damage. Redox Rep 2024; 29:2341470. [PMID: 38629504 PMCID: PMC11025410 DOI: 10.1080/13510002.2024.2341470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cisplatin is widely employed in clinical oncology as an anticancer chemotherapy drug in clinical practice and is known for its severe ototoxic side effects. Prior research indicates that the accumulation of reactive oxygen species (ROS) plays a pivotal role in cisplatin's inner ear toxicity. Hesperidin is a flavanone glycoside extracted from citrus fruits that has anti-inflammatory and antioxidant effects. Nonetheless, the specific pharmacological actions of hesperidin in alleviating cisplatin-induced ototoxicity remain elusive. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical mediator of the cellular oxidative stress response, is influenced by hesperidin. Activation of Nrf2 was shown to have a protective effect against cisplatin-induced ototoxicity. The potential of hesperidin to stimulate Nrf2 in attenuating cisplatin's adverse effects on the inner ear warrants further investigation. This study employs both in vivo and in vitro models of cisplatin ototoxicity to explore this possibility. Our results reveal that hesperidin mitigates cisplatin-induced ototoxicity by activating the Nrf2/NQO1 pathway in sensory hair cells, thereby reducing ROS accumulation, preventing hair cell apoptosis, and alleviating hearing loss.
Collapse
Affiliation(s)
- Jintao Lou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenji Zhao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhigang Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yu Si
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
32
|
Thompson LE, Joy MS. Understanding Cisplatin Pharmacokinetics and Toxicodynamics to Predict and Prevent Kidney Injury. J Pharmacol Exp Ther 2024; 391:399-414. [PMID: 39322416 PMCID: PMC11585315 DOI: 10.1124/jpet.124.002287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Cisplatin is a common platinum-based chemotherapeutic that induces acute kidney injury (AKI) in about 30% of patients. Pharmacokinetic/toxicodynamic (PKTD) models of cisplatin-induced AKI have been used to understand risk factors and evaluate potential mitigation strategies. While both traditional clinical biomarkers of kidney function [e.g., serum creatinine (SCr), blood urea nitrogen (BUN), estimated glomerular filtration rate (eGFR), and creatinine clearance (CrCl)] and newer subclinical biomarkers of kidney injury [e.g., urinary kidney injury molecule 1 (KIM-1), beta-2 microglobulin (B2M), neutrophil gelatinase-associated lipocalin (NGAL), calbindin, etc.] can be used to detect cisplatin-induced AKI, published PKTD models are limited to using only traditional clinical biomarkers. Previously identified risk factors for cisplatin nephrotoxicity have included dose, age, sex, race, body surface area, genetics, concomitant medications, and comorbid conditions. However, the relationships between concentrations and the pharmacokinetics (PK) of platinum and biomarkers of kidney injury have not been well elucidated. This review discusses the evaluation of cisplatin-induced nephrotoxicity in clinical studies, mouse models, and in vitro models, and examines the available human PK and toxicodynamic (TD) data. Improved understanding of the relationships between platinum PK and TD, in the presence of identified risk factors, will enable the prediction and prevention of cisplatin kidney injury. SIGNIFICANCE STATEMENT: As cisplatin treatment continues to cause AKI in a third of patients, it is critical to improve the understanding of the relationships between platinum PK and nephrotoxicity as assessed by traditional clinical and contemporary subclinical TD markers of kidney injury. Prediction and prevention of cisplatin-induced nephrotoxicity will be advanced by the evolving development of PKTD models that incorporate kidney injury biomarkers with enhanced sensitivity and include covariates that can impact risk of developing cisplatin-induced AKI.
Collapse
Affiliation(s)
- Lauren E Thompson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (L.E.T., M.S.J.), University of Colorado Cancer Center (M.S.J.), and Division of Renal Diseases and Hypertension (M.S.J.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (L.E.T., M.S.J.), University of Colorado Cancer Center (M.S.J.), and Division of Renal Diseases and Hypertension (M.S.J.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
33
|
Stolarek M, Kaminski K, Kaczor-Kamińska M, Obłoza M, Bonarek P, Czaja A, Datta M, Łach W, Brela M, Sikorski A, Rak J, Nowakowska M, Szczubiałka K. Light-Controlled Anticancer Activity and Cellular Uptake of a Photoswitchable Cisplatin Analogue. J Med Chem 2024; 67:19103-19120. [PMID: 39445571 PMCID: PMC11571217 DOI: 10.1021/acs.jmedchem.4c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
A photoactive analogue of cisplatin was synthesized with two arylazopyrazole ligands, able to undergo trans-cis/cis-trans photoisomerizations. The cis photoisomer showed a dark half-life of 9 days. The cytotoxicities of both photoisomers of the complex were determined in several cancer and normal cell lines and compared to that of cisplatin. The trans photoisomer of the complex was much more cytotoxic than both the cis photoisomer and cisplatin, and was more toxic for cancer (4T1) than for normal (NMuMG) murine breast cells. 4T1 cell death occurred through necrosis. Photoisomerization of the trans and cis photoisomers internalized by the 4T1 cells increased and decreased their viability, respectively. The cellular uptake of the trans photoisomer was stronger than that of both the cis photoisomer and cisplatin. Both photoisomers interacted with DNA faster than cisplatin. The trans photoisomer was bound stronger by bovine serum albumin and induced a greater decrease in cellular glutathione levels than the cis photoisomer.
Collapse
Affiliation(s)
- Marta Stolarek
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
- Jagiellonian
University, Doctoral School
of Exact and Natural Sciences, Łojasiewicza 11, 30-348 Cracow, Poland
| | - Kamil Kaminski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Marta Kaczor-Kamińska
- Chair
of Medical Biochemistry, Jagiellonian University, Collegium Medicum, Kopernika 7C, 31-034 Cracow, Poland
| | - Magdalena Obłoza
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Piotr Bonarek
- Faculty
of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Anna Czaja
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Magdalena Datta
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Wojciech Łach
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Mateusz Brela
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Artur Sikorski
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Janusz Rak
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Maria Nowakowska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Krzysztof Szczubiałka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| |
Collapse
|
34
|
Xie C, Zhou X, Wu J, Chen W, Ren D, Zhong C, Meng Z, Shi Y, Zhu J. ZNF652 exerts a tumor suppressor role in lung cancer by transcriptionally downregulating cyclin D3. Cell Death Dis 2024; 15:792. [PMID: 39500884 PMCID: PMC11538260 DOI: 10.1038/s41419-024-07197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Dysfunction of zinc finger protein 652 (ZNF652) is associated with various malignant tumors. However, the role of ZNF652 in lung cancer (LC) is poorly understood. Here, we identified that ZNF652 was downregulated in human LC tissues and cell lines. Low ZNF652 expression was associated with poor survival in LC patients. Overexpression of ZNF652 inhibited cell viability, proliferation, migration, and invasion of LC cells, whereas ZNF652 knockdown promoted these malignant phenotypes. Using RNA-seq analysis revealed that ZNF652 overexpression resulted in obvious alterations of various biological processes, especially cell cycle and cellular senescence. Subsequently, we confirmed that ZNF652 overexpression arrested the cell cycle at the G1 phase, increased ROS-mediated DNA damage, induced LC cell senescence, and enhanced cisplatin-induced apoptosis in LC cells. Mechanistically, ZNF652 directly bound to the promoter of cyclin D3 (CCND3), inhibited its transcription, thereby arresting the cell cycle at the G1 phase. Ectopic expression of cyclin D3 rescued the decreased cell viability and cell cycle arrest induced by ZNF652. In vivo studies further showed that ZNF652 overexpression suppressed the tumorigenic potential of LC. Collectively, our findings reveal that ZNF652 exerts a tumor suppressor role in lung cancer by inducing cell cycle arrest and cellular senescence via transcriptionally downregulating cyclin D3. Thus, ZNF652 may be a prognostic predictive factor for LC patients.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jinyi Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiyi Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongxue Ren
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zili Meng
- Department of Respiratory and Critical Care Medicine, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, P. R. China.
| | - Ye Shi
- Department of Thoracic Surgery, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
35
|
Araki K, Torii T, Takeuchi K, Kinoshita N, Urano R, Nakajima R, Zhou Y, Kobayashi T, Hanyu T, Ohtani K, Ambe K, Kawauchi K. Non-canonical olfactory pathway activation induces cell fusion of cervical cancer cells. Neoplasia 2024; 57:101044. [PMID: 39222591 PMCID: PMC11402306 DOI: 10.1016/j.neo.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Multinucleation occurs in various types of advanced cancers and contributes to their malignant characteristics, including anticancer drug resistance. Therefore, inhibiting multinucleation can improve cancer prognosis; however, the molecular mechanisms underlying multinucleation remain elusive. Here, we introduced a genetic mutation in cervical cancer cells to induce cell fusion-mediated multinucleation. The olfactory receptor OR1N2 was heterozygously mutated in these fused cells; the same OR1N2 mutation was detected in multinucleated cells from clinical cervical cancer specimens. The mutation-induced structural change in the OR1N2 protein activated protein kinase A (PKA), which, in turn, mediated the non-canonical olfactory pathway. PKA phosphorylated and activated furin protease, resulting in the cleavage of the fusogenic protein syncytin-1. Because this cleaved form of syncytin-1, processed by furin, participates in cell fusion, furin inhibitors could suppress multinucleation and reduce surviving cell numbers after anticancer drug treatment. The improved anticancer drug efficacy indicates a promising therapeutic approach for advanced cervical cancers.
Collapse
Affiliation(s)
- Keigo Araki
- Department of Morphological Biology, School of Dentistry, Ohu University, Koriyama, Fukushima 963-8611, Japan.
| | - Takeru Torii
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| | - Kohei Takeuchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| | - Natsuki Kinoshita
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| | - Ryoto Urano
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Tokuo Kobayashi
- Department of Morphological Biology, School of Dentistry, Ohu University, Koriyama, Fukushima 963-8611, Japan
| | - Tadayoshi Hanyu
- Department of Gynecology, Tsuboi Cancer Center Hospital, Koriyama, Fukushima 963-0197, Japan
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Kimiharu Ambe
- Department of Morphological Biology, School of Dentistry, Ohu University, Koriyama, Fukushima 963-8611, Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
36
|
Fu XL, Guo SM, Ma JQ, Ma FY, Wang X, Tang YX, Li Y, Zhang WY, Ye LH. HBXIP induces PARP1 via WTAP-mediated m 6A modification and CEBPA-activated transcription in cisplatin resistance to hepatoma. Acta Pharmacol Sin 2024; 45:2405-2419. [PMID: 38871923 PMCID: PMC11489769 DOI: 10.1038/s41401-024-01309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a DNA-binding protein that is involved in various biological functions, including DNA damage repair and transcription regulation. It plays a crucial role in cisplatin resistance. Nevertheless, the exact regulatory pathways governing PARP1 have not yet been fully elucidated. In this study, we present evidence suggesting that the hepatitis B X-interacting protein (HBXIP) may exert regulatory control over PARP1. HBXIP functions as a transcriptional coactivator and is positively associated with PARP1 expression in tissues obtained from hepatoma patients in clinical settings, and its high expression promotes cisplatin resistance in hepatoma. We discovered that the oncogene HBXIP increases the level of PARP1 m6A modification by upregulating the RNA methyltransferase WTAP, leading to the accumulation of the PARP1 protein. In this process, on the one hand, HBXIP jointly activates the transcription factor ETV5, promoting the activation of the WTAP promoter and further facilitating the promotion of the m6A modification of PARP1 by WTAP methyltransferase, enhancing the RNA stability of PARP1. On the other hand, HBXIP can also jointly activate the transcription factor CEBPA, enhance the activity of the PARP1 promoter, and promote the upregulation of PARP1 expression, ultimately leading to enhanced DNA damage repair capability and promoting cisplatin resistance in hepatoma. Notably, aspirin inhibits HBXIP, thereby reducing the expression of PARP1. Overall, our research revealed a novel mechanism for increasing PARP1 abundance, and aspirin therapy could overcome cisplatin resistance in hepatoma.
Collapse
Affiliation(s)
- Xue-Li Fu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shi-Man Guo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jia-Qi Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fang-Yuan Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xue Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Xin Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ye Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei-Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Li-Hong Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
37
|
Lukoseviciute M, Need E, Birgersson M, Dalianis T, Kostopoulou ON. Enhancing targeted therapy by combining PI3K and AKT inhibitors with or without cisplatin or vincristine in medulloblastoma cell lines in vitro. Biomed Pharmacother 2024; 180:117500. [PMID: 39326108 DOI: 10.1016/j.biopha.2024.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
AIM Despite current intensive therapy, survival rates of medulloblastoma (MB) greatly vary according to molecular subgroup, so new therapies are needed. Recently, we showed that combining phosphoinositide 3-kinase (PI3K), fibroblast growth factor receptor and cyclin-dependent-kinase-4/6 inhibitors (BYL719, JNJ-42756493 and PD-0332991, respectively) or poly (ADP-ribose) polymerase (PARP) and WEE-1 inhibitors (BMN673 and MK1775 respectively) had synergistic effects on MB. Here, in continuation, we investigated the effects of single and combined administrations of PI3K and AKT inhibitors, with/without cisplatin or vincristine on adherent or suspension cultures of different MB subgroups as well as in a spheroid culture of one MB line. MATERIAL AND METHODS MB cell lines DAOY, UW228-3, D425, Med8A, and D283 were treated with single and combined administrations of BYL719, AZD5363, cisplatin or vincristine and followed for viability, cell confluence, cytotoxicity, and cell migration. DAOY was also tested as a spheroid culture. KEY FINDINGS Single BYL719, AZD5363, cisplatin, or vincristine administrations gave dose-dependent responses with regard to inhibition of viability and cell confluence. Combining AZD5363 with BYL719, cisplatin or vincristine resulted in synergistic effects with regard to inhibition of viability in all cell lines, and confluence and migration in all tested cell lines. The administration of single and combined treatments to DAOY spheroids produced largely similar effects. SIGNIFICANCE This study provides pre-clinical evidence that AKT inhibitors combined with PI3K inhibitors, cisplatin, or vincristine exhibit additive/synergistic anti-MB activity, and lower doses could be used. The latter also applied to one MB line grown as spheroids, further supporting their future potential use.
Collapse
Affiliation(s)
- Monika Lukoseviciute
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Emma Need
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Madeleine Birgersson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Ourania N Kostopoulou
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden.
| |
Collapse
|
38
|
Li L, Wazir J, Huang Z, Wang Y, Wang H. A comprehensive review of animal models for cancer cachexia: Implications for translational research. Genes Dis 2024; 11:101080. [PMID: 39220755 PMCID: PMC11364047 DOI: 10.1016/j.gendis.2023.101080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 09/04/2024] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by progressive weight loss and a disease process that nutritional support cannot reverse. Although progress has been made in preclinical research, there is still a long way to go in translating research findings into clinical practice. One of the main reasons for this is that existing preclinical models do not fully replicate the conditions seen in clinical patients. Therefore, it is important to understand the characteristics of existing preclinical models of cancer cachexia and pay close attention to the latest developments in preclinical models. The main models of cancer cachexia used in current research are allogeneic and xenograft models, genetically engineered mouse models, chemotherapy drug-induced models, Chinese medicine spleen deficiency models, zebrafish and Drosophila models, and cellular models. This review aims to revisit and summarize the commonly used animal models of cancer cachexia by evaluating existing preclinical models, to provide tools and support for translational medicine research.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhiqiang Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
39
|
Aminuddin A, Ng PY, Leong CO, Makpol S, Chua EW. Potential role of heteroplasmic mitochondrial DNA mutations in modulating the subtype-specific adaptation of oral squamous cell carcinoma to cisplatin therapy. Discov Oncol 2024; 15:573. [PMID: 39425872 PMCID: PMC11490477 DOI: 10.1007/s12672-024-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Cancer cells are constantly evolving to adapt to environmental changes, particularly during exposure to drug treatment. In this work, we aimed to characterize genetic and epigenetic changes in mitochondrial DNA (mtDNA) that may increase the resistance of oral squamous cell carcinoma (OSCC) to cisplatin. We first derived drug-resistant cells from two human OSCC cell lines, namely SAS and H103, by continual cisplatin treatments for about 4 months. To determine mtDNA changes induced by cisplatin, we performed nanopore sequencing and quantitative polymerase chain reaction analysis of mtDNA extracted from the cells pre- and post-treatment. We also assessed the mitochondrial functions of the cells and their capacity to generate intracellular reactive oxygen species (ROS). We found that in the cisplatin-resistant cells derived from SAS, there was a reduction in mtDNA content and significant enrichment of a m.3910G > C mutation in the MT-ND1 gene. However, such changes were not detected in cisplatin-resistant H103 cells. The cisplatin treatment also altered methylation patterns in both SAS and H103 cells and decreased their sensitivity to ROS-induced cytotoxicity. We suggest that the sequence alterations and epigenetic changes in mtDNA and the reduction in mtDNA content could be key drivers of cisplatin resistance in OSCC. These mtDNA alterations may participate in cellular adaptation that serves as a response to adverse changes in the environment, particularly exposure to cytotoxic agents. Importantly, the observed mtDNA changes may be influenced by the distinct genetic landscapes of various cancer subtypes. Overall, this study reveals significant insights into cisplatin resistance driven by complex mtDNA dynamics, particularly in OSCC. This underscores the need for targeted therapies tailored to the genetic profiles of individual OSCC patients to improve disease prognosis.
Collapse
Affiliation(s)
- Amnani Aminuddin
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee Onn Leong
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- AGTC Genomics, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Sawamura R, Masuya-Suzuki A, Iki N. Study on cellular uptake of a hydrophobic near-infrared-absorbing diradical-platinum(II) complex solubilized by albumin using hyperspectral imaging, spectrophotometry, and spectrofluorimetry. ANAL SCI 2024; 40:1857-1865. [PMID: 38896386 PMCID: PMC11422251 DOI: 10.1007/s44211-024-00621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Owing to its biopenetrability and minimal invasiveness, near-infrared (NIR) light in the region between 700-1100 nm has attracted attention in cancer diagnosis and therapy. Our group previously reported that the hydrophobic diradical-platinum(II) complex PtL2 is a promising agent for cancer photothermal therapy (L = 3,5-dibromo-1,2-diiminobenzosemiquinonate radical). Because PtL2 does not fluoresce, its intercellular uptake of PtL2 cannot be observed with a fluorescence microscope. In this study, we clarified the uptake and intracellular behavior of PtL2 solubilized by bovine serum albumin (BSA) using hyperspectral imaging enabling spectrophotometric analysis of the image. The spectral changes in the obtained images indicated that the internalization of PtL2 was followed by crystallization of the complex during the long incubation period (> 4 h). Additionally, the binding constant Kb = 5.91 × 104 M-1 could be estimated upon fluorescence quenching analysis of BSA upon binding of PtL2; Kb is two orders of magnitude smaller than that of albumin-common drugs. Considering the small Kb and low solubility of PtL2 in water, we ultimately proposed the internalization path and fate of PtL2 in the cell: release of PtL2 from BSA near cellular membranes and subsequent cellular uptake via membrane permeation followed by saturation, resulting in crystallization.
Collapse
Affiliation(s)
- Ryota Sawamura
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8579, Japan.
| | - Atsuko Masuya-Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Nobuhiko Iki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8579, Japan.
| |
Collapse
|
41
|
Nogueiras-Álvarez R, Pérez Francisco I. Pharmacogenetics in Oncology: A useful tool for individualizing drug therapy. Br J Clin Pharmacol 2024; 90:2483-2508. [PMID: 39077855 DOI: 10.1111/bcp.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
With the continuous development of genetics in healthcare, there has been a significant contribution to the development of precision medicine, which is ultimately aimed at improving the care of patients. Generally, drug treatments used in Oncology are characterized by a narrow therapeutic range and by their potential toxicity. Knowledge of pharmacogenomics and pharmacogenetics can be very useful in the area of Oncology, as they constitute additional tools that can help to individualize patients' treatment. This work includes a description of some genes that have been revealed to be useful in the field of Oncology, as they play a role in drug prescription and in the prediction of treatment response.
Collapse
Affiliation(s)
- Rita Nogueiras-Álvarez
- Osakidetza Basque Health Service, Galdakao-Usansolo University Hospital, Basque Country Pharmacovigilance Unit, Galdakao, Bizkaia/Vizcaya, Spain
| | - Inés Pérez Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, Vitoria-Gasteiz, Araba/Álava, Spain
| |
Collapse
|
42
|
Li P, Li D, Lu Y, Pan S, Cheng F, Li S, Zhang X, Huo J, Liu D, Liu Z. GSTT1/GSTM1 deficiency aggravated cisplatin-induced acute kidney injury via ROS-triggered ferroptosis. Front Immunol 2024; 15:1457230. [PMID: 39386217 PMCID: PMC11461197 DOI: 10.3389/fimmu.2024.1457230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/23/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Cisplatin is a widely used chemotherapeutic agent prescribed to treat solid tumors. However, its clinical application is limited because of cisplatin- induced nephrotoxicity. A known complication of cisplatin is acute kidney injury (AKI). Deletion polymorphisms of GSTM1 and GSTT1, members of the glutathione S-transferase family, are common in humans and are presumed to be associated with various kidney diseases. However, the specific roles and mechanisms of GSTM1 and GSTT1 in cisplatin induced AKI remain unclear. Methods To investigate the roles of GSTM1 and GSTT1 in cisplatin-induced AKI, we generated GSTM1 and GSTT1 knockout mice using CRISPR-Cas9 technology and assessed their kidney function under normal physiological conditions and cisplatin treatment. Using ELISA kits, we measured the levels of oxidative DNA and protein damage, along with MDA, SOD, GSH, and the GSH/GSSG ratio in wild-type and GSTM1/GSTT1 knockout mice following cisplatin treatment. Additionally, oxidative stress levels and the expression of ferroptosis-related proteins in kidney tissues were examined through Western blotting, qPCR, immunohistochemistry, and immunofluorescence techniques. Results Here, we found that GSTT1 and GSTM1 were downregulated in the renal tubular cells of AKI patients and cisplatin-treated mice. Compared with WT mice, Gstm1/Gstt1-DKO mice were phenotypically normal but developed more severe kidney dysfunction and exhibited increased ROS levels and severe ferroptosis after injecting cisplatin. Discussion Our study revealed that GSTM1 and GSTT1 can protect renal tubular cells against cisplatin-induced nephrotoxicity and ferroptosis, and genetic screening for GSTM1 and GSTT1 polymorphisms can help determine a standard cisplatin dose for cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Peipei Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Duopin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yanfang Lu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Fei Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaonan Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jinling Huo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
43
|
Belletto D, Vigna V, Barretta P, Ponte F, Mazzone G, Scoditti S, Sicilia E. Computational assessment of the use of graphene-based nanosheets as Pt II chemotherapeutics delivery systems. J Comput Chem 2024; 45:2059-2070. [PMID: 38741357 DOI: 10.1002/jcc.27394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Graphene is the newest form of elemental carbon and it is becoming rapidly a potential candidate in the framework of nano-bio research. Many reports confirm the successful use of graphene-based materials as carriers of anticancer drugs having relatively high loading capacities compared with other nanocarriers. Here, the outcomes of a systematic study of the adsorption behavior of FDA approved PtII drugs cisplatin, oxaliplatin, and carboplatin on surface models of pristine, holey, and nitrogen-doped holey graphene are reported. DFT investigations in water solvent have been carried out considering several initial orientations of the drugs with respect to the surfaces. Adsorption free energies, calculated including basis set superposition error (BSSE) corrections, result to be significantly negative for many of the drug@carrier adducts indicating that tested layers could be used as potential carriers for the delivery of anticancer PtII drugs. The reduced density gradient (RDG) analysis allows to show that many kinds of non-covalent interactions, including canonical H-bond, are responsible for the stabilization of the formed adducts.
Collapse
Affiliation(s)
- Daniele Belletto
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende, Italy
| | - Vincenzo Vigna
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende, Italy
| | - Pierraffaele Barretta
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende, Italy
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende, Italy
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende, Italy
| | - Stefano Scoditti
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende, Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
44
|
Varney AM, Smitten KL, Southam HM, Fairbanks SD, Robertson CC, Thomas JA, McLean S. In Vitro and In Vivo Studies on a Mononuclear Ruthenium Complex Reveals It is a Highly Effective, Fast-Acting, Broad-Spectrum Antimicrobial in Physiologically Relevant Conditions. ACS Infect Dis 2024; 10:3346-3357. [PMID: 39106475 PMCID: PMC11406528 DOI: 10.1021/acsinfecdis.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The crystal structure of a previously reported antimicrobial RuII complex that targets bacterial DNA is presented. Studies utilizing clinical isolates of Gram-negative bacteria that cause catheter-associated urinary tract infection, (CA)UTI, in media that model urine and plasma reveal that good antimicrobial activity is maintained in all conditions tested. Experiments with a series of Staphylococcus aureus clinical isolates show that, unlike the majority of previously reported RuII-based antimicrobial leads, the compound retains its potent activity even in MRSA strains. Furthermore, experiments using bacteria in early exponential growth and at different pHs reveal that the compound also retains its activity across a range of conditions that are relevant to those encountered in clinical settings. Combinatorial studies involving cotreatment with conventional antibiotics or a previously reported analogous dinuclear RuII complex showed no antagonistic effects. In fact, although all combinations show distinct additive antibacterial activity, in one case, this effect approaches synergy. It was found that the Galleria Mellonella model organism infected with a multidrug resistant strain of the ESKAPE pathogen Acinetobacter baumannii could be successfully treated and totally cleared within 48 h after a single dose of the lead complex with no detectable deleterious effect to the host.
Collapse
Affiliation(s)
- Adam M Varney
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
- Medical Technologies Innovation Facility (MTIF), Clifton Lane, Nottingham NG11 8NS, U.K
| | - Kirsty L Smitten
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
- School of Bioscience, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| | - Hannah M Southam
- School of Bioscience, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| | - Simon D Fairbanks
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Craig C Robertson
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Samantha McLean
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| |
Collapse
|
45
|
Nishitsuji K, Mito R, Ikezaki M, Yano H, Fujiwara Y, Matsubara E, Nishikawa T, Ihara Y, Uchimura K, Iwahashi N, Sakagami T, Suzuki M, Komohara Y. Impacts of cytoplasmic p53 aggregates on the prognosis and the transcriptome in lung squamous cell carcinoma. Cancer Sci 2024; 115:2947-2960. [PMID: 39031627 PMCID: PMC11462941 DOI: 10.1111/cas.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/22/2024] Open
Abstract
The tumor suppressor TP53 gene, the most frequently mutated gene in human cancers, produces the product tumor protein p53, which plays an essential role in DNA damage. p53 protein mutations may contribute to tumorigenesis by loss of tumor suppressive functions and malignancy of cancer cells via gain-of-oncogenic functions. We previously reported that mutant p53 proteins form aggregates and that cytoplasmic p53 aggregates were associated with poor prognosis in human ovarian cancer. However, the prognostic impact of p53 aggregation in other tumors including lung squamous cell carcinoma (SCC) is poorly understood. Here, we demonstrated that lung SCC cases with cytoplasmic p53 aggregates had a significantly poor clinical prognosis. Analysis via patient-derived tumor organoids (PDOs) established from lung SCC patients and possessing cytoplasmic p53 aggregates showed that eliminating cytoplasmic p53 aggregates suppressed cell proliferation. RNA sequencing and transcriptome analysis of p53 aggregate-harboring PDOs indicated multiple candidate pathways involved in p53 aggregate oncogenic functions. With lung SCC-derived cell lines, we found that cytoplasmic p53 aggregates contributed to cisplatin resistance. This study thus shows that p53 aggregates are a predictor of poor prognosis in lung SCC and suggests that detecting p53 aggregates via p53 conventional immunohistochemical analysis may aid patient selection for platinum-based therapy.
Collapse
Affiliation(s)
- Kazuchika Nishitsuji
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
- Unité de Glycobiologie Structurale et FonctionnelleUMR 8576 CNRS, Université de LilleVilleneuve d'AscqFrance
| | - Remi Mito
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Midori Ikezaki
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Eri Matsubara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Taro Nishikawa
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yoshito Ihara
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et FonctionnelleUMR 8576 CNRS, Université de LilleVilleneuve d'AscqFrance
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Makoto Suzuki
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| |
Collapse
|
46
|
Akhigbe RE, Adelowo OE, Ajani EO, Oyesetan RI, Oladapo DD, Akhigbe TM. Testicular toxicity in cisplatin-treated Wistar rats is mitigated by Daflon and associated with modulation of Nrf2/HO-1 and TLR4/NF-kB signaling. J Trace Elem Med Biol 2024; 85:127489. [PMID: 38943836 DOI: 10.1016/j.jtemb.2024.127489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Testicular toxicity is a complication of cisplatin therapy and it limits its use. Since cisplatin-induced testicular damage is mediated by inflammation and oxidative stress, evaluation of the protective role of antioxidant and anti-inflammatory molecules such as micronized purified flavonoid fraction (Daflon®) is pertinent. AIM Therefore, this study investigated the mitigating effect of daflon against cisplatin-induced testicular toxicity. Also, the impact of daflon on Nrf2/HO-1 and TLR4/NF-kB pathways, which are key pathways in cisplatin toxicity, was explored. MATERIALS AND METHODS After 2 weeks of acclimatization, 20 male albino Wistar rats were allotted at random into 4 equal groups; control, daflon-treated, cisplatin-treated, and cisplatin+daflon-treated. RESULTS Daflon significantly restored cisplatin-induced reductions in body weight (112.20±9.01 vs. 129.60±5.68, P= 0.0175), body weight gain (-39.80±9.52 vs. -16.80±16.53, P= 0.0154), and testicular weight (1.69±0.08 vs. 1.95±0.13, P= 0.0980) and alterations in testicular histology. In addition, daflon abrogated cisplatin-induced rise in testicular CK (55.53±2.77 vs. 37.40±3.29, P< 0.0001) and LDH (74.52±3.20 vs. 65.89±2.08, P= 0.0009) activities, and lactate content (180.50±4.19 vs. 166.20±2.78, P< 0.0001). Also, daflon alleviated cisplatin-induced suppression of GnRH (5.09±0.60 vs. 10.17±0.51, P< 0.0001), LH (1.33±0.07 vs. 2.77±0.13, P< 0.0001), FSH (0.51±0.10 vs. 1.82±0.09, P< 0.0001), and testosterone (2.39±0.11 vs. 4.70±0.33, P< 0.001) as well as lowered sperm quality. More so, daflon attenuated cisplatin-induced testicular oxidative stress, inflammation, and apoptosis evidenced by daflon-driven suppression of MDA (14.16±0.66 vs. 9.22±0.52, P< 0.0001), TNF-α (79.42±5.66 vs. 54.13±3.56, P< 0.0001), IL-1β (8.63±0.41 vs. 3.37±0.43, P< 0.0001), IL-6 (6.87±0.48 vs. 3.67±0.32, P< 0.0001), and caspase 3 activity (4.20±0.26 vs. 0.72±0.23, P< 0.0001) and DNA fragmentation (34.60±3.05 vs. 17.20±3.19, P< 0.0001), and upregulation of GSH level (0.07±0.03 vs. 0.36±0.03, P< 0.0001), and GPx (5.96±0.46 vs. 11.88±1.05, P< 0.0001), GST (5.16±0.71 vs. 11.50±0.81, P< 0.0001), SOD (1.29±0.15 vs. 2.81±0.29, P< 0.0001), and catalase activities (6.18±0.69 vs. 10.71±0.74, P< 0.0001). Furthermore, daflon upregulated testicular Nrf2 expression (40.25±2.65 vs. 66.62±4.01, P< 0.0001) and HO-1 (4.18±0.56 vs. 8.79±0.55, P< 0.0001) activity but downregulated TLR4 (11.63±0.89 vs. 7.23±0.43, P< 0.0001) and NF-kB levels (113.20±3.36 vs. 78.22±3.90, P< 0.0001) in cisplatin-treated rats. CONCLUSION Collectively, the ameliorative effect of daflon on cisplatin-induced testicular toxicity is associated with inhibition of oxidative stress and TLR4/NF-kB-mediated inflammatory pathways and activation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
| | - Olayinka Emmanuel Adelowo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Esther Olamide Ajani
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Rachael Ibukun Oyesetan
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - David Damola Oladapo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Tunmise Maryanne Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Breeding and Genetics Unit, Department of Agronomy, Osun State University, Ejigbo Campus, Osun State, Nigeria
| |
Collapse
|
47
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Huang JY, Hsu TW, Chen YR, Kao SH. Rosmarinic Acid Potentiates Cytotoxicity of Cisplatin against Colorectal Cancer Cells by Enhancing Apoptotic and Ferroptosis. Life (Basel) 2024; 14:1017. [PMID: 39202759 PMCID: PMC11355254 DOI: 10.3390/life14081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Rosmarinic acid (RA) has demonstrated anticancer effects on several types of malignancies. However, whether RA promotes the anticancer effect of cisplatin on colorectal cancer cells remains sketchy. This study aimed to explore whether RA potentiates the cytotoxicity of cisplatin against colon cancer cells and the underlying mechanism. Cell viability, cell cycle progression, and apoptosis was evaluated using sulforhodamine B (SRB) assay, flow cytometric analysis, and propidium iodide/Annexin V staining, respectively. Western blotting was utilized to analyze signaling pathways. Our findings showed that RA significantly enhanced the inhibitory effect on cell viability and the induction of apoptosis on the colon cancer cell lines DLD-1 and LoVo. Signaling cascade analysis revealed that the combination of RA and cisplatin jointly induced Bax and caspase activation while downregulating Bcl-2, glutathione peroxidase 4 (GPX4), and SLC7A11 in DLD-1 cells. Moreover, caspase inhibitor and ferroptosis inhibitor significantly reversed the inhibition of cell viability in response to RA combined with cisplatin. Collectively, these findings demonstrate that RA enhances the cytotoxicity of cisplatin against colon cancer cells, attributing to the promotion of apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Jhen-Yu Huang
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (J.-Y.H.); (Y.-R.C.)
| | - Ta-Wen Hsu
- Division of Colorectal Surgery, Buddhist Tzu Chi Medical Foundation, Dalin Tzu Chi Hospital, Chiayi 622401, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Yu-Ru Chen
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (J.-Y.H.); (Y.-R.C.)
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Shao-Hsuan Kao
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (J.-Y.H.); (Y.-R.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| |
Collapse
|
49
|
Oh SY, Kim J, Lee KY, Lee HJ, Kwon TG, Kim JW, Lee ST, Kim DG, Choi SY, Hong SH. Chromatin remodeling-driven autophagy activation induces cisplatin resistance in oral squamous cell carcinoma. Cell Death Dis 2024; 15:589. [PMID: 39138148 PMCID: PMC11322550 DOI: 10.1038/s41419-024-06975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
It is still challenging to predict the efficacy of cisplatin-based therapy, particularly in relation to the activation of macroautophagy/autophagy in oral squamous cell carcinoma (OSCC). We studied the effect of selected chromatin remodeling genes on the cisplatin resistance and their interplay with autophagy in 3-dimensional tumor model and xenografts. We analyzed gene expression patterns in the cisplatin-sensitive UMSCC1, and a paired cisplatin-resistant UM-Cis cells. Many histone protein gene clusters involved in nucleosome assembly showed significant difference of expression. Gain- and loss-of-function analyses revealed an inverse correlation between cisplatin resistance and HIST1H3D expression, while a positive correlation was observed with HIST3H2A or HIST3H2B expression. In UM-Cis, HIST3H2A- and HIST3H2B-mediated chromatin remodeling upregulates autophagy status, which results in cisplatin resistance. Additionally, knockdown of HIST3H2A or HIST3H2B downregulated autophagy-activating genes via chromatin compaction of their promoter regions. MiTF, one of the key autophagy regulators upregulated in UM-Cis, negatively regulated transcription of HIST1H3D, suggesting an interplay between chromatin remodeling-dependent cisplatin resistance and autophagy. On comparing the staining intensity between cisplatin-sensitive and -insensitive tissues from OSCC patients, protein expression pattern of the selected histone protein genes were matched with the in vitro data. By examining the relationship between autophagy and chromatin remodeling genes, we identified a set of candidate genes with potential use as markers predicting chemoresistance in OSCC biopsy samples.
Collapse
Affiliation(s)
- Su Young Oh
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jinkyung Kim
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Kah Young Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jin-Wook Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Sung-Tak Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Dae-Geon Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
50
|
Stefàno E, De Castro F, Ciccarese A, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. An Overview of Altered Pathways Associated with Sensitivity to Platinum-Based Chemotherapy in Neuroendocrine Tumors: Strengths and Prospects. Int J Mol Sci 2024; 25:8568. [PMID: 39201255 PMCID: PMC11354135 DOI: 10.3390/ijms25168568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) are a diverse group of malignancies with a shared phenotype but varying prognosis and response to current treatments. Based on their morphological features and rate of proliferation, NENs can be classified into two main groups with a distinct clinical behavior and response to treatment: (i) well-differentiated neuroendocrine tumors (NETs) or carcinoids (with a low proliferation rate), and (ii) poorly differentiated small- or large-cell neuroendocrine carcinomas (NECs) (with a high proliferation rate). For certain NENs (such as pancreatic tumors, higher-grade tumors, and those with DNA damage repair defects), chemotherapy is the main therapeutic approach. Among the different chemotherapic agents, cisplatin and carboplatin, in combination with etoposide, have shown the greatest efficacy in treating NECs compared to NETs. The cytotoxic effects of cisplatin and carboplatin are primarily due to their binding to DNA, which interferes with normal DNA transcription and/or replication. Consistent with this, NECs, which often have mutations in pathways involved in DNA repair (such as Rb, MDM2, BRCA, and PTEN), have a high response to platinum-based chemotherapy. Identifying mutations that affect molecular pathways involved in the initiation and progression of NENs can be crucial in predicting the response to platinum chemotherapy. This review aims to highlight targetable mutations that could serve as predictors of therapeutic response to platinum-based chemotherapy in NENs.
Collapse
Affiliation(s)
| | | | | | | | | | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy; (E.S.); (F.D.C.); (A.C.); (A.M.); (S.M.); (F.P.F.)
| | | |
Collapse
|