1
|
Kalaga P, Ray SK. Mental Health Disorders Due to Gut Microbiome Alteration and NLRP3 Inflammasome Activation After Spinal Cord Injury: Molecular Mechanisms, Promising Treatments, and Aids from Artificial Intelligence. Brain Sci 2025; 15:197. [PMID: 40002529 PMCID: PMC11852823 DOI: 10.3390/brainsci15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Aside from its immediate traumatic effects, spinal cord injury (SCI) presents multiple secondary complications that can be harmful to those who have been affected by SCI. Among these secondary effects, gut dysbiosis (GD) and the activation of the NOD (nucleotide-binding oligomerization domain) like receptor-family pyrin-domain-containing three (NLRP3) inflammasome are of special interest for their roles in impacting mental health. Studies have found that the state of the gut microbiome is thrown into disarray after SCI, providing a chance for GD to occur. Metabolites such as short-chain fatty acids (SCFAs) and a variety of neurotransmitters produced by the gut microbiome are hampered by GD. This disrupts healthy cognitive processes and opens the door for SCI patients to be impacted by mental health disorders. Additionally, some studies have found an increased presence and activation of the NLRP3 inflammasome and its respective parts in SCI patients. Preclinical and clinical studies have shown that NLRP3 inflammasome plays a key role in the maturation of pro-inflammatory cytokines that can initiate and eventually aggravate mental health disorders after SCI. In addition to the mechanisms of GD and the NLRP3 inflammasome in intensifying mental health disorders after SCI, this review article further focuses on three promising treatments: fecal microbiome transplants, phytochemicals, and melatonin. Studies have found these treatments to be effective in combating the pathogenic mechanisms of GD and NLRP3 inflammasome, as well as alleviating the symptoms these complications may have on mental health. Another area of focus of this review article is exploring how artificial intelligence (AI) can be used to support treatments. AI models have already been developed to track changes in the gut microbiome, simulate drug-gut interactions, and design novel anti-NLRP3 inflammasome peptides. While these are promising, further research into the applications of AI for the treatment of mental health disorders in SCI is needed.
Collapse
Affiliation(s)
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA;
| |
Collapse
|
2
|
Fanizzi F, D'Amico F, Zanotelli Bombassaro I, Zilli A, Furfaro F, Parigi TL, Cicerone C, Fiorino G, Peyrin-Biroulet L, Danese S, Allocca M. The Role of Fecal Microbiota Transplantation in IBD. Microorganisms 2024; 12:1755. [PMID: 39338430 PMCID: PMC11433743 DOI: 10.3390/microorganisms12091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gut microbiota dysbiosis has a critical role in the pathogenesis of inflammatory bowel diseases, prompting the exploration of novel therapeutic approaches like fecal microbiota transplantation, which involves the transfer of fecal microbiota from a healthy donor to a recipient with the aim of restoring a balanced microbial community and attenuating inflammation. Fecal microbiota transplantation may exert beneficial effects in inflammatory bowel disease through modulation of immune responses, restoration of mucosal barrier integrity, and alteration of microbial metabolites. It could alter disease course and prevent flares, although long-term durability and safety data are lacking. This review provides a summary of current evidence on fecal microbiota transplantation in inflammatory bowel disease management, focusing on its challenges, such as variability in donor selection criteria, standardization of transplant protocols, and long-term outcomes post-transplantation.
Collapse
Affiliation(s)
- Fabrizio Fanizzi
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Ferdinando D'Amico
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Isadora Zanotelli Bombassaro
- Department of Gastroenterology and Endoscopy, Santa Casa de Misericordia de Porto Alagre, Porto Alegre 90020-090, Brazil
| | - Alessandra Zilli
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Clelia Cicerone
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gionata Fiorino
- Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- INSERM, Nutrition-Genetics and Exposure to Environmental Risks Research Unit (NGERE), University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Fédération Hospitalo-Universitaire CARE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Groupe Hospitalier Privé Ambroise Paré-Hartmann, Paris IBD Center, F-92200 Neuilly sur Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
3
|
Zhang JT, Zhang N, Dong XT, Wang XR, Ma HW, Liu YD, Li MR. Efficacy and safety of fecal microbiota transplantation for treatment of ulcerative colitis: A post-consensus systematic review and meta-analysis. World J Clin Cases 2024; 12:4691-4702. [PMID: 39070844 PMCID: PMC11235499 DOI: 10.12998/wjcc.v12.i21.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Numerous studies have assessed the efficacy and safety of fecal microbiota transplantation (FMT) as a therapy for ulcerative colitis (UC). However, the treatment processes and outcomes of these studies vary. AIM To evaluate the efficacy and safety of FMT for treating UC by conducting a systematic meta-analysis. METHODS The inclusion criteria involved reports of adult patients with UC treated with FMT, while studies that did not report clinical outcomes or that included patients with infection were excluded. Clinical remission (CR) and endoscopic remission (ER) were the primary and secondary outcomes, respectively. RESULTS We included nine studies retrieved from five electronic databases. The FMT group had better CR than the control group [relative risk (RR) = 1.53; 95% confidence interval (CI): 1.19-1.94; P < 0.0008]. ER was statistically significantly different between the two groups (RR = 2.80; 95%CI: 1.93-4.05; P < 0.00001). Adverse events did not differ significantly between the two groups. CONCLUSION FMT demonstrates favorable performance and safety; however, well-designed randomized clinical trials are still needed before the widespread use of FMT can be recommended. Furthermore, standardizing the FMT process is urgently needed for improved safety and efficacy.
Collapse
Affiliation(s)
- Jin-Tao Zhang
- Department of Clinical Medicine, School of Medicine, Nankai University, Tianjin 300071, China
| | - Nan Zhang
- Department of Gastroenterology, Tianjin Union Medical Center, Tianjin 300122, China
| | - Xue-Tao Dong
- Department of Gastroenterology, Tianjin Union Medical Center, Tianjin 300122, China
| | - Xiao-Ran Wang
- Department of Gastroenterology, Tianjin Union Medical Center, Tianjin 300122, China
| | - Hong-Wen Ma
- Department of Gastroenterology, Tianjin Union Medical Center, Tianjin 300122, China
| | - Yan-Di Liu
- Department of Gastroenterology, Tianjin Union Medical Center, Tianjin 300122, China
| | - Mu-Ran Li
- Department of Gastroenterology, Tianjin Union Medical Center, Tianjin 300122, China
| |
Collapse
|
4
|
Wang X, Dong Y, Luan Y, Tian S, Li C, Li Y, Zhou J. Integrated assessment of the spatial distribution, sources, degradation, and human risk of tetracyclines in honey in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134681. [PMID: 38788580 DOI: 10.1016/j.jhazmat.2024.134681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Tetracyclines are widely used in Chinese apiculture. However, limited information is available on the presence of tetracycline residues in honey and the sources, degradation patterns, and associated health risks of these compounds. In this study, the presence of tetracyclines in honey samples across China was investigated over a four-year period. Additionally, the risks of dietary intake, as well as the sources and degradation patterns of tetracyclines in honey, were assessed. The three-dimensional spatial distributions (floral region, geographical region and entomological origin) of tetracyclines contamination varied significantly. Tetracycline residues in honey posed a moderate risk to children aged 3-10 years in Northwest China. Source analysis indicated that colony migration serves as the primary source of tetracyclines in honey. Based on the degradation patterns of tetracyclines in honey within colonies and during storage, oxytetracycline is more readily degraded than other tetracyclines. The main degradation products of tetracyclines are epimers and dehydration products, and the effects of these products on human health and the environment should be further evaluated in future studies. This comprehensive investigation provides valuable insights into the safe use and regulation of tetracyclines in Chinese apiculture.
Collapse
Affiliation(s)
- Xinran Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Yiwei Dong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yunxia Luan
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| | - Yi Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Jinhui Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
5
|
Yang Y, Zhang Z, Wang Y, Rao J, Sun J, Wu Z, He J, Tan X, Liang L, Yu Q, Wu Z, Zou H, Zhang H, Dong M, Zheng J, Feng S, Cheng W, Wei H. Colonization of microbiota derived from Macaca fascicularis, Bama miniature pigs, beagle dogs, and C57BL/6J mice alleviates DSS-induced colitis in germ-free mice. Microbiol Spectr 2024; 12:e0038824. [PMID: 38990027 PMCID: PMC11302040 DOI: 10.1128/spectrum.00388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Fecal microbiota transplantation (FMT) is an innovative and promising treatment for inflammatory bowel disease (IBD), which is related to the capability of FMT to supply functional microorganisms to improve recipient gut health. Numerous studies have highlighted considerable variability in the efficacy of FMT interventions for IBD. Several factors, including the composition of the donor microorganisms, significantly affect the efficacy of FMT in the treatment of IBD. Consequently, identifying the functional microorganisms in the donor is crucial for enhancing the efficacy of FMT. To explore potential common anti-inflammatory bacteria with therapeutic implications for IBD, germ-free (GF) BALB/c mice were pre-colonized with fecal microbiota obtained from diverse donors, including Macaca fascicularis (MCC_FMT), Bama miniature pigs (BP_FMT), beagle dogs (BD_FMT), and C57BL/6 J mice (Mice_FMT). Subsequently, mice were treated with dextran sodium sulfate (DSS). As expected, the symptoms of colitis were alleviated by MCC_FMT, BP_FMT, BD_FMT, and Mice_FMT, as demonstrated by the prevention of an elevated disease activity index in mice. Additionally, the utilization of distinct donors protected the intestinal barrier and contributed to the regulation of cytokine homeostasis. Metagenomic sequencing data showed that the microbial community structure and dominant species were significantly different among the four groups, which may be linked to variations in the anti-inflammatory efficacy observed in the respective groups. Notably, Lactobacillus reuteri and Flavonifractor plautii were consistently present in all four groups. L. reuteri exhibited a significant negative correlation with IL-1β, and animal studies further confirmed its efficacy in alleviating IBD, suggesting the presence of common functional bacteria across different donors that exert anti-inflammatory effects. This study provides essential foundational data for the potential clinical applications of FMT.IMPORTANCEDespite variations in efficacy observed among donors, numerous studies have underscored the potential of fecal microbiota transplantation (FMT) for managing inflammatory bowel disease (IBD), indicating the presence of shared anti-IBD bacterial species. In the present study, the collective anti-inflammatory efficacy observed across all four donor groups prompted the identification of two common bacterial species using metagenomics. A significant negative correlation between Lactobacillus reuteri and IL-1β was revealed. Furthermore, mice gavaged with L. reuteri successfully managed the colitis challenge induced by dextran sodium sulfate (DSS), suggesting that L. reuteri may act as an efficacious bacterium mediating shared anti-inflammatory effects among variable donors. This finding highlights the utilization of variable donors to screen FMT core bacteria, which may be a novel strategy for developing FMT applications.
Collapse
Affiliation(s)
- Yapeng Yang
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Zeyue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yuqing Wang
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Junhua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jinhui He
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xiang Tan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Lifeng Liang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Yu
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhifeng Wu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Huicong Zou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Hang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Miaomiao Dong
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jixia Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Shuaifei Feng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wei Cheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Hong Wei
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Yu‐Yue Pathology Scientific Research Center, Chongqing, China
| |
Collapse
|
6
|
Ma D, Zhang M, Feng J. Gut Microbiota Alleviates Intestinal Injury Induced by Extended Exposure to Light via Inhibiting the Activation of NLRP3 Inflammasome in Broiler Chickens. Int J Mol Sci 2024; 25:6695. [PMID: 38928401 PMCID: PMC11203690 DOI: 10.3390/ijms25126695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Light pollution is a potential risk for intestinal health in humans and animals. The gut microbiota is associated with the development of intestinal inflammation induced by extended exposure to light, but the underlying mechanism is not yet clear. The results of this study showed that extended exposure to light (18L:6D) damaged intestinal morphology, downregulated the expression of tight junction proteins, and upregulated the expression of the NLRP3 inflammasome and the concentration of pro-inflammatory cytokines. In addition, extended exposure to light significantly decreased the abundance of Lactobacillus, Butyricicoccus, and Sellimonas and increased the abundance of Bifidobacterium, unclassified Oscillospirales, Family_XIII_UCG-001, norank_f__norank_o__Clostridia_vadinBB60_group, and Defluviitaleaceae_UCG-01. Spearman correlation analysis indicated that gut microbiota dysbiosis positively correlated with the activation of the NLRP3 inflammasome. The above results indicated that extended exposure to light induced intestinal injury by NLRP3 inflammasome activation and gut microbiota dysbiosis. Antibiotic depletion intestinal microbiota treatment and cecal microbiota transplantation (CMT) from the 12L:12D group to 18L:6D group indicated that the gut microbiota alleviated intestinal inflammatory injury induced by extended exposure to light via inhibiting the activation of the NLRP3 inflammasome. In conclusion, our findings indicated that the gut microbiota can alleviate intestinal inflammation induced by extended exposure to light via inhibiting the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (D.M.); (J.F.)
| | | |
Collapse
|
7
|
Miao S, Yin J, Liu S, Zhu Q, Liao C, Jiang G. Maternal-Fetal Exposure to Antibiotics: Levels, Mother-to-Child Transmission, and Potential Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8117-8134. [PMID: 38701366 DOI: 10.1021/acs.est.4c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Due to its widespread applications in various fields, antibiotics are continuously released into the environment and ultimately enter the human body through diverse routes. Meanwhile, the unreasonable use of antibiotics can also lead to a series of adverse outcomes. Pregnant women and developing fetuses are more susceptible to the influence of external chemicals than adults. The evaluation of antibiotic exposure levels through questionnaire surveys or prescriptions in medical records and biomonitoring-based data shows that antibiotics are frequently prescribed and used by pregnant women around the world. Antibiotics may be transmitted from mothers to their offspring through different pathways, which then adversely affect the health of offspring. However, there has been no comprehensive review on antibiotic exposure and mother-to-child transmission in pregnant women so far. Herein, we summarized the exposure levels of antibiotics in pregnant women and fetuses, the exposure routes of antibiotics to pregnant women, and related influencing factors. In addition, we scrutinized the potential mechanisms and factors influencing the transfer of antibiotics from mother to fetus through placental transmission, and explored the adverse effects of maternal antibiotic exposure on fetal growth and development, neonatal gut microbiota, and subsequent childhood health. Given the widespread use of antibiotics and the health threats posed by their exposure, it is necessary to comprehensively track antibiotics in pregnant women and fetuses in the future, and more in-depth biological studies are needed to reveal and verify the mechanisms of mother-to-child transmission, which is crucial for accurately quantifying and evaluating fetal health status.
Collapse
Affiliation(s)
- Shiyu Miao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhu P, Meng L, Shu Y, Xu Y, Liu W, Bi Y, Xu J, Meng L, Li Y. Fabrication of hyaluronic acid-inulin coated Enterococcus faecium for colon-targeted delivery to fight Fusobacterium nucleatum. Carbohydr Polym 2024; 329:121797. [PMID: 38286561 DOI: 10.1016/j.carbpol.2024.121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
The abundance of Fusobacterium nucleatum (F. nucleatum) is highly associated with the development and poor prognosis of colorectal cancer (CRC), which is regarded as a promising target for CRC. However, until now, the novel strategy to clear F. nucleatum in the colon and CRC has not been well proposed. Herein, a probiotic strain Enterococcus faecium (E. faecium, EF47) is verified to secrete various organic acids and bacteriocins to exert superior antimicrobial activity towards F. nucleatum. However, the oral delivery of EF47 is affected by the complex digestive tract environment, so we design the hyaluronic acid-inulin (HA-IN) coated EF47 for colon-targeted delivery to fight F. nucleatum. IN can protect EF47 from the harsh gastrointestinal tract environment and is degraded specifically in the colon, acting as prebiotics to further promote the proliferation of EF47. The exposed HA can also enhance the targeting effect to the tumor area via the interaction with the CD44 receptor on the tumor cells, which is confirmed to increase the adhesive ability in tumor tissues and inhibit the growth of F. nucleatum. Therefore, this colon-targeted delivery system provides a novel platform to realize high-activity and adhesive delivery of probiotics to assist the therapeutic efficiency of CRC.
Collapse
Affiliation(s)
- Pengrong Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Yue Shu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Yuqiao Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Weiming Liu
- Department of Research, Biosan Biotech Co., Ltd, Lishui, 323000, Zhejiang Province, China
| | - Yong Bi
- Department of Pharmaceutical Laboratory, Anhui Sunhere Pharmaceutical Excipients Co., Ltd., Huainan, 232000, Anhui Province, China
| | - Jian Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China.
| | - Lijuan Meng
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China; Department of Pharmaceutical Laboratory, Anhui Sunhere Pharmaceutical Excipients Co., Ltd., Huainan, 232000, Anhui Province, China; Department of Research, Biosan Biotech Co., Ltd, Lishui, 323000, Zhejiang Province, China.
| |
Collapse
|
9
|
Ye H, Ghosh TS, Hueston CM, Vlckova K, Golubeva AV, Hyland NP, O’Toole PW. Engraftment of aging-related human gut microbiota and the effect of a seven-species consortium in a pre-clinical model. Gut Microbes 2023; 15:2282796. [PMID: 38010168 PMCID: PMC10854441 DOI: 10.1080/19490976.2023.2282796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
Human aging is characterized by gut microbiome alteration and differential loss of gut commensal species associated with the onset of frailty. The administration of cultured commensal strains to replenish lost taxa could potentially promote healthy aging. To investigate the interaction of whole microbiomes and administered strains, we transplanted gut microbiota from a frail or healthy elderly subject into germ-free mice. We supplemented the frail-donor recipient group with a defined consortium of taxa (the "S7") that we identified by analyzing healthy aging subjects in our previous studies and whose abundance correlated with health-promoting dietary intervention. Inoculation with a frail or a healthy donor microbiome resulted in differential microbiota compositions in murine recipients 5 weeks post-transplantation. Fecal acetate levels were significantly higher in healthy donor recipient mice than in frail donor recipient mice after 4 weeks. However, the frailty-related phenotype was not replicated in recipient mice with single-dose microbiota transplantation from a healthy and a frail donor. Five S7 species colonized successfully in germ-free mice, with a relatively high abundance of Barnesiella intestinihominis and Eubacterium rectale. The engraftment of five S7 species in germ-free mice increased fecal acetate levels and reduced colon permeability and plasma TNF-ɑ concentration. Supplementation with the S7 in frail-microbiota recipient mice did not increase alpha-diversity but significantly increased the abundance of Barnesiella intestinihominis. S7 supplementation showed the potential for improving spatial reference memory in frail-microbiota recipient mice. Collectively, these data highlight the challenge of elderly microbiota engraftment in the germ-free mouse model but show promise for modulating the gut microbiome of frail elderly subjects by administering an artificial gut microbe consortium associated with healthy aging.
Collapse
Affiliation(s)
- Huimin Ye
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Tarini S. Ghosh
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cara M. Hueston
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Klara Vlckova
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Niall P. Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Boicean A, Birlutiu V, Ichim C, Brusnic O, Onișor DM. Fecal Microbiota Transplantation in Liver Cirrhosis. Biomedicines 2023; 11:2930. [PMID: 38001930 PMCID: PMC10668969 DOI: 10.3390/biomedicines11112930] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The human gastrointestinal tract houses a diverse array of probiotic and pathogenic bacteria and any alterations in this microbial composition can exert a significant influence on an individual's well-being. It is well-established that imbalances in the gut microbiota play a pivotal role in the development of liver diseases. In light of this, a new adjuvant therapy for liver diseases could be regulating the intestinal microbiota. Through fecal microbiota transplantation, patients whose microbiomes are compromised are treated with stool from healthy donors in an attempt to restore a normal microbiome and alleviate their symptoms. A review of cross-sectional studies and case reports suggests that fecal microbiota transplants may offer effective treatment for chronic liver diseases. Adding to the potential of this emerging therapy, recent research has indicated that fecal microbiota transplantation holds promise as a therapeutic approach specifically for liver cirrhosis. By introducing a diverse range of beneficial microorganisms into the gut, this innovative treatment aims to address the microbial imbalances often observed in cirrhotic patients. While further validation is still required, these preliminary findings highlight the potential impact of fecal microbiota transplantation as a novel and targeted method for managing liver cirrhosis. We aimed to summarize the current state of understanding regarding this procedure, as a new therapeutic method for liver cirrhosis, as well as to explain its clinical application and future potential.
Collapse
Affiliation(s)
- Adrian Boicean
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (V.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Victoria Birlutiu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (V.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Cristian Ichim
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (V.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Olga Brusnic
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Danusia Maria Onișor
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania
| |
Collapse
|
11
|
Poto R, Laniro G, de Paulis A, Spadaro G, Marone G, Gasbarrini A, Varricchi G. Is there a role for microbiome-based approach in common variable immunodeficiency? Clin Exp Med 2023; 23:1981-1998. [PMID: 36737487 PMCID: PMC9897624 DOI: 10.1007/s10238-023-01006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by low levels of serum immunoglobulins and increased susceptibility to infections, autoimmune disorders and cancer. CVID embraces a plethora of heterogeneous manifestations linked to complex immune dysregulation. While CVID is thought to be due to genetic defects, the exact cause of this immune disorder is unknown in the large majority of cases. Compelling evidences support a linkage between the gut microbiome and the CVID pathogenesis, therefore a potential for microbiome-based treatments to be a therapeutic pathway for this disorder. Here we discuss the potential of treating CVID patients by developing a gut microbiome-based personalized approach, including diet, prebiotics, probiotics, postbiotics and fecal microbiota transplantation. We also highlight the need for a better understanding of microbiota-host interactions in CVID patients to prime the development of improved preventive strategies and specific therapeutic targets.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità (ISS), Rome, Italy
| | - Gianluca Laniro
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
12
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
13
|
Boicean A, Bratu D, Fleaca SR, Vasile G, Shelly L, Birsan S, Bacila C, Hasegan A. Exploring the Potential of Fecal Microbiota Transplantation as a Therapy in Tuberculosis and Inflammatory Bowel Disease. Pathogens 2023; 12:1149. [PMID: 37764957 PMCID: PMC10535282 DOI: 10.3390/pathogens12091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This review explores the potential benefits of fecal microbiota transplantation (FMT) as an adjunct treatment in tuberculosis (TB), drawing parallels from its efficacy in inflammatory bowel disease (IBD). FMT has shown promise in restoring the gut microbial balance and modulating immune responses in IBD patients. Considering the similarities in immunomodulation and dysbiosis between IBD and TB, this review hypothesizes that FMT may offer therapeutic benefits as an adjunct therapy in TB. Methods: We conducted a systematic review of the existing literature on FMT in IBD and TB, highlighting the mechanisms and potential implications of FMT in the therapeutic management of both conditions. The findings contribute to understanding FMT's potential role in TB treatment and underscore the necessity for future research in this direction to fully leverage its clinical applications. Conclusion: The integration of FMT into the comprehensive management of TB could potentially enhance treatment outcomes, reduce drug resistance, and mitigate the side effects of conventional therapies. Future research endeavors should focus on well-designed clinical trials to develop guidelines concerning the safety and short- and long-term benefits of FMT in TB patients, as well as to assess potential risks.
Collapse
Affiliation(s)
- Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Dan Bratu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Sorin Radu Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Gligor Vasile
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (G.V.); (L.S.)
| | - Leeb Shelly
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (G.V.); (L.S.)
| | - Sabrina Birsan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Ciprian Bacila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Adrian Hasegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| |
Collapse
|
14
|
Ottria R, Xynomilakis O, Casati S, Abbiati E, Maconi G, Ciuffreda P. Chios Mastic Gum: Chemical Profile and Pharmacological Properties in Inflammatory Bowel Disease: From the Past to the Future. Int J Mol Sci 2023; 24:12038. [PMID: 37569412 PMCID: PMC10419108 DOI: 10.3390/ijms241512038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Chios mastic gum, the product of the tree Pistacia lentiscus var. Chia, has been used for more than 2500 years in traditional Greek medicine for treating several diseases, thanks to the anti-inflammatory and antioxidant properties of its components. Despite the long-time use of mastic in gastroenterology and in particular in chronic-inflammation-associated diseases, to date, the literature lacks reviews regarding this topic. The aim of the present work is to summarize available data on the effects of P. lentiscus on inflammatory bowel disease. A comprehensive review of this topic could drive researchers to conduct future studies aimed at deeply investigating P. lentiscus effects and hypothesizing a mechanism of action. The present review, indeed, schematizes the possible bioactive components of mastic gum. Particular care is given to P. lentiscus var. Chia medicaments' and supplements' chemical compositions and their pharmacological action in inflammatory bowel disease.
Collapse
Affiliation(s)
- Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (O.X.); (S.C.); (G.M.); (P.C.)
| | - Ornella Xynomilakis
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (O.X.); (S.C.); (G.M.); (P.C.)
| | - Silvana Casati
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (O.X.); (S.C.); (G.M.); (P.C.)
| | - Ezio Abbiati
- Phytoitalia S.r.l., Via Gran Sasso, 37, Corbetta, 20011 Milan, Italy;
| | - Giovanni Maconi
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (O.X.); (S.C.); (G.M.); (P.C.)
- Gastroenterology Unit, Luigi Sacco University Hospital, 20157 Milan, Italy
| | - Pierangela Ciuffreda
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (O.X.); (S.C.); (G.M.); (P.C.)
| |
Collapse
|
15
|
He S, Li J, Yao Z, Gao Z, Jiang Y, Chen X, Peng L. Insulin alleviates murine colitis through microbiome alterations and bile acid metabolism. J Transl Med 2023; 21:498. [PMID: 37491256 PMCID: PMC10369930 DOI: 10.1186/s12967-023-04214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/19/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Insulin has been reported to exhibit anti-inflammatory activities in the context of bowel inflammation. However, the role of the interaction between insulin and the microbiota in gut health is unclear. Our goal was to investigate the mechanism of action of insulin in bowel inflammation and the relationship between insulin and the gut microbiota. METHODS We used acute and chronic murine models of inflammatory bowel disease (IBD) to evaluate whether insulin influences the progression of colitis. Colonic tissues, the host metabolome and the gut microbiome were analyzed to investigate the relationship among insulin treatment, the microbiome, and disease. Experiments involving antibiotic (Abx) treatment and fecal microbiota transplantation (FMT) confirmed the association among the gut microbiota, insulin and IBD. In a series of experiments, we further defined the mechanisms underlying the anti-inflammatory effects of insulin. RESULTS We found that low-dose insulin treatment alleviated intestinal inflammation but did not cause death. These effects were dependent on the gut microbiota, as confirmed by experiments involving Abx treatment and FMT. Using untargeted metabolomic profiling and 16S rRNA sequencing, we discovered that the level of the secondary bile acid lithocholic acid (LCA) was notably increased and the LCA levels were significantly associated with the abundance of Blautia, Enterorhadus and Rumi-NK4A214_group. Furthermore, LCA exerted anti-inflammatory effects by activating a G-protein-coupled bile acid receptor (TGR5), which inhibited the polarization of classically activated (M1) macrophages. CONCLUSION Together, these data suggest that insulin alters the gut microbiota and affects LCA production, ultimately delaying the progression of IBD.
Collapse
Affiliation(s)
- Shuying He
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jiating Li
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Zirong Yao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Zixian Gao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yonghong Jiang
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xueqing Chen
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Liang Peng
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Li S, Xu K, Cheng Y, Chen L, Yi A, Xiao Z, Zhao X, Chen M, Tian Y, Meng W, Tang Z, Zhou S, Ruan G, Wei Y. The role of complex interactions between the intestinal flora and host in regulating intestinal homeostasis and inflammatory bowel disease. Front Microbiol 2023; 14:1188455. [PMID: 37389342 PMCID: PMC10303177 DOI: 10.3389/fmicb.2023.1188455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 07/01/2023] Open
Abstract
Pharmacological treatment of inflammatory bowel disease (IBD) is inefficient and difficult to discontinue appropriately, and enterobacterial interactions are expected to provide a new target for the treatment of IBD. We collected recent studies on the enterobacterial interactions among the host, enterobacteria, and their metabolite products and discuss potential therapeutic options. Intestinal flora interactions in IBD are affected in the reduced bacterial diversity, impact the immune system and are influenced by multiple factors such as host genetics and diet. Enterobacterial metabolites such as SCFAs, bile acids, and tryptophan also play important roles in enterobacterial interactions, especially in the progression of IBD. Therapeutically, a wide range of sources of probiotics and prebiotics exhibit potential therapeutic benefit in IBD through enterobacterial interactions, and some have gained wide recognition as adjuvant drugs. Different dietary patterns and foods, especially functional foods, are novel therapeutic modalities that distinguish pro-and prebiotics from traditional medications. Combined studies with food science may significantly improve the therapeutic experience of patients with IBD. In this review, we provide a brief overview of the role of enterobacteria and their metabolites in enterobacterial interactions, discuss the advantages and disadvantages of the potential therapeutic options derived from such metabolites, and postulate directions for further research.
Collapse
Affiliation(s)
- Siyu Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Basic Medicine College of Army Medical University, Army Medical University, Chongqing, China
| | - Kan Xu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Basic Medicine College of Army Medical University, Army Medical University, Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lu Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ailin Yi
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuefei Zhao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Minjia Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuting Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Meng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zongyuan Tang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuhong Zhou
- Department of Laboratory Animal Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
17
|
Boicean A, Birlutiu V, Ichim C, Anderco P, Birsan S. Fecal Microbiota Transplantation in Inflammatory Bowel Disease. Biomedicines 2023; 11:biomedicines11041016. [PMID: 37189634 DOI: 10.3390/biomedicines11041016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammatory bowel diseases represent a complex array of diseases of incompletely known etiology that led to gastrointestinal tract chronic inflammation. In inflammatory bowel disease, a promising method of treatment is represented by fecal microbiota transplantation (FMT), FMT has shown its increasing effectiveness and safety in recent years for recurrent CDI; moreover, it showed real clinical benefits in treating SARS-CoV-2 and CDI co-infection. Crohn’s disease and ulcerative colitis are characterized by immune dysregulation, resulting in digestive tract damage caused by immune responses. Most current therapeutic strategies are associated with high costs and many adverse effects by directly targeting the immune response, so modifying the microbial environment by FMT offers an alternative approach that could indirectly influence the host’s immune system in a safe way. Studies outline the endoscopic and clinical improvements in UC and CD in FMT patients versus control groups. This review outlines the multiple benefits of FMT in the case of IBD by improving patients unbalanced gut, therefore improving endoscopic and clinical symptomatology. We aim to emphasize the clinical importance and benefits of FMT in order to prevent flares or complications of IBD and to highlight that further validation is needed for establishing a clinical protocol for FMT in IBD.
Collapse
|
18
|
Gržinić G, Piotrowicz-Cieślak A, Klimkowicz-Pawlas A, Górny RL, Ławniczek-Wałczyk A, Piechowicz L, Olkowska E, Potrykus M, Tankiewicz M, Krupka M, Siebielec G, Wolska L. Intensive poultry farming: A review of the impact on the environment and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160014. [PMID: 36368402 DOI: 10.1016/j.scitotenv.2022.160014] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Poultry farming is one of the most efficient animal husbandry methods and it provides nutritional security to a significant number of the world population. Using modern intensive farming techniques, global production has reached 133.4 mil. t in 2020, with a steady growth each year. Such intensive growth methods however lead to a significant environmental footprint. Waste materials such as poultry litter and manure can pose a serious threat to environmental and human health, and need to be managed properly. Poultry production and waste by-products are linked to NH3, N2O and CH4 emissions, and have an impact on global greenhouse gas emissions, as well as animal and human health. Litter and manure can contain pesticide residues, microorganisms, pathogens, pharmaceuticals (antibiotics), hormones, metals, macronutrients (at improper ratios) and other pollutants which can lead to air, soil and water contamination as well as formation of antimicrobial/multidrug resistant strains of pathogens. Dust emitted from intensive poultry production operations contains feather and skin fragments, faeces, feed particles, microorganisms and other pollutants, which can adversely impact poultry health as well as the health of farm workers and nearby inhabitants. Fastidious odours are another problem that can have an adverse impact on health and quality of life of workers and surrounding population. This study discusses the current knowledge on the impact of intensive poultry farming on environmental and human health, as well as taking a look at solutions for a sustainable future.
Collapse
Affiliation(s)
- Goran Gržinić
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland.
| | - Agnieszka Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland
| | - Agnieszka Klimkowicz-Pawlas
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Rafał L Górny
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Czerniakowska Str. 16, 00-701 Warsaw, Poland
| | - Anna Ławniczek-Wałczyk
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Czerniakowska Str. 16, 00-701 Warsaw, Poland
| | - Lidia Piechowicz
- Department of Microbiology, Faculty of Medicine, Medical University of Gdansk, Dębowa Str. 25, 80-204 Gdansk, Poland
| | - Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Marta Potrykus
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Maciej Tankiewicz
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Magdalena Krupka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland
| | - Grzegorz Siebielec
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| |
Collapse
|
19
|
Ahmad N, Joji RM, Shahid M. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Front Cell Infect Microbiol 2023; 12:1065796. [PMID: 36726644 PMCID: PMC9884834 DOI: 10.3389/fcimb.2022.1065796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Antibiotic resistance is a serious threat to humanity and its environment. Aberrant usage of antibiotics in the human, animal, and environmental sectors, as well as the dissemination of resistant bacteria and resistance genes among these sectors and globally, are all contributing factors. In humans, antibiotics are generally used to treat infections and prevent illnesses. Antibiotic usage in food-producing animals has lately emerged as a major public health concern. These medicines are currently being utilized to prevent and treat infectious diseases and also for its growth-promoting qualities. These methods have resulted in the induction and spread of antibiotic resistant infections from animals to humans. Antibiotics can be introduced into the environment from a variety of sources, including human wastes, veterinary wastes, and livestock husbandry waste. The soil has been recognized as a reservoir of ABR genes, not only because of the presence of a wide and varied range of bacteria capable of producing natural antibiotics but also for the usage of natural manure on crop fields, which may contain ABR genes or antibiotics. Fears about the human health hazards of ABR related to environmental antibiotic residues include the possible threat of modifying the human microbiota and promoting the rise and selection of resistant bacteria, and the possible danger of generating a selection pressure on the environmental microflora resulting in environmental antibiotic resistance. Because of the connectivity of these sectors, antibiotic use, antibiotic residue persistence, and the existence of antibiotic-resistant bacteria in human-animal-environment habitats are all linked to the One Health triangle. The pillars of support including rigorous ABR surveillance among different sectors individually and in combination, and at national and international level, overcoming laboratory resource challenges, and core plan and action execution should be strictly implemented to combat and contain ABR under one health approach. Implementing One Health could help to avoid the emergence and dissemination of antibiotic resistance while also promoting a healthier One World. This review aims to emphasize antibiotic resistance and its regulatory approaches from the perspective of One Health by highlighting the interconnectedness and multi-sectoral nature of the human, animal, and environmental health or ill-health facets.
Collapse
Affiliation(s)
| | | | - Mohammad Shahid
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
20
|
Householder S, Picoraro JA. Diagnosis and Classification of Fistula from Inflammatory Bowel Disease and Inflammatory Bowel Disease-Related Surgery. Gastrointest Endosc Clin N Am 2022; 32:631-650. [PMID: 36202507 DOI: 10.1016/j.giec.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fistula in inflammatory bowel disease (IBD) is a well-known yet poorly understood phenotype. Pathophysiology is largely based on the activation of the epithelial-mesenchymal transition (EMT); however, interactions with the microbiome, genetics, mechanical stress and the presence of stricturing disease, and surgical complications play a role. Perianal penetrating disease represents a more severe phenotype in IBD. Pouch-associated fistula can arise as a result of an anastomotic leak, surgical complications, or Crohn's disease (CD) of the pouch. Classification is site-dependent, includes a range of severity, and informs management. It is important to determine associated symptoms and recognize the complex interplay of underlying etiologies to form the basis of appropriate care.
Collapse
Affiliation(s)
| | - Joseph A Picoraro
- Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, 622 West 168th Street, PH17-105, New York, NY 10032, USA.
| |
Collapse
|
21
|
Biazzo M, Deidda G. Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. J Clin Med 2022; 11:jcm11144119. [PMID: 35887883 PMCID: PMC9320118 DOI: 10.3390/jcm11144119] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
The human body is home to a variety of micro-organisms. Most of these microbial communities reside in the gut and are referred to as gut microbiota. Over the last decades, compelling evidence showed that a number of human pathologies are associated with microbiota dysbiosis, thereby suggesting that the reinstatement of physiological microflora balance and composition might ameliorate the clinical symptoms. Among possible microbiota-targeted interventions, pre/pro-biotics supplementations were shown to provide effective results, but the main limitation remains in the limited microbial species available as probiotics. Differently, fecal microbiota transplantation involves the transplantation of a solution of fecal matter from a donor into the intestinal tract of a recipient in order to directly change the recipient's gut microbial composition aiming to confer a health benefit. Firstly used in the 4th century in traditional Chinese medicine, nowadays, it has been exploited so far to treat recurrent Clostridioides difficile infections, but accumulating data coming from a number of clinical trials clearly indicate that fecal microbiota transplantation may also carry the therapeutic potential for a number of other conditions ranging from gastrointestinal to liver diseases, from cancer to inflammatory, infectious, autoimmune diseases and brain disorders, obesity, and metabolic syndrome. In this review, we will summarize the commonly used preparation and delivery methods, comprehensively review the evidence obtained in clinical trials in different human conditions and discuss the variability in the results and the pivotal importance of donor selection. The final aim is to stimulate discussion and open new therapeutic perspectives among experts in the use of fecal microbiota transplantation not only in Clostridioides difficile infection but as one of the first strategies to be used to ameliorate a number of human conditions.
Collapse
Affiliation(s)
- Manuele Biazzo
- The BioArte Limited, Life Sciences Park, Triq San Giljan, SGN 3000 San Gwann, Malta;
- SienabioACTIVE, University of Siena, Via Aldo Moro 1, 53100 Siena, Italy
| | - Gabriele Deidda
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: ; Tel.: +39-049-827-6125
| |
Collapse
|
22
|
Liu Q, Zhang X, Li Z, Chen Y, Yin Y, Lu Z, Ouyang M, Chen L. Maternal diets have effects on intestinal mucosal flora and susceptibility to colitis of offspring mice during early life. Nutrition 2022; 99-100:111672. [PMID: 35594632 DOI: 10.1016/j.nut.2022.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Intestinal flora is considered closely related to the occurrence of inflammatory bowel disease (IBD). This study aimed to discover whether diverse diet conditions during early life lead to different intestinal flora structure and impact different susceptibility to IBD. METHODS We performed a randomized, controlled trial to investigate the relationship between maternal diet, intestinal flora, and susceptibility of IBD in offspring mice. We treated the maternal mice with different dietary conditions (maternal high fat, high protein, or normal diet, and offspring continued maternal diets or changed to normal diet), and then extracted bacterial meta-genomic DNA from the intestinal mucosa of the offspring during the early life and adult stages. We amplified and sequenced the conserved gene v3-v4 of the bacterial 16 S ribosomal RNA. After dextran sulphate sodium intervention, we evaluated the susceptibility to intestinal inflammation with hematoxylin and eosin stains and disease activity index scores. RESULTS The number of species and alpha diversity of weaning mice (3 wk old) fed a maternal high-protein diet were significantly lower than those of the control diet group (P < 0.05). Among adult (8 wk old) offspring rats, the alpha diversity of mice that continued on a high-protein diet remained significantly decreased (P < 0.05). In addition, 12 kinds of weak bacteria were found in weaning mice fed a maternal high-protein diet compared with the control group. Offspring that continued in the maternal high-protein group had increased disease activity index and pathologic scores after weaning. CONCLUSIONS In general, our study shows that a maternal high-protein diet during early life can negatively regulate the intestinal flora diversity of offspring mice. A high-protein diet during early life led to higher susceptibility of IBD in offspring rats.
Collapse
Affiliation(s)
- Qian Liu
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Xiaomei Zhang
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Zichun Li
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Ying Chen
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Yani Yin
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Zhaoxia Lu
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Miao Ouyang
- Department of Gastroenterology, Xiangya Hospital Central South University, People's Republic of China
| | - Linlin Chen
- Fourth Department of the Digestive Disease Center, Suining Central Hospital, People's Republic of China.
| |
Collapse
|
23
|
Potruch A, Schwartz A, Ilan Y. The role of bacterial translocation in sepsis: a new target for therapy. Therap Adv Gastroenterol 2022; 15:17562848221094214. [PMID: 35574428 PMCID: PMC9092582 DOI: 10.1177/17562848221094214] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis is a leading cause of death in critically ill patients, primarily due to multiple organ failures. It is associated with a systemic inflammatory response that plays a role in the pathogenesis of the disease. Intestinal barrier dysfunction and bacterial translocation (BT) play pivotal roles in the pathogenesis of sepsis and associated organ failure. In this review, we describe recent advances in understanding the mechanisms by which the gut microbiome and BT contribute to the pathogenesis of sepsis. We also discuss several potential treatment modalities that target the microbiome as therapeutic tools for patients with sepsis.
Collapse
|
24
|
Protective Effects of Fermented Soybeans ( Cheonggukjang) on Dextran Sodium Sulfate (DSS)-Induced Colitis in a Mouse Model. Foods 2022; 11:foods11060776. [PMID: 35327199 PMCID: PMC8947378 DOI: 10.3390/foods11060776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease, and the incidence of IBD is increasing every year owing to changes in dietary structure. Although the exact pathogenesis of IBD is still unclear, recent evidence suggests that gut dysbiosis is closely associated with IBD pathogenesis. Cheonggukjang is a traditional Korean fermented soybean paste produced using traditional and industrial methods, and contains probiotics, which affect the gut microbiota composition. However, the protective effect of Cheonggukjang against IBD is unknown. In this study, we investigated the bacterial community structure of traditional and commercial Cheonggukjang samples, as well as the protective effect of Cheonggukjang on a dextran sulfate sodium (DSS)-induced colitis mouse model. Traditional and commercial Cheonggukjang were found to contain various type of useful probiotics in their bacterial community structure. Cheonggukjang reduced the progression of DSS-induced symptoms, such as body weight loss, colonic shortening, disease activity index, and histological changes. Further, Cheonggukjang improved the intestinal epithelial barrier integrity on DSS-induced colitis mice. In addition, Cheonggukjang suppressed the expression of proinflammatory cytokines and inflammatory mediators through the inactivation of NF-κB and MAPK signaling pathways. These results indicate that Cheonggukjang exerts protective effects against DSS-induced colitis, suggesting its possible application as a functional food for improving inflammatory diseases.
Collapse
|
25
|
Metformin as a Potential Treatment Option for Endometriosis. Cancers (Basel) 2022; 14:cancers14030577. [PMID: 35158846 PMCID: PMC8833654 DOI: 10.3390/cancers14030577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a common disease in women of reproductive age, and its pathogenesis seems to be largely affected by hormone imbalance, inflammation, oxidative stress, and autophagy dysregulation. These pathophysiological disturbances interact with one another through mechanisms that are still awaiting elucidation. The aim of this article is to present current knowledge regarding the possibilities of using metformin in the pharmacological treatment of endometriosis. Metformin is an insulin sensitizer widely used for the treatment of type 2 diabetes mellitus. The pleiotropic effects of metformin are mainly exerted through the activation of AMP-activated protein kinase, which is the key cellular energy homeostasis regulator that inhibits mTOR, a major autophagy suppressor. Metformin regresses endometriotic implants by increasing the activity of superoxide dismutase. It is also an inhibitor of metalloproteinase-2, decreasing the levels of the vascular endothelial growth factor and matrix metalloproteinase-9 in animal studies. In endometriosis, metformin might modify the stroma-epithelium communication via Wnt2/β-catenin. With its unique therapeutic mechanisms and no serious side effects, metformin seems to be a helpful anti-inflammatory and anti-proliferative agent in the treatment of endometriosis. It could be a missing link for the successful treatment of this chronic disease.
Collapse
|
26
|
Zhao H, Du Y, Liu L, Du Y, Cui K, Yu P, Li L, Zhu Y, Jiang W, Li Z, Tang H, Ma W. Oral Nanozyme-Engineered Probiotics for the Treatment of Ulcerative Colitis. J Mater Chem B 2022; 10:4002-4011. [PMID: 35503001 DOI: 10.1039/d2tb00300g] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Probiotic-based therapy for ulcerative colitis (UC) is a novel and promising approach that has gained much popularity in recent years. However, probiotics may be easily captured and destroyed by...
Collapse
Affiliation(s)
- Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yurong Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lei Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Pu Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Li Li
- The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo 454003, China
| | - Yanjie Zhu
- Department of Pathology, Central Hospital of Kaifeng City, KaiFeng, Henan, 475000, China
| | - Wei Jiang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
27
|
Shao Y, Wang Y, Yuan Y, Xie Y. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149205. [PMID: 34375247 DOI: 10.1016/j.scitotenv.2021.149205] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
China is one of the largest producers and consumers of antibiotics, and China is a larger producer of livestock farming and aquaculture in the world. The livestock farming and aquaculture industry is a major area of antibiotic misuse, which has caused serious antibiotic residues and environment pollution. The antibiotic residues exceeding the standard may lead to antibiotic resistances in animals or human bodies, which poses a threat to human health. In this context, this study tries to systematically review the current situation of antibiotic misuse in livestock and aquaculture in China, and put forward corresponding regulatiory measures for the central government. Based on the status quo of livestock farming and aquaculture in China, this study reviewed antibiotic misuse in livestock farming and aquaculture and antibiotic resistance in China, introduced China's current policies on antibiotic regulation and the gap between China and developed countries, and analyzed the implications of current regulatory policies on animal health and productivity. At last, we put forward suggestions for the future antibiotic regulation, including strictly implementing the relevant laws and regulations, formulating specific supporting measures, encouraging the research and development of antibiotic substitutes, introducing advanced technologies for supervision and regulation, strengthening the publicity of science popularization and enhancing the public's awareness of the rational use of antibiotics. If these policy recommendations can be implemented, they will significantly promote the regulation of antibiotic abuse.
Collapse
Affiliation(s)
- Yitian Shao
- The New Types Key Think Tank of Zhejiang Province "China Research Institute of Regulation and Public Policy", Zhejiang University of Finance & Economics, Hangzhou 310018, China; China Institute of Regulation Research, Zhejiang University of Finance & Economics, Hangzhou 310018, China
| | - Yiping Wang
- Hangzhou City Health Bureau, Hangzhou, 310005, China
| | - Yiwen Yuan
- China Institute of Regulation Research, Zhejiang University of Finance & Economics, Hangzhou 310018, China
| | - Yujing Xie
- The New Types Key Think Tank of Zhejiang Province "China Research Institute of Regulation and Public Policy", Zhejiang University of Finance & Economics, Hangzhou 310018, China; China Institute of Regulation Research, Zhejiang University of Finance & Economics, Hangzhou 310018, China.
| |
Collapse
|
28
|
|
29
|
El-Sayed A, Aleya L, Kamel M. Microbiota and epigenetics: promising therapeutic approaches? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49343-49361. [PMID: 34319520 PMCID: PMC8316543 DOI: 10.1007/s11356-021-15623-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/20/2021] [Indexed: 04/15/2023]
Abstract
The direct/indirect responsibility of the gut microbiome in disease induction in and outside the digestive tract is well studied. These results are usually from the overpopulation of certain species on the cost of others, interaction with beneficial microflora, interference with normal epigenetic control mechanisms, or suppression of the immune system. Consequently, it is theoretically possible to cure such disorders by rebalancing the microbiome inside our bodies. This can be achieved by changing the lifestyle pattern and diet or by supplementation with beneficial bacteria or their metabolites. Various approaches have been explored to manipulate the normal microbial inhabitants, including nutraceutical, supplementations with prebiotics, probiotics, postbiotics, synbiotics, and antibiotics, or through microbiome transplantation (fecal, skin, or vaginal microbiome transplantation). In the present review, the interaction between the microbiome and epigenetics and their role in disease induction is discussed. Possible future therapeutic approaches via the reestablishment of equilibrium in our internal micro-ecosystem are also highlighted.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
30
|
Zhang L, Roy S. Opioid Modulation of the Gut-Brain Axis in Opioid-Associated Comorbidities. Cold Spring Harb Perspect Med 2021; 11:a040485. [PMID: 32816876 PMCID: PMC8415294 DOI: 10.1101/cshperspect.a040485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growing evidence from animal and human studies show that opioids have a major impact on the composition and function of gut microbiota. This leads to disruption in gut permeability and altered microbial metabolites, driving both systemic and neuroinflammation, which in turn impacts central nervous system (CNS) homeostasis. Tolerance and dependence are the major comorbidities associated with prolonged opioid use. Inflammatory mediators and signaling pathways have been implicated in both opioid tolerance and dependence. We provide evidence that targeting the gut microbiome during opioid use through prebiotics, probiotics, antibiotics, and fecal microbial transplantation holds the greatest promise for novel treatments for opioid abuse. Basic research and clinical trials are required to examine what is more efficacious to yield new insights into the role of the gut-brain axis in opioid abuse.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, University of Minnesota, Minnesota McGuire Translational Research Facility, Minneapolis, Minnesota 55455, USA
| | - Sabita Roy
- Department of Pharmacology, University of Minnesota, Minnesota McGuire Translational Research Facility, Minneapolis, Minnesota 55455, USA
- Department of Surgery, University of Miami, Miami, Florida 33153, USA
| |
Collapse
|
31
|
El-Sayed A, Aleya L, Kamel M. Microbiota's role in health and diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36967-36983. [PMID: 34043164 PMCID: PMC8155182 DOI: 10.1007/s11356-021-14593-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/24/2021] [Indexed: 05/06/2023]
Abstract
The microbiome is a term that usually refers to the community of various microorganisms that inhabit/live inside human/animal bodies or on their skin. It forms a complex ecosystem that includes trillions of commensals, symbiotics, and even pathogenic microorganisms. The external environment, diet, and lifestyle are the major determinants influencing the microbiome's composition and vitality. Recent studies have indicated the tremendous influence of the microbiome on health and disease. Their number, constitution, variation, and viability are dynamic. All these elements are responsible for the induction, development, and treatment of many health disorders. Serious diseases such as cancer, metabolic disorders, cardiovascular diseases, and even psychological disorders such as schizophrenia are influenced directly or indirectly by microbiota. In addition, in the last few weeks, accumulating data about the link between COVID-19 and the microbiota were published. In the present work, the role of the microbiome in health and disease is discussed. A deep understanding of the exact role of microbiota in disease induction enables the prevention of diseases and the development of new therapeutic concepts for most diseases through the correction of diet and lifestyle. The present review brings together evidence from the most recent works and discusses suggested nutraceutical approaches for the management of COVID-19 pandemic.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
32
|
Computational Drug Repurposing Resources and Approaches for Discovering Novel Antifungal Drugs against Candida albicans N-Myristoyl Transferase. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a yeast that is an opportunistic fungal pathogen and also identified as ubiquitous polymorphic species that is mainly linked with major fungal infections in humans, particularly in the immunocompromised patients including transplant recipients, chemotherapy patients, HIV-infected patients as well as in low-birth-weight infants. Systemic Candida infections have a high mortality rate of around 29 to 76%. For reducing its infection, limited drugs are existing such as caspofungin, fluconazole, terbinafine, and amphotericin B, etc. which contain unlikable side effects and also toxic. This review intends to utilize advanced bioinformatics technologies such as Molecular docking, Scaffold hopping, Virtual screening, Pharmacophore modeling, Molecular dynamics (MD) simulation for the development of potentially new drug candidates with a drug-repurpose approach against Candida albicans within a limited time frame and also cost reductive.
Collapse
|
33
|
Luz MRMPD, Waizbort RF. [Fecal microbiota transplants in the treatment of pseudomembranous colitis (1958-2013): priority of discovery and thought styles in the academic literature]. ACTA ACUST UNITED AC 2021; 27:859-878. [PMID: 33111793 DOI: 10.1590/s0104-59702020000400009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/04/2019] [Indexed: 01/05/2023]
Abstract
In 1958, Eiseman and contributors published the first scientific paper reporting the use of fecal microbiota transplant for treating pseudomembranous colitis. The relevance of this innovative paper was only acknowledged in 1990. The academic literature on the theme is characterized by a narrative that has undergone successive revisions. We suggest that such revisions were based on claims of priority of scientific discoveries, as described by Merton. The revival of fecal microbiota transplants is interpreted as a process of genesis of a scientific fact, as defined by Fleck: there is a switch from a thought style based on the use of antibiotics to treat infectious diseases to another that accepts the ecological relations between hosts, vectors and parasites.
Collapse
|
34
|
Shivaji S. A systematic review of gut microbiome and ocular inflammatory diseases: Are they associated? Indian J Ophthalmol 2021; 69:535-542. [PMID: 33595467 PMCID: PMC7942081 DOI: 10.4103/ijo.ijo_1362_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The primary focus of this review was to establish the possible association of dysbiotic changes in the gut bacterial microbiomes with both intestinal and extra-intestinal diseases with emphasis on ocular diseases such as bacterial keratitis, fungal keratitis, uveitis, age-related macular degeneration, and ocular mucosal diseases. For this particular purpose, a systematic search was conducted using PubMed and Google Scholar for publications related to gut microbiome and human health (using the keywords: gut microbiome, ocular disease, dysbiosis, keratitis, uveitis, and AMD). The predictions are that microbiome studies would help to unravel dysbiotic changes in the gut bacterial microbiome at the taxonomic and functional level and thus form the basis to mitigate inflammatory diseases of the eye by using nutritional supplements or fecal microbiota transplantation.
Collapse
Affiliation(s)
- Sisinthy Shivaji
- Scientist Emeritus and Distinguished Scientist, Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
35
|
Deng J, Ding QM, Jia MX, Li W, Zuberi Z, Wang JH, Ren JL, Fu D, Zeng XX, Luo JF. Biosafety risk assessment of nanoparticles: Evidence from food case studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116662. [PMID: 33582638 DOI: 10.1016/j.envpol.2021.116662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 05/04/2023]
Abstract
Nanotechnology provides a wide range of benefits in the food industry in improving food tastes, textures, sensations, quality, shelf life, and food safety. Recently, potential adverse effects such as toxicity and safety concerns have been associated with the increasing use of engineered nanoparticles in food industry. Additionally, very limited information is known concerning the behavior, properties and effects of food nano-materials in the gastrointestinal tract. There is explores the current advances and provides insights of the potential risks of nanoparticles in the food industry. Specifically, characteristics of food nanoparticles and their absorption in the gastrointestinal tract, the effects of food nanoparticles against the gastrointestinal microflora, and the potential toxicity mechanisms in different organs and body systems are discussed. This review would provide references for further investigation of nano-materials toxicity effect in foods and their molecular mechanisms. It will help to develop safer foods and expand nano-materials applications in safe manner.
Collapse
Affiliation(s)
- Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Packaging and Material Engineering, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Quan Ming Ding
- College of Packaging and Material Engineering, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Ming Xi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Packaging and Material Engineering, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Zavuga Zuberi
- Department of Science and Laboratory Technology, Dar Es Salaam Institute of Technology, P.O. Box 2958, Dar Es Salaam, Tanzania
| | - Jian Hui Wang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Jia Li Ren
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiao Xi Zeng
- College of Packaging and Material Engineering, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jun Fei Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| |
Collapse
|
36
|
Moon CM, Hong SN. Fecal Microbiota Transplantation beyond Clostridioides Difficile Infection. Clin Endosc 2021; 54:149-151. [PMID: 33765728 PMCID: PMC8039751 DOI: 10.5946/ce.2021.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
With advancing analytical methods for gut microbes, many studies have been conducted, revealing that gut microbes cause various diseases, including gastrointestinal and non-gastrointestinal diseases. Accordingly, studies have been actively conducted to analyze the effects on the prevention and treatment of these diseases through changes in intestinal microbes and control of dysbiosis. Fecal microbiota transplantation (FMT) is an effort and is currently being applied to Clostridioides difficile treatment in Korea. Many studies have demonstrated the application of FMT in inflammatory bowel disease, irritable bowel syndrome, non-alcoholic fatty liver disease, metabolic syndrome, obesity, and diabetes. With further studies and accumulation of evidence, FMT could help treat presently untreatable diseases in clinical practice.
Collapse
Affiliation(s)
- Chang Mo Moon
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Gryaznova MV, Solodskikh SA, Panevina AV, Syromyatnikov MY, Dvoretskaya YD, Sviridova TN, Popov ES, Popov VN. Study of microbiome changes in patients with ulcerative colitis in the Central European part of Russia. Heliyon 2021; 7:e06432. [PMID: 33748490 PMCID: PMC7970149 DOI: 10.1016/j.heliyon.2021.e06432] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 01/05/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease that affects the colon and rectum. Recently, evidence has emerged about the influence of microbiota on the development of this disease. However, studies on the role of intestinal microbiota in the pathogenesis of UC have been incomplete. In addition, there are no comprehensive studies of the causes of ulcerative colitis and data on the microbiological composition of the intestines of patients with ulcerative colitis in Russia. We carried out a study of the microbiological composition of the intestines of patients with ulcerative colitis and healthy individuals. We found significant changes in the bacteria genera and species in patients with UC compared with the control group using sequencing on the IonTorrent PGM system and subsequent data analysis. In our study we observed a significant increase of the genus Haemophilus, Olsenella, Prevotella, Cedecea, Peptostreptococcus, Faecalibacterium, Lachnospira, Negativibacillus, Butyrivibrio, and the species Bacteroides coprocola, Phascolarctobacterium succinatutens, Dialister succinatiphilus, Sutterella wadsworthensis, Faecalibacterium prausnitzii in patients with ulcerative colitis. In addition, in patients with ulcerative colitis there was a significant decrease in the genus Fusicatenibacter, Butyricimonas, Lactococcus, Eisenbergiella, Coprobacter, Cutibacterium, Falsochrobactrum, Brevundimonas, Yersinia, Leuconostoc and in the species Fusicatenibacter saccharivorans. We found confirmation of our data with literary sources and studies of UC. In addition, we discovered a few taxa such as Negativibacillus spp. and Falsochrobactrum spp. that have not been previously found in human stool samples. Our data confirm that more research is needed to understand the role of microbiome changes in the development of UC in different people populations.
Collapse
Affiliation(s)
- M V Gryaznova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - S A Solodskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - A V Panevina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - M Y Syromyatnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yu D Dvoretskaya
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - T N Sviridova
- Department of Hospital Therapy and Endocrinology, Voronezh State Medical University Named After N.N. Burdenko, 394036 Voronezh, Russia.,Family Medicine Center "Olympus of Health", 394036 Voronezh, Russia
| | - E S Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - V N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| |
Collapse
|
38
|
Chen DL, Dai YC, Zheng L, Chen YL, Zhang YL, Tang ZP. Features of the gut microbiota in ulcerative colitis patients with depression: A pilot study. Medicine (Baltimore) 2021; 100:e24845. [PMID: 33607855 PMCID: PMC7899815 DOI: 10.1097/md.0000000000024845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 01/05/2023] Open
Abstract
Despite the establishment of the links between ulcerative colitis (UC) and depression, between UC and gut microbiota, few correlations between depression and gut microbiota have yet been demonstrated especially in ulcerative colitis patients. The objective of our study was therefore to determine whether the comorbidity of depressive disorder in ulcerative colitis patients correlate with alterations in the gut microbiota and to identify the specific microbiota signatures associated with depression.Between March 2017 and February 2018, 31 healthy volunteers, 31 UC patients without depression, and 31 UC patients with depression from Longhua Hospital were enrolled. Clinical data and fecal samples were collected for each patient. Fecal bacteria were identified using 16 s rRNA sequencing. We compared microbial composition among the 3 groups using bioinformatic analysis.Patients with UC with depression had higher disease severity (P < .05). The UC without depression group had moderate reduction of microbial abundance and uniformity compared to the control group. The UC with depression group had the lowest microbial abundance. With regard to the vital bacteria in the microbiota-gut-brain axis, patients with UC and depression had the lowest abundance of Firmicutes, Clostridia, and Clostridiales but the highest abundance of Proteobacteria, Gammaproteobacteria, and Bacilli.The presence of depression in UC patients presented significant differences in the composition of gut microbiota compared with UC patients without depression, with increased abundance of Firmicutes and reduced abundance of Proteobacteria.
Collapse
Affiliation(s)
- De-Liang Chen
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai
- Department of Tuina, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province
| | - Yan-Cheng Dai
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Lie Zheng
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Shaanxi Province, Xi’an, Shaanxi Province
| | - You-Lan Chen
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ya-Li Zhang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Zhi-Peng Tang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai
| |
Collapse
|
39
|
Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. WATER 2020. [DOI: 10.3390/w12123313] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The release of antibiotics to the environment, and the consequences of the presence of persistent antimicrobial residues in ecosystems, have been the subject of numerous studies in all parts of the world. The overuse and misuse of antibiotics is a common global phenomenon, which substantially increases the levels of antibiotics in the environment and the rates of their spread. Today, it can be said with certainty that the mass production and use of antibiotics for purposes other than medical treatment has an impact on both the environment and human health. This review aims to track the pathways of the environmental distribution of antimicrobials and identify the biological effects of their subinhibitory concentration in different environmental compartments; it also assesses the associated public health risk and government policy interventions needed to ensure the effectiveness of existing antimicrobials. The recent surge in interest in this issue has been driven by the dramatic increase in the number of infections caused by drug-resistant bacteria worldwide. Our study is in line with the global One Health approach.
Collapse
|
40
|
Bernardazzi C, Xu H, Tong H, Laubitz D, Figliuolo da Paz V, Curiel L, Ghishan FK. An indisputable role of NHE8 in mucosal protection. Am J Physiol Gastrointest Liver Physiol 2020; 319:G421-G431. [PMID: 32755385 PMCID: PMC7654648 DOI: 10.1152/ajpgi.00246.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The loss of the intestinal Na+/H+ exchanger isoform 8 (NHE8) results in an ulcerative colitis-like condition with reduction of mucin production and dysbiosis, indicating that NHE8 plays an important role in intestinal mucosal protection. The aim of this study was to investigate the potential rebalance of the altered microbiota community of NHE8-deficient mice via fecal microbiota transplantation (FMT) and feeding probiotic VSL#3. We also aimed to stimulate mucin production by sodium butyrate administration via enema. Data from 16S rRNA sequencing showed that loss of NHE8 contributes to colonic microbial dysbiosis with reduction of butyrate-producing bacteria. FMT increased bacterial adhesion in the colon in NHE8 knockout (NHE8KO) mice. Periodic-acid Schiff reagent (PAS) stain and quantitative PCR showed no changes in mucin production during FMT. In mice treated with the probiotic VSL#3, a reduction of Lactobacillus and segmented filamentous bacteria (SFB) in NHE8KO mouse colon was detected and an increase in goblet cell theca was observed. In NHE8KO mice receiving sodium butyrate (NaB), 1 mM NaB stimulated Muc2 expression without changing goblet cell theca, but 10 mM NaB induced a significant reduction of goblet cell theca without altering Muc2 expression. Furthermore, 5 mM and 10 mM NaB-treated HT29-MTX cells displayed increased apoptosis, while 0.5 mM NaB stimulated Muc2 gene expression. These data showed that loss of NHE8 leads to dysbiosis with reduction of butyrate-producing bacteria and FMT and VSL#3 failed to rebalance the microbiota in NHE8KO mice. Therefore, FMT, VSL#3, and NaB are not able to restore mucin production in the absence of NHE8 in the intestine.NEW & NOTEWORTHY Loss of Na+/H+ exchanger isoform 8 (NHE8), a Slc9 family of exchanger that contributes to sodium uptake, cell volume regulation, and intracellular pH homeostasis, resulted in dysbiosis with reduction of butyrate-producing bacteria and decrease of Muc2 production in the intestine in mice. Introducing fecal microbiota transplantation (FMT) and VSL#3 in NHE8 knockout (NHE8KO) mice failed to rebalance the microbiota in these mice. Furthermore, administration of FMT, VSL#3, and sodium butyrate was unable to restore mucin production in the absence of NHE8 in the intestine.
Collapse
Affiliation(s)
| | - Hua Xu
- Steele Children's Research Center, University of Arizona, Tucson, Arizona
| | - Huan Tong
- Steele Children's Research Center, University of Arizona, Tucson, Arizona
| | - Daniel Laubitz
- Steele Children's Research Center, University of Arizona, Tucson, Arizona
| | | | - Leslie Curiel
- Steele Children's Research Center, University of Arizona, Tucson, Arizona
| | - Fayez K. Ghishan
- Steele Children's Research Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
41
|
Gulati M, Singh SK, Corrie L, Kaur IP, Chandwani L. Delivery routes for faecal microbiota transplants: Available, anticipated and aspired. Pharmacol Res 2020; 159:104954. [DOI: 10.1016/j.phrs.2020.104954] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
|
42
|
Sood A, Singh A, Midha V, Mahajan R, Kao D, Rubin DT, Bernstein CN. Fecal Microbiota Transplantation for Ulcerative Colitis: An Evolving Therapy. CROHN'S & COLITIS 360 2020; 2:otaa067. [PMID: 36777748 PMCID: PMC9802301 DOI: 10.1093/crocol/otaa067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Fecal microbiota transplantation (FMT) is currently an approved treatment for recurrent and refractory Clostridioides difficile infection. However, its use in ulcerative colitis is at an early stage and significant gaps remain in our understanding of the mechanisms and logistics of its practical application. Methods and results This article aims to look into specific issues which remain unsettled for use of FMT in ulcerative colitis including donor and recipient selection, route of administration, and duration of therapy. We also discuss optimal ways to assess response to FMT and the current state of FMT regulations. In addition, we postulate the impact of diet on the microbiome profile of the donor and recipient. We also suggest a change in the nomenclature from FMT to fecal microbiome transfer. Conclusion FMT is an evolving therapy. There are several considerations for its use in UC but its use and role should be directed by further clinical trials.
Collapse
Affiliation(s)
- Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, India
| | - Arshdeep Singh
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, India
| | - Vandana Midha
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, India
| | - Ramit Mahajan
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, India
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - David T Rubin
- Inflammatory Bowel Disease Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Charles N Bernstein
- University of Manitoba IBD Clinical and Research Centre and Section of Gastroenterology, Department of Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Address correspondence to: Charles N. Bernstein, MD, University of Manitoba, 804-715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada ()
| |
Collapse
|
43
|
Zhang P, Liu J, Xiong B, Zhang C, Kang B, Gao Y, Li Z, Ge W, Cheng S, Hao Y, Shen W, Yu S, Chen L, Tang X, Zhao Y, Zhang H. Microbiota from alginate oligosaccharide-dosed mice successfully mitigated small intestinal mucositis. MICROBIOME 2020; 8:112. [PMID: 32711581 PMCID: PMC7382812 DOI: 10.1186/s40168-020-00886-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/30/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND The increasing incidence of cancer and intestinal mucositis induced by chemotherapeutics are causing worldwide concern. Many approaches such as fecal microbiota transplantation (FMT) have been used to minimize mucositis. However, it is still unknown whether FMT from a donor with beneficial gut microbiota results in more effective intestinal function in the recipient. Recently, we found that alginate oligosaccharides (AOS) benefit murine gut microbiota through increasing "beneficial" microbes to rescue busulfan induced mucositis. RESULTS In the current investigation, FMT from AOS-dosed mice improved small intestine function over FMT from control mice through the recovery of gene expression and an increase in the levels of cell junction proteins. FMT from AOS-dosed mice showed superior benefits over FMT from control mice on recipient gut microbiotas through an increase in "beneficial" microbes such as Leuconostocaceae and recovery in blood metabolome. Furthermore, the correlation of gut microbiota and blood metabolites suggested that the "beneficial" microbe Lactobacillales helped with the recovery of blood metabolites, while the "harmful" microbe Mycoplasmatales did not. CONCLUSION The data confirm our hypothesis that FMT from a donor with superior microbes leads to a more profound recovery of small intestinal function. We propose that gut microbiota from naturally produced AOS-treated donor may be used to prevent small intestinal mucositis induced by chemotherapeutics or other factors in recipients. Video Abstract.
Collapse
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jing Liu
- University Research Core, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Bohui Xiong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Cong Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Beining Kang
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yishan Gao
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Zengkuan Li
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Shunfeng Cheng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yanan Hao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Shuai Yu
- Center for Reproductive Medicine, Urology Department, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
44
|
Tang LL, Feng WZ, Cheng JJ, Gong YN. Clinical remission of ulcerative colitis after different modes of faecal microbiota transplantation: a meta-analysis. Int J Colorectal Dis 2020; 35:1025-1034. [PMID: 32388604 DOI: 10.1007/s00384-020-03599-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, recurrent and destructive disease of the gastrointestinal tract. Faecal microbiota transplantation (FMT) is a therapeutic measure in which faecal microbiota from healthy people is transplanted into patients. AIM To systematically evaluate the safety and effectiveness of treating UC with different modes of FMT. METHODS Seven databases were searched by two independent researchers and studies related to randomized controlled trials were included in the analysis. RESULTS Seven studies on UC involving 431 patients were included in the analysis. The results showed that FMT had better efficacy than placebo (OR = 2.29, 95% CI 1.48-3.53, P = 0.0002). Subgroup analyses of influencing factors showed that frozen faeces from multiple donors delivered via the lower gastrointestinal tract had a better curative effect than placebo (OR = 2.76, 95% CI 1.59-4.79, P = 0.0003; OR = 2.93, 95% CI 1.67-5.71, P = 0.0002; and OR = 2.70, 95% CI 1.67-4.37, P < 0.0001); the difference in efficacy between mixed faeces from a single donor transplanted through the upper gastrointestinal tract and placebo was not significant(P = 0.05, P = 0.09 and P = 0.98). The analysis of side effects showed no significant difference between FMT and placebo (P = 0.43). CONCLUSIONS It may be safe and effective to transplant frozen faeces from multiple donors through the lower gastrointestinal tract to treat UC.
Collapse
Affiliation(s)
- Li-Li Tang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Zhe Feng
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.
| | - Jia-Jun Cheng
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yan-Ni Gong
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
45
|
Ben Y, Hu M, Zhang X, Wu S, Wong MH, Wang M, Andrews CB, Zheng C. Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water. WATER RESEARCH 2020; 175:115699. [PMID: 32200333 DOI: 10.1016/j.watres.2020.115699] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 05/27/2023]
Abstract
Human exposure to antibiotic residues in drinking water has not been well evaluated. This study is the first attempt to simultaneously and efficiently identify and quantify 92 antibiotic residues in filtered tap water (multistage filtration at the tap) (n = 36) collected from 10 areas of a large city in southern China, 10 Chinese brands of bottled/barreled water (n = 30) and six foreign brands of bottled water (n = 18) obtained from the Chinese market. The average and median concentrations of all the detected antibiotic compounds was 182 and 92 ng/L in filtered tap water, 180 and 105 ng/L in Chinese brands of bottled/barreled water, and 666 and 146 ng/L in foreign brands of bottled water, respectively. A total of 58 antibiotics were detected in the filtered tap water, and 45 and 36 antibiotics were detected in the Chinese and foreign brands of bottled water, respectively. More types of antibiotics were detected in Chinese brands of bottled water than in the other bottled waters. In addition, Chinese waters had high roxithromycin concentrations, while the foreign brands of bottled water had high concentrations of dicloxacillin. The average and median values of the estimated overall daily intake of all the detected antibiotics were 4.3 and 2.3 ng/kg/day when only filtered tap water was drunk, 4.0 and 2.5 ng/kg/day when Chinese brands of bottled water was drunk, and 16.0 and 4.9 ng/kg/day when foreign brands of bottled water was drunk. Further study is needed to develop a more comprehensive estimation of human exposure to antibiotic residues in the environment and a more in-depth understanding of the potential hazard of ingested antibiotic residues to the human microbiome.
Collapse
Affiliation(s)
- Yujie Ben
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xingyue Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shimin Wu
- IER Environmental Protection Engineering Technology Co., Ltd., Shenzhen, 518071, China
| | - Ming Hung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Mingyu Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Charles B Andrews
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
46
|
A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat Biomed Eng 2020; 4:624-635. [PMID: 32251391 DOI: 10.1038/s41551-020-0534-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Technologies for the longitudinal monitoring of a person's health are poorly integrated with clinical workflows, and have rarely produced actionable biometric data for healthcare providers. Here, we describe easily deployable hardware and software for the long-term analysis of a user's excreta through data collection and models of human health. The 'smart' toilet, which is self-contained and operates autonomously by leveraging pressure and motion sensors, analyses the user's urine using a standard-of-care colorimetric assay that traces red-green-blue values from images of urinalysis strips, calculates the flow rate and volume of urine using computer vision as a uroflowmeter, and classifies stool according to the Bristol stool form scale using deep learning, with performance that is comparable to the performance of trained medical personnel. Each user of the toilet is identified through their fingerprint and the distinctive features of their anoderm, and the data are securely stored and analysed in an encrypted cloud server. The toilet may find uses in the screening, diagnosis and longitudinal monitoring of specific patient populations.
Collapse
|
47
|
Jiménez-Avalos JA, Arrevillaga-Boni G, González-López L, García-Carvajal ZY, González-Avila M. Classical methods and perspectives for manipulating the human gut microbial ecosystem. Crit Rev Food Sci Nutr 2020; 61:234-258. [PMID: 32114770 DOI: 10.1080/10408398.2020.1724075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A healthy Human Gut Microbial Ecosystem (HGME) is a necessary condition for maintaining the orderly function of the whole body. Major alterations in the normal gut microbial composition, activity and functionality (dysbiosis) by an environmental or host-related disruptive event, can compromise metabolic, inflammatory, and neurological processes, causing disorders such as obesity, inflammatory bowel disease, colorectal cancer, and depressive episodes. The restore or the maintaining of the homeostatic balance of Gut Microbiota (GM) populations (eubiosis) is possible through diet, the use of probiotics, prebiotics, antibiotics, and even Fecal Microbiota Transplantation (FMT). Although these "classic methods" represent an effective and accepted way to modulate GM, the complexity of HGME requires new approaches to control it in a more appropriate way. Among the most promising emergent strategies for modulating GM are the use of engineered nanomaterials (metallic nanoparticles (NP), polymeric-NP, quantum dots, micelles, dendrimers, and liposomes); phagotherapy (i.e., phages linked with the CRISPR/Cas9 system), and the use of antimicrobial peptides, non-antibiotic drugs, vaccines, and immunoglobulins. Here we review the current state of development, implications, advantages, disadvantages, and perspectives of the different approaches for manipulating HGME.
Collapse
Affiliation(s)
- Jorge Armando Jiménez-Avalos
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Gerardo Arrevillaga-Boni
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | | | - Zaira Yunuen García-Carvajal
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Marisela González-Avila
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| |
Collapse
|
48
|
Komaki S, Haque A, Miyazaki H, Matsumoto T, Nakamura S. Unexpected effect of probiotics by Lactococcus lactis subsp. lactis against colitis induced by dextran sulfate sodium in mice. J Infect Chemother 2020; 26:549-553. [PMID: 32122783 DOI: 10.1016/j.jiac.2020.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
Abstract
Ulcerative colitis (UC) is a representative intestinal chronic inflammatory disease whose incidence is rapidly increasing worldwide. It was previously shown that some specific probiotics help to guard against UC. In this study, we analyzed the effect of Lactococcus lactis subsp. lactis JCM5805 (L. lactis), which has been put to practical use as a probiotic, on the pathogenesis of UC using a dextran sulfate sodium-induced colitis mouse model. Survival rate, length, and histopathological parameters of the colon were elucidated. Further, the concentrations of inflammatory cytokines in serum were measured. As a result, the oral administration of high-dose L. lactis showed significant decreases in survival rate and colon length. Histopathological analysis showed that a bleeding appearance was observed in the L. lactis group, and the histology scores in the L. lactis group were significantly higher than those in the normal saline group. Furthermore, the levels of interferon gamma, tumor necrosis factor alpha, and interleukin-6 were significantly elevated in the L. lactis group. These results support that high-dose administration of L. lactis deteriorates intestinal inflammation and suggest that the careful selection of probiotics strains and administration dose is important for improving colitis including UC.
Collapse
Affiliation(s)
- Shinichirou Komaki
- Department of Microbiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | - Anwarul Haque
- International University of Health and Welfare, School of Medicine, Kozunomori 4-3, Narita City, Chiba, 286-8686, Japan
| | - Haruko Miyazaki
- Department of Microbiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Tetsuya Matsumoto
- International University of Health and Welfare, School of Medicine, Kozunomori 4-3, Narita City, Chiba, 286-8686, Japan
| | - Shigeki Nakamura
- Department of Microbiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
49
|
Younis N, Zarif R, Mahfouz R. Inflammatory bowel disease: between genetics and microbiota. Mol Biol Rep 2020; 47:3053-3063. [PMID: 32086718 DOI: 10.1007/s11033-020-05318-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease that can involve any part of the gastrointestinal tract. It includes two main disorders: Crohn's disease (CD) and Ulcerative colitis (UC). CD and UC often share a similar clinical presentation; however, they affect distinct parts of the GI Tract with a different gut wall inflammatory extent. Ultimately, IBD seems to emanate from an uncontrollably continuous inflammatory process arising against the intestinal microbiome in a genetically susceptible individual. It is a multifactorial disease stemming from the impact of both environmental and genetic components on the intestinal microbiome. Furthermore, IBD genetics has gained a lot of attention. Around 200 loci were identified as imparting an increased risk for IBD. Few of them were heavily investigated and determined as highly linked to IBD. These genes, as discussed below, include NOD2, ATG16L1, IRGM, LRRK2, PTPN2, IL23R, Il10, Il10RA, Il10RB, CDH1 and HNF4α among others. Consequently, the incorporation of a genetic panel covering these key genes would markedly enhance the diagnosis and evaluation of IBD.
Collapse
Affiliation(s)
- Nour Younis
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Cairo Street, Beirut, Lebanon
| | - Rana Zarif
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Cairo Street, Beirut, Lebanon
| | - Rami Mahfouz
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Cairo Street, Beirut, Lebanon.
| |
Collapse
|
50
|
Mizuno S, Ono K, Mikami Y, Naganuma M, Fukuda T, Minami K, Masaoka T, Terada S, Yoshida T, Saigusa K, Hirahara N, Miyata H, Suda W, Hattori M, Kanai T. 5-Aminosalicylic acid intolerance is associated with a risk of adverse clinical outcomes and dysbiosis in patients with ulcerative colitis. Intest Res 2020; 18:69-78. [PMID: 32013315 PMCID: PMC7000647 DOI: 10.5217/ir.2019.00084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/06/2019] [Indexed: 01/01/2023] Open
Abstract
Background/Aims 5-Aminosalicylic acid (ASA) causes intolerance reactions in some patients. This study was performed to examine the prognosis of patients with ulcerative colitis (UC) and 5-ASA intolerance, and to evaluate the potential interaction between 5-ASA intolerance and the intestinal microbiota. Methods We performed a retrospective cohort study of patients with UC who visited participating hospitals. The primary endpoint was to compare the incidence of hospitalization within 12 months between the 5-ASA intolerance group and the 5-ASA tolerance group. The secondary endpoint was to compare the risk of adverse clinical outcomes after the start of biologics between the 2 groups. We also assessed the correlation between 5-ASA intolerance and microbial change in an independently recruited cohort of patients with UC. Results Of 793 patients, 59 (7.4%) were assigned to the 5-ASA intolerance group and 734 (92.5%) were assigned to the 5-ASA tolerance group. The admission rate and incidence of corticosteroid use were significantly higher in the intolerance than tolerance group (P< 0.001). In 108 patients undergoing treatment with anti-tumor necrosis factor biologics, 5-ASA intolerance increased the incidence of additional induction therapy after starting biologics (P< 0.001). The 5-ASA intolerance group had a greater abundance of bacteria in the genera Faecalibacterium, Streptococcus, and Clostridium than the 5-ASA tolerance group (P< 0.05). Conclusions In patients with UC, 5-ASA intolerance is associated with a risk of adverse clinical outcomes and dysbiosis. Bacterial therapeutic optimization of 5-ASA administration may be important for improving the prognosis of patients with UC.
Collapse
Affiliation(s)
- Shinta Mizuno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Fukuda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Minami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuhiro Masaoka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | - Takeshi Yoshida
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama, Japan
| | - Keiichiro Saigusa
- Department of Gastroenterology and Hepatology, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Norimichi Hirahara
- Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan
| | - Hiroaki Miyata
- Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|