1
|
Bardani E, Katsarou K, Mitta E, Andronis C, Štefková M, Wassenegger M, Kalantidis K. Broadening the Nicotiana benthamiana research toolbox through the generation of dicer-like mutants using CRISPR/Cas9 approaches. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112490. [PMID: 40174865 DOI: 10.1016/j.plantsci.2025.112490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/22/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
RNA silencing in plants plays a pivotal role in various biological processes, including development, epigenetic modifications and stress response. Key components of this network are Dicer-like (DCL) proteins. Nicotiana benthamiana encodes four DCLs, each responsible for the generation of distinct small RNA (sRNA) populations, which regulate different functions. However, elucidating the precise role of each DCL has been proven challenging, as overlapping functions exist within DCLs. In our present study, we have successfully generated dcl2, dcl3 and dcl4 homozygous mutants, employing two different CRISPR/Cas9 approaches. The first approach is based on a transgene-mediated delivery of the single-guide RNA (sgRNA), while the second approach employs a viral vector for sgRNA delivery. By utilizing a suite of screening techniques, including polymerase chain reaction (PCR), T7 endonuclease I (T7E1) assay, high-resolution melt analysis (HRMA) and DNA sequencing, we successfully generated dcl2, dcl3 and dcl4 homozygous mutants harboring identical mutations in every allele. To evaluate these dcl mutants, we examined their sRNA profiles and phenotypes. We further have indications that homozygous mutations of a gene do not always lead to the desired loss-of-function, highlighting the importance of mutant evaluation. dcl mutants represent invaluable tools to explore how overlapping silencing pathways are connected to essential plant functions, including development, stress responses and pathogen defense. Additionally, they hold potential for biotechnological applications, such as crop improvement and gene silencing tools. We anticipate that our study will make significant contributions to enhance understanding of the role of DCLs in plants.
Collapse
Affiliation(s)
- Eirini Bardani
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece; Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece
| | - Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece; Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece.
| | - Eleni Mitta
- Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece
| | - Christos Andronis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Marie Štefková
- Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece
| | - Michael Wassenegger
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece; Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece.
| |
Collapse
|
2
|
Hassan HM, Zubair A, Helal MH, Almagharbeh WT, Elmagzoub RM. New hope and promise with CRISPR-Cas9 technology for the treatment of HIV. Funct Integr Genomics 2025; 25:108. [PMID: 40411669 DOI: 10.1007/s10142-025-01613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/26/2025]
Abstract
The commencement of Highly Active Antiretroviral Therapy almost completely stopped viral replication, enabling the immune system to restore its full functionality. The rise in life expectancy has resulted in a decrease in the incidence of classical infections and HIV-associated cancers. HAART has raised concerns, including its exorbitant cost (which hinders its implementation in developing nations), the need for strict adherence, and the potential for both immediate and prolonged ill effects. Lipodystrophy is a significant long-term consequence of HIV that may result in central fat accumulation and severe peripheral fat depletion. Current initiatives to tackle these difficulties include the global expansion of access to HAART, the development of novel drugs that mitigate early side effects, and the introduction of once-daily drug combinations that enhance adherence. The CRISPR-Cas9 system has facilitated the creation of a powerful instrument for precise gene editing. This method has lately established itself as the gold standard for efficient HIV-1 genome editing in HIV therapy, owing to progress in related disciplines. CRISPR may be customized to cleave specific sequences by altering Cas9. This article offers a concise overview of promising CRISPR-Cas9 technology. This technique has the potential to halt the transmission of HIV-1 and alleviate its symptoms. CRISPR-Cas9 technology will be significant in the fight against HIV-1 in the future.
Collapse
Affiliation(s)
- Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Akmal Zubair
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Mohamed H Helal
- Center for Scientific Research and Entrepreneurship, Northern Border University, 73213, Arar, Saudi Arabia
| | - Wesam Taher Almagharbeh
- Medical and Surgical Nursing Department, Faculty of Nursing, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Ranya Mohammed Elmagzoub
- Faculty of Science and Technology, Department of Biology and Biotechnology, Al-Neelain University, Khartoum, Sudan
| |
Collapse
|
3
|
Gallala M. Application of CRISPR/Cas gene editing for infectious disease control in poultry. Open Life Sci 2025; 20:20251095. [PMID: 40417002 PMCID: PMC12103187 DOI: 10.1515/biol-2025-1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/11/2025] [Accepted: 03/11/2025] [Indexed: 05/27/2025] Open
Abstract
The poultry industry faces multifaceted challenges, including escalating demand for poultry products, climate change impacting feed availability, emergence of novel avian pathogens, and antimicrobial resistance. Traditional disease control measures are costly and not always effective, prompting the need for complementary methods. Gene editing (GE, also called genome editing) technologies, particularly CRISPR/Cas9, offer promising solutions. This article summarizes recent advancements in utilizing CRISPR/Cas GE to enhance infectious disease control in poultry. It begins with an overview of modern GE techniques, highlighting CRISPR/Cas9's advantages over other methods. The potential applications of CRISPR/Cas in poultry infectious disease prevention and control are explored, including the engineering of innovative vaccines, the generation of disease-resilient birds, and in vivo pathogen targeting. Additionally, insights are provided regarding regulatory frameworks and future perspectives in this rapidly evolving field.
Collapse
Affiliation(s)
- Mahdi Gallala
- Animal Resources Department, Ministry of Municipality, Doha, State of Qatar
| |
Collapse
|
4
|
Zubair A, Sujan A, Ali M, Hussain SM. Current Challenges With Highly Active Antiretroviral Therapy and New Hope and Horizon With CRISPR-CAS9 Technology for HIV Treatment. Chem Biol Drug Des 2025; 105:e70121. [PMID: 40356298 DOI: 10.1111/cbdd.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR/Cas system) is now the predominant approach for genome editing. Compared to conventional genetic editing methods, CRISPR/Cas technology offers several advantages that were previously unavailable. Key benefits include the ability to simultaneously modify multiple locations, reduced costs, enhanced efficiency, and a more user-friendly design. By directing Cas-mediated DNA cleavage to specific genomic targets and utilizing intrinsic DNA repair processes, this system can produce site-specific gene modifications. This goal is achieved through an RNA-guided procedure. As the most effective gene editing method currently available, the CRISPR/Cas system has proven to be highly valuable in genomic research across a wide range of species since its discovery as a component of the adaptive immune system in bacteria. Its applicability extends to various organisms, making it increasingly prevalent in the medical field, where it shows great promise in investigating viral infections, cancer, and genetic disorders. Furthermore, it enhances our understanding of fundamental genetics. This article outlines the current antiretroviral therapy and its adverse effects but also CRISPR/Cas technology. This review article also discusses its mechanism of action and potential applications in the treatment of HIV/AIDS.
Collapse
Affiliation(s)
- Akmal Zubair
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Arooba Sujan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syeda Maryam Hussain
- Department of Livestock Production and Management, Faculty of Veterinary and Animal Sciences PIR Mehr Ali Shah-Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| |
Collapse
|
5
|
Haley RM, Padilla MS, El-Mayta RD, Joseph RA, Weber JA, Figueroa-Espada CG, Mukalel AJ, Ricciardi AS, Palanki R, Geisler HC, Jester MT, Davidson BL, Mitchell MJ. Lipid Nanoparticles for In Vivo Lung Delivery of CRISPR-Cas9 Ribonucleoproteins Allow Gene Editing of Clinical Targets. ACS NANO 2025; 19:13790-13804. [PMID: 40183470 DOI: 10.1021/acsnano.4c16617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
In the past 10 years, CRISPR-Cas9 has revolutionized the gene-editing field due to its modularity, simplicity, and efficacy. It has been applied for the creation of in vivo models, to further understand human biology, and toward the curing of genetic diseases. However, there remain significant delivery barriers for CRISPR-Cas9 application in the clinic, especially for in vivo and extrahepatic applications. In this work, high-throughput molecular barcoding techniques were used alongside traditional screening methodologies to simultaneously evaluate LNP formulations encapsulating ribonucleoproteins (RNPs) for in vitro gene-editing efficiency and in vivo biodistribution. This resulted in the identification of a lung-tropic LNP formulation, which shows efficient gene editing in endothelial and epithelial cells within the lung, targeting both model reporter and clinically relevant genomic targets. Further, this LNP shows no off-target indel formation in the liver, making it a highly specific extrahepatic delivery system for lung-editing applications.
Collapse
Affiliation(s)
- Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rakan D El-Mayta
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ryann A Joseph
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jesse A Weber
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Alvin J Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Adele S Ricciardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hannah C Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew T Jester
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Nam H, Han J, Yu J, Cho C, Kim D, Kim Y, Kim M, Kim J, Jo D, Bae S. Autophagy induction enhances homologous recombination-associated CRISPR-Cas9 gene editing. Nucleic Acids Res 2025; 53:gkaf258. [PMID: 40239991 PMCID: PMC11997770 DOI: 10.1093/nar/gkaf258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9)-based gene editing via homologous recombination (HR) enables precise gene correction and insertion. However, its low efficiency poses a challenge due to the predominance of nonhomologous end-joining during DNA repair processes. Although numerous efforts have been made to boost HR efficiency, there remains a critical need to devise a novel method that can be universally applied across cell types and in vivo animals, which could ultimately facilitate therapeutic treatments. This study demonstrated that autophagy induction using different protocols, including nutrient deprivation or chemical treatment, significantly improved HR-associated gene editing at diverse genomic loci in mammalian cells. Notably, interacting cofactor proteins that bind to Cas9 under the autophagic condition have been identified, and autophagy induction could also enhance in vivo HR-associated gene editing in mice. These findings pave the way for effective gene correction or insertion for in vivo therapeutic treatments.
Collapse
Affiliation(s)
- Hye Jin Nam
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jun Hee Han
- Department of Chemistry, Hanyang University, Seoul 04673, Republic of Korea
| | - Jihyeon Yu
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chang Sik Cho
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Eun Kim
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Min Ji Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University, Seoul 03080, Republic of Korea
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sangsu Bae
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
7
|
Kim S, Matsushita Y, Katagiri T, Maseda H. Efficiency of genome editing using modified single-stranded oligodeoxyribonucleotides in human cells. Sci Rep 2025; 15:9764. [PMID: 40119107 PMCID: PMC11928489 DOI: 10.1038/s41598-025-94071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
Single-stranded oligodeoxyribonucleotide (ssODN) gene editing has emerged as a promising therapeutic strategy. However, further improvements in efficiency are desired for practical application. The effects of strand length and locked nucleic acid (LNA) modification on ssODN genome editing were investigated by introducing an assay cassette into the genome of HEK293T cells and measuring precise base deletions of eight bases. The introduction of LNAs into ssODNs, five pairs of LNAs at 25-35 nt from the centre and one pair at 20-25 nt, showed approximately 18-fold higher efficiency than unmodified ssODNs of the same length in the study using 70 nt ssODNs. In addition, genome editing efficiency was further improved when LNAs were introduced at the same positions as the 70 nt ssODN, which showed the highest efficiency for the 90 nt ssODN. However, in some cases, the same number of LNA modifications could conversely reduce the efficiency, and the modification positions in the ssODN method were successfully optimised in the present study. Furthermore, the oligo DNA was shown to be effective not only for deletions but also for base substitutions, with an editing efficiency of 0.63% per cell.
Collapse
Affiliation(s)
- Seryoung Kim
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8- 31 Midorigaoka, Ikeda, 563-8577, Osaka, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, 3-18-18 Kuramotocho, Tokushima, 770-8503, Japan
- Laboratory of Biofunctional Molecular Medicine, Health and Nutrition, National Institutes of Biomedical Innovation, 7-6-8 Saito-asagi, Ibaraki, 567-0085, Osaka, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, 3-18-18 Kuramotocho, Tokushima, 770-8503, Japan
- Laboratory of Biofunctional Molecular Medicine, Health and Nutrition, National Institutes of Biomedical Innovation, 7-6-8 Saito-asagi, Ibaraki, 567-0085, Osaka, Japan
| | - Hideaki Maseda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8- 31 Midorigaoka, Ikeda, 563-8577, Osaka, Japan.
- Department of Environmental Engineering and Green Technology, International Institute of Technology, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Peña-Gutiérrez I, Olalla-Sastre B, Río P, Rodríguez-Madoz JR. Beyond precision: evaluation of off-target clustered regularly interspaced short palindromic repeats/Cas9-mediated genome editing. Cytotherapy 2025; 27:279-286. [PMID: 39652018 DOI: 10.1016/j.jcyt.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/16/2024]
Abstract
The gene editing field has advanced rapidly since the development of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system because of its applicability in precisely modifying the genome. Among its multiple applications, the correction of genetic diseases has emerged as a potential curative treatment for many disorders that have eluded a cure to date. Despite its efficiency in achieving therapeutic levels of correction, the unexpected adverse effects of editing due to CRISPR/Cas9 nuclease activity are a major concern when translating these new strategies to the clinic. Multiple in silico tools and empirical methods have been developed to evaluate these off-target edits as well as other adverse alterations of the genome, including rearrangements, not only in ex vivo experiments but also in in vivo experiments. In this review, we summarize the available methods for the assessment of off-target effects of CRISPR/Cas9 systems, highlighting their advantages and limitations. Special attention will be paid to their application in pre-clinical studies and clinical trials, both in the manufacturing product and in the long-term follow-up of patients.
Collapse
Affiliation(s)
- Irene Peña-Gutiérrez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Madrid, Spain
| | - Beatriz Olalla-Sastre
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Madrid, Spain.
| | - Juan R Rodríguez-Madoz
- Hemato-Oncology Program, Instituto de Investigación Sanitaria de Navarra, Cima Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain.
| |
Collapse
|
9
|
Borrajo A. Breaking Barriers to an HIV-1 Cure: Innovations in Gene Editing, Immune Modulation, and Reservoir Eradication. Life (Basel) 2025; 15:276. [PMID: 40003685 PMCID: PMC11856976 DOI: 10.3390/life15020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Recent advances in virology, particularly in the study of HIV-1, have significantly progressed the pursuit of a definitive cure for the disease. Emerging therapeutic strategies encompass innovative gene-editing technologies, immune-modulatory interventions, and next-generation antiretroviral agents. Efforts to eliminate or control viral reservoirs have also gained momentum, with the aim of achieving durable viral remission without the continuous requirement for antiretroviral therapy. Despite these promising developments, critical challenges persist in bridging the gap between laboratory findings and clinical implementation. This review provides a comprehensive analysis of recent breakthroughs, ongoing clinical trials, and the barriers that must be addressed to translate these advancements into effective treatments, emphasizing the multifaceted approaches being pursued to achieve a curative solution for HIV-1 infection.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Ahmadikhah A, Zarabizadeh H, Nayeri S, Abbasi MS. Advancements in genome editing tools for genetic studies and crop improvement. FRONTIERS IN PLANT SCIENCE 2025; 15:1370675. [PMID: 39963359 PMCID: PMC11830681 DOI: 10.3389/fpls.2024.1370675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025]
Abstract
The rapid increase in global population poses a significant challenge to food security, compounded by the adverse effects of climate change, which limit crop productivity through both biotic and abiotic stressors. Despite decades of progress in plant breeding and genetic engineering, the development of new crop varieties with desirable agronomic traits remains a time-consuming process. Traditional breeding methods often fall short of addressing the urgent need for improved crop varieties. Genome editing technologies, which enable precise modifications at specific genomic loci, have emerged as powerful tools for enhancing crop traits. These technologies, including RNA interference, Meganucleases, ZFNs, TALENs, and CRISPR/Cas systems, allow for the targeted insertion, deletion, or alteration of DNA fragments, facilitating improvements in traits such as herbicide and insect resistance, nutritional quality, and stress tolerance. Among these, CRISPR/Cas9 stands out for its simplicity, efficiency, and ability to reduce off-target effects, making it a valuable tool in both agricultural biotechnology and plant functional genomics. This review examines the functional mechanisms and applications of various genome editing technologies for crop improvement, highlighting their advantages and limitations. It also explores the ethical considerations associated with genome editing in agriculture and discusses the potential of these technologies to contribute to sustainable food production in the face of growing global challenges.
Collapse
Affiliation(s)
- Asadollah Ahmadikhah
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | | | | |
Collapse
|
11
|
Clarissa EM, Karmacharya M, Choi H, Kumar S, Cho YK. Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409353. [PMID: 39901476 DOI: 10.1002/smll.202409353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Indexed: 02/05/2025]
Abstract
The advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing technologies has opened up groundbreaking possibilities for treating a wide spectrum of genetic disorders and diseases. However, the success of these technologies relies heavily on the development of efficient and safe delivery systems. Among the most promising approaches are natural and synthetic nanocarrier-mediated delivery systems, including viral vectors, extracellular vesicles (EVs), engineered cellular membrane particles, liposomes, and various nanoparticles. These carriers enhance the efficacy of the CRISPR system by providing a unique combination of efficiency, specificity, and reduced immunogenicity. Synthetic carriers such as liposomes and nanoparticles facilitate CRISPR delivery with high reproducibility and customizable functions. Viral vectors, renowned for their high transduction efficiency and broad tropism, serve as powerful vehicles for delivering CRISPR components to various cell types. EVs, as natural carriers of RNA and proteins, offer a stealth mechanism to evade immune detection, allowing for the targeted delivery of genome editors with minimal off-target effects. Engineered cellular membrane particles further improve delivery by simulating the cellular environment, enhancing uptake, and minimizing immune response. This review explores the innovative integration of CRISPR genome editors with various nanocarrier systems, focusing on recent advancements, applications, and future directions in therapeutic genome editing.
Collapse
Affiliation(s)
- Elizabeth Maria Clarissa
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyunmin Choi
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
12
|
Ju WS, Kim S, Lee JY, Lee H, No J, Lee S, Oh K. Gene Editing for Enhanced Swine Production: Current Advances and Prospects. Animals (Basel) 2025; 15:422. [PMID: 39943192 PMCID: PMC11815767 DOI: 10.3390/ani15030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Traditional pig breeding has improved production traits but faces limitations in genetic diversity, disease resistance, and environmental adaptation. Gene editing technologies, such as CRISPR/Cas9, base editing, and prime editing, enable precise genetic modifications, overcoming these limitations and expanding applications to biomedical research. Here, we reviewed the advancements in gene editing technologies in pigs and explored pathways toward optimized swine genetics for a resilient and adaptive livestock industry. This review synthesizes recent research on gene editing tools applied to pigs, focusing on CRISPR/Cas9 and its derivatives. It examines their impact on critical swine production traits and their role as human disease models. Significant advancements have been made in targeting genes for disease resistance, such as those conferring immunity to porcine reproductive and respiratory syndrome viruses. Additionally, gene-edited pigs are increasingly used as models for human diseases, demonstrating the technology's broader applications. However, challenges such as off-target effects, ethical concerns, and varying regulatory frameworks remain. Gene editing holds substantial potential for sustainable and productive livestock production by enhancing key traits and supporting biomedical applications. Addressing technical and ethical challenges through integrated approaches will be essential to realize its full potential, ensuring a resilient, ethical, and productive livestock sector for future generations.
Collapse
Affiliation(s)
| | - Seokho Kim
- Correspondence: ; Tel.: +82-63-238-7271; Fax: +82-63-238-729
| | | | | | | | | | | |
Collapse
|
13
|
Fu Y, Zhang P, Chen F, Xie Z, Xiao S, Huang Z, Lau CH, Zhu H, Luo J. CRISPR detection of cardiac tumor-associated microRNAs. Mol Biol Rep 2025; 52:114. [PMID: 39797940 DOI: 10.1007/s11033-024-10205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA). Dysregulation of miRNA expressions has been associated with cardiac tumors such as atrial myxoma and angiosarcoma. Diverse CRISPR-Dx systems have been developed to detect miRNA in recent years. These CRISPR-Dx systems are generally classified into four classes, depending on the Cas proteins used (Cas9, Cas12, Cas13, or Cas12f). CRISPR/Cas systems are integrated with various isothermal amplifications to detect low-abundance miRNAs. Amplification-free CRISPR-Dx systems have also been recently developed to detect miRNA directly. Herein, we critically discuss the advances, pitfalls, and future perspectives for these CRISPR-Dx systems in detecting miRNA, focusing on the diagnosis and prognosis of cardiac tumors.
Collapse
Affiliation(s)
- Youlin Fu
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Peng Zhang
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Feng Chen
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Ziqiang Xie
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Shihui Xiao
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Zhihao Huang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
- Shantou Key Laboratory of Marine Microbial Resources and Interactions with Environment, Shantou University, Shantou, 515063, Guangdong, China
| | - Jun Luo
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China.
| |
Collapse
|
14
|
Su-Tobon Q, Fan J, Goldstein M, Feeney K, Ren H, Autissier P, Wang P, Huang Y, Mohanty U, Niu J. CRISPR-Hybrid: A CRISPR-Mediated Intracellular Directed Evolution Platform for RNA Aptamers. Nat Commun 2025; 16:595. [PMID: 39799111 PMCID: PMC11724954 DOI: 10.1038/s41467-025-55957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs. We optimize a bacterial CRISPR-hybrid system coupled with FACS, and identified high affinity RNA aptamers orthogonal to existing aptamer-RBP pairs. Application of orthogonal aptamer-RBP pairs in multiplexed CRISPR allows effective simultaneous transcriptional activation and repression of endogenous genes in mammalian cells.
Collapse
Affiliation(s)
- Qiwen Su-Tobon
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Jiayi Fan
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | | - Kevin Feeney
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Hongyuan Ren
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | | - Peiyi Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Yingzi Huang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
15
|
Ahmed R, Alghamdi WN, Alharbi FR, Alatawi HD, Alenezi KM, Alanazi TF, Elsherbiny NM. CRISPR/Cas9 System as a Promising Therapy in Thalassemia and Sickle Cell Disease: A Systematic Review of Clinical Trials. Mol Biotechnol 2025:10.1007/s12033-025-01368-x. [PMID: 39794549 DOI: 10.1007/s12033-025-01368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
Clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is a new gene editing tool that represents a revolution in gene therapy. This study aimed to review the clinical trials conducted to evaluate the efficacy and safety of the CRISPR/Cas9 system in treating thalassemia and sickle cell disease (SCD). We searched relevant literature using "CRISPR Cas", "thalassemia", "sickle cell" and "clinical trial" as subject terms in PubMed, Cochrane, Web of Science, and Google Scholar up to December 3rd, 2023. Following the PIO format (Patients, Intervention, Outcome), PRISMA guidelines were followed in the study selection, data extraction, and quality assessment processes. Out of 110 publications, 6 studies met our eligibility criteria with a total of 115 patients involved. CRISPR/Cas9 system was used to disrupt BCL11A gene enhancer in 4 studies and to disrupt γ-globin gene promoters in 2 studies. Patients demonstrated significant activation of fetal hemoglobin, elevated total hemoglobin, transfusion independence in thalassemia, and repression of vaso-occlusive episodes in SCD. Using CRISPR/Cas9 system to directly disrupt genes provides a safe and potential one-time functional cure for thalassemia and SCD, suggesting CRISPR/Cas9 as a potential therapeutic tool for the treatment of inherited hematological disorders.
Collapse
Affiliation(s)
- Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Wafa N Alghamdi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Fetun R Alharbi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Huda D Alatawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Kawthar M Alenezi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Turki F Alanazi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
16
|
Meng S, Miao A, Wu S, Du X, Gao F. Genetically modified chickens as bioreactors for protein-based drugs. Front Genome Ed 2025; 6:1522837. [PMID: 39845893 PMCID: PMC11753250 DOI: 10.3389/fgeed.2024.1522837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Protein drug production encompasses various methods, among which animal bioreactors are emerging as a transgenic system. Animal bioreactors have the potential to reduce production costs and increase efficiency, thereby producing recombinant proteins that are crucial for therapeutic applications. Various species, including goats, cattle, rabbits, and poultry, have been genetically engineered to serve as bioreactors. This review delves into the analysis and comparison of different expression systems for protein drug production, highlighting the advantages and limitations of microbial, yeast, plant cell, and mammalian cell expression systems. Additionally, the emerging significance of genetically modified chickens as a potential bioreactor system for producing protein-based drugs is highlighted. The avian bioreactor enables the expression of target genes in ovarian cells, resulting in the production of corresponding gene expression products in egg whites. This production method boasts advantages such as a short cycle, high production efficiency, low research costs, and the expression products being closer to their natural state and easier to purify. It demonstrates immense potential in production applications, scientific research, and sustainable development. The utilization of advanced gene editing technologies, such as CRISPR/Cas9, has revolutionized the precision and efficiency of generating genetically modified chickens. This has paved the way for enhanced production of recombinant therapeutic proteins with desired glycosylation patterns and reduced immunogenic responses.
Collapse
Affiliation(s)
- Shujuan Meng
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Aijun Miao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Xuguang Du
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Fei Gao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Zhang Y, Chen J, Li Y, Jiao B, Luo S. Disease-modifying therapies for Alzheimer's disease: Clinical trial progress and opportunity. Ageing Res Rev 2025; 103:102595. [PMID: 39581354 DOI: 10.1016/j.arr.2024.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
The U.S. Food and Drug Administration (FDA) recently approved lecanemab and donanemab for the treatment of early symptomatic Alzheimer's disease (AD) after their phase III trials reached endpoints. These two anti-amyloid β monoclonal antibodies represent the latest promise of disease-modifying therapy (DMT) for AD, which undoubtedly reignites new hope for DMTs to combat the staggering financial and human costs of AD. However, in addition to these two successful antibodies, there have been enormous efforts to develop DMTs in various aspects to meet the therapeutic requirement of AD. In this review, we delineate the core principles and methodologies of diverse DMTs, covering the advances in clinical trials of drug candidates that either have been discontinued, completed, or are ongoing, as well as brain stimulation and lifestyle interventions. In addition, by overseeing the fate of various candidate molecules, we hope to provide references and ideas for prospective approaches and promising applications of DTMs for AD, particularly in terms of universality and clinical application economics, to optimize efficacy and maximize AD patient benefits in the future.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Jie Chen
- Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha 410100, PR China
| | - Yanru Li
- Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha 410100, PR China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, PR China; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha 410000, PR China; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410008, PR China
| | - Shilin Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, PR China; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha 410000, PR China; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410008, PR China.
| |
Collapse
|
18
|
Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. CRISPR-Cas technology in forensic investigations: Principles, applications, and ethical considerations. Forensic Sci Int Genet 2025; 74:103163. [PMID: 39437497 DOI: 10.1016/j.fsigen.2024.103163] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) systems are adaptive immune systems originally present in bacteria, where they are essential to protect against external genetic elements, including viruses and plasmids. Taking advantage of this system, CRISPR-Cas-based technologies have emerged as incredible tools for precise genome editing, thus significantly advancing several research fields. Forensic sciences represent a multidisciplinary field that explores scientific methods to investigate and resolve legal issues, particularly criminal investigations and subject identification. Consequently, it plays a critical role in the justice system, providing scientific evidence to support judicial investigations. Although less explored, CRISPR-Cas-based methodologies demonstrate strong potential in the field of forensic sciences due to their high accuracy and sensitivity, including DNA profiling and identification, interpretation of crime scene investigations, detection of food contamination or fraud, and other aspects related to environmental forensics. However, using CRISPR-Cas-based methodologies in human samples raises several ethical issues and concerns regarding the potential misuse of individual genetic information. In this manuscript, we provide an overview of potential applications of CRISPR-Cas-based methodologies in several areas of forensic sciences and discuss the legal implications that challenge their routine implementation in this research field.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal; Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal; FOREN - Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, Lisbon 1400-136, Portugal.
| | - Daniel José Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| |
Collapse
|
19
|
Amoah P, Oumarou Mahamane AR, Byiringiro MH, Mahula NJ, Manneh N, Oluwasegun YR, Assfaw AT, Mukiti HM, Garba AD, Chiemeke FK, Bernard Ojuederie O, Olasanmi B. Genome editing in Sub-Saharan Africa: a game-changing strategy for climate change mitigation and sustainable agriculture. GM CROPS & FOOD 2024; 15:279-302. [PMID: 39481911 PMCID: PMC11533803 DOI: 10.1080/21645698.2024.2411767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Sub-Saharan Africa's agricultural sector faces a multifaceted challenge due to climate change consisting of high temperatures, changing precipitation trends, alongside intensified pest and disease outbreaks. Conventional plant breeding methods have historically contributed to yield gains in Africa, and the intensifying demand for food security outpaces these improvements due to a confluence of factors, including rising urbanization, improved living standards, and population growth. To address escalating food demands amidst urbanization, rising living standards, and population growth, a paradigm shift toward more sustainable and innovative crop improvement strategies is imperative. Genome editing technologies offer a promising avenue for achieving sustained yield increases while bolstering resilience against escalating biotic and abiotic stresses associated with climate change. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein (CRISPR/Cas) is unique due to its ubiquity, efficacy, alongside precision, making it a pivotal tool for Sub-Saharan African crop improvement. This review highlights the challenges and explores the prospect of gene editing to secure the region's future foods.
Collapse
Affiliation(s)
- Peter Amoah
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | | | - Moise Hubert Byiringiro
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Neo Jeremiah Mahula
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Nyimasata Manneh
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Yetunde Ruth Oluwasegun
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abebawork Tilahun Assfaw
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Hellen Mawia Mukiti
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abubakar Danlami Garba
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Felicity Kido Chiemeke
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Omena Bernard Ojuederie
- Department of Biological Sciences, Biotechnology Unit, Faculty of Science, Kings University, Ode-Omu, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bunmi Olasanmi
- Department of Crop and Horticultural Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
20
|
Wu WY, Adiego-Pérez B, van der Oost J. Biology and applications of CRISPR-Cas12 and transposon-associated homologs. Nat Biotechnol 2024; 42:1807-1821. [PMID: 39633151 DOI: 10.1038/s41587-024-02485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
CRISPR-associated Cas12 proteins are a highly variable collection of nucleic acid-targeting proteins. All Cas12 variants use RNA guides and a single nuclease domain to target complementary DNA or, in rare cases, RNA. The high variability of Cas12 effectors can be explained by a series of independent evolution events from different transposon-associated TnpB-like ancestors. Despite basic structural and functional similarities, this has resulted in unprecedented variation of the Cas12 effector proteins in terms of size, domain composition, guide structure, target identity and interference strategy. In this Review, we compare the unique molecular features of natural and engineered Cas12 and TnpB variants. Furthermore, we provide an overview of established genome editing and diagnostic applications and discuss potential future directions.
Collapse
Affiliation(s)
- Wen Y Wu
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands.
| | - Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
21
|
Wang Y, Cao S, Tone D, Fujishima H, Yamada RG, Ohno RI, Shi S, Matsuzawa K, Yada S, Kaneko M, Sakamoto H, Onishi T, Ukai-Tadenuma M, Ukai H, Hanashima C, Hirose K, Kiyonari H, Sumiyama K, Ode KL, Ueda HR. Postsynaptic competition between calcineurin and PKA regulates mammalian sleep-wake cycles. Nature 2024; 636:412-421. [PMID: 39506111 DOI: 10.1038/s41586-024-08132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
The phosphorylation of synaptic proteins is a significant biochemical reaction that controls the sleep-wake cycle in mammals1-3. Protein phosphorylation in vivo is reversibly regulated by kinases and phosphatases. In this study, we investigate a pair of kinases and phosphatases that reciprocally regulate sleep duration. First, we perform a comprehensive screen of protein kinase A (PKA) and phosphoprotein phosphatase (PPP) family genes by generating 40 gene knockout mouse lines using prenatal and postnatal CRISPR targeting. We identify a regulatory subunit of PKA (Prkar2b), a regulatory subunit of protein phosphatase 1 (PP1; Pppr1r9b) and catalytic and regulatory subunits of calcineurin (also known as PP2B) (Ppp3ca and Ppp3r1) as sleep control genes. Using adeno-associated virus (AAV)-mediated stimulation of PKA and PP1-calcineurin activities, we show that PKA is a wake-promoting kinase, whereas PP1 and calcineurin function as sleep-promoting phosphatases. The importance of these phosphatases in sleep regulation is supported by the marked changes in sleep duration associated with their increased and decreased activities, ranging from approximately 17.3 h per day (PP1 expression) to 4.3 h per day (postnatal CRISPR targeting of calcineurin). Localization signals to the excitatory post-synapse are necessary for these phosphatases to exert their sleep-promoting effects. Furthermore, the wake-promoting effect of PKA localized to the excitatory post-synapse negated the sleep-promoting effect of PP1-calcineurin. These findings indicate that PKA and PP1-calcineurin have competing functions in sleep regulation at excitatory post-synapses.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Siyu Cao
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Tone
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| | - Rikuhiro G Yamada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| | - Rei-Ichiro Ohno
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoi Shi
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kyoko Matsuzawa
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Saori Yada
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taichi Onishi
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Maki Ukai-Tadenuma
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Carina Hanashima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan.
- Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan.
| |
Collapse
|
22
|
Borovikova SE, Shepelev MV, Mazurov DV, Kruglova NA. Efficient Genome Editing Using 'NanoMEDIC' AsCas12a-VLPs Produced with Pol II-Transcribed crRNA. Int J Mol Sci 2024; 25:12768. [PMID: 39684477 DOI: 10.3390/ijms252312768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Virus-like particles (VLPs) are an attractive vehicle for the delivery of Cas nuclease and guide RNA ribonucleoprotein complexes (RNPs). Most VLPs are produced by packaging SpCas9 and its sgRNA, which is expressed from the RNA polymerase III (Pol III)-transcribed U6 promoter. VLPs assemble in the cytoplasm, but U6-driven sgRNA is localized in the nucleus, which hinders the efficient formation and packaging of RNPs into VLPs. In this study, using the nuclease packaging mechanism of 'NanoMEDIC' VLPs, we produced VLPs with AsCas12a and exploited its ability to process pre-crRNA. This allowed us to direct crRNA in the cytoplasm as part of a Pol II-driven transcript where AsCas12a excised mature crRNA, thus boosting RNP incorporation into VLPs. CMV-driven crRNA increased Venus and CCR5 transgene knockout levels in 293 cells from 30% to 50-90% and raised the level of endogenous CXCR4 knockout in Jurkat T cells from 1% to 20%. Changing a single crRNA to an array of three or six identical crRNAs improved CXCR4 knockout rates by up to 60-70%. Compared to SpCas9-VLPs, the editing efficiencies of AsCas12a-VLPs were higher, regardless of promoter usage. Thus, we showed that AsCas12a and CMV-driven crRNA could be efficiently packaged into VLPs and mediate high levels of gene editing. AsCas12a-VLPs are a new and promising tool for the delivery of RNPs into mammalian cells that will allow efficient target genome editing and may be useful for gene therapy applications.
Collapse
Affiliation(s)
- Sofiia E Borovikova
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail V Shepelev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Dmitriy V Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Natalia A Kruglova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
23
|
Nujoom N, Koyakutty M, Biswas L, Rajkumar T, Nair SV. Emerging Gene-editing nano-therapeutics for Cancer. Heliyon 2024; 10:e39323. [PMID: 39524822 PMCID: PMC11550658 DOI: 10.1016/j.heliyon.2024.e39323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Remarkable progress has been made in the field of genome engineering after the discovery of CRISPR/Cas9 in 2012 by Jennifer Doudna and Emmanuelle Charpentier. Compared to any other gene-editing tools, CRISPR/Cas9 attracted the attention of the scientific community because of its simplicity, specificity, and multiplex editing possibilities for which the inventors were awarded the Nobel prize for chemistry in 2020. CRISPR/Cas9 allows targeted alteration of the genomic sequence, gene regulation, and epigenetic modifications using an RNA-guided site-specific endonuclease. Though the impact of CRISPR/Cas9 was undisputed, some of its limitations led to key modifications including the use of miniature-Cas proteins, Cas9 Retron precise Parallel Editing via homologY (CRISPEY), Cas-Clover, or development of alternative methods including retron-recombineering, Obligate Mobile Element Guided Activity(OMEGA), Fanzor, and Argonaute proteins. As cancer is caused by genetic and epigenetic alterations, gene-editing was found to be highly useful for knocking out oncogenes, editing mutations to regain the normal functioning of tumor suppressor genes, knock-out immune checkpoint blockade in CAR-T cells, producing 'off-the-shelf' CAR-T cells, identify novel tumorigenic genes and functional analysis of multiple pathways in cancer, etc. Advancements in nanoparticle-based delivery of guide-RNA and Cas9 complex to the human body further enhanced the potential of CRISPR/Cas9 for clinical translation. Several studies are reported for developing novel delivery methods to enhance the tumor-specific application of CRISPR/Cas9 for anticancer therapy. In this review, we discuss new developments in novel gene editing techniques and recent progress in nanoparticle-based CRISPR/Cas9 delivery specific to cancer applications.
Collapse
Affiliation(s)
- Najma Nujoom
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Manzoor Koyakutty
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Thangarajan Rajkumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Shantikumar V. Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| |
Collapse
|
24
|
Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther 2024; 9:322. [PMID: 39543114 PMCID: PMC11564800 DOI: 10.1038/s41392-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
In the last decade, messenger ribonucleic acid (mRNA)-based drugs have gained great interest in both immunotherapy and non-immunogenic applications. This surge in interest can be largely attributed to the demonstration of distinct advantages offered by various mRNA molecules, alongside the rapid advancements in nucleic acid delivery systems. It is noteworthy that the immunogenicity of mRNA drugs presents a double-edged sword. In the context of immunotherapy, extra supplementation of adjuvant is generally required for induction of robust immune responses. Conversely, in non-immunotherapeutic scenarios, immune activation is unwanted considering the host tolerability and high expression demand for mRNA-encoded functional proteins. Herein, mainly focused on the linear non-replicating mRNA, we overview the preclinical and clinical progress and prospects of mRNA medicines encompassing vaccines and other therapeutics. We also highlight the importance of focusing on the host-specific variations, including age, gender, pathological condition, and concurrent medication of individual patient, for maximized efficacy and safety upon mRNA administration. Furthermore, we deliberate on the potential challenges that mRNA drugs may encounter in the realm of disease treatment, the current endeavors of improvement, as well as the application prospects for future advancements. Overall, this review aims to present a comprehensive understanding of mRNA-based therapies while illuminating the prospective development and clinical application of mRNA drugs.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Meixing Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, P. R. China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, P. R. China.
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, P. R. China.
| |
Collapse
|
25
|
Degtev D, Bravo J, Emmanouilidi A, Zdravković A, Choong OK, Liz Touza J, Selfjord N, Weisheit I, Francescatto M, Akcakaya P, Porritt M, Maresca M, Taylor D, Sienski G. Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles. Nat Commun 2024; 15:9173. [PMID: 39511150 PMCID: PMC11544209 DOI: 10.1038/s41467-024-53418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Clinical implementation of therapeutic genome editing relies on efficient in vivo delivery and the safety of CRISPR-Cas tools. Previously, we identified PsCas9 as a Type II-B family enzyme capable of editing mouse liver genome upon adenoviral delivery without detectable off-targets and reduced chromosomal translocations. Yet, its efficacy remains insufficient with non-viral delivery, a common challenge for many Cas9 orthologues. Here, we sought to redesign PsCas9 for in vivo editing using lipid nanoparticles. We solve the PsCas9 ribonucleoprotein structure with cryo-EM and characterize it biochemically, providing a basis for its rational engineering. Screening over numerous guide RNA and protein variants lead us to develop engineered PsCas9 (ePsCas9) with up to 20-fold increased activity across various targets and preserved safety advantages. We apply the same design principles to boost the activity of FnCas9, an enzyme phylogenetically relevant to PsCas9. Remarkably, a single administration of mRNA encoding ePsCas9 and its guide formulated with lipid nanoparticles results in high levels of editing in the Pcsk9 gene in mouse liver, a clinically relevant target for hypercholesterolemia treatment. Collectively, our findings introduce ePsCas9 as a highly efficient, and precise tool for therapeutic genome editing, in addition to the engineering strategy applicable to other Cas9 orthologues.
Collapse
Affiliation(s)
- Dmitrii Degtev
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - Jack Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Aikaterini Emmanouilidi
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Aleksandar Zdravković
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Oi Kuan Choong
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Julia Liz Touza
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Niklas Selfjord
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Isabel Weisheit
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Margherita Francescatto
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Pinar Akcakaya
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Michelle Porritt
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - David Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA.
| | - Grzegorz Sienski
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
26
|
Yin K, Chung MY, Lan B, Du FK, Chung MG. Plant conservation in the age of genome editing: opportunities and challenges. Genome Biol 2024; 25:279. [PMID: 39449103 PMCID: PMC11515576 DOI: 10.1186/s13059-024-03399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Numerous plant taxa are threatened by habitat destruction or overexploitation. To overcome these threats, new methods are urgently needed for rescuing threatened and endangered plant species. Here, we review the genetic consequences of threats to species populations. We highlight potential advantages of genome editing for mitigating negative effects caused by new pathogens and pests or climate change where other approaches have failed. We propose solutions to protect threatened plants using genome editing technology unless absolutely necessary. We further discuss the challenges associated with genome editing in plant conservation to mitigate the decline of plant diversity.
Collapse
Affiliation(s)
- Kangquan Yin
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Mi Yoon Chung
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Bo Lan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Fang K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Myong Gi Chung
- Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| |
Collapse
|
27
|
Ma Y, Tan Y, Li J, Xiang Q, Liu S, Jin X, Shao S, Geng W, Zhu L, Yang D. High-Sensitivity Enzyme-Free Fluorescence Probe Based on CRISPR/Cas13 and the Isothermal Amplification Strategy for Axl Sensing. Anal Chem 2024; 96:16269-16279. [PMID: 39347825 DOI: 10.1021/acs.analchem.4c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Axl is an important receptor tyrosine protein kinase that plays a key role in the development and progression of various diseases, such as cancer and inflammation. Developing a highly sensitive Axl detection method can help improve accuracy, better address-specific clinical needs, and guide personalized treatment. In this study, a CHA-CRISPR/Cas13 fluorescence probe was established using Axl-specific aptamers as a mediator to displace the polynucleotide chain (TA). Through TA construction, an entropy-driven nucleotide catalytic hairpin assembly system was created to cyclically release RNA that activates clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13 activity, triggering its cleavage activity. The activated CRISPR/Cas13 system cleaves the reporter labeled with BHQ1 and FAM at both ends, leading to the recovery of FAM fluorescence. Based on the optimization design using the free energy (△G) and secondary structure software simulation results of the nucleic acid sequence, the fluorescence intensity of the probe is proportional to the concentration of Axl. Results showed a good linear relationship between fluorescence intensity increment and log CAxl (CAxl in the range of 3.33-667 pM, r = 0.9907). The probe exhibited ultrahigh sensitivity with a detection limit of 0.84 pM. It was successfully applied in the detection of human serum samples, showing a higher Axl level in cervical cancer patients compared to breast cancer patients. The probe was also successfully applied in the imaging of various tumor cells, consistent with serum detection results. In conclusion, this probe represents an effective new method for detecting Axl, demonstrating outstanding specificity and sensitivity. It provides technological support for tumor diagnosis and shows the potential for detecting circulating tumor cells in blood through cell imaging.
Collapse
Affiliation(s)
- Yunsu Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
- Jiangsu Yuanlong Hospital Management Co. LTD, Xuzhou, Jiangsu 221000, PR China
| | - Yiping Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Jing Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Qian Xiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Sunan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Xiaojuan Jin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Simin Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Wei Geng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Ling Zhu
- Department of Pharmacy, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Wuxi 214400, PR China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| |
Collapse
|
28
|
Badwal AK, Singh S. A comprehensive review on the current status of CRISPR based clinical trials for rare diseases. Int J Biol Macromol 2024; 277:134097. [PMID: 39059527 DOI: 10.1016/j.ijbiomac.2024.134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
A considerable fraction of population in the world suffers from rare diseases. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its related Cas proteins offer a modern form of curative gene therapy for treating the rare diseases. Hereditary transthyretin amyloidosis, hereditary angioedema, duchenne muscular dystrophy and Rett syndrome are a few examples of such rare diseases. CRISPR/Cas9, for example, has been used in the treatment of β-thalassemia and sickle cell disease (Frangoul et al., 2021; Pavani et al., 2021) [1,2]. Neurological diseases such as Huntington's have also been focused in some studies involving CRISPR/Cas (Yang et al., 2017; Yan et al., 2023) [3,4]. Delivery of these biologicals via vector and non vector mediated methods depends on the type of target cells, characteristics of expression, time duration of expression, size of foreign genetic material etc. For instance, retroviruses find their applicability in case of ex vivo delivery in somatic cells due to their ability to integrate in the host genome. These have been successfully used in gene therapy involving X-SCID patients although, incidence of inappropriate activation has been reported. On the other hand, ex vivo gene therapy for β-thalassemia involved use of BB305 lentiviral vector for high level expression of CRISPR biological in HSCs. The efficacy and safety of these biologicals will decide their future application as efficient genome editing tools as they go forward in further stages of human clinical trials. This review focuses on CRISPR/Cas based therapies which are at various stages of clinical trials for treatment of rare diseases and the constraints and ethical issues associated with them.
Collapse
Affiliation(s)
- Amneet Kaur Badwal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
29
|
Lau CH, Liang QL, Zhu H. Next-generation CRISPR technology for genome, epigenome and mitochondrial editing. Transgenic Res 2024; 33:323-357. [PMID: 39158822 DOI: 10.1007/s11248-024-00404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
The application of rapidly growing CRISPR toolboxes and methods has great potential to transform biomedical research. Here, we provide a snapshot of up-to-date CRISPR toolboxes, then critically discuss the promises and hurdles associated with CRISPR-based nuclear genome editing, epigenome editing, and mitochondrial editing. The technical challenges and key solutions to realize epigenome editing in vivo, in vivo base editing and prime editing, mitochondrial editing in complex tissues and animals, and CRISPR-associated transposases and integrases in targeted genomic integration of very large DNA payloads are discussed. Lastly, we discuss the latest situation of the CRISPR/Cas9 clinical trials and provide perspectives on CRISPR-based gene therapy. Apart from technical shortcomings, ethical and societal considerations for CRISPR applications in human therapeutics and research are extensively highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Qing-Le Liang
- Department of Clinical Laboratory Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
30
|
Goolab S, Scholefield J. Making gene editing accessible in resource limited environments: recommendations to guide a first-time user. Front Genome Ed 2024; 6:1464531. [PMID: 39386178 PMCID: PMC11461239 DOI: 10.3389/fgeed.2024.1464531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
The designer nuclease, CRISPR-Cas9 system has advanced the field of genome engineering owing to its programmability and ease of use. The application of these molecular scissors for genome engineering earned the developing researchers the Nobel prize in Chemistry in the year 2020. At present, the potential of this technology to improve global challenges continues to grow exponentially. CRISPR-Cas9 shows promise in the recent advances made in the Global North such as the FDA-approved gene therapy for the treatment of sickle cell anaemia and β-thalassemia and the gene editing of porcine kidney for xenotransplantation into humans affected by end-stage kidney failure. Limited resources, low government investment with an allocation of 1% of gross domestic production to research and development including a shortage of skilled professionals and lack of knowledge may preclude the use of this revolutionary technology in the Global South where the countries involved have reduced science and technology budgets. Focusing on the practical application of genome engineering, successful genetic manipulation is not easily accomplishable and is influenced by the chromatin landscape of the target locus, guide RNA selection, the experimental design including the profiling of the gene edited cells, which impacts the overall outcome achieved. Our assessment primarily delves into economical approaches of performing efficient genome engineering to support the first-time user restricted by limited resources with the aim of democratizing the use of the technology across low- and middle-income countries. Here we provide a comprehensive overview on existing experimental techniques, the significance for target locus analysis and current pitfalls such as the underrepresentation of global genetic diversity. Several perspectives of genome engineering approaches are outlined, which can be adopted in a resource limited setting to enable a higher success rate of genome editing-based innovations in low- and middle-income countries.
Collapse
Affiliation(s)
- Shivani Goolab
- Bioengineering and Integrated Genomics Group, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Janine Scholefield
- Bioengineering and Integrated Genomics Group, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
31
|
Vilas A, Briso-Montiano Á, Segovia-Falquina C, Martín-Martínez A, Soriano-Sexto A, Gallego D, Ruiz-Montés V, Gámez A, Pérez B. HepG2 PMM2-CDG knockout model: A versatile platform for variant and therapeutic evaluation. Mol Genet Metab 2024; 143:108538. [PMID: 39096554 DOI: 10.1016/j.ymgme.2024.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024]
Abstract
Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent congenital disorder of glycosylation, is an autosomal recessive disease caused by biallelic pathogenic variants in the PMM2 gene. There is no cure for this multisystemic syndrome. Some of the therapeutic approaches that are currently in development include mannose-1-phosphate replacement therapy, drug repurposing, and the use of small chemical molecules to correct folding defects. Preclinical models are needed to evaluate the efficacy of treatments to overcome the high lethality of the available animal model. In addition, the number of variants with unknown significance is increasing in clinical settings. This study presents the generation of a cellular disease model by knocking out the PMM2 gene in the hepatoma HepG2 cell line using CRISPR-Cas9 gene editing. The HepG2 knockout model accurately replicates the PMM2-CDG phenotype, exhibiting a complete absence of PMM2 protein and mRNA, a 90% decrease in PMM enzymatic activity, and altered ICAM-1, LAMP1 and A1AT glycoprotein patterns. The evaluation of PMM2 disease-causing variants validates the model's utility for studying new PMM2 clinical variants, providing insights for diagnosis and potentially for evaluating therapies. A CRISPR-Cas9-generated HepG2 knockout model accurately recapitulates the PMM2-CDG phenotype, providing a valuable tool for assessing disease-causing variants and advancing therapeutic strategies.
Collapse
Affiliation(s)
- Alicia Vilas
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Álvaro Briso-Montiano
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Cristina Segovia-Falquina
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Arturo Martín-Martínez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Alejandro Soriano-Sexto
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Diana Gallego
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Vera Ruiz-Montés
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Alejandra Gámez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain.
| |
Collapse
|
32
|
Zhang A, Zheng X, Chen S, Duan G. In vitro study of HPV18-positive cervical cancer HeLa cells based on CRISPR/Cas13a system. Gene 2024; 921:148527. [PMID: 38710293 DOI: 10.1016/j.gene.2024.148527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/04/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
The E6 protein is a known oncogene in cervical cancer and plays a key role in the development and progression of cervical cancer by reducing the expression level of the tumor suppressor protein P53 and ultimately leading to enhanced cell proliferation and reduced apoptosis. Therefore, antiviral agents that inhibit the expression of E6 oncoprotein are expected to be potential therapies for human cervical cancer. Here we developed CRISPR/Cas13a: crRNA dual plasmid system and demonstrated that CRISPR/Cas13a could effectively and specifically knock down human papillomavirus 18 E6 mRNA, downregulate the expression level of E6 protein, and restore the expression of the tumor suppressor gene P53 protein, thereby inhibiting the growth of cervical cancer cells and increasing their apoptosis, the E6-2, E6-3, and E6-5 groups resulted in apoptosis rates of 25.4%, 22.4%, and 22.2% in HeLa cells. Moreover, CRISPR/Cas13a enhances the proliferation inhibition and apoptosis induction of cisplatin in cervical cancer HeLa cells. The CRISPR/Cas13a system targeting HPV E6 mRNA may be a promising therapeutic approach for the treatment of human papillomavirus-associated cervical cancer.
Collapse
Affiliation(s)
- Anran Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, People's Republic of China
| | - Xue Zheng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, People's Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, People's Republic of China.
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, People's Republic of China; Henan Key Laboratory of Molecular Medicine, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, People's Republic of China.
| |
Collapse
|
33
|
Lu C, Huang Y, Cui J, Wu J, Jiang C, Gu X, Cao Y, Yin S. Toward Practical Applications of Engineered Living Materials with Advanced Fabrication Techniques. ACS Synth Biol 2024; 13:2295-2312. [PMID: 39002162 DOI: 10.1021/acssynbio.4c00259] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Engineered Living Materials (ELMs) are materials composed of or incorporating living cells as essential functional units. These materials can be created using bottom-up approaches, where engineered cells spontaneously form well-defined aggregates. Alternatively, top-down methods employ advanced materials science techniques to integrate cells with various kinds of materials, creating hybrids where cells and materials are intricately combined. ELMs blend synthetic biology with materials science, allowing for dynamic responses to environmental stimuli such as stress, pH, humidity, temperature, and light. These materials exhibit unique "living" properties, including self-healing, self-replication, and environmental adaptability, making them highly suitable for a wide range of applications in medicine, environmental conservation, and manufacturing. Their inherent biocompatibility and ability to undergo genetic modifications allow for customized functionalities and prolonged sustainability. This review highlights the transformative impact of ELMs over recent decades, particularly in healthcare and environmental protection. We discuss current preparation methods, including the use of endogenous and exogenous scaffolds, living assembly, 3D bioprinting, and electrospinning. Emphasis is placed on ongoing research and technological advancements necessary to enhance the safety, functionality, and practical applicability of ELMs in real-world contexts.
Collapse
Affiliation(s)
- Chenjing Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yaying Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
34
|
Poddar A, Ahmady F, Prithviraj P, Luwor RB, Shukla R, Polash SA, Li H, Ramakrishna S, Kannourakis G, Jayachandran A. Advances in CRISPR/Cas systems-based cell and gene therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:161-183. [PMID: 39266181 DOI: 10.1016/bs.pmbts.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Cell and gene therapy are innovative biomedical strategies aimed at addressing diseases at their genetic origins. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) systems have become a groundbreaking tool in cell and gene therapy, offering unprecedented precision and versatility in genome editing. This chapter explores the role of CRISPR in gene editing, tracing its historical development and discussing biomolecular formats such as plasmid, RNA, and protein-based approaches. Next, we discuss CRISPR delivery methods, including viral and non-viral vectors, followed by examining the various engineered CRISPR variants for their potential in gene therapy. Finally, we outline emerging clinical applications, highlighting the advancements in CRISPR for breakthrough medical treatments.
Collapse
Affiliation(s)
- Arpita Poddar
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia; RMIT University, VIC, Australia
| | - Farah Ahmady
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia
| | - Rodney B Luwor
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia; The University of Melbourne, Parkville, VIC, Australia; Huagene Institute, Kecheng Science and Technology Park, Pukou, Nanjing, P.R. China
| | | | | | | | | | - George Kannourakis
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia.
| |
Collapse
|
35
|
Yun S, Noh M, Yu J, Kim HJ, Hui CC, Lee H, Son JE. Unlocking biological mechanisms with integrative functional genomics approaches. Mol Cells 2024; 47:100092. [PMID: 39019219 PMCID: PMC11345568 DOI: 10.1016/j.mocell.2024.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Reverse genetics offers precise functional insights into genes through the targeted manipulation of gene expression followed by phenotypic assessment. While these approaches have proven effective in model organisms such as Saccharomyces cerevisiae, large-scale genetic manipulations in human cells were historically unfeasible due to methodological limitations. However, recent advancements in functional genomics, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-based screening technologies and next-generation sequencing platforms, have enabled pooled screening technologies that allow massively parallel, unbiased assessments of biological phenomena in human cells. This review provides a comprehensive overview of cutting-edge functional genomic screening technologies applicable to human cells, ranging from short hairpin RNA screens to modern CRISPR screens. Additionally, we explore the integration of CRISPR platforms with single-cell approaches to monitor gene expression, chromatin accessibility, epigenetic regulation, and chromatin architecture following genetic perturbations at the omics level. By offering an in-depth understanding of these genomic screening methods, this review aims to provide insights into more targeted and effective strategies for genomic research and personalized medicine.
Collapse
Affiliation(s)
- Sehee Yun
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Minsoo Noh
- Department of Life Sciences, Korea University, Seoul 02841, Korea; Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of Medicine, Incheon 21565, Korea
| | - Jivin Yu
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hyeon-Jai Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hunsang Lee
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| | - Joe Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
36
|
Apriliana P, Kahar P, Kashiwagi N, Kondo A, Ogino C. Editing Streptomyces genome using target AID system fused with UGI-degradation tag. Eng Life Sci 2024; 24:e2400005. [PMID: 39113812 PMCID: PMC11300818 DOI: 10.1002/elsc.202400005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 08/10/2024] Open
Abstract
The utilization of Streptomyces as a microbial chassis for developing innovative drugs and medicinal compounds showcases its capability to produce bioactive natural substances. Recent focus on the clustered regularly interspaced short palindromic repeat (CRISPR) technology highlights its potential in genome editing. However, applying CRISPR technology in certain microbial strains, particularly Streptomyces, encounters specific challenges. These challenges include achieving efficient gene expression and maintaining genetic stability, which are critical for successful genome editing. To overcome these obstacles, an innovative approach has been developed that combines several key elements: activation-induced cytidine deaminase (AID), nuclease-deficient cas9 variants (dCas9), and Petromyzon marinus cytidine deaminase 1 (PmCDA1). In this study, this novel strategy was employed to engineer a Streptomyces coelicolor strain. The target gene was actVA-ORF4 (SCO5079), which is involved in actinorhodin production. The engineering process involved introducing a specific construct [pGM1190-dcas9-pmCDA-UGI-AAV-actVA-ORF4 (SCO5079)] to create a CrA10 mutant strain. The resulting CrA10 mutant strain did not produce actinorhodin. This outcome highlights the potential of this combined approach in the genetic manipulation of Streptomyces. The failure of the CrA10 mutant to produce actinorhodin conclusively demonstrates the success of gene editing at the targeted site, affirming the effectiveness of this method for precise genetic modifications in Streptomyces.
Collapse
Affiliation(s)
- Pamella Apriliana
- Department of Chemical Science and EngineeringGraduate School of EngineeringKobe UniversityKobeJapan
| | - Prihardi Kahar
- Department of Chemical Science and EngineeringGraduate School of EngineeringKobe UniversityKobeJapan
| | - Norimasa Kashiwagi
- Department of Chemical Science and EngineeringGraduate School of EngineeringKobe UniversityKobeJapan
| | - Akihiko Kondo
- Department of Chemical Science and EngineeringGraduate School of EngineeringKobe UniversityKobeJapan
- Department of Graduate School of ScienceTechnology, and InnovationKobe UniversityKobeJapan
| | - Chiaki Ogino
- Department of Chemical Science and EngineeringGraduate School of EngineeringKobe UniversityKobeJapan
| |
Collapse
|
37
|
Rosignoli S, Lustrino E, Conci A, Fabrizi A, Rinaldo S, Latella M, Enzo E, Prosseda G, De Rosa L, De Luca M, Paiardini A. AlPaCas: allele-specific CRISPR gene editing through a protospacer-adjacent-motif (PAM) approach. Nucleic Acids Res 2024; 52:W29-W38. [PMID: 38795068 PMCID: PMC11223865 DOI: 10.1093/nar/gkae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024] Open
Abstract
Gene therapy of dominantly inherited genetic diseases requires either the selective disruption of the mutant allele or the editing of the specific mutation. The CRISPR-Cas system holds great potential for the genetic correction of single nucleotide variants (SNVs), including dominant mutations. However, distinguishing between single-nucleotide variations in a pathogenic genomic context remains challenging. The presence of a PAM in the disease-causing allele can guide its precise targeting, preserving the functionality of the wild-type allele. The AlPaCas (Aligning Patients to Cas) webserver is an automated pipeline for sequence-based identification and structural analysis of SNV-derived PAMs that satisfy this demand. When provided with a gene/SNV input, AlPaCas can: (i) identify SNV-derived PAMs; (ii) provide a list of available Cas enzymes recognizing the SNV (s); (iii) propose mutational Cas-engineering to enhance the selectivity towards the SNV-derived PAM. With its ability to identify allele-specific genetic variants that can be targeted using already available or engineered Cas enzymes, AlPaCas is at the forefront of advancements in genome editing. AlPaCas is open to all users without a login requirement and is freely available at https://schubert.bio.uniroma1.it/alpacas.
Collapse
Affiliation(s)
- Serena Rosignoli
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| | - Elisa Lustrino
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| | - Alessio Conci
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alessandra Fabrizi
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| | | | - Elena Enzo
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gianni Prosseda
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Laura De Rosa
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
38
|
Peterson L, Yacoub MH, Ayares D, Yamada K, Eisenson D, Griffith BP, Mohiuddin MM, Eyestone W, Venter JC, Smolenski RT, Rothblatt M. Physiological basis for xenotransplantation from genetically modified pigs to humans. Physiol Rev 2024; 104:1409-1459. [PMID: 38517040 PMCID: PMC11390123 DOI: 10.1152/physrev.00041.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
The collective efforts of scientists over multiple decades have led to advancements in molecular and cellular biology-based technologies including genetic engineering and animal cloning that are now being harnessed to enhance the suitability of pig organs for xenotransplantation into humans. Using organs sourced from pigs with multiple gene deletions and human transgene insertions, investigators have overcome formidable immunological and physiological barriers in pig-to-nonhuman primate (NHP) xenotransplantation and achieved prolonged pig xenograft survival. These studies informed the design of Revivicor's (Revivicor Inc, Blacksburg, VA) genetically engineered pigs with 10 genetic modifications (10 GE) (including the inactivation of 4 endogenous porcine genes and insertion of 6 human transgenes), whose hearts and kidneys have now been studied in preclinical human xenotransplantation models with brain-dead recipients. Additionally, the first two clinical cases of pig-to-human heart xenotransplantation were recently performed with hearts from this 10 GE pig at the University of Maryland. Although this review focuses on xenotransplantation of hearts and kidneys, multiple organs, tissues, and cell types from genetically engineered pigs will provide much-needed therapeutic interventions in the future.
Collapse
Affiliation(s)
- Leigh Peterson
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| | | | - David Ayares
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| | - Kazuhiko Yamada
- Department of Surgery, Division of Transplantation, Johns Hopkins Medicine, Baltimore, Maryland, United States
| | - Daniel Eisenson
- Department of Surgery, Division of Transplantation, Johns Hopkins Medicine, Baltimore, Maryland, United States
| | - Bartley P Griffith
- University of Maryland Medical Center, Baltimore, Maryland, United States
| | | | - Willard Eyestone
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| | - J Craig Venter
- J. Craig Venter Institute, Rockville, Maryland, United States
| | | | - Martine Rothblatt
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| |
Collapse
|
39
|
Liu Y, Kong J, Liu G, Li Z, Xiao Y. Precise Gene Knock-In Tools with Minimized Risk of DSBs: A Trend for Gene Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401797. [PMID: 38728624 PMCID: PMC11267366 DOI: 10.1002/advs.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Gene knock-in refers to the insertion of exogenous functional genes into a target genome to achieve continuous expression. Currently, most knock-in tools are based on site-directed nucleases, which can induce double-strand breaks (DSBs) at the target, following which the designed donors carrying functional genes can be inserted via the endogenous gene repair pathway. The size of donor genes is limited by the characteristics of gene repair, and the DSBs induce risks like genotoxicity. New generation tools, such as prime editing, transposase, and integrase, can insert larger gene fragments while minimizing or eliminating the risk of DSBs, opening new avenues in the development of animal models and gene therapy. However, the elimination of off-target events and the production of delivery carriers with precise requirements remain challenging, restricting the application of the current knock-in treatments to mainly in vitro settings. Here, a comprehensive review of the knock-in tools that do not/minimally rely on DSBs and use other mechanisms is provided. Moreover, the challenges and recent advances of in vivo knock-in treatments in terms of the therapeutic process is discussed. Collectively, the new generation of DSBs-minimizing and large-fragment knock-in tools has revolutionized the field of gene editing, from basic research to clinical treatment.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityNanjing210009China
| | - Jianping Kong
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Gongyu Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Zhaoxing Li
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yibei Xiao
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
40
|
Deleuze V, Soler E, Andrieu-Soler C. Protocol for efficient CRISPR-Cas9-mediated fluorescent tag knockin in hard-to-transfect erythroid cell lines. STAR Protoc 2024; 5:103016. [PMID: 38640065 PMCID: PMC11044133 DOI: 10.1016/j.xpro.2024.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024] Open
Abstract
Precise insertion of fluorescent tags by CRISPR-Cas9-mediated homologous recombination (HR) in mammalian genes is a powerful tool allowing to study gene function and protein gene products. Here, we present a protocol for efficient HR-mediated targeted insertion of fluorescent markers in the genome of hard-to-transfect erythroid cell lines MEL (mouse erythroleukemic) and MEDEP (mouse ES cell-derived erythroid progenitor line). We describe steps for plasmid construction, electroporation, amplification, and verification of genome editing. We then detail procedures for isolating positive clones and validating knockin clones. For complete details on the use and execution of this protocol, please refer to Deleuze et al.1.
Collapse
Affiliation(s)
- Virginie Deleuze
- IGMM University Montpellier, CNRS, Montpellier, France; Laboratory of Excellence GR-Ex, Université' de Paris, Paris, France
| | - Eric Soler
- IGMM University Montpellier, CNRS, Montpellier, France; Laboratory of Excellence GR-Ex, Université' de Paris, Paris, France.
| | - Charlotte Andrieu-Soler
- IGMM University Montpellier, CNRS, Montpellier, France; Laboratory of Excellence GR-Ex, Université' de Paris, Paris, France.
| |
Collapse
|
41
|
Zhu H, Wang L, Wang Y, Jiang X, Qin Q, Song M, Huang Q. Directed-evolution mutations enhance DNA-binding affinity and protein stability of the adenine base editor ABE8e. Cell Mol Life Sci 2024; 81:257. [PMID: 38874784 PMCID: PMC11335294 DOI: 10.1007/s00018-024-05263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 06/15/2024]
Abstract
Adenine base editors (ABEs), consisting of CRISPR Cas nickase and deaminase, can chemically convert the A:T base pair to G:C. ABE8e, an evolved variant of the base editor ABE7.10, contains eight directed evolution mutations in its deaminase TadA8e that significantly increase its base editing activity. However, the functional implications of these mutations remain unclear. Here, we combined molecular dynamics (MD) simulations and experimental measurements to investigate the role of the directed-evolution mutations in the base editing catalysis. MD simulations showed that the DNA-binding affinity of TadA8e is higher than that of the original deaminase TadA7.10 in ABE7.10 and is mainly driven by electrostatic interactions. The directed-evolution mutations increase the positive charge density in the DNA-binding region, thereby enhancing the electrostatic attraction of TadA8e to DNA. We identified R111, N119 and N167 as the key mutations for the enhanced DNA binding and confirmed them by microscale thermophoresis (MST) and in vivo reversion mutation experiments. Unexpectedly, we also found that the directed mutations improved the thermal stability of TadA8e by ~ 12 °C (Tm, melting temperature) and that of ABE8e by ~ 9 °C, respectively. Our results demonstrate that the directed-evolution mutations improve the substrate-binding ability and protein stability of ABE8e, thus providing a rational basis for further editing optimisation of the system.
Collapse
Affiliation(s)
- Haixia Zhu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lei Wang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyi Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qin Qin
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Menghua Song
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
42
|
Hwang HY, Gim D, Yi H, Jung H, Lee J, Kim D. Precise editing of pathogenic nucleotide repeat expansions in iPSCs using paired prime editor. Nucleic Acids Res 2024; 52:5792-5803. [PMID: 38661210 PMCID: PMC11162781 DOI: 10.1093/nar/gkae310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Nucleotide repeat expansion disorders, a group of genetic diseases characterized by the expansion of specific DNA sequences, pose significant challenges to treatment and therapy development. Here, we present a precise and programmable method called prime editor-mediated correction of nucleotide repeat expansion (PE-CORE) for correcting pathogenic nucleotide repeat expansion. PE-CORE leverages a prime editor and paired pegRNAs to achieve targeted correction of repeat sequences. We demonstrate the effectiveness of PE-CORE in HEK293T cells and patient-derived induced pluripotent stem cells (iPSCs). Specifically, we focus on spinal and bulbar muscular atrophy and spinocerebellar ataxia type, two diseases associated with nucleotide repeat expansion. Our results demonstrate the successful correction of pathogenic expansions in iPSCs and subsequent differentiation into motor neurons. Specifically, we detect distinct downshifts in the size of both the mRNA and protein, confirming the functional correction of the iPSC-derived motor neurons. These findings highlight PE-CORE as a precision tool for addressing the intricate challenges of nucleotide repeat expansion disorders, paving the way for targeted therapies and potential clinical applications.
Collapse
Affiliation(s)
- Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Dongmin Gim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hwalin Yi
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyewon Jung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
43
|
Shi Y, Wang J, Yu T, Song R, Qi W. Callus-specific CRISPR/Cas9 system to increase heritable gene mutations in maize. PLANTA 2024; 260:16. [PMID: 38833022 DOI: 10.1007/s00425-024-04451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
MAIN CONCLUSION A callus-specific CRISPR/Cas9 (CSC) system with Cas9 gene driven by the promoters of ZmCTA1 and ZmPLTP reduces somatic mutations and improves the production of heritable mutations in maize. The CRISPR/Cas9 system, due to its editing accuracy, provides an excellent tool for crop genetic breeding. Nevertheless, the traditional design utilizing CRISPR/Cas9 with ubiquitous expression leads to an abundance of somatic mutations, thereby complicating the detection of heritable mutations. We constructed a callus-specific CRISPR/Cas9 (CSC) system using callus-specific promoters of maize Chitinase A1 and Phospholipid transferase protein (pZmCTA1 and pZmPLTP) to drive Cas9 expression, and the target gene chosen for this study was the bZIP transcription factor Opaque2 (O2). The CRISPR/Cas9 system driven by the maize Ubiquitin promoter (pZmUbi) was employed as a comparative control. Editing efficiency analysis based on high-throughput tracking of mutations (Hi-TOM) showed that the CSC systems generated more target gene mutations than the ubiquitously expressed CRISPR/Cas9 (UC) system in calli. Transgenic plants were generated for the CSC and UC systems. We found that the CSC systems generated fewer target gene mutations than the UC system in the T0 seedlings but reduced the influence of somatic mutations. Nearly 100% of mutations in the T1 generation generated by the CSC systems were derived from the T0 plants. Only 6.3-16.7% of T1 mutations generated by the UC system were from the T0 generation. Our results demonstrated that the CSC system consistently produced more stable, heritable mutants in the subsequent generation, suggesting its potential application across various crops to facilitate the genetic breeding of desired mutations.
Collapse
Affiliation(s)
- Yuan Shi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jing Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Tante Yu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Rentao Song
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, People's Republic of China.
- Sanya Institute of China Agricultural University, Sanya, People's Republic of China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, People's Republic of China.
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
44
|
Wang X, Cai C, Lv W, Chen K, Li J, Liao K, Zhang Y, Huang H, Lin Y, Rong Z, Duan X. Short cell-penetration peptide conjugated bioreducible polymer enhances gene editing of CRISPR system. J Nanobiotechnology 2024; 22:284. [PMID: 38790037 PMCID: PMC11127455 DOI: 10.1186/s12951-024-02554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
CRISPR-based gene therapy offers precise targeting and specific editing of disease-related gene sequences, potentially yielding long-lasting treatment effects. However, efficient delivery remains a significant challenge for its widespread application. In this study, we design a novel short peptide-conjugated bioreducible polymer named TSPscp as a safe and effective delivery vector for the CRISPR system. Our results show that TSPscp markedly boosts transcriptional activation and genome editing activities of multiple CRISPR systems as confirmed by decomposition-seq and Deep-seq, which is resulted from its capability in facilitating delivery of plasmid DNA by promoting cellular uptake and lysosomal escape. Additionally, TSPscp further enhances genome editing of CRISPR by delivery of minicircle DNA, a condensed form of regular plasmid DNA. More importantly, TSPscp significantly improves delivery and genome editing of CRISPR system in vivo. In summary, our study highlights TSPscp as a promising delivery tool for CRISPR applications in vivo.
Collapse
Affiliation(s)
- Xiaobo Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Chengyuan Cai
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Weiqi Lv
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Kechen Chen
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Jiaxin Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Kaitong Liao
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Yanqun Zhang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Hongxin Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Zhili Rong
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China.
| | - Xiaopin Duan
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
45
|
Nittayasut N, Yata T, Chirakul S, Techakriengkrai N, Chanchaithong P. Non-replicative phage particles delivering CRISPR-Cas9 to target major blaCTX-M variants. PLoS One 2024; 19:e0303555. [PMID: 38753729 PMCID: PMC11098365 DOI: 10.1371/journal.pone.0303555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/27/2024] [Indexed: 05/18/2024] Open
Abstract
Cluster regularly interspaced short palindromic repeats and CRISPR associated protein 9 (CRISPR-Cas9) is a promising tool for antimicrobial re-sensitization by inactivating antimicrobial resistance (AMR) genes of bacteria. Here, we programmed CRISPR-Cas9 with common spacers to target predominant blaCTX-M variants in group 1 and group 9 and their promoter in an Escherichia coli model. The CRISPR-Cas9 was delivered by non-replicative phagemid particles from a two-step process, including insertion of spacer in CRISPR and construction of phagemid vector. Spacers targeting blaCTX-M promoters and internal sequences of blaCTX-M group 1 (blaCTX-M-15 and -55) and group 9 (blaCTX-M-14, -27, -65, and -90) were cloned into pCRISPR and phagemid pRC319 for spacer evaluation and phagemid particle production. Re-sensitization and plasmid clearance were mediated by the spacers targeting internal sequences of each group, resulting in 3 log10 to 4 log10 reduction of the ratio of resistant cells, but not by those targeting the promoters. The CRISPR-Cas9 delivered by modified ΦRC319 particles were capable of re-sensitizing E. coli K-12 carrying either blaCTX-M group 1 or group 9 in a dose-dependent manner from 0.1 to 100 multiplicity of infection (MOI). In conclusion, CRISPR-Cas9 system programmed with well-designed spacers targeting multiple variants of AMR gene along with a phage-based delivery system could eliminate the widespread blaCTX-M genes for efficacy restoration of available third-generation cephalosporins by reversal of resistance in bacteria.
Collapse
Affiliation(s)
- Naiyaphat Nittayasut
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sunisa Chirakul
- Division of Bacteriology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Food Safety and Antimicrobial Resistance, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
46
|
Gurrola TE, Effah SN, Sariyer IK, Dampier W, Nonnemacher MR, Wigdahl B. Delivering CRISPR to the HIV-1 reservoirs. Front Microbiol 2024; 15:1393974. [PMID: 38812680 PMCID: PMC11133543 DOI: 10.3389/fmicb.2024.1393974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is well known as one of the most complex and difficult viral infections to cure. The difficulty in developing curative strategies arises in large part from the development of latent viral reservoirs (LVRs) within anatomical and cellular compartments of a host. The clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system shows remarkable potential for the inactivation and/or elimination of integrated proviral DNA within host cells, however, delivery of the CRISPR/Cas9 system to infected cells is still a challenge. In this review, the main factors impacting delivery, the challenges for delivery to each of the LVRs, and the current successes for delivery to each reservoir will be discussed.
Collapse
Affiliation(s)
- Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Samuel N. Effah
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation and Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
47
|
Park JC, Kim YJ, Hwang GH, Kang CY, Bae S, Cha HJ. Enhancing genome editing in hPSCs through dual inhibition of DNA damage response and repair pathways. Nat Commun 2024; 15:4002. [PMID: 38734692 PMCID: PMC11088699 DOI: 10.1038/s41467-024-48111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Precise genome editing is crucial for establishing isogenic human disease models and ex vivo stem cell therapy from the patient-derived hPSCs. Unlike Cas9-mediated knock-in, cytosine base editor and prime editor achieve the desirable gene correction without inducing DNA double strand breaks. However, hPSCs possess highly active DNA repair pathways and are particularly susceptible to p53-dependent cell death. These unique characteristics impede the efficiency of gene editing in hPSCs. Here, we demonstrate that dual inhibition of p53-mediated cell death and distinct activation of the DNA damage repair system upon DNA damage by cytosine base editor or prime editor additively enhanced editing efficiency in hPSCs. The BE4stem system comprised of p53DD, a dominant negative p53, and three UNG inhibitor, engineered to specifically diminish base excision repair, improves cytosine base editor efficiency in hPSCs. Addition of dominant negative MLH1 to inhibit mismatch repair activity and p53DD in the conventional prime editor system also significantly enhances prime editor efficiency in hPSCs. Thus, combined inhibition of the distinct cellular cascades engaged in hPSCs upon gene editing could significantly enhance precise genome editing in these cells.
Collapse
Affiliation(s)
- Ju-Chan Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gue-Ho Hwang
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan Young Kang
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangsu Bae
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Yin X, Li Q, Shu Y, Wang H, Thomas B, Maxwell JT, Zhang Y. Exploiting urine-derived induced pluripotent stem cells for advancing precision medicine in cell therapy, disease modeling, and drug testing. J Biomed Sci 2024; 31:47. [PMID: 38724973 PMCID: PMC11084032 DOI: 10.1186/s12929-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
The field of regenerative medicine has witnessed remarkable advancements with the emergence of induced pluripotent stem cells (iPSCs) derived from a variety of sources. Among these, urine-derived induced pluripotent stem cells (u-iPSCs) have garnered substantial attention due to their non-invasive and patient-friendly acquisition method. This review manuscript delves into the potential and application of u-iPSCs in advancing precision medicine, particularly in the realms of drug testing, disease modeling, and cell therapy. U-iPSCs are generated through the reprogramming of somatic cells found in urine samples, offering a unique and renewable source of patient-specific pluripotent cells. Their utility in drug testing has revolutionized the pharmaceutical industry by providing personalized platforms for drug screening, toxicity assessment, and efficacy evaluation. The availability of u-iPSCs with diverse genetic backgrounds facilitates the development of tailored therapeutic approaches, minimizing adverse effects and optimizing treatment outcomes. Furthermore, u-iPSCs have demonstrated remarkable efficacy in disease modeling, allowing researchers to recapitulate patient-specific pathologies in vitro. This not only enhances our understanding of disease mechanisms but also serves as a valuable tool for drug discovery and development. In addition, u-iPSC-based disease models offer a platform for studying rare and genetically complex diseases, often underserved by traditional research methods. The versatility of u-iPSCs extends to cell therapy applications, where they hold immense promise for regenerative medicine. Their potential to differentiate into various cell types, including neurons, cardiomyocytes, and hepatocytes, enables the development of patient-specific cell replacement therapies. This personalized approach can revolutionize the treatment of degenerative diseases, organ failure, and tissue damage by minimizing immune rejection and optimizing therapeutic outcomes. However, several challenges and considerations, such as standardization of reprogramming protocols, genomic stability, and scalability, must be addressed to fully exploit u-iPSCs' potential in precision medicine. In conclusion, this review underscores the transformative impact of u-iPSCs on advancing precision medicine and highlights the future prospects and challenges in harnessing this innovative technology for improved healthcare outcomes.
Collapse
Affiliation(s)
- Xiya Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Biju Thomas
- Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
| | - Joshua T Maxwell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
49
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
50
|
Li M, Chen F, Yang Q, Tang Q, Xiao Z, Tong X, Zhang Y, Lei L, Li S. Biomaterial-Based CRISPR/Cas9 Delivery Systems for Tumor Treatment. Biomater Res 2024; 28:0023. [PMID: 38694229 PMCID: PMC11062511 DOI: 10.34133/bmr.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
CRISPR/Cas9 gene editing technology is characterized by high specificity and efficiency, and has been applied to the treatment of human diseases, especially tumors involving multiple genetic modifications. However, the clinical application of CRISPR/Cas9 still faces some major challenges, the most urgent of which is the development of optimized delivery vectors. Biomaterials are currently the best choice for use in CRISPR/Cas9 delivery vectors owing to their tunability, biocompatibility, and efficiency. As research on biomaterial vectors continues to progress, hope for the application of the CRISPR/Cas9 system for clinical oncology therapy builds. In this review, we first detail the CRISPR/Cas9 system and its potential applications in tumor therapy. Then, we introduce the different delivery forms and compare the physical, viral, and non-viral vectors. In addition, we analyze the characteristics of different types of biomaterial vectors. We further review recent research progress in the use of biomaterials as vectors for CRISPR/Cas9 delivery to treat specific tumors. Finally, we summarize the shortcomings and prospects of biomaterial-based CRISPR/Cas9 delivery systems.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Fenglei Chen
- College of Veterinary Medicine, Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses,
Yangzhou University, Yangzhou 225009, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Ying Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| |
Collapse
|