1
|
Rahbar Saadat Y, Abbasi A, Hejazian SS, Hekmatshoar Y, Ardalan M, Farnood F, Zununi Vahed S. Combating chronic kidney disease-associated cachexia: A literature review of recent therapeutic approaches. BMC Nephrol 2025; 26:133. [PMID: 40069669 PMCID: PMC11895341 DOI: 10.1186/s12882-025-04057-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/05/2025] [Indexed: 03/15/2025] Open
Abstract
In 2008, the Society on Sarcopenia, Cachexia, and Wasting Disorders introduced a generic definition for all types of cachexia: "a complex metabolic syndrome associated with the underlying illness characterized by a loss of muscle, with or without fat loss". It is well-known that the presence of inflammatory burden in end-stage renal disease (ESRD) patients may lead to the evolution of cachexia. Since the etiology of cachexia in chronic kidney disease (CKD) is multifactorial, thus the successful treatment must involve several concomitant measures (nutritional interventions, appetite stimulants, and anti-inflammatory pharmacologic agents) to provide integrated effective therapeutic modalities to combat causative factors and alleviate the outcomes of patients. Given the high mortality rate associated with cachexia, developing new therapeutic modalities are prerequisite for ameliorating patients with CKD worldwide. The present review aims to discuss some therapeutic strategies and provide an update on advances in nutritional approaches to counteract cachexia.
Collapse
Affiliation(s)
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Sina Hejazian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Hekmatshoar
- Medical Biology Department, School of Medicine, Altinbas University, Istanbul, Türkiye
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
2
|
Xiang X, Tao C, Ren J. Protective effect of D‐Cys on renal function in mice with chronic kidney disease. FOOD FRONTIERS 2024; 5:558-569. [DOI: 10.1002/fft2.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025] Open
Abstract
AbstractMTT assay The chirality of amino acids affects their physiological functions. Recent studies uncovered potential physiological effects of D‐amino acids (D‐AAs) in nephropathy. Here, we explored the protective effects of exogenous D‐AAs on chronic kidney disease (CKD). First, by the 3‐(4,5‐dimethylthiazol‐2‐YI)‐2,5‐diphenyltetrazolium bromide (MTT) assay it was found that among the four D‐AAs studied (D‐glutamate (D‐Glu), D‐aspartic acid (D‐Asp) being the highest content in fermented yogurt, and D‐alanine (D‐Ala), D‐cysteine (D‐Cys), amino acids with renal protective potential), D‐Cys most significantly enhanced the viability of hypoxia‐induced injured HK‐2 cells, even better than its L‐analog, L‐Cys. Mitochondrial function analyzed by JC‐1 assay showed that 10 and 100 mM D‐Cys can significantly reduce the green/red fluorescence intensity by 16.1% (p < .001) and 17.6% (p < .001), respectively, in injured HK‐2 cells. Next, the in vivo protective effect of D‐Cys on adenine‐induced CKD mice was studied. The results indicated that the administration of D‐Cys decreased the serum creatinine and urea nitrogen levels by at least 15.5% and 11.8%, respectively, and significantly protected renal function in the CKD mice. Further analysis found that the administration of D‐Cys induced increased water intake in CKD mice, which is beneficial for the clearance of 2,8‐dihydroxyadenine, thereby attenuating the destruction of renal tissue structure. Moreover, H2S produced from D‐Cys resisted oxidative stress and inhibited inflammation, thus slowing down the process of renal fibrosis. In summary, this study verified the protective effect of D‐Cys on renal function and tissue structure in CKD mice, and propounded a new field of application for the utilization of D‐AAs.
Collapse
Affiliation(s)
- Xiong Xiang
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong P. R. China
| | - Chunlin Tao
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong P. R. China
| | - Jiaoyan Ren
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong P. R. China
| |
Collapse
|
3
|
Kalusche W, Case C, Taylor E. Leptin antagonism attenuates hypertension and renal injury in an experimental model of autoimmune disease. Clin Sci (Lond) 2023; 137:1771-1785. [PMID: 38031726 PMCID: PMC10721433 DOI: 10.1042/cs20230924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that is characterized by B- and T-lymphocyte dysfunction and altered cytokine production, including elevated levels of the adipocytokine leptin. Leptin has various immunomodulatory properties, including promoting the expansion of proinflammatory T lymphocytes and the proliferation and survival of B cells. In the present study, we hypothesized that leptin antagonism would improve B- and T-cell dysfunction and attenuate hypertension in an experimental model of SLE, the NZBWF1 mouse. To test this hypothesis, 28-week-old female control and SLE mice were administered 5 mg/kg of murine leptin superantagonist (LA) or vehicle via ip injection every other day for four weeks. Analysis of peripheral blood immune cell populations showed no changes in total CD45R+ B and CD3+ T cell percentages after treatment with LA. However, SLE mice treated with LA had an improved CD4/CD8 ratio and decreased CD3+CD4-CD8- double negative (DN) T cells. Blood pressure was higher in SLE than in control, and treatment with LA decreased blood pressure in SLE mice. Treatment with LA also delayed the onset of albuminuria and decreased glomerulosclerosis in SLE mice. Renal immune cell infiltration was significantly higher in SLE mice as compared with control, but LA treatment was associated with decreased levels of renal CD4+ T cells. In conclusion, these data suggest that leptin plays a pathogenic role in the development of hypertension in SLE, in part, by promoting the expansion of inflammatory DN T cells and the infiltration of T cells into the kidneys.
Collapse
Affiliation(s)
- William J. Kalusche
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Clinton T. Case
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Erin B. Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| |
Collapse
|
4
|
Benoit B, Beau A, Bres É, Chanon S, Pinteur C, Vieille-Marchiset A, Jalabert A, Zhang H, Garg P, Strigini M, Vico L, Ruzzin J, Vidal H, Koppe L. Treatment with fibroblast growth factor 19 increases skeletal muscle fiber size, ameliorates metabolic perturbations and hepatic inflammation in 5/6 nephrectomized mice. Sci Rep 2023; 13:5520. [PMID: 37015932 PMCID: PMC10073190 DOI: 10.1038/s41598-023-31874-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with osteosarcopenia, and because a physical decline in patients correlates with an increased risk of morbidity, an improvement of the musculoskeletal system is expected to improve morbi-mortality. We recently uncovered that the intestinal hormone Fibroblast Growth Factor 19 (FGF19) is able to promote skeletal muscle mass and strength in rodent models, in addition to its capacity to improve glucose homeostasis. Here, we tested the effects of a treatment with recombinant human FGF19 in a CKD mouse model, which associates sarcopenia and metabolic disorders. In 5/6 nephrectomized (5/6Nx) mice, subcutaneous FGF19 injection (0.1 mg/kg) during 18 days increased skeletal muscle fiber size independently of food intake and weight gain, associated with decreased gene expression of myostatin. Furthermore, FGF19 treatment attenuated glucose intolerance and reduced hepatic expression of gluconeogenic genes in uremic mice. Importantly, the treatment also decreased gene expression of liver inflammatory markers in CKD mice. Therefore, our results suggest that FGF19 may represent a novel interesting therapeutic strategy for a global improvement of sarcopenia and metabolic complications in CKD.
Collapse
Affiliation(s)
- Berengère Benoit
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Alice Beau
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Émilie Bres
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
- Department of Nephrology and Nutrition, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Chemin du Grand Revoyet, 69495, Pierre Bénite, France
| | - Stéphanie Chanon
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Claudie Pinteur
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | | | - Audrey Jalabert
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Hao Zhang
- INSERM U1059, Sainbiose, Jean Monnet University, Saint-Etienne, France
| | - Priyanka Garg
- INSERM U1059, Sainbiose, Jean Monnet University, Saint-Etienne, France
| | - Maura Strigini
- INSERM U1059, Sainbiose, Jean Monnet University, Saint-Etienne, France
| | - Laurence Vico
- INSERM U1059, Sainbiose, Jean Monnet University, Saint-Etienne, France
| | - Jérôme Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hubert Vidal
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Laetitia Koppe
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France.
- Department of Nephrology and Nutrition, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Chemin du Grand Revoyet, 69495, Pierre Bénite, France.
| |
Collapse
|
5
|
Arabi T, Shafqat A, Sabbah BN, Ashraf N, Shah H, Abdulkader H, Razak A, Sabbah AN, Arabi Z. Obesity-related kidney disease: Beyond hypertension and insulin-resistance. Front Endocrinol (Lausanne) 2023; 13:1095211. [PMID: 36726470 PMCID: PMC9884830 DOI: 10.3389/fendo.2022.1095211] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic kidney disease (CKD) causes considerable morbidity, mortality, and health expenditures worldwide. Obesity is a significant risk factor for CKD development, partially explained by the high prevalence of diabetes mellitus and hypertension in obese patients. However, adipocytes also possess potent endocrine functions, secreting a myriad of cytokines and adipokines that contribute to insulin resistance and induce a chronic low-grade inflammatory state thereby damaging the kidney. CKD development itself is associated with various metabolic alterations that exacerbate adipose tissue dysfunction and insulin resistance. This adipose-renal axis is a major focus of current research, given the rising incidence of CKD and obesity. Cellular senescence is a biologic hallmark of aging, and age is another significant risk factor for obesity and CKD. An elevated senescent cell burden in adipose tissue predicts renal dysfunction in animal models, and senotherapies may alleviate these phenotypes. In this review, we discuss the direct mechanisms by which adipose tissue contributes to CKD development, emphasizing the potential clinical importance of such pathways in augmenting the care of CKD.
Collapse
Affiliation(s)
- Tarek Arabi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Nader Ashraf
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hassan Shah
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Adhil Razak
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Ziad Arabi
- Division of Nephrology, Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Growth Hormone Improves Adipose Tissue Browning and Muscle Wasting in Mice with Chronic Kidney Disease-Associated Cachexia. Int J Mol Sci 2022; 23:ijms232315310. [PMID: 36499637 PMCID: PMC9740214 DOI: 10.3390/ijms232315310] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cachexia associated with chronic kidney disease (CKD) has been linked to GH resistance. In CKD, GH treatment enhances muscular performance. We investigated the impact of GH on cachexia brought on by CKD. CKD was induced by 5/6 nephrectomy in c57BL/6J mice. After receiving GH (10 mg/kg/day) or saline treatment for six weeks, CKD mice were compared to sham-operated controls. GH normalized metabolic rate, increased food intake and weight growth, and improved in vivo muscular function (rotarod and grip strength) in CKD mice. GH decreased uncoupling proteins (UCP)s and increased muscle and adipose tissue ATP content in CKD mice. GH decreased lipolysis of adipose tissue by attenuating expression and protein content of adipose triglyceride lipase and protein content of phosphorylated hormone-sensitive lipase in CKD mice. GH reversed the increased expression of beige adipocyte markers (UCP-1, CD137, Tmem26, Tbx1, Prdm16, Pgc1α, and Cidea) and molecules implicated in adipose tissue browning (Cox2/Pgf2α, Tlr2, Myd88, and Traf6) in CKD mice. Additionally, GH normalized the molecular markers of processes connected to muscle wasting in CKD, such as myogenesis and muscle regeneration. By using RNAseq, we previously determined the top 12 skeletal muscle genes differentially expressed between mice with CKD and control animals. These 12 genes' aberrant expression has been linked to increased muscle thermogenesis, fibrosis, and poor muscle and neuron regeneration. In this study, we demonstrated that GH restored 7 of the top 12 differentially elevated muscle genes in CKD mice. In conclusion, GH might be an effective treatment for muscular atrophy and browning of adipose tissue in CKD-related cachexia.
Collapse
|
7
|
Gonzalez A, Cheung WW, Perens EA, Oliveira EA, Gertler A, Mak RH. A Leptin Receptor Antagonist Attenuates Adipose Tissue Browning and Muscle Wasting in Infantile Nephropathic Cystinosis-Associated Cachexia. Cells 2021; 10:1954. [PMID: 34440723 PMCID: PMC8393983 DOI: 10.3390/cells10081954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Mice lacking the functional cystinosin gene (Ctns-/-), a model of infantile nephropathic cystinosis (INC), exhibit the cachexia phenotype with adipose tissue browning and muscle wasting. Elevated leptin signaling is an important cause of chronic kidney disease-associated cachexia. The pegylated leptin receptor antagonist (PLA) binds to but does not activate the leptin receptor. We tested the efficacy of this PLA in Ctns-/- mice. We treated 12-month-old Ctns-/- mice and control mice with PLA (7 mg/kg/day, IP) or saline as a vehicle for 28 days. PLA normalized food intake and weight gain, increased fat and lean mass, decreased metabolic rate and improved muscle function. It also attenuated perturbations of energy homeostasis in adipose tissue and muscle in Ctns-/- mice. PLA attenuated adipose tissue browning in Ctns-/- mice. PLA increased gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in Ctns-/- mice. This was accompanied by correcting the increased expression of muscle wasting signaling while promoting the decreased expression of myogenesis in gastrocnemius of Ctns-/- mice. PLA attenuated aberrant expressed muscle genes that have been associated with muscle atrophy, increased energy expenditure and lipolysis in Ctns-/- mice. Leptin antagonism may represent a viable therapeutic strategy for adipose tissue browning and muscle wasting in INC.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Animals
- Body Composition/drug effects
- Cachexia/etiology
- Cachexia/metabolism
- Cachexia/pathology
- Cachexia/prevention & control
- Cystinosis/complications
- Cystinosis/drug therapy
- Cystinosis/metabolism
- Cystinosis/pathology
- Disease Models, Animal
- Hormone Antagonists/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/etiology
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/prevention & control
- Receptors, Leptin/antagonists & inhibitors
- Receptors, Leptin/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Alex Gonzalez
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
| | - Wai W. Cheung
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
| | - Elliot A. Perens
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
| | - Eduardo A. Oliveira
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
- Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Arieh Gertler
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Robert H. Mak
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
| |
Collapse
|
8
|
Cheung WW, Zheng R, Hao S, Wang Z, Gonzalez A, Zhou P, Hoffman HM, Mak RH. The role of IL-1 in adipose browning and muscle wasting in CKD-associated cachexia. Sci Rep 2021; 11:15141. [PMID: 34302016 PMCID: PMC8302616 DOI: 10.1038/s41598-021-94565-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/29/2021] [Indexed: 10/25/2022] Open
Abstract
Cytokines such as IL-6, TNF-α and IL-1β trigger inflammatory cascades which may play a role in the pathogenesis of chronic kidney disease (CKD)-associated cachexia. CKD was induced by 5/6 nephrectomy in mice. We studied energy homeostasis in Il1β-/-/CKD, Il6-/-/CKD and Tnfα-/-/CKD mice and compared with wild type (WT)/CKD controls. Parameters of cachexia phenotype were completely normalized in Il1β-/-/CKD mice but were only partially rescued in Il6-/-/CKD and Tnfα-/-/CKD mice. We tested the effects of anakinra, an IL-1 receptor antagonist, on CKD-associated cachexia. WT/CKD mice were treated with anakinra (2.5 mg/kg/day, IP) or saline for 6 weeks and compared with WT/Sham controls. Anakinra normalized food intake and weight gain, fat and lean mass content, metabolic rate and muscle function, and also attenuated molecular perturbations of energy homeostasis in adipose tissue and muscle in WT/CKD mice. Anakinra decreased serum and muscle expression of IL-6, TNF-α and IL-1β in WT/CKD mice. Anakinra attenuated browning of white adipose tissue in WT/CKD mice. Moreover, anakinra normalized gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in WT/CKD mice. This was accompanied by correcting the increased muscle wasting signaling pathways while promoting the decreased myogenesis process in gastrocnemius of WT/CKD mice. We performed qPCR analysis for the top 20 differentially expressed muscle genes previously identified via RNAseq analysis in WT/CKD mice versus controls. Importantly, 17 differentially expressed muscle genes were attenuated in anakinra treated WT/CKD mice. In conclusion, IL-1 receptor antagonism may represent a novel targeted treatment for adipose tissue browning and muscle wasting in CKD.
Collapse
Affiliation(s)
- Wai W Cheung
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA
| | - Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA
| | - Ping Zhou
- Sichuan Provincial Hospital for Women and Children, and Affiliated Women and Children's Hospital of Chengdu Medical College, Sichuan, China
| | - Hal M Hoffman
- Department of Pediatrics, University of California, San Diego, USA
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA.
| |
Collapse
|
9
|
Zhu X, Callahan MF, Gruber KA, Szumowski M, Marks DL. Melanocortin-4 receptor antagonist TCMCB07 ameliorates cancer- and chronic kidney disease-associated cachexia. J Clin Invest 2020; 130:4921-4934. [PMID: 32544087 PMCID: PMC7456235 DOI: 10.1172/jci138392] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Cachexia, a devastating wasting syndrome characterized by severe weight loss with specific losses of muscle and adipose tissue, is driven by reduced food intake, increased energy expenditure, excess catabolism, and inflammation. Cachexia is associated with poor prognosis and high mortality and frequently occurs in patients with cancer, chronic kidney disease, infection, and many other illnesses. There is no effective treatment for this condition. Hypothalamic melanocortins have a potent and long-lasting inhibitory effect on feeding and anabolism, and pathophysiological processes increase melanocortin signaling tone, leading to anorexia, metabolic changes, and eventual cachexia. We used 3 rat models of anorexia and cachexia (LPS, methylcholanthrene sarcoma, and 5/6 subtotal nephrectomy) to evaluate efficacy of TCMCB07, a synthetic antagonist of the melanocortin-4 receptor. Our data show that peripheral treatment using TCMCB07 with intraperitoneal, subcutaneous, and oral administration increased food intake and body weight and preserved fat mass and lean mass during cachexia and LPS-induced anorexia. Furthermore, administration of TCMCB07 diminished hypothalamic inflammatory gene expression in cancer cachexia. These results suggest that peripheral TCMCB07 treatment effectively inhibits central melanocortin signaling and therefore stimulates appetite and enhances anabolism, indicating that TCMCB07 is a promising drug candidate for treating cachexia.
Collapse
MESH Headings
- Animals
- Appetite/drug effects
- Cachexia/drug therapy
- Cachexia/etiology
- Cachexia/metabolism
- Cachexia/pathology
- Male
- Rats
- Rats, Sprague-Dawley
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Sarcoma, Experimental/complications
- Sarcoma, Experimental/drug therapy
- Sarcoma, Experimental/metabolism
- Sarcoma, Experimental/pathology
Collapse
Affiliation(s)
- Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Michael F. Callahan
- Tensive Controls Inc., MU Life Sciences Business Incubator at Monsanto Place, Columbia, Missouri, USA
| | - Kenneth A. Gruber
- Tensive Controls Inc., MU Life Sciences Business Incubator at Monsanto Place, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center and
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Marek Szumowski
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute and
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Liu Y, Perumal E, Bi X, Wang Y, Ding W. Potential mechanisms of uremic muscle wasting and the protective role of the mitochondria-targeted antioxidant Mito-TEMPO. Int Urol Nephrol 2020; 52:1551-1561. [PMID: 32488756 DOI: 10.1007/s11255-020-02508-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 05/12/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Muscle wasting is common in patients with chronic kidney disease (CKD). Many studies report that mitochondrial dysfunction and endoplasmic reticulum (ER) stress are involved in the development of muscle wasting. However, treatment approaches to protect against muscle wasting are limited. In this study, we investigated the benefits and potential mechanism of Mito-TEMPO, a mitochondria-targeted antioxidant on uremic-induced muscle wasting. METHODS Mice were randomly divided into four groups as follows: control group, CKD group, CKD + Mito-TEMPO group, and Mito-TEMPO group. Renal injury was assessed by measurement of serum creatinine and BUN along with PAS and Masson's staining. Bodyweight, gastrocnemius muscle mass, grip strength, and myofiber cross-sectional areas were investigated to evaluate muscle atrophy. Muscle protein synthesis and proteolysis were evaluated by Western blot and real-time PCR. Inflammatory cytokines including TNF-α, IL-6, IL-1β, and MCP-1 were measured by ELISA kits. Oxidative stress markers such as SOD2 activity and MDA level in gastrocnemius muscle tissue were measured by colorimetric assay. Mitochondrial dysfunction was evaluated by transmission electron microscopy and real-time PCR. ER stress was evaluated by Western blot. RESULTS Impaired renal function was significantly restored by Mito-TEMPO treatment. Severe muscle atrophy was observed in muscle tissues of CKD mice along with increased inflammatory factors, oxidative stress markers, mitochondrial dysfunction, and ER stress. However, these effects were significantly attenuated with Mito-TEMPO treatment. CONCLUSIONS Mito-TEMPO improved muscle wasting in CKD mice possibly through alleviating mitochondrial dysfunction and endoplasmic reticulum stress, providing a potential new therapeutic approach for preventing muscle wasting in chronic kidney disease.
Collapse
Affiliation(s)
- Yuqing Liu
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, Shanghai, 200011, China
| | - Elangovan Perumal
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, Shanghai, 200011, China
| | - Xiao Bi
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, Shanghai, 200011, China
| | - Yingdeng Wang
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, Shanghai, 200011, China.
| | - Wei Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
11
|
Luce M, Barba C, Yi D, Mey A, Roussel D, Bres E, Benoit B, Pastural M, Granjon S, Szelag JC, Laville M, Arkouche W, Bouchara A, Nyam E, Fouque D, Soulage CO, Koppe L. Accumulation of natriuretic peptides is associated with protein energy wasting and activation of browning in white adipose tissue in chronic kidney disease. Kidney Int 2020; 98:663-672. [PMID: 32739210 DOI: 10.1016/j.kint.2020.03.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
Abstract
Protein energy wasting is a common feature of patients with chronic kidney disease (CKD) and is associated with poor outcomes. Protein energy wasting and cachexia, a severe form of protein energy wasting, are characterized by increased resting energy expenditure but the underlying mechanisms are unclear. Browning corresponds to the activation of inducible brown adipocytes in white adipose tissue and occurs in states of cachexia associated with hypermetabolic disease such as cancer. Here we tested the hypothesis that CKD-associated protein energy wasting could result from browning activation as a direct effect of the uremic environment on adipocytes. In a murine model of CKD (5/6 nephrectomy), there was increased resting energy expenditure, expression of uncoupling protein 1 (a thermogenic protein uncoupling oxidative phosphorylation in mitochondria) and citrate synthase activity (a proxy of mitochondrial density in white adipose tissue). Mice with CKD also exhibited increased levels of atrial natriuretic peptide, a well known activator of browning. The incubation of primary adipose cells with plasma from patients receiving dialysis treatment and having signs of protein energy wasting led to an increased synthesis of uncoupling protein 1. Similarly, primary adipose cells exposed to atrial natriuretic peptide at concentrations relevant of CKD led to a significant increase of uncoupling protein 1 content. Thus, accumulation of cardiac natriuretic peptides during CKD could contribute to the browning of white adipose tissue and protein energy wasting.
Collapse
Affiliation(s)
- Mathilde Luce
- Department of Nephrology, Civil Hospices of Lyon, Lyon Sud Hospital Center, Pierre Benite, France; University of Lyon, CarMeN lab, National Institute of Applied Sciences of Lyon (INSA-Lyon), French National Institute of Health and Medical Research (INSERM) U1060, National Institute of Agricultural Research (INRA), Claude Bernard University Lyon 1, Villeurbanne, France
| | - Christophe Barba
- Department of Nephrology, Civil Hospices of Lyon, Lyon Sud Hospital Center, Pierre Benite, France; University of Lyon, CarMeN lab, National Institute of Applied Sciences of Lyon (INSA-Lyon), French National Institute of Health and Medical Research (INSERM) U1060, National Institute of Agricultural Research (INRA), Claude Bernard University Lyon 1, Villeurbanne, France
| | - Dan Yi
- Department of Nephrology, Civil Hospices of Lyon, Lyon Sud Hospital Center, Pierre Benite, France
| | - Anne Mey
- University of Lyon, CarMeN lab, National Institute of Applied Sciences of Lyon (INSA-Lyon), French National Institute of Health and Medical Research (INSERM) U1060, National Institute of Agricultural Research (INRA), Claude Bernard University Lyon 1, Villeurbanne, France
| | - Damien Roussel
- Natural and Anthropic Hydrosystems Ecology Laboratory, University of Lyon, Claude Bernard Lyon University 1, National School of Public Works of the State (ENTPE), Villeurbanne, France
| | - Emilie Bres
- Department of Nephrology, Civil Hospices of Lyon, Lyon Sud Hospital Center, Pierre Benite, France; University of Lyon, CarMeN lab, National Institute of Applied Sciences of Lyon (INSA-Lyon), French National Institute of Health and Medical Research (INSERM) U1060, National Institute of Agricultural Research (INRA), Claude Bernard University Lyon 1, Villeurbanne, France
| | - Bérengère Benoit
- University of Lyon, CarMeN lab, National Institute of Applied Sciences of Lyon (INSA-Lyon), French National Institute of Health and Medical Research (INSERM) U1060, National Institute of Agricultural Research (INRA), Claude Bernard University Lyon 1, Villeurbanne, France
| | - Myriam Pastural
- Association pour l'Utilisation du Rein Artificiel dans la région Lyonnaise (AURAL), Lyon, France
| | - Samuel Granjon
- Laboratoire d'Analyse Médicale Cerballiance Rhône alpes, Lyon, France
| | - Jean Christophe Szelag
- Association pour l'Utilisation du Rein Artificiel dans la région Lyonnaise (AURAL), Lyon, France
| | - Maurice Laville
- Department of Nephrology, Civil Hospices of Lyon, Lyon Sud Hospital Center, Pierre Benite, France
| | - Walid Arkouche
- Association pour l'Utilisation du Rein Artificiel dans la région Lyonnaise (AURAL), Lyon, France
| | - Anais Bouchara
- Department of Nephrology, Civil Hospices of Lyon, Lyon Sud Hospital Center, Pierre Benite, France
| | - Elsa Nyam
- Montreal Diabetes Research Center, CRCHUM, Montréal, Quebec, Canada; Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Denis Fouque
- Department of Nephrology, Civil Hospices of Lyon, Lyon Sud Hospital Center, Pierre Benite, France; University of Lyon, CarMeN lab, National Institute of Applied Sciences of Lyon (INSA-Lyon), French National Institute of Health and Medical Research (INSERM) U1060, National Institute of Agricultural Research (INRA), Claude Bernard University Lyon 1, Villeurbanne, France
| | - Christophe O Soulage
- University of Lyon, CarMeN lab, National Institute of Applied Sciences of Lyon (INSA-Lyon), French National Institute of Health and Medical Research (INSERM) U1060, National Institute of Agricultural Research (INRA), Claude Bernard University Lyon 1, Villeurbanne, France
| | - Laetitia Koppe
- Department of Nephrology, Civil Hospices of Lyon, Lyon Sud Hospital Center, Pierre Benite, France; University of Lyon, CarMeN lab, National Institute of Applied Sciences of Lyon (INSA-Lyon), French National Institute of Health and Medical Research (INSERM) U1060, National Institute of Agricultural Research (INRA), Claude Bernard University Lyon 1, Villeurbanne, France.
| |
Collapse
|
12
|
Cheung WW, Hao S, Wang Z, Ding W, Zheng R, Gonzalez A, Zhan J, Zhou P, Li S, Esparza MC, Hoffman HM, Lieber RL, Mak RH. Vitamin D repletion ameliorates adipose tissue browning and muscle wasting in infantile nephropathic cystinosis-associated cachexia. J Cachexia Sarcopenia Muscle 2020; 11:120-134. [PMID: 31721480 PMCID: PMC7015252 DOI: 10.1002/jcsm.12497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/30/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ctns-/- mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue browning and profound muscle wasting. Ctns-/- mice are 25(OH)D3 and 1,25(OH)2 D3 insufficient. We investigated whether vitamin D repletion could ameliorate adipose tissue browning and muscle wasting in Ctns-/- mice. METHODS Twelve-month-old Ctns-/- mice and wild-type controls were treated with 25(OH)D3 and 1,25(OH)2 D3 (75 μg/kg/day and 60 ng/kg/day, respectively) or an ethylene glycol vehicle for 6 weeks. Serum chemistry and parameters of energy homeostasis were measured. We quantitated total fat mass and studied expression of molecules regulating adipose tissue browning, energy metabolism, and inflammation. We measured lean mass content, skeletal muscle fibre size, in vivo muscle function (grip strength and rotarod activity), and expression of molecules regulating muscle metabolism. We also analysed the transcriptome of skeletal muscle in Ctns-/- mice using RNAseq. RESULTS Supplementation of 25(OH)D3 and 1,25(OH)2 D3 normalized serum concentration of 25(OH)D3 and 1,25(OH)2 D3 in Ctns-/- mice, respectively. Repletion of vitamin D partially or fully normalized food intake, weight gain, gain of fat, and lean mass, improved energy homeostasis, and attenuated perturbations of uncoupling proteins and adenosine triphosphate content in adipose tissue and muscle in Ctns-/- mice. Vitamin D repletion attenuated elevated expression of beige adipose cell biomarkers (UCP-1, CD137, Tmem26, and Tbx1) as well as aberrant expression of molecules implicated in adipose tissue browning (Cox2, Pgf2α, and NF-κB pathway) in inguinal white adipose tissue in Ctns-/- mice. Vitamin D repletion normalized skeletal muscle fibre size and improved in vivo muscle function in Ctns-/- mice. This was accompanied by correcting the increased muscle catabolic signalling (increased protein contents of IL-1β, IL-6, and TNF-α as well as an increased gene expression of Murf-2, atrogin-1, and myostatin) and promoting the decreased muscle regeneration and myogenesis process (decreased gene expression of Igf1, Pax7, and MyoD) in skeletal muscles of Ctns-/- mice. Muscle RNAseq analysis revealed aberrant gene expression profiles associated with reduced muscle and neuron regeneration, increased energy metabolism, and fibrosis in Ctns-/- mice. Importantly, repletion of 25(OH)D3 and 1,25(OH)2 D3 normalized the top 20 differentially expressed genes in Ctns-/- mice. CONCLUSIONS We report the novel findings that correction of 25(OH)D3 and 1,25(OH)2 D3 insufficiency reverses cachexia and may improve quality of life by restoring muscle function in an animal model of infantile nephropathic cystinosis. Mechanistically, vitamin D repletion attenuates adipose tissue browning and muscle wasting in Ctns-/- mice via multiple cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Wai W. Cheung
- Pediatric NephrologyRady Children's Hospital—San Diego, University of California, San DiegoSan DiegoCAUSA
| | - Sheng Hao
- Department of Nephrology and RheumatologyShanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Zhen Wang
- Department of PediatricsShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei Ding
- Division of NephrologyShanghai 9th People's Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and ImmunologyMaternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Alex Gonzalez
- Pediatric NephrologyRady Children's Hospital—San Diego, University of California, San DiegoSan DiegoCAUSA
| | | | - Ping Zhou
- Department of PediatricsThe 2 Hospital of Harbin Medical UniversityHarbinChina
| | - Shiping Li
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Mary C. Esparza
- Department of Orthopedic SurgeryUniversity of California, San DiegoSan DiegoCAUSA
| | - Hal M. Hoffman
- Department of PediatricsUniversity of California, San DiegoSan DiegoCAUSA
| | - Richard L. Lieber
- Department of Orthopedic SurgeryUniversity of California, San DiegoSan DiegoCAUSA
- Rehabilitation Institute of ChicagoChicagoILUSA
| | - Robert H. Mak
- Pediatric NephrologyRady Children's Hospital—San Diego, University of California, San DiegoSan DiegoCAUSA
| |
Collapse
|
13
|
Abstract
Drug targets for the treatment of obesity and comorbidities represent an ever-renewable source of research opportunities worldwide. One of the earliest is the leptin–leptin receptor system that was discovered in the mid-1990s. Leptin, a satiety hormone, is overproduced in overweight patients but the protein is unable to cross the blood–brain barrier and remains inactive. Circulating high levels of leptin induces a series of conditions that would not be manifested without leptin overproduction, including various forms of cancer and inflammatory and cardiovascular diseases. Current pharmaceutical research focuses on improving the blood–brain barrier penetration of leptin receptor agonists and the development of monofunctional antagonists with broad spectrum therapeutic efficacies but without unwanted side effects. Designer peptides with their expanded chemical space as well as well controllable receptor binding and elimination properties slowly replace full-sized leptin products in the drug development pipeline.
Collapse
|
14
|
Yang X, Xu W, Huang K, Zhang B, Wang H, Zhang X, Gong L, Luo Y, He X. Precision toxicology shows that troxerutin alleviates ochratoxin A-induced renal lipotoxicity. FASEB J 2018; 33:2212-2227. [PMID: 30247986 DOI: 10.1096/fj.201800742r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lipotoxicity is the most common cause of severe kidney disease, with few treatment options available today. Precision toxicology can improve detection of subtle intracellular changes in response to exogenous substrates; thus, it facilitates in-depth research on bioactive molecules that may interfere with the onset of certain diseases. In the current study, troxerutin significantly relieved nephrotoxicity, increased endurance, and improved systemic energy metabolism and renal inflammation in OTA-induced nephrotic mice. Lipidomics showed that troxerutin effectively reduced the levels of triglycerides, phosphatidylcholines, and phosphatidylethanolamines in nephropathy. The mechanism was partly attributable to troxerutin in alleviating the aberrantly up-regulated expression of sphingomyelinase, the cystic fibrosis transmembrane conductance regulator, and chloride channel 2. Renal tubular epithelial cells, the main site of toxin-induced accumulation of lipids in the kidney, were subjected to transcriptomic profiling, which uncovered several metabolic factors relevant to aberrant lipid and lipoprotein metabolism. Our work provides new insights into the molecular features of toxin-induced lipotoxicity in renal tubular epithelial cells in vivo and demonstrates the function of troxerutin in alleviating OTA-induced nephrosis and associated systemic energy metabolism disorders.-Yang, X., Xu, W., Huang, K., Zhang, B., Wang, H., Zhang, X., Gong, L., Luo, Y., He, X. Precision toxicology shows that troxerutin alleviates ochratoxin A-induced renal lipotoxicity.
Collapse
Affiliation(s)
- Xuan Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haomiao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xueqin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lijing Gong
- China Academy of Sport and Health Sciences, Beijing Sport University, Beijing, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism-Food Safety, Ministry of Agriculture, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism-Food Safety, Ministry of Agriculture, China
| |
Collapse
|
15
|
Mito-TEMPO Alleviates Renal Fibrosis by Reducing Inflammation, Mitochondrial Dysfunction, and Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5828120. [PMID: 29765500 PMCID: PMC5889907 DOI: 10.1155/2018/5828120] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/01/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
Background Renal fibrosis is a common pathological symptom of chronic kidney disease (CKD). Many studies support that mitochondrial dysfunction and endoplasmic reticulum (ER) stress are implicated in the pathogenesis of CKD. In our study, we investigated the benefits and underlying mechanisms of Mito-TEMPO on renal fibrosis in 5/6 nephrectomy mice. Methods Mice were randomly divided into five groups as follows: control group, CKD group, CKD + Mito-TEMPO (1 mg·kg-1·day-1) group, CKD + Mito-TEMPO (3 mg·kg-1·day-1) group, and Mito-TEMPO group (3 mg·kg-1·day-1). Renal fibrosis was evaluated by PAS, Masson staining, immunohistochemistry, and real-time PCR. Oxidative stress markers such as SOD2 activity and MDA level in serum and isolated mitochondria from renal tissue were measured by assay kits. Mitochondrial superoxide production was evaluated by MitoSOX staining and Western blot. Mitochondrial dysfunction was assessed by electron microscopy and real-time PCR. ER stress-associated protein was measured by Western blot. Results Impaired renal function and renal fibrosis were significantly improved by Mito-TEMPO treatment. Furthermore, inflammation cytokines, profibrotic factors, oxidative stress markers, mitochondrial dysfunction, and ER stress were all increased in the CKD group. However, these effects were significantly ameliorated in the Mito-TEMPO treatment group. Conclusions Mito-TEMPO ameliorates renal fibrosis by alleviating mitochondrial dysfunction and endoplasmic reticulum stress possibly through the Sirt3-SOD2 pathway, which sheds new light on prevention of renal fibrosis in chronic kidney disease.
Collapse
|
16
|
Zhu Q, Scherer PE. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat Rev Nephrol 2017; 14:105-120. [PMID: 29199276 DOI: 10.1038/nrneph.2017.157] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excess adiposity can induce adverse sequelae in multiple cell types and organ systems. The transition from the lean to the obese state is characterized by fundamental cellular changes at the level of the adipocyte. These changes affect the local microenvironment within the respective adipose tissue but can also affect nonadipose systems. Adipocytes within fat pads respond to chronic nutrient excess through hyperplasia or hypertrophy, which can differentially affect interorgan crosstalk between various adipose depots and other organs. This crosstalk is dependent on the unique ability of the adipocyte to coordinate metabolic adjustments throughout the body and to integrate responses to maintain metabolic homeostasis. These actions occur through the release of free fatty acids and metabolites during times of energy need - a process that is altered in the obese state. In addition, adipocytes release a wide array of signalling molecules, such as sphingolipids, as well as inflammatory and hormonal factors (adipokines) that are critical for interorgan crosstalk. The interactions of adipose tissue with the kidney - referred to as the adipo-renal axis - are important for normal kidney function as well as the response of the kidney to injury. Here, we discuss the mechanistic basis of this interorgan crosstalk, which clearly has great therapeutic potential given the increasing rates of chronic kidney disease secondary to obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8549, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8549, USA.,Touchstone Diabetes Center, Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8549, USA
| |
Collapse
|
17
|
Ray A, Cleary MP. The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev 2017; 38:80-97. [PMID: 29158066 DOI: 10.1016/j.cytogfr.2017.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
The adipocyte-released hormone-like cytokine/adipokine leptin behaves differently in obesity compared to its functions in the normal healthy state. In obese individuals, elevated leptin levels act as a pro-inflammatory adipokine and are associated with certain types of cancers. Further, a growing body of evidence suggests that higher circulating leptin concentrations and/or elevated expression of leptin receptors (Ob-R) in tumors may be poor prognostic factors. Although the underlying pathological mechanisms of leptin's association with poor prognosis are not clear, leptin can impact the tumor microenvironment in several ways. For example, leptin is associated with a number of biological components that could lead to tumor cell invasion and distant metastasis. This includes interactions with carcinoma-associated fibroblasts, tumor promoting effects of infiltrating macrophages, activation of matrix metalloproteinases, transforming growth factor-β signaling, etc. Recent studies also have shown that leptin plays a role in the epithelial-mesenchymal transition, an important phenomenon for cancer cell migration and/or metastasis. Furthermore, leptin's potentiating effects on insulin-like growth factor-I, epidermal growth factor receptor and HER2/neu have been reported. Regarding unfavorable prognosis, leptin has been shown to influence both adenocarcinomas and squamous cell carcinomas. Features of poor prognosis such as tumor invasion, lymph node involvement and distant metastasis have been recorded in several cancer types with higher levels of leptin and/or Ob-R. This review will describe the current scenario in a precise manner. In general, obesity indicates poor prognosis in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, Greensburg, PA 15601, United States
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN 55912, United States.
| |
Collapse
|
18
|
Inflammatory Cytokines as Uremic Toxins: "Ni Son Todos Los Que Estan, Ni Estan Todos Los Que Son". Toxins (Basel) 2017; 9:toxins9040114. [PMID: 28333114 PMCID: PMC5408188 DOI: 10.3390/toxins9040114] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/03/2023] Open
Abstract
Chronic kidney disease is among the fastest growing causes of death worldwide. An increased risk of all-cause and cardiovascular death is thought to depend on the accumulation of uremic toxins when glomerular filtration rate falls. In addition, the circulating levels of several markers of inflammation predict mortality in patients with chronic kidney disease. Indeed, a number of cytokines are listed in databases of uremic toxins and uremic retention solutes. They include inflammatory cytokines (IL-1β, IL-18, IL-6, TNFα), chemokines (IL-8), and adipokines (adiponectin, leptin and resistin), as well as anti-inflammatory cytokines (IL-10). We now critically review the cytokines that may be considered uremic toxins. We discuss the rationale to consider them uremic toxins (mechanisms underlying the increased serum levels and evidence supporting their contribution to CKD manifestations), identify gaps in knowledge, discuss potential therapeutic implications to be tested in clinical trials in order to make this knowledge useful for the practicing physician, and identify additional cytokines, cytokine receptors and chemokines that may fulfill the criteria to be considered uremic toxins, such as sIL-6R, sTNFR1, sTNFR2, IL-2, CXCL12, CX3CL1 and others. In addition, we suggest that IL-10, leptin, adiponectin and resistin should not be considered uremic toxins toxins based on insufficient or contradictory evidence of an association with adverse outcomes in humans or preclinical data not consistent with a causal association.
Collapse
|
19
|
Akchurin O, Sureshbabu A, Doty SB, Zhu YS, Patino E, Cunningham-Rundles S, Choi ME, Boskey A, Rivella S. Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease. Am J Physiol Renal Physiol 2016; 311:F877-F889. [PMID: 27440777 PMCID: PMC5130453 DOI: 10.1152/ajprenal.00089.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/15/2016] [Indexed: 01/04/2023] Open
Abstract
Growth delay is common in children with chronic kidney disease (CKD), often associated with poor quality of life. The role of anemia in uremic growth delay is poorly understood. Here we describe an induction of uremic growth retardation by a 0.2% adenine diet in wild-type (WT) and hepcidin gene (Hamp) knockout (KO) mice, compared with their respective littermates fed a regular diet. Experiments were started at weaning (3 wk). After 8 wk, blood was collected and mice were euthanized. Adenine-fed WT mice developed CKD (blood urea nitrogen 82.8 ± 11.6 mg/dl and creatinine 0.57 ± 0.07 mg/dl) and were 2.1 cm shorter compared with WT controls. WT adenine-fed mice were anemic and had low serum iron, elevated Hamp, and elevated IL6 and TNF-α. WT adenine-fed mice had advanced mineral bone disease (serum phosphorus 16.9 ± 3.1 mg/dl and FGF23 204.0 ± 115.0 ng/ml) with loss of cortical and trabecular bone volume seen on microcomputed tomography. Hamp disruption rescued the anemia phenotype resulting in improved growth rate in mice with CKD, thus providing direct experimental evidence of the relationship between Hamp pathway and growth impairment in CKD. Hamp disruption ameliorated CKD-induced growth hormone-insulin-like growth factor 1 axis derangements and growth plate alterations. Disruption of Hamp did not mitigate the development of uremia, inflammation, and mineral and bone disease in this model. Taken together, these results indicate that an adenine diet can be successfully used to study growth in mice with CKD. Hepcidin appears to be related to pathways of growth retardation in CKD suggesting that investigation of hepcidin-lowering therapies in juvenile CKD is warranted.
Collapse
Affiliation(s)
| | | | - Steve B Doty
- Hospital for Special Surgery, New York, New York; and
| | | | | | | | | | - Adele Boskey
- Weill Cornell Medicine, New York, New York
- Hospital for Special Surgery, New York, New York; and
| | - Stefano Rivella
- Weill Cornell Medicine, New York, New York
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Tu J, Cheung WW, Mak RH. Inflammation and nutrition in children with chronic kidney disease. World J Nephrol 2016; 5:274-282. [PMID: 27152263 PMCID: PMC4848150 DOI: 10.5527/wjn.v5.i3.274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/02/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation and nutritional imbalance are important comorbid conditions that correlate with poor clinical outcomes in children with chronic kidney disease (CKD). Nutritional disorders such as cachexia/protein energy wasting, obesity and growth retardation negatively impact the quality of life and disease progression in children with CKD. Inadequate nutrition has been associated with growth disturbances in children with CKD. On the other hand, over-nutrition and obesity are associated with poor outcomes in children with CKD. The exact mechanisms leading to these unfavorable conditions are not fully elucidated and are most likely multifactorial. In this review, we focus on the pathophysiology of nutrition disorders and inflammation and their impact on clinical outcomes in children with CKD.
Collapse
|
21
|
Cheung WW, Cherqui S, Ding W, Esparza M, Zhou P, Shao J, Lieber RL, Mak RH. Muscle wasting and adipose tissue browning in infantile nephropathic cystinosis. J Cachexia Sarcopenia Muscle 2016; 7:152-64. [PMID: 27493869 PMCID: PMC4864942 DOI: 10.1002/jcsm.12056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/21/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Muscle wasting is a common complication in patients with infantile nephropathic cystinosis, but its mechanism and association with energy metabolism is not known. We define the metabolic phenotype in Ctns(-/-) mice, an established murine model of infantile nephropathic cystinosis, with focus on muscle wasting and energy homeostasis. METHODS Male Ctns(-/-) mice and wild-type (WT) controls were studied at 1, 4, 9, and 12 months of age. As Ctns(-/-) mice started to develop chronic kidney disease (CKD) at 9 months of age, 9- and 12-month-old Ctns(-/-) mice were also compared with age-matched WT mice with CKD. Serum and urine chemistry and energy homeostasis parameters were measured. Skeletal muscle histomorphometry and in vivo muscle function were measured. We studied expression of genes involved in muscle mass regulation, thermogenesis, energy metabolism, adipogenesis, and adipose tissue browning in Ctns(-/-) mice. RESULTS Ctns(-/-) mice showed loss of weight and lean mass and increased energy expenditure. Ctns(-/-) mice exhibited abnormal energy homeostasis before the onset of their CKD. Food intake in Ctns(-/-) mice was comparable with age-matched WT controls. However, significantly lower total body mass starting at 1 month of age and increased energy expenditure at 4 months of age preceded the onset of CKD at 9 months of age in Ctns(-/-) mice. Muscle accept content in 1- and 4-month-old Ctns(-/-) mice was significantly lower than that in age-matched WT controls. At 12 months of age, muscle fibre area and in vivo muscle strength was reduced in Ctns(-/-) mice than that in WT or CKD controls. Muscle wasting in Ctns(-/-) mice was associated with inhibition of myogenesis, activation of muscle proteolysis pathways, and overexpression of pro-inflammatory cytokines. Increased energy expenditure was associated with elevation of thermogenesis in skeletal muscle and adipose tissues. The development of beige adipocytes in Ctns(-/-) mice is a novel finding. Expression of beige adipose cell surface markers (CD137, Tmem26, and Tbx1) and uncoupling protein-1, which is a brown adipose tissue marker, was observed in inguinal white adipose tissue of Ctns(-/-) mice. Expression of key molecules implicated in the pathogenesis of adipose tissue browning (Cox2, cytochrome c oxidase subunit II; PGF2α, prostaglandin F2α; IL-1α, interleukin 1α; IL-6, interleukin 6; TNF-α, tumor necrosis factor α) was significantly increased in inguinal white adipose tissue of Ctns(-/-) mice than that in WT controls. CONCLUSION This study describes a mouse model of nephropathic cystinosis presenting with profound muscle wasting. The mechanism for hypermetabolism in Ctns(-/-) mice may involve up-regulation of thermogenesis pathways in skeletal muscle and adipose tissues. This study demonstrates, for the first time, the development of beige adipocytes in Ctns(-/-) mice. Understanding the underlying mechanisms of adipose tissue browning in cystinosis may lead to novel therapy.
Collapse
Affiliation(s)
- Wai W Cheung
- Department of Pediatrics University of California San Diego CA USA
| | | | - Wei Ding
- Department of Pediatrics University of California San Diego CA USA; Division of Nephrology, The 5th People's Hospital of Shanghai Fudan University Shanghai China
| | - Mary Esparza
- Department of Orthopedic Surgery University of California San Diego CA USA
| | - Ping Zhou
- Department of Pediatrics University of California San Diego CA USA; Department of Pediatrics The 2nd Hospital of Harbin Medical University Harbin China
| | - Jianhua Shao
- Department of Pediatrics University of California San Diego CA USA
| | - Richard L Lieber
- Department of Orthopedic Surgery University of California San Diego CA USA; Rehabilitation Institute of Chicago Chicago
| | - Robert H Mak
- Department of Pediatrics University of California San Diego CA USA
| |
Collapse
|
22
|
Kir S, Komaba H, Garcia AP, Economopoulos KP, Liu W, Lanske B, Hodin RA, Spiegelman BM. PTH/PTHrP Receptor Mediates Cachexia in Models of Kidney Failure and Cancer. Cell Metab 2016; 23:315-23. [PMID: 26669699 PMCID: PMC4749423 DOI: 10.1016/j.cmet.2015.11.003] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/25/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023]
Abstract
Cachexia is a wasting syndrome associated with elevated basal energy expenditure and loss of adipose and muscle tissues. It accompanies many chronic diseases including renal failure and cancer and is an important risk factor for mortality. Our recent work demonstrated that tumor-derived PTHrP drives adipose tissue browning and cachexia. Here, we show that PTH is involved in stimulating a thermogenic gene program in 5/6 nephrectomized mice that suffer from cachexia. Fat-specific knockout of PTHR blocked adipose browning and wasting. Surprisingly, loss of PTHR in fat tissue also preserved muscle mass and improved muscle strength. Similarly, PTHR knockout mice were resistant to cachexia driven by tumors. Our results demonstrate that PTHrP and PTH mediate wasting through a common mechanism involving PTHR, and there exists an unexpected crosstalk mechanism between wasting of fat tissue and skeletal muscle. Targeting the PTH/PTHrP pathway may have therapeutic uses in humans with cachexia.
Collapse
Affiliation(s)
- Serkan Kir
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Hirotaka Komaba
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Ana P Garcia
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Wei Liu
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Beate Lanske
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Richard A Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Zabeau L, Peelman F, Tavernier J. Antagonizing leptin: current status and future directions. Biol Chem 2014; 395:499-514. [PMID: 24523306 DOI: 10.1515/hsz-2013-0283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/05/2014] [Indexed: 11/15/2022]
Abstract
The adipocyte-derived hormone/cytokine leptin acts as a metabolic switch, connecting the body's nutritional status to high energy consuming processes such as reproduction and immune responses. Inappropriate leptin responses can promote autoimmune diseases and tumorigenesis. In this review we discuss the current strategies to modulate leptin signaling and the possibilities for their use in research and therapy.
Collapse
|
24
|
Exploiting the therapeutic potential of leptin signaling in cachexia. Curr Opin Support Palliat Care 2014; 8:352-7. [DOI: 10.1097/spc.0000000000000092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Alix PM, Guebre-Egziabher F, Soulage CO. Leptin as an uremic toxin: Deleterious role of leptin in chronic kidney disease. Biochimie 2014; 105:12-21. [PMID: 25010649 DOI: 10.1016/j.biochi.2014.06.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 06/30/2014] [Indexed: 12/27/2022]
Abstract
White adipose tissue secretes a large variety of compounds named adipokines amongst which, leptin exhibits pleiotropic metabolic actions. Leptin is an anorexigenic hormone, secreted in proportion of fat mass, with additional effects on the regulation of inflammation, cardiovascular system, immunity, hematopoiesis and bone metabolism. Chronic kidney disease (CKD) is characterized by an increase of plasma leptin concentration that may be explained by a lack of renal clearance. Hyperleptinemia plays a key role in the pathogenesis of complications associated with CKD such as cachexia, protein energy wasting, chronic inflammation, insulin resistance, cardiovascular damages and bone complications. Leptin is also involved in the progression of renal disease through its pro-fibrotic and pro-hypertensive actions. Most of the adverse effects of leptin have been documented both experimentally and clinically. Leptin may therefore be considered as an uremic toxin in CKD. The aim of this review is to summarize the pathophysiological and clinical role of leptin in in vitro studies, experimental models, as well as in patients suffering from CKD.
Collapse
Affiliation(s)
- Pascaline M Alix
- Université de Lyon, INSERM U1060, CarMeN, INSA de Lyon, Univ Lyon-1, F-69621 Villeurbanne, France; Hospices Civils de Lyon, Department of Nephrology, Hôpital E Herriot, Lyon F-69003, France.
| | - Fitsum Guebre-Egziabher
- Université de Lyon, INSERM U1060, CarMeN, INSA de Lyon, Univ Lyon-1, F-69621 Villeurbanne, France; Hospices Civils de Lyon, Department of Nephrology, Hôpital E Herriot, Lyon F-69003, France
| | - Christophe O Soulage
- Université de Lyon, INSERM U1060, CarMeN, INSA de Lyon, Univ Lyon-1, F-69621 Villeurbanne, France
| |
Collapse
|
26
|
Watanabe K, Watanabe T, Nakayama M. Cerebro-renal interactions: impact of uremic toxins on cognitive function. Neurotoxicology 2014; 44:184-93. [PMID: 25003961 DOI: 10.1016/j.neuro.2014.06.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/13/2014] [Accepted: 06/27/2014] [Indexed: 01/21/2023]
Abstract
Cognitive impairment (CI) associated with chronic kidney disease (CKD) has received attention as an important problem in recent years. Causes of CI with CKD are multifactorial, and include cerebrovascular disease, renal anemia, secondary hyperparathyroidism, dialysis disequilibrium, and uremic toxins (UTs). Among these causes, little is known about the role of UTs. We therefore selected 21 uremic compounds, and summarized reports of cerebro-renal interactions associated with UTs. Among the compounds, uric acid, indoxyl sulfate, p-cresyl sulfate, interleukin 1-β, interleukin 6, TNF-α, and PTH were most likely to affect the cerebro-renal interaction dysfunction; however, sufficient data have not been obtained for other UTs. Notably, most of the data were not obtained under uremic conditions; therefore, the impact and mechanism of each UT on cognition and central nervous system in uremic state remains unknown. At present, impacts and mechanisms of UT effects on cognition are poorly understood. Clarifying the mechanisms and establishing novel therapeutic strategies for cerebro-renal interaction dysfunction is expected to be subject of future research.
Collapse
Affiliation(s)
- Kimio Watanabe
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tsuyoshi Watanabe
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Masaaki Nakayama
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| |
Collapse
|
27
|
Abstract
In patients with chronic kidney disease (CKD), loss of cellular proteins increases the risks of morbidity and mortality. Persistence of muscle protein catabolism in CKD results in striking losses of muscle proteins as whole-body protein turnover is great; even small but persistent imbalances between protein synthesis and degradation cause substantial protein loss. No reliable methods to prevent CKD-induced muscle wasting currently exist, but mechanisms that control cellular protein turnover have been identified, suggesting that therapeutic strategies will be developed to suppress or block protein loss. Catabolic pathways that cause protein wasting include activation of the ubiquitin-proteasome system (UPS), caspase-3, lysosomes and myostatin (a negative regulator of skeletal muscle growth). These pathways can be initiated by complications associated with CKD, such as metabolic acidosis, defective insulin signalling, inflammation, increased angiotensin II levels, abnormal appetite regulation and impaired microRNA responses. Inflammation stimulates cellular signalling pathways that activate myostatin, which accelerates UPS-mediated catabolism. Blocking this pathway can prevent loss of muscle proteins. Myostatin inhibition could yield new therapeutic directions for blocking muscle protein wasting in CKD or disorders associated with its complications.
Collapse
Affiliation(s)
- Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, 1639 Pierce Drive, WMB 338, Atlanta, GA 30322, USA
| | - William E Mitch
- Nephrology Division, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, ABBR R705, Houston, TX 77030, USA
| |
Collapse
|
28
|
Lim MA, Bence KK, Sandesara I, Andreux P, Auwerx J, Ishibashi J, Seale P, Kalb RG. Genetically altering organismal metabolism by leptin-deficiency benefits a mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 2014; 23:4995-5008. [PMID: 24833719 DOI: 10.1093/hmg/ddu214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that causes death of motor neurons. ALS patients and mouse models of familial ALS display organismal level metabolic dysfunction, which includes increased energy expenditure despite decreased lean mass. The pathophysiological relevance of abnormal energy homeostasis to motor neuron disease remains unclear. Leptin is an adipocyte-derived hormone that regulates whole-animal energy expenditure. Here, we report that placing mutant superoxide dismutase 1 (SOD1) mice in a leptin-deficient background improves energy homeostasis and slows disease progression. Leptin-deficient mutant SOD1 mice possess increased bodyweight and fat mass, as well as decreased energy expenditure. These observations coincide with enhanced survival, improved strength and decreased motor neuron loss. These results suggest that altering whole-body energy metabolism in mutant SOD1 mice can mitigate disease progression. We propose that manipulations that increase fat mass and reduce energy expenditure will be beneficial in the setting of motor neuron disease.
Collapse
Affiliation(s)
- Maria A Lim
- Division of Neurology, Department of Pediatrics, Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA, Neuroscience Graduate Group
| | - Kendra K Bence
- Neuroscience Graduate Group, Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ishani Sandesara
- Division of Neurology, Department of Pediatrics, Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pénélope Andreux
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity and Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert G Kalb
- Division of Neurology, Department of Pediatrics, Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA, Neuroscience Graduate Group, Department of Neurology and
| |
Collapse
|