1
|
Giraldo-Lorza JM, Leidy C, Manrique-Moreno M. The Influence of Cholesterol on Membrane Targeted Bioactive Peptides: Modulating Peptide Activity Through Changes in Bilayer Biophysical Properties. MEMBRANES 2024; 14:220. [PMID: 39452832 PMCID: PMC11509253 DOI: 10.3390/membranes14100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Cholesterol is a biological molecule that is essential for cellular life. It has unique features in terms of molecular structure and function, and plays an important role in determining the structure and properties of cell membranes. One of the most recognized functions of cholesterol is its ability to increase the level of lipid packing and rigidity of biological membranes while maintaining high levels of lateral mobility of the bulk lipids, which is necessary to sustain biochemical signaling events. There is increased interest in designing bioactive peptides that can act as effective antimicrobial agents without causing harm to human cells. For this reason, it becomes relevant to understand how cholesterol can affect the interaction between bioactive peptides and lipid membranes, in particular by modulating the peptides' ability to penetrate and disrupt the membranes through these changes in membrane rigidity. Here we discuss cholesterol and its role in modulating lipid bilayer properties and discuss recent evidence showing how cholesterol modulates bioactive peptides to different degrees.
Collapse
Affiliation(s)
- Juan M. Giraldo-Lorza
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| |
Collapse
|
2
|
Yue L, Nakagawa Y, Ebara M. Design of Apoptotic Cell-Inspired Particles as a Blood Coagulation Test. Biomimetics (Basel) 2024; 9:367. [PMID: 38921247 PMCID: PMC11202003 DOI: 10.3390/biomimetics9060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The blood coagulation test is an indispensable test for monitoring the blood coagulation and fibrinolysis functions. Currently, activated partial thromboplastin time (APTT) is the most widely used approach to coagulation testing. However, APTT reagents need to be optimized due to the fact that they are unstable, highly variable, and cannot be easily controlled. In this study, we created apoptotic cell-inspired methacryloyloxyethyl phosphorylserine (MPS) particles for blood coagulation as an alternative to conventional APTT reagents. Particle size could be controlled by changing the concentration of the polymer. The blood coagulation ability of particles was stable at different environmental temperatures. Moreover, the procoagulant activity could be enhanced by increasing the concentration to 0.06 mg/mL and reducing the size of the particles to around 900 nm. Fibrin clotted by particles showed no significant difference from that formed by APTT regent Actin FSL. We propose that MPS particles are a potential alternative to Actin FS for the application of blood coagulation tests.
Collapse
Affiliation(s)
- Liang Yue
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Ibaraki, Japan
| | - Yasuhiro Nakagawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Ibaraki, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
3
|
Kunzelmann K, Ousingsawat J, Schreiber R. VSI: The anoctamins: Structure and function: "Intracellular" anoctamins. Cell Calcium 2024; 120:102888. [PMID: 38657371 DOI: 10.1016/j.ceca.2024.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Plasma membrane localized anoctamin 1, 2 and 6 (TMEM16A, B, F) have been examined in great detail with respect to structure and function, but much less is known about the other seven intracellular members of this exciting family of proteins. This is probably due to their limited accessibility in intracellular membranous compartments, such as the endoplasmic reticulum (ER) or endosomes. However, these so-called intracellular anoctamins are also found in the plasma membrane (PM) which adds to the confusion regarding their cellular role. Probably all intracellular anoctamins except of ANO8 operate as intracellular phospholipid (PL) scramblases, allowing for Ca2+-activated, passive transport of phospholipids like phosphatidylserine between both membrane leaflets. Probably all of them also conduct ions, which is probably part of their physiological function. In this brief overview, we summarize key findings on the biological functions of ANO3, 4, 5, 7, 8, 9 and 10 (TMEM16C, D, E, G, H, J, K) that are gradually coming to light. Compartmentalized regulation of intracellular Ca2+ signals, tethering of the ER to specific PM contact sites, and control of intracellular vesicular trafficking appear to be some of the functions of intracellular anoctamins, while loss of function and abnormal expression are the cause for various diseases.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| |
Collapse
|
4
|
Goh MWS, Tozawa Y, Tero R. Assembly of Cell-Free Synthesized Ion Channel Molecules in Artificial Lipid Bilayer Observed by Atomic Force Microscopy. MEMBRANES 2023; 13:854. [PMID: 37999340 PMCID: PMC10673230 DOI: 10.3390/membranes13110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Artificial lipid bilayer systems, such as vesicles, black membranes, and supported lipid bilayers (SLBs), are valuable platforms for studying ion channels at the molecular level. The reconstitution of the ion channels in an active form is a crucial process in studies using artificial lipid bilayer systems. In this study, we investigated the assembly of the human ether-a-go-go-related gene (hERG) channel prepared in a cell-free synthesis system. AFM topographies revealed the presence of protrusions with a uniform size in the entire SLB that was prepared with the proteoliposomes (PLs) incorporating the cell-free-synthesized hERG channel. We attributed the protrusions to hERG channel monomers, taking into consideration the AFM tip size, and identified assembled structures of the monomer that exhibited dimeric, trimeric, and tetrameric-like arrangements. We observed molecular images of the functional hERG channel reconstituted in a lipid bilayer membrane using AFM and quantitatively evaluated the association state of the cell-free synthesized hERG channel.
Collapse
Affiliation(s)
- Melvin Wei Shern Goh
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan;
| | - Ryugo Tero
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| |
Collapse
|
5
|
Krok E, Stephan M, Dimova R, Piatkowski L. Tunable biomimetic bacterial membranes from binary and ternary lipid mixtures and their application in antimicrobial testing. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184194. [PMID: 37328023 DOI: 10.1016/j.bbamem.2023.184194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
The reconstruction of accurate yet simplified mimetic models of cell membranes is a very challenging goal of synthetic biology. To date, most of the research focuses on the development of eukaryotic cell membranes, while reconstitution of their prokaryotic counterparts has not been fully addressed, and the proposed models do not reflect well the complexity of bacterial cell envelopes. Here, we describe the reconstitution of biomimetic bacterial membranes with an increasing level of complexity, developed from binary and ternary lipid mixtures. Giant unilamellar vesicles composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE); PC and phosphatidylglycerol (PG); PE and PG; PE, PG and cardiolipin (CA) at varying molar ratios were successfully prepared by the electroformation method. Each of the proposed mimetic models focuses on reproducing specific membrane features such as membrane charge, curvature, leaflets asymmetry, or the presence of phase separation. GUVs were characterized in terms of size distribution, surface charge, and lateral organization. Finally, the developed models were tested against the lipopeptide antibiotic daptomycin. The obtained results showed a clear dependency of daptomycin binding efficiency on the amount of negatively charged lipid species present in the membrane. We anticipate that the models proposed here can be applied not only in antimicrobial testing but also serve as platforms for studying fundamental biological processes in bacteria as well as their interaction with physiologically relevant biomolecules.
Collapse
Affiliation(s)
- Emilia Krok
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland; Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| | - Mareike Stephan
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| | - Lukasz Piatkowski
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland
| |
Collapse
|
6
|
Yoda T. Charged Lipids Influence Phase Separation in Cell-Sized Liposomes Containing Cholesterol or Ergosterol. MEMBRANES 2022; 12:membranes12111121. [PMID: 36363676 PMCID: PMC9697951 DOI: 10.3390/membranes12111121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
Positively charged ion species and charged lipids play specific roles in biochemical processes, especially those involving cell membranes. The cell membrane and phase separation domains are attractive research targets to study signal transduction. The phase separation structure and functions of cell-sized liposomes containing charged lipids and cholesterol have been investigated earlier, and the domain structure has also been studied in a membrane model, containing the yeast sterol ergosterol. The present study investigates phase-separated domain structure alterations in membranes containing charged lipids when cholesterol is substituted with ergosterol. This study finds that ergosterol increases the homogeneity of membranes containing charged lipids. Cholesterol-containing membranes are more sensitive to a charged state, and ergosterol-containing liposomes show lower responses to charged lipids. These findings may improve our understanding of the differences in both yeast and mammalian cells, as well as the interactions of proteins with lipids during signal transduction.
Collapse
Affiliation(s)
- Tsuyoshi Yoda
- Hachinohe Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center, 1-4-43 Kita-inter-kogyodanchi, Hachinohe City 039-2245, Aomori, Japan; ; Tel.: +81-178-21-2100
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka City 020-8550, Iwate, Japan
| |
Collapse
|
7
|
Capability of Polyunsaturated Phosphatidylcholine for Non-raft Domain Formation in Cholesterol-containing Lipid Bilayers. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2022. [DOI: 10.1380/ejssnt.2022-015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Non-raft submicron domain formation in cholesterol-containing lipid bilayers induced by polyunsaturated phosphatidylethanolamine. Colloids Surf B Biointerfaces 2021; 210:112235. [PMID: 34891064 DOI: 10.1016/j.colsurfb.2021.112235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022]
Abstract
Domain formation in "HLC" ternary lipid bilayers, comprising a high transition temperature (High-Tm) lipid, a Low-Tm lipid, and cholesterol (Chol), has been extensively studied as raft-resembling systems. Recently, we reported the formation of submicron domains in an "LLC" lipid bilayer, encompassing Low-Tm phosphatidylethanolamine (PE), Low-Tm phosphatidylcholine (PC), and Chol. We hypothesized that the formation of this unique domain is driven by polyunsaturated PE. In this study, we explored the effects of the degree of PE unsaturation and the double bond distribution at the sn-position on the mechanism of formation and the composition of submicron domains. Supported lipid bilayers (SLBs), comprising PE with various degrees of unsaturation, monounsaturated PC (POPC), and Chol, were investigated using fluorescence microscopy, atomic force microscopy, and the force-distance curve measurement. The area fraction of submicron domains in PE+POPC+Chol-SLB increased with the PE concentration and degree of unsaturation of the PE acyl chain. The results indicated that the submicron domains were enriched with polyunsaturated PE and were in the liquid-disordered-like state, whereas their surrounding regions were in the liquid-ordered-like state. Segregation of polyunsaturated PE from the Chol-containing region generated submicron domains in the LLC lipid bilayer. We propose a mechanism for the formation of these submicron domains based on molecular interactions involving the hydrophobic and hydrophilic parts of the bilayer membrane.
Collapse
|
9
|
The Rim101 pathway mediates adaptation to external alkalization and altered lipid asymmetry: hypothesis describing the detection of distinct stresses by the Rim21 sensor protein. Curr Genet 2020; 67:213-218. [PMID: 33184698 DOI: 10.1007/s00294-020-01129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Yeast cells adapt to alkaline conditions by activating the Rim101 alkali-responsive pathway. Rim21 acts as a sensor in the Rim101 pathway and detects extracellular alkalization. Interestingly, Rim21 is also known to be activated by alterations involving the lipid asymmetry of the plasma membrane. In this study, we briefly summarize the mechanism of activation and the signal transduction cascade of the Rim101 pathway and propose a hypothesis on how Rim21 is able to detect distinct signals, particularly external alkalization, and altered lipid asymmetry. We found that external alkalization can suppress transbilayer movements of phospholipids between the two leaflets of the plasma membrane, which may lead to the disturbance of the lipid asymmetry of the plasma membrane. Therefore, we propose that external alteration is at least partly sensed by Rim21 through alterations in lipid asymmetry. Understanding this activation mechanism could greatly contribute to drug development against fungal infections.
Collapse
|
10
|
Obara K, Higuchi M, Ogura Y, Nishimura K, Kamura T. Rapid turnover of transcription factor Rim101 confirms a flexible adaptation mechanism against environmental stress in
Saccharomyces cerevisiae. Genes Cells 2020; 25:651-662. [DOI: 10.1111/gtc.12801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Keisuke Obara
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| | - Mai Higuchi
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| | - Yuki Ogura
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| | - Kohei Nishimura
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| | - Takumi Kamura
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| |
Collapse
|
11
|
The Role of Membrane Surface Charge in Phagocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:43-54. [DOI: 10.1007/978-3-030-40406-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Tsuji T, Cheng J, Tatematsu T, Ebata A, Kamikawa H, Fujita A, Gyobu S, Segawa K, Arai H, Taguchi T, Nagata S, Fujimoto T. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc Natl Acad Sci U S A 2019; 116:13368-13373. [PMID: 31217287 PMCID: PMC6613088 DOI: 10.1073/pnas.1822025116] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
TMEM16K, a membrane protein carrying 10 transmembrane regions, has phospholipid scramblase activity. TMEM16K is localized to intracellular membranes, but whether it actually scrambles phospholipids inside cells has not been demonstrated, due to technical difficulties in studying intracellular lipid distributions. Here, we developed a freeze-fracture electron microscopy method that enabled us to determine the phosphatidylserine (PtdSer) distribution in the individual leaflets of cellular membranes. Using this method, we found that the endoplasmic reticulum (ER) of mammalian cells harbored abundant PtdSer in its cytoplasmic leaflet and much less in the luminal leaflet, whereas the outer and inner nuclear membranes (NMs) had equivalent amounts of PtdSer in both leaflets. The ER and NMs of budding yeast also harbored PtdSer in their cytoplasmic leaflet, but asymmetrical distribution in the ER was not observed. Treating mouse embryonic fibroblasts with the Ca2+ ionophore A23187 compromised the cytoplasmic leaflet-dominant PtdSer asymmetry in the ER and increased PtdSer in the NMs, especially in the nucleoplasmic leaflet of the inner NM. This Ca2+-induced PtdSer redistribution was not observed in TMEM16K-null fibroblasts, but was recovered in these cells by reexpressing TMEM16K. These results indicate that, similar to the plasma membrane, PtdSer in the ER of mammalian cells is predominantly localized to the cytoplasmic leaflet, and that TMEM16K directly or indirectly mediates Ca2+-dependent phospholipid scrambling in the ER.
Collapse
Affiliation(s)
- Takuma Tsuji
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Tsuyako Tatematsu
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Aoi Ebata
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Hiroki Kamikawa
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Akikazu Fujita
- Field of Veterinary Pathobiology, Joint Faculty of Veterinary Medicine, Kagoshima University, 890-0065 Kagoshima, Japan
| | - Sayuri Gyobu
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Katsumori Segawa
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Hiroyuki Arai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Shigekazu Nagata
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan;
| |
Collapse
|
13
|
Local membrane charge regulates β 2 adrenergic receptor coupling to G i3. Nat Commun 2019; 10:2234. [PMID: 31110175 PMCID: PMC6527575 DOI: 10.1038/s41467-019-10108-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The β2 adrenergic receptor (β2AR) signals through both Gs and Gi in cardiac myocytes, and the Gi pathway counteracts the Gs pathway. However, Gi coupling is much less efficient than Gs coupling in most cell-based and biochemical assays, making it difficult to study β2AR−Gi interactions. Here we investigate the role of phospholipid composition on Gs and Gi coupling. While negatively charged phospholipids are known to enhance agonist affinity and stabilize an active state of the β2AR, we find that they impair coupling to Gi3 and facilitate coupling to Gs. Positively charged Ca2+ and Mg2+, known to interact with the negative charge on phospholipids, facilitates Gi3 coupling. Mutational analysis suggests that Ca2+ coordinates an interaction between phospholipid and the negatively charged EDGE motif on the amino terminal helix of Gi3. Taken together, our observations suggest that local membrane charge modulates the interaction between β2AR and competing G protein subtypes. In the healthy heart, the β2 adrenergic receptor (β2AR) signals through Gs and Gi proteins but the mechanism underlying G protein selectivity is not fully understood. Here, the authors show that membrane charge and intracellular cations modulate the β2AR−Gi3 interaction.
Collapse
|
14
|
Rockenfeller P, Gourlay CW. Lipotoxicty in yeast: a focus on plasma membrane signalling and membrane contact sites. FEMS Yeast Res 2019; 18:4953420. [PMID: 29718175 PMCID: PMC5905628 DOI: 10.1093/femsyr/foy034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/23/2018] [Indexed: 12/23/2022] Open
Abstract
Lipotoxicity is a pathophysiological process triggered by lipid overload. In metazoans, lipotoxicity is characterised by the ectopic deposition of lipids on organs other than adipose tissue. This leads to organ dysfunction, cell death, and is intimately linked to lipid-associated diseases such as cardiac dysfunction, atherosclerosis, stroke, hepatosteatosis, cancer and the metabolic syndrome. The molecules involved in eliciting lipotoxicity include FAs and their acyl-CoA derivatives, triacylglycerol (TG), diacylglycerol (DG), ceramides, acyl-carnitines and phospholipids. However, the cellular transport of toxic lipids through membrane contact sites (MCS) and vesicular mechanisms as well as lipid metabolism that progress lipotoxicity to the onset of disease are not entirely understood. Yeast has proven a useful model organism to study the molecular mechanisms of lipotoxicity. Recently, the Rim101 pathway, which senses alkaline pH and the lipid status at the plasmamembrane, has been connected to lipotoxicity. In this review article, we summarise recent research advances on the Rim101 pathway and MCS in the context of lipotoxicity in yeast and present a perspective for future research directions.
Collapse
Affiliation(s)
- Patrick Rockenfeller
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ Kent, UK.,Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstr. 50, 8010 Graz, Austria
| | - Campbell W Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ Kent, UK
| |
Collapse
|
15
|
Ebara M. Apoptotic Cell-Mimetic Polymers for Anti-Inflammatory Therapy. Chonnam Med J 2019; 55:1-7. [PMID: 30740334 PMCID: PMC6351328 DOI: 10.4068/cmj.2019.55.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022] Open
Abstract
The field of biomaterials has seen a strong rejuvenation due to the new potential to modulate immune system in our body. This special class of materials is called "immunomodulatory biomaterials". Generally, three fundamental strategies are followed in the design of immunomodulatory biomaterials: (1) immuno-inert biomaterials, (2) immuno-activating biomaterials, and (3) immuno-tolerant biomaterials. While many applications of immuno-inert biomaterials such as biocompatible medical implants have been already proposed in the past decades, the ability to engineer biological activity into synthetic materials greatly increases the number of their potential uses and improves their performance in more traditional applications. The major focus of researchers is now set on developing immuno-tolerant biomaterials for anti-inflammatory therapies. In this review, we therefore introduce recent developments of immuno-tolerant biomaterials. Especially we introduce an apoptotic cell membrane-inspired polymer and its post-inflammatory effects on immune cells in this article.
Collapse
Affiliation(s)
- Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Graduate School of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
16
|
Mohammadi AS, Li X, Ewing AG. Mass Spectrometry Imaging Suggests That Cisplatin Affects Exocytotic Release by Alteration of Cell Membrane Lipids. Anal Chem 2018; 90:8509-8516. [PMID: 29912552 DOI: 10.1021/acs.analchem.8b01395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We used time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging to investigate the effect of cisplatin, the first member of the platinum-based anticancer drugs, on the membrane lipid composition of model cells to see if lipid changes might be involved in the changes in exocytosis observed. Platinum-based anticancer drugs have been reported to affect neurotransmitter release resulting in what is called the "chemobrain"; however, the mechanism for the influence is not yet understood. TOF-SIMS imaging was carried out using a high energy 40 keV (CO2)6000+ gas cluster ion beam with improved sensitivity for intact lipids in biological samples. Principal components analysis showed that cisplatin treatment of PC12 cells significantly affects the abundance of different lipids and their derivatives, particularly phosphatidylcholine and cholesterol, which are diminished. Treatment of cells with 2 μM and 100 μM cisplatin showed similar effects on induced lipid changes. Lipid content alterations caused by cisplatin treatment at the cell surface are associated with the molecular and bimolecular signaling pathways of cisplatin-induced apoptosis of cells. We suggest that lipid alterations measured by TOF-SIMS are involved, at least in part, in the regulation of exocytosis by cisplatin.
Collapse
Affiliation(s)
- Amir Saeid Mohammadi
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden.,National Center for Imaging Mass Spectrometry , 41296 Gothenburg , Sweden
| | - Xianchan Li
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden.,National Center for Imaging Mass Spectrometry , 41296 Gothenburg , Sweden.,Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 41296 Gothenburg , Sweden
| |
Collapse
|
17
|
Pattnaik GP, Meher G, Chakraborty H. Exploring the Mechanism of Viral Peptide-Induced Membrane Fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:69-78. [PMID: 30637691 DOI: 10.1007/978-981-13-3065-0_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane fusion is essential in several cellular processes in the existence of eukaryotic cells such as cellular trafficking, compartmentalization, intercellular communication, sexual reproduction, cell division, and endo- and exocytosis. Membrane fusion proceeds in model membranes as well as biological membranes through the rearrangement of lipids. The stalk hypothesis provides a picture of the general nature of lipid rearrangement based on mechanical properties and phase behavior of water-lipid mesomorphic systems. In spite of extensive research on exploring the mechanism of membrane fusion, a clear molecular understanding of intermediate and pore formation is lacking. In addition, the mechanism by which proteins and peptides reduce the activation energy for stalk and pore formation is not yet clear though there are several propositions on how they catalyze membrane fusion. In this review, we have discussed about various putative functions of fusion peptides by which they reduce activation barrier and thus promote membrane fusion. A careful analysis of the discussed effects of fusion peptides on membranes might open up new possibilities for better understanding of the membrane fusion mechanism.
Collapse
|
18
|
Yun SH, Sim EH, Han SH, Kim TR, Ju MH, Han JY, Jeong JS, Kim SH, Silchenko AS, Stonik VA, Park JI. In vitro and in vivo anti-leukemic effects of cladoloside C 2 are mediated by activation of Fas/ceramide synthase 6/p38 kinase/c-Jun NH 2-terminal kinase/caspase-8. Oncotarget 2017; 9:495-511. [PMID: 29416631 PMCID: PMC5787484 DOI: 10.18632/oncotarget.23069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022] Open
Abstract
We previously demonstrated that the quinovose-containing hexaoside stichoposide C (STC) is a more potent anti-leukemic agent than the glucose-containing stichoposide D (STD), and that these substances have different molecular mechanisms of action. In the present study, we investigated the novel marine triterpene glycoside cladoloside C2 from Cladolabes schmeltzii, which has the same carbohydrate moiety as STC. We assessed whether cladoloside C2 could induce apoptosis in K562 and HL-60 cells. We also evaluated whether it showed antitumor action in mouse leukemia xenograft models, and its molecular mechanisms of action. We investigated the molecular mechanism behind cladoloside C2-induced apoptosis of human leukemia cells, and examined the antitumor effect of cladoloside C2 in a HL-60 and K562 leukemia xenograft model. Cladoloside C2 dose- and time-dependently induced apoptosis in the analyzed cells, and led to the activation of Fas/ceramide synthase 6 (CerS6)/p38 kinase/JNK/caspase-8. This cladoloside C2-induced apoptosis was partially blocked by specific inhibition by Fas, CerS6, and p38 siRNA transfection, and by specific inhibition of JNK by SP600125 or dominant negative-JNK transfection. Cladoloside C2 exerted antitumor activity through the activation of Fas/CerS6/p38 kinase/JNK/caspase-8 without showing any toxicity in xenograft mouse models. The antitumor effect of cladoloside C2 was reversed in CerS6 shRNA-silenced xenograft models. Our results suggest that cladoloside C2 has in vitro and in vivo anti-leukemic effects due to the activation of Fas/CerS6/p38 kinase/JNK/caspase-8 in lipid rafts. These findings support the therapeutic relevance of cladoloside C2 in the treatment of human leukemia.
Collapse
Affiliation(s)
- Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea
| | - Eun-Hye Sim
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea
| | - Sang-Heum Han
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea
| | - Tae-Rang Kim
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea
| | - Mi-Ha Ju
- Department of Pathology, Dong-A University College of Medicine, Busan, South Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, South Korea
| | - Jin-Sook Jeong
- Department of Pathology, Dong-A University College of Medicine, Busan, South Korea
| | - Sung-Hyun Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, South Korea
| | - Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bio-organic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bio-organic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea
| |
Collapse
|
19
|
|
20
|
The Rim101 pathway contributes to ER stress adaptation through sensing the state of plasma membrane. Biochem J 2016; 474:51-63. [DOI: 10.1042/bcj20160580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/16/2016] [Accepted: 10/29/2016] [Indexed: 11/17/2022]
Abstract
Yeast cells sense alterations in the plasma membrane (PM) lipid asymmetry and external alkalization by the sensor protein Rim21, which functions in the Rim101 pathway. Rim101 signaling is initiated at the PM by the recruitment of the Rim101 signaling complex. The PM physically associates with the cortical endoplasmic reticulum (ER) to form ER–PM contact sites, where several signaling events, lipid exchange, and ion transport take place. In the present study, we investigated the spatial relationship between ER–PM contact sites and the sites of Rim101 signaling. Rim101 signaling mostly proceeds outside ER–PM contact sites in the PM and did not require intact ER–PM contact for its activation. Rather, the Rim101 pathway was constitutively activated by ER–PM contact site disruption, which is known to cause ER stress. ER stress induced by tunicamycin treatment activated the Rim101 pathway. Furthermore, the sensitivity of cells to tunicamycin without ER–PM contact was considerably elevated by the deletion of RIM21. These results suggest that the Rim101 pathway is important for the adaptation to ER stress by compensating for alterations in PM lipid asymmetry induced by ER stress.
Collapse
|
21
|
Calcium and protons affect the interaction of neurotransmitters and anesthetics with anionic lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2215-2222. [DOI: 10.1016/j.bbamem.2016.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 01/09/2023]
|
22
|
Yun SH, Park ES, Shin SW, Ju MH, Han JY, Jeong JS, Kim SH, Stonik VA, Kwak JY, Park JI. By activating Fas/ceramide synthase 6/p38 kinase in lipid rafts, stichoposide D inhibits growth of leukemia xenografts. Oncotarget 2016; 6:27596-612. [PMID: 26318294 PMCID: PMC4695011 DOI: 10.18632/oncotarget.4820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/17/2015] [Indexed: 01/20/2023] Open
Abstract
Stichoposide D (STD) is a marine triterpene glycoside isolated from sea cucumbers. We examined the molecular mechanisms underlying the antitumor activity of STD in human leukemia cells. The role of Fas (CD95), ceramide synthase 6 (CerS6) and p38 kinase during STD-induced apoptosis was examined in human leukemia cells. In addition, the antitumor effects of STD in K562 and HL-60 leukemia xenograft models were investigated. We found that STD induces Fas translocation to lipid rafts, and thus mediates cell apoptosis. We also observed the activation of CerS6 and p38 kinase during STD-induced apoptosis. The use of methyl-β-cyclodextrin and nystatin to disrupt lipid rafts prevents the clustering of Fas and the activation of CerS6 and p38 kinase, and also inhibits STD-induced apoptosis. Specific inhibition by Fas, CerS6, and p38 kinase siRNA transfection partially blocked STD-induced apoptosis. In addition, STD has antitumor activity through the activation of CerS6 and p38 kinase without displaying any toxicity in HL-60 and K562 xenograft models. We observed that the anti-tumor effect of STD is partially prevented in CerS6 shRNA-silenced xenograft models. We first report that Fas/CerS6/p38 kinase activation in lipid rafts by STD is involved in its anti-leukemic activity. We also established that STD is able to enhance the chemosensitivity of K562 cells to etoposide or Ara-C. These data suggest that STD may be used alone or in combination with other chemotherapeutic agents to treat leukemia.
Collapse
Affiliation(s)
- Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea
| | - Eun-Seon Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea
| | - Sung-Won Shin
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea
| | - Mi-Ha Ju
- Department of Pathology, Dong-A University College of Medicine, Busan, South Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, South Korea
| | - Jin-Sook Jeong
- Department of Pathology, Dong-A University College of Medicine, Busan, South Korea
| | - Sung-Hyun Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, South Korea
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Division, The Russian Academy of Sciences, Vladivostok, Russia
| | - Jong-Young Kwak
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea
| |
Collapse
|
23
|
Majumdar A, Sarkar M. Small Mismatches in Fatty Acyl Tail Lengths Can Effect Non Steroidal Anti-Inflammatory Drug Induced Membrane Fusion. J Phys Chem B 2016; 120:4791-802. [PMID: 27153337 DOI: 10.1021/acs.jpcb.6b03583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anupa Majumdar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF,
Bidhannagar, Kolkata 700064, India
| | - Munna Sarkar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF,
Bidhannagar, Kolkata 700064, India
| |
Collapse
|
24
|
Li YL, Lin ML, He SQ, Jin JF. Sphingolipid metabolism affects the anticancer effect of cisplatin. World J Transl Med 2016; 5:37-45. [DOI: 10.5528/wjtm.v5.i1.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Cisplatin, a DNA crosslinking agent, is widely used for the treatment of a variety of solid tumors. Numerous studies have demonstrated that sphingolipid metabolism, which acts as a target for cisplatin treatment, is a highly complex network that consists of sphingolipid signaling molecules and related catalytic enzymes. Ceramide (Cer), which is the central molecule of this network, has been established to induce apoptosis. However, another molecule, sphingosine-1-phosphate (S1P), exerts the opposite function, i.e., serves as a regulator of pro-survival. Other sphingolipid molecules, including dihydroceramide, ceramide-1-phosphate, glucosylceramide (GluCer), and sphingosine (Sph), or sphingolipid catalytic enzymes such as Sph kinase (SphK), Cer synthase (CerS), and S1P lyase, have also attracted considerable attention, particularly Cer, GluCer, SphK, CerS, and S1P lyase, which have been implicated in cisplatin resistance. This review summarizes specific molecules involved in sphingolipid metabolism and related catalytic enzymes affecting the anticancer effect of cisplatin, particularly in relation to induction of apoptosis and drug resistance.
Collapse
|
25
|
Chap H. Forty five years with membrane phospholipids, phospholipases and lipid mediators: A historical perspective. Biochimie 2016; 125:234-49. [PMID: 27059515 DOI: 10.1016/j.biochi.2016.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 01/02/2023]
Abstract
Phospholipases play a key role in the metabolism of phospholipids and in cell signaling. They are also a very useful tool to explore phospholipid structure and metabolism as well as membrane organization. They are at the center of this review, covering a period starting in 1971 and focused on a number of subjects in which my colleagues and I have been involved. Those include determination of phospholipid asymmetry in the blood platelet membrane, biosynthesis of lysophosphatidic acid, biochemistry of platelet-activating factor, first attempts to define the role of phosphoinositides in cell signaling, and identification of novel digestive (phospho)lipases such as pancreatic lipase-related protein 2 (PLRP2) or phospholipase B. Besides recalling some of our contributions to those various fields, this review makes an appraisal of the impressive and often unexpected evolution of those various aspects of membrane phospholipids and lipid mediators. It is also the occasion to propose some new working hypotheses.
Collapse
Affiliation(s)
- Hugues Chap
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France. hugues.chap.@univ-tlse3.fr
| |
Collapse
|
26
|
Controlling cell adhesion using layer-by-layer approaches for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:1163-1175. [PMID: 27772718 DOI: 10.1016/j.msec.2016.03.074] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
Abstract
Controlling the adhesion of mammalian and bacterial cells at the interfaces between synthetic materials and biological environments is a real challenge in the biomedical fields such as tissue engineering, antibacterial coating, implantable biomaterials and biosensors. The surface properties of materials are known to profoundly influence the adhesion processes. To mediate the adhesion processes, polymeric coatings have been used to functionalize surfaces to introduce diverse physicochemical properties. The polyelectrolyte multilayer films built via the layer-by-layer (LbL) method, introduced by Moehwald, Decher, and Lvov 20years ago, has led to significant developments ranging from the fundamental understanding of cellular processes to controlling cell adhesion for biomedical applications. In this review, we focus our attention on the modification of surface physicochemical properties, using the LbL approach, to construct films which can either promote or inhibit mammalian/bacterial cell adhesion. We also discuss the emerging field of multifunctional surfaces capable of responding to specific cellular activity but being inert to the others.
Collapse
|
27
|
Nishino K, Obara K, Kihara A. The C-terminal Cytosolic Region of Rim21 Senses Alterations in Plasma Membrane Lipid Composition: INSIGHTS INTO SENSING MECHANISMS FOR PLASMA MEMBRANE LIPID ASYMMETRY. J Biol Chem 2015; 290:30797-805. [PMID: 26527678 DOI: 10.1074/jbc.m115.674382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
Yeast responds to alterations in plasma membrane lipid asymmetry and external alkalization via the sensor protein Rim21 in the Rim101 pathway. However, the sensing mechanism used by Rim21 remains unclear. Here, we found that the C-terminal cytosolic domain of Rim21 (Rim21C) fused with GFP was associated with the plasma membrane under normal conditions but dissociated upon alterations in lipid asymmetry or external alkalization. This indicates that Rim21C contains a sensor motif. Rim21C contains multiple clusters of charged residues. Among them, three consecutive Glu residues (EEE motif) were essential for Rim21 function and dissociation of Rim21C from the plasma membrane in response to changes in lipid asymmetry. In contrast, positively charged residues adjacent to the EEE motif were required for Rim21C to associate with the membrane. We therefore propose an "antenna hypothesis," in which Rim21C moves to or from the plasma membrane and functions as the sensing mechanism of Rim21.
Collapse
Affiliation(s)
- Kanako Nishino
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Keisuke Obara
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akio Kihara
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
28
|
Abstract
Lipid rafts are defined as cholesterol- and sphingomyelin-enriched membrane domains in the plasma membrane of cells that are highly dynamic and cannot be resolved with conventional light microscopy. Membrane proteins that are embedded in the phospholipid matrix can be grouped into raft and non-raft proteins based on their association with detergent-resistant membranes in biochemical assays. Selective lipid-protein interactions not only produce heterogeneity in the membrane, but also cause the spatial compartmentalization of membrane reactions. It has been proposed that lipid rafts function as platforms during cell signalling transduction processes such as T-cell activation (see Chapter 13 (pages 165-175)). It has been proposed that raft association co-localizes specific signalling proteins that may yield the formation of the observed signalling microclusters at the immunological synapses. However, because of the nanometre size and high dynamics of lipid rafts, direct observations have been technically challenging, leading to an ongoing discussion of the lipid raft model and its alternatives. Recent developments in fluorescence imaging techniques have provided new opportunities to investigate the organization of cell membranes with unprecedented spatial resolution. In this chapter, we describe the concept of the lipid raft and alternative models and how new imaging technologies have advanced these concepts.
Collapse
|
29
|
Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Applications of Supramolecular Anion Recognition. Chem Rev 2015; 115:8038-155. [PMID: 25996028 DOI: 10.1021/acs.chemrev.5b00099] [Citation(s) in RCA: 913] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Claudia Caltagirone
- ‡Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy
| | - Wim Van Rossom
- †Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Philip A Gale
- †Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
30
|
Schieffer D, Naware S, Bakun W, Bamezai AK. Lipid raft-based membrane order is important for antigen-specific clonal expansion of CD4(+) T lymphocytes. BMC Immunol 2014; 15:58. [PMID: 25494999 PMCID: PMC4270042 DOI: 10.1186/s12865-014-0058-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022] Open
Abstract
Background Lipid rafts are cholesterol and saturated lipid-rich, nanometer sized membrane domains that are hypothesized to play an important role in compartmentalization and spatiotemporal regulation of cellular signaling. Lipid rafts contribute to the plasma membrane order and to its spatial asymmetry, as well. The raft nanodomains on the surface of CD4+ T lymphocytes coalesce during their interaction with antigen presenting cells (APCs). Sensing of foreign antigen by the antigen receptor on CD4+ T cells occurs during these cell-cell interactions. In response to foreign antigen the CD4+ T cells proliferate, allowing the expansion of few antigen-specific primary CD4+ T cell clones. Proliferating CD4+ T cells specialize in their function by undergoing differentiation into appropriate effectors tailored to mount an effective adaptive immune response against the invading pathogen. Results To investigate the role of lipid raft-based membrane order in the clonal expansion phase of primary CD4+ T cells, we have disrupted membrane order by incorporating an oxysterol, 7-ketocholesterol (7-KC), into the plasma membrane of primary CD4+ T cells expressing a T cell receptor specific to chicken ovalbumin323–339 peptide sequence and tested their antigen-specific response. We report that 7-KC, at concentrations that disrupt lipid rafts, significantly diminish the c-Ovalbumin323–339 peptide-specific clonal expansion of primary CD4+ T cells. Conclusions Our findings suggest that lipid raft-based membrane order is important for clonal expansion of CD4+ T cells in response to a model peptide. Electronic supplementary material The online version of this article (doi:10.1186/s12865-014-0058-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Schieffer
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA. .,Current Address: DeNovix Inc, Wilmington, DE, 19808, USA.
| | - Sanya Naware
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA. .,Current Address: M.D. Program, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA.
| | - Walter Bakun
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.
| | - Anil K Bamezai
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.
| |
Collapse
|
31
|
Yamauchi S, Obara K, Uchibori K, Kamimura A, Azumi K, Kihara A. Opt2 mediates the exposure of phospholipids during cellular adaptation to altered lipid asymmetry. J Cell Sci 2014; 128:61-9. [PMID: 25359886 DOI: 10.1242/jcs.153890] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasma membrane lipid asymmetry is important for various membrane-associated functions and is regulated by membrane proteins termed flippases and floppases. The Rim101 pathway senses altered lipid asymmetry in the yeast plasma membrane. The mutant lem3Δ cells, in which lipid asymmetry is disturbed owing to the inactivation of the plasma membrane flippases, showed a severe growth defect when the Rim101 pathway was impaired. To identify factors involved in the Rim101-pathway-dependent adaptation to altered lipid asymmetry, we performed DNA microarray analysis and found that Opt2 induced by the Rim101 pathway plays an important role in the adaptation to altered lipid asymmetry. Biochemical investigation of Opt2 revealed its localization to the plasma membrane and the Golgi, and provided several lines of evidence for the Opt2-mediated exposure of phospholipids. In addition, Opt2 was found to be required for the maintenance of vacuolar morphology and polarized cell growth. These results suggest that Opt2 is a novel factor involved in cell homeostasis by regulating lipid asymmetry.
Collapse
Affiliation(s)
- Saori Yamauchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Keisuke Obara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenya Uchibori
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akiko Kamimura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kaoru Azumi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
32
|
Zhang J, Sun X, Zheng S, Liu X, Jin J, Ren Y, Luo J. Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane. PLoS One 2014; 9:e108646. [PMID: 25255088 PMCID: PMC4177931 DOI: 10.1371/journal.pone.0108646] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 08/18/2014] [Indexed: 12/15/2022] Open
Abstract
The central nervous system (CNS) insults may cause massive demyelination and lead to the release of myelin-associated proteins including its major component myelin basic protein (MBP). MBP is reported to induce glial activation but its effect on neurons is still little known. Here we found that MBP specifically bound to the extracellular surface of the neuronal plasma membrane and induced neurotoxicity in vitro. This effect of MBP on neurons was basicity-dependent because the binding was blocked by acidic lipids and competed by other basic proteins. Further studies revealed that MBP induced damage to neuronal membrane integrity and function by depolarizing the resting membrane potential, increasing the permeability to cations and other molecules, and decreasing the membrane fluidity. At last, artificial liposome vesicle assay showed that MBP directly disturbed acidic lipid bilayer and resulted in increased membrane permeability. These results revealed that MBP induces neurotoxicity through its direct interaction with acidic components on the extracellular surface of neuronal membrane, which may suggest a possible contribution of MBP to the pathogenesis in the CNS disorders with myelin damage.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Sun
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sixin Zheng
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Liu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghua Jin
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Jianhong Luo
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
33
|
Kapus A, Janmey P. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Compr Physiol 2013; 3:1231-81. [PMID: 23897686 DOI: 10.1002/cphy.c120015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions.
Collapse
Affiliation(s)
- András Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
34
|
Fernández J, Caccin P, Koster G, Lomonte B, Gutiérrez JM, Montecucco C, Postle AD. Muscle phospholipid hydrolysis byBothrops asperAsp49 and Lys49 phospholipase A2myotoxins - distinct mechanisms of action. FEBS J 2013; 280:3878-86. [DOI: 10.1111/febs.12386] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Julián Fernández
- Department of Biomedical Sciences and National Research Council Institute of Neuroscience; University of Padova; Italy
| | - Paola Caccin
- Department of Biomedical Sciences and National Research Council Institute of Neuroscience; University of Padova; Italy
| | - Grielof Koster
- National Institute for Health Research Respiratory Medicine Biomedical Research Unit; University Hospitals Southampton; UK
| | - Bruno Lomonte
- Instituto Clodomiro Picado; Facultad de Microbiología; Universidad de Costa Rica; Costa Rica
| | - José M. Gutiérrez
- Instituto Clodomiro Picado; Facultad de Microbiología; Universidad de Costa Rica; Costa Rica
| | - Cesare Montecucco
- Department of Biomedical Sciences and National Research Council Institute of Neuroscience; University of Padova; Italy
| | | |
Collapse
|
35
|
Busschaert N, Gale PA. Niedermolekulare transmembranäre Anionentransporter für biologische Anwendungen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207535] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Busschaert N, Gale PA. Small-Molecule Lipid-Bilayer Anion Transporters for Biological Applications. Angew Chem Int Ed Engl 2013; 52:1374-82. [DOI: 10.1002/anie.201207535] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Indexed: 12/20/2022]
|
37
|
Abstract
Chemotherapy is frequently used to treat primary or metastatic cancers, but intrinsic or acquired drug resistance limits its efficiency. Sphingolipids are important regulators of various cellular processes including proliferation, apoptosis, differentiation, angiogenesis, stress, and inflammatory responses which are linked to various aspects of cancer, like tumor growth, neoangiogenesis, and response to chemotherapy. Ceramide, the central molecule of sphingolipid metabolism, generally mediates antiproliferative and proapoptotic functions, whereas sphingosine-1-phosphate and other derivatives have opposing effects. Among the variety of enzymes that control ceramide generation, acid or neutral sphingomyelinases and ceramide synthases are important targets to allow killing of cancer cells by chemotherapeutic drugs. On the contrary, glucosylceramide synthase, ceramidase, and sphingosine kinase are other targets driving cancer cell resistance to chemotherapy. This chapter focuses on ceramide-based mechanisms leading to cancer therapy sensitization or resistance which could have some impacts on the development of novel cancer therapeutic strategies.
Collapse
|
38
|
López-Marqués RL, Poulsen LR, Palmgren MG. A putative plant aminophospholipid flippase, the Arabidopsis P4 ATPase ALA1, localizes to the plasma membrane following association with a β-subunit. PLoS One 2012; 7:e33042. [PMID: 22514601 PMCID: PMC3326016 DOI: 10.1371/journal.pone.0033042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/09/2012] [Indexed: 02/02/2023] Open
Abstract
Plasma membranes in eukaryotic cells display asymmetric lipid distributions with aminophospholipids concentrated in the inner leaflet and sphingolipids in the outer leaflet. This unequal distribution of lipids between leaflets is, amongst several proposed functions, hypothesized to be a prerequisite for endocytosis. P4 ATPases, belonging to the P-type ATPase superfamily of pumps, are involved in establishing lipid asymmetry across plasma membranes, but P4 ATPases have not been identified in plant plasma membranes. Here we report that the plant P4 ATPase ALA1, which previously has been connected with cold tolerance of Arabidopsis thaliana, is targeted to the plasma membrane and does so following association in the endoplasmic reticulum with an ALIS protein β-subunit.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department of Plant Biology and Biotechnology, Centre for Membrane Pumps in Cells and Disease, PUMPKIN, University of Copenhagen, Danish National Research Foundation, Frederiksberg, Denmark.
| | | | | |
Collapse
|
39
|
Magalhaes MAO, Glogauer M. Pivotal Advance: Phospholipids determine net membrane surface charge resulting in differential localization of active Rac1 and Rac2. J Leukoc Biol 2010; 87:545-55. [PMID: 19955208 DOI: 10.1189/jlb.0609390] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
In this investigation, we used primary murine neutrophils to demonstrate that local changes in membrane phospholipid composition alter the net cytoplasmic membrane surface charge, which results in selective recruitment of Rac1 or Rac2 based on the net charge of their respective C-terminal domains. Murine neutrophils undergoing chemotaxis or carrying out phagocytosis were transfected with K-ras4B-derived membrane charge biosensors and lipid markers, which allowed us to simultaneously monitor the levels of PIP(2), PIP(3), and PS and net membrane charge of the newly developing phagosome membrane and plasma membrane. Our results indicate that the combination of PIP(2), PIP(3), and PS generates a high negative charge (-8) at the plasma membrane of actin-rich pseudopods, where active Rac1 preferentially localizes during phagosome formation. The lipid metabolism that occurs during phagosome maturation results in the localized depletion of PIP(2), PIP(3), and partial decrease in PS. This creates a moderately negative net charge that correlates with the localization of active Rac2. Conversely, the accumulation of PIP(3) at the leading-edge membrane during chemotaxis generates a polarized accumulation of negative charges that recruits Rac1. These results provide evidence that alterations in membrane lipid composition and inner-membrane surface charge are important elements for the recruitment of differentially charged proteins and localization of signaling pathways during phagocytosis and chemotaxis in neutrophils.
Collapse
Affiliation(s)
- Marco A O Magalhaes
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| | | |
Collapse
|
40
|
Hoffmann M, Lopez JJ, Pergola C, Feisst C, Pawelczik S, Jakobsson PJ, Sorg BL, Glaubitz C, Steinhilber D, Werz O. Hyperforin induces Ca2+-independent arachidonic acid release in human platelets by facilitating cytosolic phospholipase A2 activation through select phospholipid interactions. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:462-72. [DOI: 10.1016/j.bbalip.2009.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
|
41
|
Butterfield DA, Bader Lange ML, Sultana R. Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:924-9. [PMID: 20176130 DOI: 10.1016/j.bbalip.2010.02.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder. A number of hypotheses have been proposed to explain AD pathogenesis. One such hypothesis proposed to explain AD pathogenesis is the oxidative stress hypothesis. Increased levels of oxidative stress markers including the markers of lipid peroxidation such as acrolein, 4-hydroxy-2-trans-nonenal (HNE), malondialdehyde, etc. are found in brains of AD subjects. In this review, we focus principally on research conducted in the area of HNE in the central nervous system (CNS) of AD and mild cognitive impairment (MCI), and further, we discuss likely consequences of lipid peroxidation with respect to AD pathogenesis and progression. Based on the research conducted so far in the area of lipid peroxidation, it is suggested that lipid accessible antioxidant molecules could be a promising therapeutic approach to treat or slow progression of MCI and AD.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055, USA.
| | | | | |
Collapse
|
42
|
Goldenberg NM, Steinberg BE. Surface charge: a key determinant of protein localization and function. Cancer Res 2010; 70:1277-80. [PMID: 20124473 DOI: 10.1158/0008-5472.can-09-2905] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electrostatic charge at the membrane surface has emerged as a crucial determinant of the localization and activation of many proteins containing polycationic domains in their amino acid sequence. The spatiotemporal regulation of surface charge, as well as the downstream effects of dysregulation of surface charge, may have a significant impact on many of the signaling molecules important to cancer biology such as K-ras. Cancer Res; 70(4); 1277-80.
Collapse
Affiliation(s)
- Neil M Goldenberg
- University of Toronto, Medical Science Building, Room 7336, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | | |
Collapse
|
43
|
Abstract
ATP8B1 deficiency is caused by autosomal recessive mutations in ATP8B1, which encodes the putative phospatidylserine flippase ATP8B1 (formerly called FIC1). ATP8B1 deficiency is primarily characterized by cholestasis, but extrahepatic symptoms are also found. Because patients sometimes report reduced hearing capability, we investigated the role of ATP8B1 in auditory function. Here we show that ATP8B1/Atp8b1 deficiency, both in patients and in Atp8b1(G308V/G308V) mutant mice, causes hearing loss, associated with progressive degeneration of cochlear hair cells. Atp8b1 is specifically localized in the stereocilia of these hair cells. This indicates that the mechanosensory function and integrity of the cochlear hair cells is critically dependent on ATP8B1 activity, possibly through maintaining lipid asymmetry in the cellular membranes of stereocilia.
Collapse
|
44
|
Hamada T, Miura Y, Komatsu Y, Kishimoto Y, Vestergaard M, Takagi M. Construction of asymmetric cell-sized lipid vesicles from lipid-coated water-in-oil microdroplets. J Phys Chem B 2009; 112:14678-81. [PMID: 18983183 DOI: 10.1021/jp807784j] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present a simple, rapid, and robust method for preparing asymmetric cell-sized lipid bilayer vesicles using water-in-oil (W/O) microdroplets transferred through an oil-water interface. The efficiency for producing cell-sized model membranes is elucidated in relation to the vesicular size and the weight of contained water-soluble molecules. We demonstrate the biological asymmetric nature and the formation of lipid raft microdomain structures using fluorescence microscopy.
Collapse
|
45
|
Folmer DE, Elferink RPJO, Paulusma CC. P4 ATPases - lipid flippases and their role in disease. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:628-35. [PMID: 19254779 DOI: 10.1016/j.bbalip.2009.02.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 12/11/2022]
Abstract
P4 ATPases (type 4 P-type ATPases) are multispan transmembrane proteins that have been implicated in phospholipid translocation from the exoplasmic to the cytoplasmic leaflet of biological membranes. Studies in Saccharomyces cerevisiae have indicated that P4 ATPases are important in vesicle biogenesis and are required for vesicular trafficking along several intracellular vesicular transport routes. Although little is known about mammalian P4 ATPases, some members of this subfamily appear to be associated with human disease or mouse pathophysiology. ATP8B1, a phosphatidylserine translocase, is the most extensively studied mammalian P4 ATPase. This protein is important for maintaining the detergent resistant properties of the apical membrane of the hepatocyte. Mutations in ATP8B1 give rise to severe liver disease. Furthermore, a role for Atp8b3 in mouse sperm cell capacitation has been suggested, whereas deficiency of Atp10a and Atp10d leads to insulin resistance and obesity in mice. Here we review the present status on the pathophysiological consequences of P4 ATPase deficiency.
Collapse
Affiliation(s)
- Dineke E Folmer
- AMC Liver Center, Academic Medical Center, University of Amsterdam, Meibergdreef 69-71, 1105BK Amsterdam, The Netherlands
| | | | | |
Collapse
|
46
|
Bader Lange ML, Cenini G, Piroddi M, Abdul HM, Sultana R, Galli F, Memo M, Butterfield DA. Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiol Dis 2007; 29:456-64. [PMID: 18077176 DOI: 10.1016/j.nbd.2007.11.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/21/2007] [Accepted: 11/05/2007] [Indexed: 11/28/2022] Open
Abstract
Oxidative stress, a hallmark of Alzheimer disease (AD), has been shown to induce lipid peroxidation and apoptosis disrupting cellular homeostasis. Normally, the aminophospholipid phosphatidylserine (PtdSer) is asymmetrically distributed on the cytosolic leaflet of the lipid bilayer. Under oxidative stress conditions, asymmetry is altered, characterized by the appearance of PtdSer on the outer leaflet, to initiate the first stages of an apoptotic process. PtdSer asymmetry is actively maintained by the ATP-dependent translocase flippase, whose function is inhibited if covalently bound by lipid peroxidation products, 4-hydroxynonenal (HNE) and acrolein, within the membrane bilayer in which they are produced. Additionally, pro-apoptotic proteins Bax and caspase-3 have been implemented in the oxidative modification of PtdSer resulting in subsequent asymmetric collapse, while anti-apoptotic protein Bcl-2 has been found to prevent this process. The current investigation focused on detection of PtdSer on the outer leaflet of the bilayer in synaptosomes from brain of subjects with AD and amnestic mild cognitive impairment (MCI), as well as expression levels of apoptosis-related proteins Bcl-2, Bax, and caspase-3. Fluorescence and Western blot analysis suggest PtdSer exposure on the outer leaflet is significantly increased in brain from subjects with MCI and AD contributing to early apoptotic elevation of pro- and anti-apoptotic proteins and finally neuronal loss. MCI is considered a possible transition point between normal cognitive aging and probable AD. Brain from subjects with MCI is reported to have increased levels of tissue oxidation; therefore, the results of this study could mark the progression of patients with MCI into AD. This study contributes to a model of apoptosis-specific oxidation of phospholipids consistent with the notion that PtdSer exposure is required for apoptotic-cell death.
Collapse
Affiliation(s)
- Miranda L Bader Lange
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Ageing, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Phagocytosis is an important component of innate and adaptive immunity. The formation of phagosomes and the subsequent maturation that capacitates them for pathogen elimination and antigen presentation are complex processes that involve signal transduction, cytoskeletal reorganization, and membrane remodeling. Lipids are increasingly appreciated to play a crucial role in these events. Sphingolipids, cholesterol, and glycerophospholipids, notably the phosphoinositides, are required for the segregation of signaling microdomains and for the generation of second messengers. They are also instrumental in the remodeling of the actin cytoskeleton and in directing membrane traffic. They accomplish these feats by congregating into liquid-ordered domains, by generating active metabolites that activate receptors, and by recruiting and anchoring specific protein ligands to the membrane, often altering their conformation and catalytic activity. A less appreciated role of acidic phospholipids is their contribution to the negative surface charge of the inner leaflet of the plasmalemma. The unique negativity of the inner aspect of the plasma membrane serves to attract and anchor key signaling and effector molecules that are required to initiate phagosome formation. Conversely, the loss of charge that accompanies phospholipid metabolism as phagosomes seal facilitates the dissociation of proteins and the termination of signaling and cytoskeleton assembly. In this manner, lipids provide a binary electrostatic switch to control phagocytosis.
Collapse
Affiliation(s)
- Tony Yeung
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
48
|
Tsuda T, Yoshimura H, Hamasaki N. Effect of phosphatidylcholine, phosphatidylethanolamine and lysophosphatidylcholine on the protein C/protein S anticoagulation system. Blood Coagul Fibrinolysis 2006; 17:453-8. [PMID: 16905948 DOI: 10.1097/01.mbc.0000240917.71144.7b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phosphatidylserine is known to significantly accelerate the blood coagulation reaction. In a previous communication submitted for publication, we demonstrated that phosphatidylcholine, phosphatidylethanolamine and lysophosphatidylcholine showed effects on the blood coagulation reaction using the factor Xa-prothrombin reaction system, and discuss a new function of membrane phospholipids. The present study examined the role of phospholipids in the blood coagulation regulatory reaction (anticoagulation system), by studying the effects of phospholipids on the protein C/protein S reaction. We have established quantitative methods for measuring activated protein C activity and protein S activity, and used them to measure their activity after the addition of liposomes with different phospholipid compositions. We found that phosphatidylcholine inhibited activated protein C and protein S activities in a dose-dependent manner, as in the factor Xa-prothrombin reaction system. On the other hand, phosphatidylethanolamine and lysophosphatidylcholine showed no effect on activated protein C activity. Phosphatidylethanolamine inhibited and lysophosphatidylcholine accelerated coagulation activity in the factor Xa-prothrombin system, but such effects were not observed in the protein C/protein S reaction system. The coagulation and anticoagulation reactions are exquisitely balanced by thrombin, with a role both as a procoagulant and anticoagulant. Therefore, it is understandable that phosphatidylethanolamine and lysophosphatidylcholine show different effects in the factor Xa-prothrombin and protein C/protein S reaction systems. It appears that coagulation and anticoagulation reactions are co-ordinated and controlled by changes in phospholipid composition of the cellular membrane where the coagulation reaction takes place.
Collapse
|
49
|
Paulusma CC, Oude Elferink RPJ. Diseases of intramembranous lipid transport. FEBS Lett 2006; 580:5500-9. [PMID: 16828084 DOI: 10.1016/j.febslet.2006.06.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 12/20/2022]
Abstract
The maintenance of transbilayer distribution of phospholipids is crucial for proper cell function. Intramembrane transport of lipids is mediated by three activities termed floppases, flippases, and scramblases. Members of the ATP-binding cassette transporter family and P-type ATPase superfamily have been implicated in the translocation of lipids. The importance of these activities is exemplified by several severe human inherited disorders that are caused by defects in intramembranous transport of lipids. In order to elucidate the molecular mechanisms that underlie these disorders, the combination of in vivo, biochemical, and structural analyses on intramembrane transporters is crucial.
Collapse
Affiliation(s)
- Coen C Paulusma
- Amsterdam Liver Center, Department of Experimental Hepatology, Academic Medical Center, Meibergdreef 69-71, S-1-168, 1105 BK Amsterdam, The Netherlands.
| | | |
Collapse
|
50
|
Singh AT, Frohman MA, Stern PH. Parathyroid hormone stimulates phosphatidylethanolamine hydrolysis by phospholipase D in osteoblastic cells. Lipids 2006; 40:1135-40. [PMID: 16459925 PMCID: PMC3515636 DOI: 10.1007/s11745-005-1477-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Parathyroid hormone (PTH) and phorbol-12,13-dibutyrate (PDBu) stimulate phospholipase D (PLD) activity and PC hydrolysis in UMR-106 osteoblastic cells {Singh, A.T., Kunnel, J.G., Strieleman, P.J., and Stern, P.H. (1999) Parathyroid Hormone (PTH)-(1-34), [Nle8,18,Tyr34]PTH-(3-34) Amide, PTH-(1-31) Amide, and PTH-Related Peptide-(1-34) Stimulate Phosphatidylcholine Hydrolysis in UMR-106 Osteoblastic Cells: Comparison with Effects of Phorbol 12,13-Dibutyrate, Endocrinology 140, 131-137}. The current studies were designed to determine whether ethanolamine-containing phospholipids, and specifically PE, could also be substrates. In cells labeled with 14C-ethanolamine, PTH and PDBu treatment decreased 14C-PE. In cells co-labeled with 3H-choline and 14C-ethanolamine, PTH and PDBu treatment increased both 3H-choline and 14C-ethanolamine release from the cells. Choline and ethanolamine phospholipid hydrolysis was increased within 5 min, and responses were sustained for at least 60 min. Maximal effects were obtained with 10 nM PTH and 50 nM PDBu. Dominant negative PLD1 and PLD2 constructs inhibited the effects of PTH on the phospholipid hydrolysis. The results suggest that both PC and PE are substrates for phospholipase D in UMR-106 osteoblastic cells and could therefore be sources of phospholipid hydrolysis products for downstream signaling in osteoblasts.
Collapse
Affiliation(s)
- Amareshwar T.K. Singh
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3008, U.S.A
| | - Michael A. Frohman
- Department of Pharmacology and the Center for Developmental Genetics, University Medical Center at Stony Brook, Stony Brook, NY 11794-5140, USA
| | - Paula H. Stern
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3008, U.S.A
| |
Collapse
|