1
|
Kofotolios I, Bonios MJ, Adamopoulos M, Mourouzis I, Filippatos G, Boletis JN, Marinaki S, Mavroidis M. The Han:SPRD Rat: A Preclinical Model of Polycystic Kidney Disease. Biomedicines 2024; 12:362. [PMID: 38397964 PMCID: PMC10887417 DOI: 10.3390/biomedicines12020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) stands as the most prevalent hereditary renal disorder in humans, ultimately culminating in end-stage kidney disease. Animal models carrying mutations associated with polycystic kidney disease have played an important role in the advancement of ADPKD research. The Han:SPRD rat model, carrying an R823W mutation in the Anks6 gene, is characterized by cyst formation and kidney enlargement. The mutated protein, named Samcystin, is localized in cilia of tubular epithelial cells and seems to be involved in cystogenesis. The homozygous Anks6 mutation leads to end-stage renal disease and death, making it a critical factor in kidney development and function. This review explores the utility of the Han:SPRD rat model, highlighting its phenotypic similarity to human ADPKD. Specifically, we discuss its role in preclinical trials and its importance for investigating the pathogenesis of the disease and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Ioannis Kofotolios
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| | - Michael J. Bonios
- Heart Failure and Transplant Unit, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - Markos Adamopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Gerasimos Filippatos
- Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - John N. Boletis
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Smaragdi Marinaki
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| |
Collapse
|
2
|
Rahbari-Oskoui FF. Management of Hypertension and Associated Cardiovascular Disease in Autosomal Dominant Polycystic Kidney Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:417-428. [PMID: 38097332 DOI: 10.1053/j.akdh.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 12/18/2023]
Abstract
Autosomal dominant polycystic kidney disease is the most commonly inherited disease of the kidneys affecting an estimated 12,000,000 people in the world. Autosomal dominant polycystic kidney disease is a systemic disease, with a wide range of associated features that includes hypertension, valvular heart diseases, cerebral aneurysms, aortic aneurysms, liver cysts, abdominal hernias, diverticulosis, gross hematuria, urinary tract infections, nephrolithiasis, pancreatic cysts, and seminal vesicle cysts. The cardiovascular anomalies are somewhat different than in the general population and also chronic kidney disease population, with higher morbidity and mortality rates. This review will focus on cardiovascular diseases associated with autosomal dominant polycystic kidney disease and their management.
Collapse
Affiliation(s)
- Frederic F Rahbari-Oskoui
- Director of the PKD Center of Excellence, Department of Medicine-Renal Division, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA.
| |
Collapse
|
3
|
Saini AK, Saini R, Singh S. Autosomal dominant polycystic kidney disease and pioglitazone for its therapy: a comprehensive review with an emphasis on the molecular pathogenesis and pharmacological aspects. Mol Med 2020; 26:128. [PMID: 33308138 PMCID: PMC7731470 DOI: 10.1186/s10020-020-00246-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited chronic kidney disorder (CKD) that is characterized by the development of numerous fluid-filled cysts in kidneys. It is caused either due to the mutations in the PKD1 or PKD2 gene that encodes polycystin-1 and polycystin-2, respectively. This condition progresses into end-stage renal disorder if the renal or extra-renal clinical manifestations remain untreated. Several clinical trials with a variety of drugs have failed, and the only Food and Drugs Administration (FDA) approved drug to treat ADPKD to date is tolvaptan that works by antagonizing the vasopressin-2 receptor (V2R). The pathology of ADPKD is complex and involves the malfunction of different signaling pathways like cAMP, Hedgehog, and MAPK/ERK pathway owing to the mutated product that is polycystin-1 or 2. A measured yet substantial number of preclinical studies have found pioglitazone to decrease the cystic burden and improve the renal function in ADPKD. The peroxisome proliferator-activated receptor-gamma is found on the epithelial cells of renal collecting tubule and when it gets agonized by pioglitazone, confers efficacy in ADPKD treatment through multiple mechanisms. There is only one clinical trial (ongoing) wherein it is being assessed for its benefits and risk in patients with ADPKD, and is expected to get approval from the regulatory body owing to its promising therapeutic effects. This article would encompass the updated information on the epidemiology, pathophysiology of ADPKD, different mechanisms of action of pioglitazone in the treatment of ADPKD with preclinical and clinical shreds of evidence, and related safety updates.
Collapse
Affiliation(s)
- Aryendu Kumar Saini
- Department of Pharmacy, Chaudhary Sughar Singh College of Pharmacy, Etawah, Uttar Pradesh, India.
| | - Rakesh Saini
- Department of Pharmacy, Chaudhary Sughar Singh College of Pharmacy, Etawah, Uttar Pradesh, India
| | - Shubham Singh
- Department of Pharmacy, Shri Ram Lakhan Tiwari College of Pharmacy, Etawah, Uttar Pradesh, India
| |
Collapse
|
4
|
Xue C, Zhou C, Dai B, Yu S, Xu C, Mao Z, Ye C, Chen D, Zhao X, Wu J, Chen W, Mei C. Antihypertensive treatments in adult autosomal dominant polycystic kidney disease: network meta-analysis of the randomized controlled trials. Oncotarget 2016; 6:42515-29. [PMID: 26636542 PMCID: PMC4767449 DOI: 10.18632/oncotarget.6452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
Background Blood pressure (BP) control is one of the most important treatments of Autosomal dominant polycystic kidney disease (ADPKD). The comparative efficacy of antihypertensive treatments in ADPKD patients is inconclusive. Methods Network meta-analysis was used to evaluate randomized controlled trials (RCT) which investigated antihypertensive treatments in ADPKD. PubMed, Embase, Ovid, and Cochrane Collaboration were searched. The primary outcome was estimated glomerular filtration rate (eGFR). Secondary outcomes were serum creatinine (Scr), urinary albumin excretion (UAE), systolic BP (SBP), diastolic BP (DBP), mean artery pressure (MAP) and left ventricular mass index (LVMI). Results We included 10 RCTs with 1386 patients and six interventions: angiotensin-converting enzyme inhibitors (ACEI), Angiotensin II receptor blocker (ARB), combination of ACEI and ARB, calcium channel blockers (CCB), β-blockers and dilazep. There was no difference of eGFR in all the treatments in both network and direct comparisons. No significant differences of Scr, SBP, DBP, MAP, and LVMI were found in network comparisons. However, ACEI significantly reduced SBP, DBP, MAP and LVMI when compared to CCB. Significantly increased UAE was observed in CCB compared with ACEI or ARB. Bayesian probability analysis found ARB ranked first in the surrogate measures of eGFR, UAE and SBP. Conclusions There is little evidence to detect differences of antihypertensive treatments on kidney disease progression in ADPKD patients. More RCTs will be needed in the future. Use of ARB may be an optimal choice in clinical practice.
Collapse
Affiliation(s)
- Cheng Xue
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Nephrology, PLA 309 Hospital, Beijing, China
| | - Chenchen Zhou
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bing Dai
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shengqiang Yu
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chenggang Xu
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiguo Mao
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dongping Chen
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuezhi Zhao
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Wu
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wansheng Chen
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Changlin Mei
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
5
|
Mallett A, Lee VW, Mai J, Lopez-Vargas P, Rangan GK. KHA-CARI Autosomal Dominant Polycystic Kidney Disease Guideline: Pharmacological Management. Semin Nephrol 2016; 35:582-589.e17. [PMID: 26718162 DOI: 10.1016/j.semnephrol.2015.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Andrew Mallett
- Kidney Health Service and Conjoint Kidney Research Laboratory, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Centre for Kidney Disease Research, Centre for Chronic Disease and CKD, School of Medicine and Centre for Rare Diseases Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Vincent W Lee
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, Australia; Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Sydney, Australia
| | - Jun Mai
- Department of Nephrology, Liverpool and Bankstown Hospital, South Western Sydney Local Health District, Sydney, Australia
| | - Pamela Lopez-Vargas
- KHA-CARI Guidelines, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Sydney, Australia; Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Sydney, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, Australia
| |
Collapse
|
6
|
Mangolini A, de Stephanis L, Aguiari G. Role of calcium in polycystic kidney disease: From signaling to pathology. World J Nephrol 2016; 5:76-83. [PMID: 26788466 PMCID: PMC4707171 DOI: 10.5527/wjn.v5.i1.76] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/21/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited monogenic kidney disease. Characterized by the development and growth of cysts that cause progressive kidney enlargement, it ultimately leads to end-stage renal disease. Approximately 85% of ADPKD cases are caused by mutations in the PKD1 gene, while mutations in the PKD2 gene account for the remaining 15% of cases. The PKD1 gene encodes for polycystin-1 (PC1), a large multi-functional membrane receptor protein able to regulate ion channel complexes, whereas polycystin-2 (PC2), encoded by the PKD2 gene, is an integral membrane protein that functions as a calcium-permeable cation channel, located mainly in the endoplasmic reticulum (ER). In the primary cilia of the epithelial cells, PC1 interacts with PC2 to form a polycystin complex that acts as a mechanosensor, regulating signaling pathways involved in the differentiation of kidney tubular epithelial cells. Despite progress in understanding the function of these proteins, the molecular mechanisms associated with the pathogenesis of ADPKD remain unclear. In this review we discuss how an imbalance between functional PC1 and PC2 proteins may disrupt calcium channel activities in the cilium, plasma membrane and ER, thereby altering intracellular calcium signaling and leading to the aberrant cell proliferation and apoptosis associated with the development and growth of renal cysts. Research in this field could lead to the discovery of new molecules able to rebalance intracellular calcium, thereby normalizing cell proliferation and reducing kidney cyst progression.
Collapse
|
7
|
Jin X, Muntean BS, Aal-Aaboda MS, Duan Q, Zhou J, Nauli SM. L-type calcium channel modulates cystic kidney phenotype. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1518-26. [PMID: 24925129 DOI: 10.1016/j.bbadis.2014.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/19/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022]
Abstract
In polycystic kidney disease (PKD), abnormal proliferation and genomic instability of renal epithelia have been associated with cyst formation and kidney enlargement. We recently showed that L-type calcium channel (CaV1.2) is localized to primary cilia of epithelial cells. Previous studies have also shown that low intracellular calcium level was associated with the hyperproliferation phenotype in the epithelial cells. However, the relationship between calcium channel and cystic kidney phenotype is largely unknown. In this study, we generated cells with somatic deficient Pkd1 or Pkd2 to examine ciliary CaV1.2 function via lentiviral knockdown or pharmacological verapamil inhibition. Although inhibition of CaV1.2 expression or function did not change division and growth patterns in wild-type epithelium, it led to hyperproliferation and polyploidy in mutant cells. Lack of CaV1.2 in Pkd mutant cells also decreased the intracellular calcium level. This contributed to a decrease in CaM kinase activity, which played a significant role in regulating Akt and Erk signaling pathways. Consistent with our in vitro results, CaV1.2 knockdown in zebrafish and Pkd1 heterozygous mice facilitated the formation of kidney cysts. Larger cysts were developed faster in Pkd1 heterozygous mice with CaV1.2 knockdown. Overall, our findings emphasized the importance of CaV1.2 expression in kidneys with somatic Pkd mutation. We further suggest that CaV1.2 could serve as a modifier gene to cystic kidney phenotype.
Collapse
Affiliation(s)
- Xingjian Jin
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Brian S Muntean
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA
| | - Munaf S Aal-Aaboda
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Qiming Duan
- Department of Biochemistry and Cancer Biology, USA
| | - Jing Zhou
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA, USA
| | - Surya M Nauli
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA; Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
8
|
Rahbari-Oskoui F, Williams O, Chapman A. Mechanisms and management of hypertension in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2014; 29:2194-201. [PMID: 24463189 DOI: 10.1093/ndt/gft513] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most commonly inherited kidney disease, characterized by progressive cyst growth and renal enlargement, resulting in renal failure. Hypertension is common and occurs early, prior to loss of kidney function. Whether hypertension in ADPKD is a primary vasculopathy secondary to mutations in the polycystin genes or secondary to activation of the renin-angiotensin-aldosterone system by cyst expansion and intrarenal ischemia is unclear. Dysregulation of the primary cilium causing endothelial and vascular smooth muscle cell dysfunction is a component of ADPKD. In this article, we review the epidemiology, pathophysiology and clinical characteristics of hypertension in ADPKD and give specific recommendations for its treatment.
Collapse
Affiliation(s)
| | - Olubunmi Williams
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arlene Chapman
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Shiohira S, Yoshida T, Sugiura H, Nishida M, Nitta K, Tsuchiya K. Sphingosine-1-phosphate acts as a key molecule in the direct mediation of renal fibrosis. Physiol Rep 2013; 1:e00172. [PMID: 24744854 PMCID: PMC3970738 DOI: 10.1002/phy2.172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/23/2013] [Accepted: 11/05/2013] [Indexed: 12/11/2022] Open
Abstract
The major sphingolipid metabolite, sphingosine‐1‐phosphate (S1P), has important biological functions. S1P serves as a ligand for a family of five G‐protein‐coupled receptors with distinct signaling pathways regulating important biological pathways. S1P induces renal fibrosis through an inflammatory pathway. However, its direct fibrosis‐inducing effect on the kidney has not been shown. The role of S1P as a direct mediator of renal fibrosis was investigated in normal rat kidney interstitial fibroblast (NRK‐49F) cells (in vitro) and kidneys of a unilateral ureteral obstruction (UUO) mouse model (in vivo). To clarify the role of S1P in renal fibrosis, we adopted nude UUO mice with immune response deficits. NRK‐49F cells were stimulated with various concentrations of exogenous S1P and FTY720 (a S1P receptor agonist) or N,N‐dimethylsphingosine (DMS; a sphingosine kinase inhibitor). C57BL6 and nude UUO mice were pretreated with FTY720, DMS, or saline. Expression levels of alpha‐smooth muscle actin (a‐SMA), E‐cadherin, collagen type 1 (COL1), collagen type 4 (COL4), tissue inhibitor of matrix metalloproteinase‐1 (TIMP1), and plasminogen activator inhibitor‐1 (PAI1) were examined. S1P stimulated fibrosis in NRK‐49F cells and UUO mice. Increased a‐SMA, COL1, COL4, TIMP1, and PAI1 and decreased E‐cadherin expression levels were observed in both the S1P‐stimulated cells and UUO mice. Nude UUO mouse kidneys expressed fibrotic markers. Fibrotic changes were successfully induced in both UUO and nude UUO mice, evident through prominent fibronectin and COL1 staining. These S1P‐induced fibrotic changes were suppressed by FTY720 and DMS both in vitro and in vivo. Thus, S1P essentially and directly mediates renal fibrosis. Sphingosine‐1‐phosphate (S1P) stimulated fibrosis both in vitro and in vivo. Fibrotic changes were successfully induced in both unilateral ureteral obstruction (UUO) and nude mice with UUO. These results suggest that S1P is a pivotal fibrotic mediator in renal fibrosis that acts, in part, through direct fibrotic effects.
Collapse
Affiliation(s)
- Shunji Shiohira
- Department of Medicine IV, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Takumi Yoshida
- Department of Medicine IV, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan ; Yoshida Medical Clinic, Suginami, Tokyo, Japan
| | - Hidekazu Sugiura
- Department of Medicine IV, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Miki Nishida
- Department of Medicine IV, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine IV, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Ken Tsuchiya
- Department of Medicine IV, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| |
Collapse
|
10
|
Sans-Atxer L, Torra R, Fernández-Llama P. Hypertension in autosomal-dominant polycystic kidney disease (ADPKD). Clin Kidney J 2013; 6:457-63. [PMID: 26064509 PMCID: PMC4438388 DOI: 10.1093/ckj/sft031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/27/2013] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) complications are the major cause of death in autosomal-dominant polycystic kidney disease (ADPKD) patients. Hypertension is common in these patients even before the onset of renal insufficiency. Blood pressure (BP) elevation is a key factor in patient outcome, mainly owing to the high prevalence of target organ damage together with a poor renal prognosis when BP is increased. Many factors have been implicated in the pathogenesis of hypertension, including the renin–angiotensin–aldosterone system (RAAS) stimulation. Polycystin deficiency may also contribute to hypertension because of its potential role in regulating the vascular tone. Early diagnosis and treatment of hypertension improve the CV and renal complications of this population. Ambulatory BP monitoring is recommended for prompt diagnosis of hypertension. CV risk assessment is mandatory. Even though a nonpharmacological approach should not be neglected, RAAS inhibitors are the cornerstone of hypertension treatment. Calcium channel blockers (CCBs) should be avoided unless resistant hypertension is present. The BP should be <140/90 mmHg in all ADPKD patients and a more intensive control (<135/85 mmHg) should be pursued as soon as microalbuminuria or left ventricle hypertrophy is present.
Collapse
Affiliation(s)
- Laia Sans-Atxer
- Hypertension Unit, Nephrology Department , Hospital del Mar, Parc de Salut Mar , Barcelona, Spain
| | - Roser Torra
- Inherited Renal Diseases , Fundació Puigvert , Barcelona , Spain ; Renal Unit and Hypertension , Fundació Puigvert , Barcelona , Spain ; Universitat Autònoma de Barcelona , Barcelona , Spain ; REDinREN, Instituto de Investigación Carlos III , Barcelona , Spain ; IIB Sant Pau , Barcelona , Spain
| | - Patricia Fernández-Llama
- Renal Unit and Hypertension , Fundació Puigvert , Barcelona , Spain ; Universitat Autònoma de Barcelona , Barcelona , Spain ; REDinREN, Instituto de Investigación Carlos III , Barcelona , Spain ; IIB Sant Pau , Barcelona , Spain
| |
Collapse
|
11
|
Aguiari G, Catizone L, Del Senno L. Multidrug therapy for polycystic kidney disease: a review and perspective. Am J Nephrol 2013; 37:175-82. [PMID: 23428809 DOI: 10.1159/000346812] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/04/2013] [Indexed: 12/20/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a renal disorder characterized by the development of cysts in both kidneys leading to end-stage renal disease (ESRD) by the fifth decade of life. Cysts also occur in other organs, and phenotypic alterations also involve the cardiovascular system. Mutations in the PKD1 and PKD2 genes codifying for polycystin-1 (PC1) and polycystin-2 (PC2) are responsible for the 85 and 15% of ADPKD cases, respectively. PC1 and PC2 defects cause similar symptoms; however, lesions of PKD1 gene are associated with earlier disease onset and faster ESRD progression. The development of kidney cysts requires a somatic 'second hit' to promote focal cyst formation, but also acute renal injury may affect cyst expansion, constituting a 'third hit'. PC1 and PC2 interact forming a complex that regulates calcium homeostasis. Mutations of polycystins induce alteration of Ca(2+) levels likely through the elevation of cAMP. Furthermore, PC1 loss of function also induces activation of mTOR and EGFR signaling. Impaired cAMP, mTOR and EGFR signals lead to activation of a number of processes stimulating both cell proliferation and fluid secretion, contributing to cyst formation and enlargement. Consistently, the inhibition of mTOR, EGFR activity and cAMP accumulation ameliorates renal function in ADPKD animal models, but in ADPKD patients mild results have been shown. Here we briefly review major ADPKD-related pathways, their inhibition and effects on disease progression. Finally, we suggest to reduce abnormal cell proliferation with possible clinical amelioration of ADPKD patients by combined inhibition of cAMP-, EGFR- and mTOR-related pathways.
Collapse
Affiliation(s)
- Gianluca Aguiari
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| | | | | |
Collapse
|
12
|
|