1
|
Aziz F, Sam R, Lew SQ, Massie L, Misra M, Roumelioti ME, Argyropoulos CP, Ing TS, Tzamaloukas AH. Pseudohyponatremia: Mechanism, Diagnosis, Clinical Associations and Management. J Clin Med 2023; 12:4076. [PMID: 37373769 DOI: 10.3390/jcm12124076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Pseudohyponatremia remains a problem for clinical laboratories. In this study, we analyzed the mechanisms, diagnosis, clinical consequences, and conditions associated with pseudohyponatremia, and future developments for its elimination. The two methods involved assess the serum sodium concentration ([Na]S) using sodium ion-specific electrodes: (a) a direct ion-specific electrode (ISE), and (b) an indirect ISE. A direct ISE does not require dilution of a sample prior to its measurement, whereas an indirect ISE needs pre-measurement sample dilution. [Na]S measurements using an indirect ISE are influenced by abnormal concentrations of serum proteins or lipids. Pseudohyponatremia occurs when the [Na]S is measured with an indirect ISE and the serum solid content concentrations are elevated, resulting in reciprocal depressions in serum water and [Na]S values. Pseudonormonatremia or pseudohypernatremia are encountered in hypoproteinemic patients who have a decreased plasma solids content. Three mechanisms are responsible for pseudohyponatremia: (a) a reduction in the [Na]S due to lower serum water and sodium concentrations, the electrolyte exclusion effect; (b) an increase in the measured sample's water concentration post-dilution to a greater extent when compared to normal serum, lowering the [Na] in this sample; (c) when serum hyperviscosity reduces serum delivery to the device that apportions serum and diluent. Patients with pseudohyponatremia and a normal [Na]S do not develop water movement across cell membranes and clinical manifestations of hypotonic hyponatremia. Pseudohyponatremia does not require treatment to address the [Na]S, making any inadvertent correction treatment potentially detrimental.
Collapse
Affiliation(s)
- Fahad Aziz
- Department of Medicine, Division of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ramin Sam
- Department of Medicine, Zuckerberg San Francisco General Hospital, School of Medicine, University of California in San Francisco, San Francisco, CA 94110, USA
| | - Susie Q Lew
- Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Larry Massie
- Department of Pathology, Raymond G. Murphy Veterans Affairs Medical Center, University of New Mexico School of Medicine, Albuquerque, NM 87108, USA
| | - Madhukar Misra
- Department of Medicine, Division of Nephrology, University of Missouri, Columbia, MO 65211, USA
| | - Maria-Eleni Roumelioti
- Department of Medicine, Division of Nephrology, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Christos P Argyropoulos
- Department of Medicine, Division of Nephrology, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Todd S Ing
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Antonios H Tzamaloukas
- Research Service, Department of Medicine, Raymond G. Murphy Veterans Affairs Medical Center, University of New Mexico School of Medicine, Albuquerque, NM 87108, USA
| |
Collapse
|
2
|
Lew SQ, Cheng YL, Tzamaloukas AH, Ing TS. A new approach to individualize dialysis fluid sodium concentration using a four-stream, bicarbonate-based fluid delivery system. Artif Organs 2021; 45:779-783. [PMID: 33534933 DOI: 10.1111/aor.13929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 11/28/2022]
Abstract
We propose a new 45X, four-stream, triple-concentrate, bicarbonate-based dialysis fluid delivery system, allowing a wide range of dialysis fluid sodium concentrations\\ (DFNa ) without affecting the concentrations of other crucial solutes. The four streams consist of product water (W), and concentrates with sodium chloride (S), acid (A), and sodium bicarbonate (B). An adjustment in the DFNa in this new system requires changes only in the W and S concentrate streams. The ingredients in A and B concentrates do not change.
Collapse
Affiliation(s)
- Susie Q Lew
- Department of Medicine, George Washington University, Washington, DC, USA
| | - Yuk-Lun Cheng
- Department of Medicine and ICU, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, China
| | - Antonios H Tzamaloukas
- Department of Medicine, Raymond G. Murphy Veterans Affairs Medical Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Todd S Ing
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
3
|
Jiang Y, Abudurexiti S, An MM, Cao D, Wei J, Gong P. Risk factors associated with 28-day all-cause mortality in older severe COVID-19 patients in Wuhan, China: a retrospective observational study. Sci Rep 2020; 10:22369. [PMID: 33353956 PMCID: PMC7755901 DOI: 10.1038/s41598-020-79508-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023] Open
Abstract
We aimed to analyse clinical characteristics and identify risk factors predicting all-cause mortality in older patients with severe coronavirus disease 2019 (COVID-19). A total of 281 older patients with severe COVID-19 were categorized into two age groups (60-79 years and ≥ 80 years). Epidemiological, clinical, and laboratory data, and outcome were obtained. Patients aged ≥ 80 years had higher mortality (63.6%) than those aged 60-79 years (33.5%). Anorexia and comorbidities including hypertension, diabetes and COPD, higher levels of lactate dehydrogenase (LDH), osmotic pressure, C-reactive protein, D-dimer, high-sensitivity troponin I and procalcitonin, and higher SOFA scores were more common in patients aged > 80 years than those aged 60-79 years and also more common and higher in non-survivors than survivors. LDH, osmotic pressure, C-reactive protein, D-dimer, high-sensitivity troponin I, and procalcitonin were positively correlated with age and sequential organ failure assessment (SOFA), whereas CD8+ and lymphocyte counts were negatively correlated with age and SOFA. Anorexia, comorbidities including hypertension, diabetes, and chronic obstructive pulmonary disease (COPD), LDH, osmotic pressure, and SOFA were significantly associated with 28-day all-cause mortality. LDH, osmotic pressure and SOFA were valuable for predicting 28-day all-cause mortality, whereas the area under the receiver operating characteristic curve of LDH was the largest, with sensitivity of 86.0% and specificity of 80.8%. Therefore, patients with severe COVID-19 aged ≥ 80 years had worse condition and higher mortality than did those aged 60-79 years, and anorexia and comorbidities including hypertension, diabetes, COPD, elevated plasma osmotic pressure, LDH, and high SOFA were independent risk factors associated with 28-day all-cause mortality in older patients with severe COVID-19. LDH may have the highest predictive value for 28-day all-cause mortality in all examined factors.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, Liaoning, China
- Department of Emergency, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Subi Abudurexiti
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, Liaoning, China
| | - Meng-Meng An
- Intensive Care Unit, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Da Cao
- Department of Emergency, Southeast University Zhongda Hospital, Nanjing, 210009, Jiangsu, China
| | - Jie Wei
- Department of Emergency, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Ping Gong
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, Liaoning, China.
| |
Collapse
|
4
|
Ing TS, Ganta K, Bhave G, Lew SQ, Agaba EI, Argyropoulos C, Tzamaloukas AH. The Corrected Serum Sodium Concentration in Hyperglycemic Crises: Computation and Clinical Applications. Front Med (Lausanne) 2020; 7:477. [PMID: 32984372 PMCID: PMC7479837 DOI: 10.3389/fmed.2020.00477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
In hyperglycemia, hypertonicity results from solute (glucose) gain and loss of water in excess of sodium plus potassium through osmotic diuresis. Patients with stage 5 chronic kidney disease (CKD) and hyperglycemia have minimal or no osmotic diuresis; patients with preserved renal function and diabetic ketoacidosis (DKA) or hyperosmolar hyperglycemic state (HHS) have often large osmotic diuresis. Hypertonicity from glucose gain is reversed with normalization of serum glucose ([Glu]); hypertonicity due to osmotic diuresis requires infusion of hypotonic solutions. Prediction of the serum sodium after [Glu] normalization (the corrected [Na]) estimates the part of hypertonicity caused by osmotic diuresis. Theoretical methods calculating the corrected [Na] and clinical reports allowing its calculation were reviewed. Corrected [Na] was computed separately in reports of DKA, HHS and hyperglycemia in CKD stage 5. The theoretical prediction of [Na] increase by 1.6 mmol/L per 5.6 mmol/L decrease in [Glu] in most clinical settings, except in extreme hyperglycemia or profound hypervolemia, was supported by studies of hyperglycemia in CKD stage 5 treated only with insulin. Mean corrected [Na] was 139.0 mmol/L in 772 hyperglycemic episodes in CKD stage 5 patients. In patients with preserved renal function, mean corrected [Na] was within the eunatremic range (141.1 mmol/L) in 7,812 DKA cases, and in the range of severe hypernatremia (160.8 mmol/L) in 755 cases of HHS. However, in DKA corrected [Na] was in the hypernatremic range in several reports and rose during treatment with adverse neurological consequences in other reports. The corrected [Na], computed as [Na] increase by 1.6 mmol/L per 5.6 mmol/L decrease in [Glu], provides a reasonable estimate of the degree of hypertonicity due to losses of hypotonic fluids through osmotic diuresis at presentation of DKH or HHS and should guide the tonicity of replacement solutions. However, the corrected [Na] may change during treatment because of ongoing fluid losses and should be monitored during treatment.
Collapse
Affiliation(s)
- Todd S Ing
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| | - Kavitha Ganta
- Medicine Service, Department of Medicine, Raymond G. Murphy Veterans Affairs Medical Center, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Gautam Bhave
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Susie Q Lew
- Department of Medicine, George Washington University School of Medicine, Washington, DC, United States
| | | | - Christos Argyropoulos
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Antonios H Tzamaloukas
- Research Service, Department of Medicine, Raymond G. Murphy Veterans Affairs Medical Center, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
5
|
Dialysis-associated hyperglycemia: manifestations and treatment. Int Urol Nephrol 2020; 52:505-517. [PMID: 31955362 DOI: 10.1007/s11255-019-02373-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Dialysis-associated hyperglycemia (DAH), is associated with a distinct fluid and electrolyte pathophysiology. The purpose of this report was to review the pathophysiology and provide treatment guidelines for DAH. METHODS Review of published reports on DAH. Synthesis of guidelines based on these reports. RESULTS The following fluid and solute abnormalities have been identified in DAH: (a) hypoglycemia: this is a frequent complication of insulin treatment and its prevention requires special attention. (b) Elevated serum tonicity. The degree of hypertonicity in DAH is lower than in similar levels of hyperglycemia in patients with preserved renal function. Typically, correction of hyperglycemia with insulin corrects the hypertonicity of DAH. (c) Extracellular volume abnormalities ranging from pulmonary edema associated with osmotic fluid shift from the intracellular into the extracellular compartment as a consequence of gain in extracellular solute (glucose) to hypovolemia from osmotic diuresis in patients with residual renal function or from fluid losses through extrarenal routes. Correction of DAH by insulin infusion reverses the osmotic fluid transfer between the intracellular and extracellular compartments and corrects the pulmonary edema, but can worsen the manifestations of hypovolemia, which require saline infusion. (d) A variety of acid-base disorders including ketoacidosis correctable with insulin infusion and no other interventions. (e) Hyperkalemia, which is frequent in DAH and is more severe when ketoacidosis is also present. Insulin infusion corrects the hyperkalemia. Extreme hyperkalemia at presentation or hypokalemia developing during insulin infusion require additional measures. CONCLUSIONS In DAH, insulin infusion is the primary management strategy and corrects the fluid and electrolyte abnormalities. Patients treated for DAH should be monitored for the development of hypoglycemia or fluid and electrolyte abnormalities that may require additional treatments.
Collapse
|
6
|
Tzamaloukas AH, Khitan ZJ, Glew RH, Roumelioti M, Rondon‐Berrios H, Elisaf MS, Raj DS, Owen J, Sun Y, Siamopoulos KC, Rohrscheib M, Ing TS, Murata GH, Shapiro JI, Malhotra D. Serum Sodium Concentration and Tonicity in Hyperglycemic Crises: Major Influences and Treatment Implications. J Am Heart Assoc 2019; 8:e011786. [PMID: 31549572 PMCID: PMC6806024 DOI: 10.1161/jaha.118.011786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Antonios H. Tzamaloukas
- Raymond G. Murphy Veterans Affairs Medical CenterAlbuquerqueNM
- University of New Mexico School of MedicineAlbuquerqueNM
| | - Zeid J. Khitan
- Joan C. Edwards School of MedicineMarshall UniversityHuntingtonWV
| | - Robert H. Glew
- University of New Mexico School of MedicineAlbuquerqueNM
| | | | | | | | - Dominic S. Raj
- George Washington University School of MedicineWashingtonDC
| | - Jonathan Owen
- University of New Mexico School of MedicineAlbuquerqueNM
| | - Yijuan Sun
- Raymond G. Murphy Veterans Affairs Medical CenterAlbuquerqueNM
- University of New Mexico School of MedicineAlbuquerqueNM
| | | | | | - Todd S. Ing
- Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Glen H. Murata
- Raymond G. Murphy Veterans Affairs Medical CenterAlbuquerqueNM
| | | | | |
Collapse
|
7
|
Roumelioti ME, Ing TS, Rondon-Berrios H, Glew RH, Khitan ZJ, Sun Y, Malhotra D, Raj DS, Agaba EI, Murata GH, Shapiro JI, Tzamaloukas AH. Principles of quantitative water and electrolyte replacement of losses from osmotic diuresis. Int Urol Nephrol 2018; 50:1263-1270. [PMID: 29511980 DOI: 10.1007/s11255-018-1822-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/04/2018] [Indexed: 02/08/2023]
Abstract
Osmotic diuresis results from urine loss of large amounts of solutes distributed either in total body water or in the extracellular compartment. Replacement solutions should reflect the volume and monovalent cation (sodium and potassium) content of the fluid lost. Whereas the volume of the solutions used to replace losses that occurred prior to the diagnosis of osmotic diuresis is guided by the clinical picture, the composition of these solutions is predicated on serum sodium concentration and urinary sodium and potassium concentrations at presentation. Water loss is relatively greater than the loss of sodium plus potassium leading to hypernatremia which is seen routinely when the solute responsible for osmotic diuresis (e.g., urea) is distributed in body water. Solutes distributed in the extracellular compartment (e.g., glucose or mannitol) cause, in addition to osmotic diuresis, fluid transfer from the intracellular into the extracellular compartment with concomitant dilution of serum sodium. Serum sodium concentration corrected to euglycemia should be substituted for actual serum sodium concentration when calculating the composition of the replacement solutions in hyperglycemic patients. While the patient is monitored during treatment, the calculation of the volume and composition of the replacement solutions for losses of water, sodium and potassium from ongoing osmotic diuresis should be based directly on measurements of urine volume and urine sodium and potassium concentrations and not by means of any predictive formulas. Monitoring of clinical status, serum sodium, potassium, glucose, other relevant laboratory values, urine volume, and urine sodium and potassium concentrations during treatment of severe osmotic diuresis is of critical importance.
Collapse
Affiliation(s)
| | - Todd S Ing
- Strich School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | - Robert H Glew
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Zeid J Khitan
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Yijuan Sun
- University of New Mexico School of Medicine, Albuquerque, NM, USA
- Raymond G. Murphy Veterans Affairs Medical Center, 1501 San Pedro SE, Albuquerque, NM, 87108, USA
| | | | - Dominic S Raj
- George Washington University School of Medicine, Washington, DC, USA
| | | | - Glen H Murata
- Raymond G. Murphy Veterans Affairs Medical Center, 1501 San Pedro SE, Albuquerque, NM, 87108, USA
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Antonios H Tzamaloukas
- University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Raymond G. Murphy Veterans Affairs Medical Center, 1501 San Pedro SE, Albuquerque, NM, 87108, USA.
| |
Collapse
|
8
|
Wang YF, Parpura V. Astroglial Modulation of Hydromineral Balance and Cerebral Edema. Front Mol Neurosci 2018; 11:204. [PMID: 29946238 PMCID: PMC6007284 DOI: 10.3389/fnmol.2018.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of hydromineral balance (HB) is an essential condition for life activity at cellular, tissue, organ and system levels. This activity has been considered as a function of the osmotic regulatory system that focuses on hypothalamic vasopressin (VP) neurons, which can reflexively release VP into the brain and blood to meet the demand of HB. Recently, astrocytes have emerged as an essential component of the osmotic regulatory system in addition to functioning as a regulator of the HB at cellular and tissue levels. Astrocytes express all the components of osmoreceptors, including aquaporins, molecules of the extracellular matrix, integrins and transient receptor potential channels, with an operational dynamic range allowing them to detect and respond to osmotic changes, perhaps more efficiently than neurons. The resultant responses, i.e., astroglial morphological and functional plasticity in the supraoptic and paraventricular nuclei, can be conveyed, physically and chemically, to adjacent VP neurons, thereby influencing HB at the system level. In addition, astrocytes, particularly those in the circumventricular organs, are involved not only in VP-mediated osmotic regulation, but also in regulation of other osmolality-modulating hormones, including natriuretic peptides and angiotensin. Thus, astrocytes play a role in local/brain and systemic HB. The adaptive astrocytic reactions to osmotic challenges are associated with signaling events related to the expression of glial fibrillary acidic protein and aquaporin 4 to promote cell survival and repair. However, prolonged osmotic stress can initiate inflammatory and apoptotic signaling processes, leading to glial dysfunction and a variety of brain diseases. Among many diseases of brain injury and hydromineral disorders, cytotoxic and osmotic cerebral edemas are the most common pathological manifestation. Hyponatremia is the most common cause of osmotic cerebral edema. Overly fast correction of hyponatremia could lead to central pontine myelinolysis. Ischemic stroke exemplifies cytotoxic cerebral edema. In this review, we summarize and analyze the osmosensory functions of astrocytes and their implications in cerebral edema.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Roumelioti ME, Glew RH, Khitan ZJ, Rondon-Berrios H, Argyropoulos CP, Malhotra D, Raj DS, Agaba EI, Rohrscheib M, Murata GH, Shapiro JI, Tzamaloukas AH. Fluid balance concepts in medicine: Principles and practice. World J Nephrol 2018; 7:1-28. [PMID: 29359117 PMCID: PMC5760509 DOI: 10.5527/wjn.v7.i1.1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
The regulation of body fluid balance is a key concern in health and disease and comprises three concepts. The first concept pertains to the relationship between total body water (TBW) and total effective solute and is expressed in terms of the tonicity of the body fluids. Disturbances in tonicity are the main factor responsible for changes in cell volume, which can critically affect brain cell function and survival. Solutes distributed almost exclusively in the extracellular compartment (mainly sodium salts) and in the intracellular compartment (mainly potassium salts) contribute to tonicity, while solutes distributed in TBW have no effect on tonicity. The second body fluid balance concept relates to the regulation and measurement of abnormalities of sodium salt balance and extracellular volume. Estimation of extracellular volume is more complex and error prone than measurement of TBW. A key function of extracellular volume, which is defined as the effective arterial blood volume (EABV), is to ensure adequate perfusion of cells and organs. Other factors, including cardiac output, total and regional capacity of both arteries and veins, Starling forces in the capillaries, and gravity also affect the EABV. Collectively, these factors interact closely with extracellular volume and some of them undergo substantial changes in certain acute and chronic severe illnesses. Their changes result not only in extracellular volume expansion, but in the need for a larger extracellular volume compared with that of healthy individuals. Assessing extracellular volume in severe illness is challenging because the estimates of this volume by commonly used methods are prone to large errors in many illnesses. In addition, the optimal extracellular volume may vary from illness to illness, is only partially based on volume measurements by traditional methods, and has not been determined for each illness. Further research is needed to determine optimal extracellular volume levels in several illnesses. For these reasons, extracellular volume in severe illness merits a separate third concept of body fluid balance.
Collapse
Affiliation(s)
- Maria-Eleni Roumelioti
- Division of Nephrology, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Robert H Glew
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Zeid J Khitan
- Division of Nephrology, Department of Medicine, Joan Edwards School of Medicine, Marshall University, Huntington, WV 25701, United States
| | - Helbert Rondon-Berrios
- Division of Renal and Electrolyte, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Christos P Argyropoulos
- Division of Nephrology, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Deepak Malhotra
- Division of Nephrology, Department of Medicine, University of Toledo School of Medicine, Toledo, OH 43614-5809, United States
| | - Dominic S Raj
- Division of Renal Disease and Hypertension, Department of Medicine, George Washington University, Washington, DC 20037, United States
| | - Emmanuel I Agaba
- Division of Nephology, Department of Medicine, Jos University Medical Center, Jos, Plateau State 930001, Nigeria
| | - Mark Rohrscheib
- Division of Nephrology, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Glen H Murata
- Research Service, Raymond G Murphy VA Medical Center and University of New Mexico School of Medicine, Albuquerque, NM 87108, United States
| | | | - Antonios H Tzamaloukas
- Research Service, Raymond G Murphy VA Medical Center and University of New Mexico School of Medicine, Albuquerque, NM 87108, United States
| |
Collapse
|