1
|
Li M, Gao X, Lan Y, Pan Y, Yuan Y, Wu Z, Faiola F, Zhu L, Tang J, Gong J, Wang B. Revealing the neurodevelopmental toxicity of face mask-derived microplastics to humans based on neural organoids. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138084. [PMID: 40184967 DOI: 10.1016/j.jhazmat.2025.138084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The massive use of face masks during and after the COVID-19 pandemic has raised global concerns about environmental issues. Microplastics released from face masks pose great threats to ecosystems and human health. However, the potentially hazardous effects of face mask-derived microplastics (FMMs) on humans remain poorly understood. Using neural organoid models aims to reveal the toxicity of FMMs to human early neural development. Retinal organoids derived from human embryonic stem cells were exposed to FMMs for 21 days during early retinogenesis. FMMs were internalized by retinal organoids. Exposure to FMMs disrupted the growth and development of retinal organoids in dose- and time-dependent manners, as evidenced by abnormal morphologies. Aberrant cell events, such as cell proliferation, apoptosis, and differentiation contributed to the disarrangement of the neural retina. Transcriptome data proved that the neurotoxicity of FMMs was closely related to disordered neurogenesis, anatomical structure morphogenesis, and axon guidance. Co-exposure to triphenyl phosphate (a common organophosphate flame retardant) and FMMs exhibited more pronounced neurotoxicity than FMM exposure alone. These findings are expected to uncover the potential threats of FMMs to human neurodevelopment and emphasize the importance of optimizing the management and safe disposal of used face masks.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Xue Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yingying Lan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Zhenyi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lianchai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jie Tang
- Department of Pathology, The Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Jing Gong
- Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
2
|
Koppel CJ, De Henau CMS, Vreeken D, DeRuiter MC, Jongbloed MRM, van Gils JM. The Role of the Axonal Guidance Cue Semaphorin 3A in Innervation of the Postnatal Heart in Health and Disease. Can J Cardiol 2025; 41:899-910. [PMID: 39746509 DOI: 10.1016/j.cjca.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
During cardiac development, the heart is innervated by the autonomous nervous system. After development, neurons of the autonomic nervous system have limited capacity for growth and regeneration. However, in recent decades, it has become clear that cardiac nerves can regenerate after cardiac damage. Excessive reinnervation, so-called sympathetic hyperinnervation, may render patients vulnerable to ventricular arrhythmias and heart failure. Several studies have investigated axonal guidance cues as mediators of cardiac innervation. Axonal guidance cues direct neuronal growth of the axon and play a significant role in the regeneration and remodelling of cardiac autonomic innervation after cardiac damage. This review focusses on the current literature regarding the axonal guidance cue group of semaphorins and their function in the healthy and diseased postnatal heart. In view of cardiac innervation, most studies have focussed on semaphorin 3A (SEMA3A), whereas less is known about the function of the other semaphorin classes. SEMA3A is a neuronal repellent and is associated with a decrease in the density of sympathetic neurons in the heart. Its decline in expression after myocardial infarction plays a role in the development of sympathetic hyperinnervation and the subsequent increased risk of ventricular arrhythmias. In congestive heart failure, the opposite occurs: an increase in SEMA3A expression underlies decreased nerve density that may also serve as a substrate for ventricular arrhythmias. Although the literature on their role in cardiac innervation is still relatively scarce, semaphorins, especially SEMA3A, seem worthwhile to consider when exploring options to modulate pathologic innervation patterns in cardiovascular disease.
Collapse
Affiliation(s)
- Claire J Koppel
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Charlotte M S De Henau
- Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dianne Vreeken
- Department of Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Marco C DeRuiter
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Janine M van Gils
- Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
3
|
Yuan J, Huang R, Nao J, Dong X. The role of semaphorin 3A in the pathogenesis and progression of Alzheimer's disease and other aging-related diseases: A comprehensive review. Pharmacol Res 2025; 215:107732. [PMID: 40222695 DOI: 10.1016/j.phrs.2025.107732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Aging serves as a pivotal factor in the etiology of numerous diseases, such as Alzheimer's disease (AD), Parkinson's disease, diabetes, osteoarthritis, atherosclerosis and aging-related macular degeneration. Notably, these diseases often interact with AD through various pathways, facilitating the onset or progression of one another. Semaphorin 3 A (Sema3A), a protein that is essential for axonal guidance during neural development, has recently been identified as a novel regulator in the pathogenesis and progression of multiple aging-related diseases. This article provides a comprehensive review of the expression patterns and mechanisms of action of Sema3A in these diseases. Specifically, Sema3A influences the occurrence and development of aging-related diseases by participating in oxidative stress, inflammatory responses, apoptosis, and synaptic plasticity. Therefore, therapeutic strategies targeting Sema3A present promising avenues for delaying the progression of aging-related diseases and offer novel insights and strategies for their treatment.
Collapse
Affiliation(s)
- Jiayu Yuan
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| |
Collapse
|
4
|
Toghani D, Gupte S, Zeng S, Mahammadov E, Crosse EI, Seyedhassantehrani N, Burns C, Gravano D, Radtke S, Kiem HP, Rodriguez S, Carlesso N, Pradeep A, Georgiades A, Lucas F, Wilson NK, Kinston SJ, Göttgens B, Zong L, Beerman I, Park B, Janssens DH, Jones D, Toghani A, Nerlov C, Pietras EM, Mesnieres M, Maes C, Kumanogoh A, Worzfeld T, Cheong JG, Josefowicz SZ, Kharchenko P, Scadden DT, Scialdone A, Spencer JA, Silberstein L. Niche-derived Semaphorin 4A safeguards functional identity of myeloid-biased hematopoietic stem cells. NATURE AGING 2025; 5:558-575. [PMID: 39881190 PMCID: PMC12025894 DOI: 10.1038/s43587-024-00798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Somatic stem cell pools comprise diverse, highly specialized subsets whose individual contribution is critical for the overall regenerative function. In the bone marrow, myeloid-biased hematopoietic stem cells (myHSCs) are indispensable for replenishment of myeloid cells and platelets during inflammatory response but, at the same time, become irreversibly damaged during inflammation and aging. Here we identify an extrinsic factor, Semaphorin 4A (Sema4A), which non-cell-autonomously confers myHSC resilience to inflammatory stress. We show that, in the absence of Sema4A, myHSC inflammatory hyper-responsiveness in young mice drives excessive myHSC expansion, myeloid bias and profound loss of regenerative function with age. Mechanistically, Sema4A is mainly produced by neutrophils, signals via a cell surface receptor, Plexin D1, and safeguards the myHSC epigenetic state. Our study shows that, by selectively protecting a distinct stem cell subset, an extrinsic factor preserves functional diversity of somatic stem cell pool throughout organismal lifespan.
Collapse
Affiliation(s)
- Dorsa Toghani
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sanika Gupte
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon Zeng
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elmir Mahammadov
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum Muenchen, Munich, Germany
| | - Edie I Crosse
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Christian Burns
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - David Gravano
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - Stefan Radtke
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hans-Peter Kiem
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sonia Rodriguez
- Department of Stem Cell Biology & Regenerative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Nadia Carlesso
- Department of Stem Cell Biology & Regenerative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Amogh Pradeep
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alexis Georgiades
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Fabienne Lucas
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nicola K Wilson
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah J Kinston
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Le Zong
- Epigenetics and Stem Cell Aging Unit, National Institute of Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Aging Unit, National Institute of Aging, Baltimore, MD, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Aging Unit, National Institute of Aging, Baltimore, MD, USA
| | - Derek H Janssens
- Department of Epigenetics, Van Del Institute, Grand Rapids, MI, USA
| | - Daniel Jones
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ali Toghani
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claus Nerlov
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eric M Pietras
- Department of Medicine-Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marion Mesnieres
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Christa Maes
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, University of Osaka, Osaka, Japan
| | - Thomas Worzfeld
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Jin-Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Peter Kharchenko
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA, USA
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA, USA
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum Muenchen, Munich, Germany
| | - Joel A Spencer
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - Lev Silberstein
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
5
|
Heo D, Kim AA, Neumann B, Doze VN, Xu YKT, Mironova YA, Slosberg J, Goff LA, Franklin RJM, Bergles DE. Transcriptional profiles of mouse oligodendrocyte precursor cells across the lifespan. NATURE AGING 2025; 5:675-690. [PMID: 40164771 DOI: 10.1038/s43587-025-00840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Oligodendrocyte progenitor cells (OPCs) are highly dynamic, widely distributed glial cells of the central nervous system responsible for generating myelinating oligodendrocytes throughout life. However, the rates of OPC proliferation and differentiation decline dramatically with aging, which may impair homeostasis, remyelination and adaptive myelination during learning. To determine how aging influences OPCs, we generated a transgenic mouse line (Matn4-mEGFP) and performed single-cell RNA sequencing, providing enhanced resolution of transcriptional changes during key transitions from quiescence to proliferation and differentiation across the lifespan. We found that aging induces distinct transcriptomic changes in OPCs in different states, including enhanced activation of HIF-1α and WNT pathways. Pharmacological inhibition of these pathways in aged OPCs was sufficient to increase their ability to differentiate in vitro. Ultimately, Matn4-mEGFP mouse line and the sequencing dataset of cortical OPCs across ages will help to define the molecular changes guiding OPC behavior in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Dongeun Heo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Anya A Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Björn Neumann
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge, UK
| | - Valerie N Doze
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Yu Kang T Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Yevgeniya A Mironova
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Jared Slosberg
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Loyal A Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Robin J M Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge, UK
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Kubo S, Ninomiya R, Kajiwara T, Tokunaga A, Matsuda S, Murakami K, Yamaoka Y, Aigaki T, Hamada F. Helicobacter pylori virulence factor CagA promotes Snail-mediated epithelial-mesenchymal transition and invasive behavior by downregulating Semaphorin 5A in gastric epithelial cells. Biochem Biophys Res Commun 2025; 750:151421. [PMID: 39892055 DOI: 10.1016/j.bbrc.2025.151421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Helicobacter pylori (H. pylori) infection is one of the major risk factors of stomach cancer. Strains carrying the oncogenic cytotoxin CagA (cytotoxin-associated gene A) induce epithelial-mesenchymal transition (EMT) and contribute to tumor progression and metastasis. However, the mechanism in which CagA induces EMT has not been defined. In this study, using genetic methods in Drosophila, we identified Semaphorin 5A (SEMA5A) as a new target for CagA. We showed that infection with CagA-positive H. pylori downregulated the expression level of SEMA5A to induce expression of EMT-driving transcription factor Snail and mesenchymal marker N-cadherin, and promote invasive behavior in gastric epithelial cells. Furthermore, we demonstrated that transient over-expression of SEMA5A in H. pylori-infected cells inhibited CagA-mediated gain of mesenchymal phenotype. These results suggest that SEMA5A could be a key mediator of EMT and gastric carcinogenesis caused by CagA-positive H. pylori infection.
Collapse
Affiliation(s)
- Shuichi Kubo
- Department of Anatomy, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan
| | - Ryo Ninomiya
- Department of Anatomy, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan
| | - Tooru Kajiwara
- Department of Anatomy, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan
| | - Akinori Tokunaga
- Division of Laboratory Animal Resources, Life Science Research Laboratory, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan; Department of Gastroenterology and Hepatology, Baylor College of Medicine and Michael DeBakey Veterans Affairs Medical Center, Houston, TX, 77030-4211, USA
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Fumihiko Hamada
- Department of Anatomy, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
7
|
Nadar-Ponniah PT, Lopez-Escamez JA. Preclinical Models to Study the Molecular Pathophysiology of Meniere's Disease: A Pathway to Gene Therapy. J Clin Med 2025; 14:1427. [PMID: 40094841 PMCID: PMC11899769 DOI: 10.3390/jcm14051427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Meniere's disease (MD) is a set of rare disorders that affects >4 million people worldwide. Individuals with MD suffer from episodes of vertigo associated with fluctuating sensorineural hearing loss and tinnitus. Hearing loss can involve one or both ears. Over 10% of the reported cases are observed in families, suggesting its significant genetic contribution. The condition is polygenic with >20 genes, and several patterns of inheritance have been reported, including autosomal dominant, autosomal recessive, and digenic inheritance across multiple MD families. Preclinical research using animal models has been an indispensable tool for studying the neurophysiology of the auditory and vestibular systems and to get a better understanding of the functional role of genes that are involved in the hearing and vestibular dysfunction. While mouse models are the most used preclinical model, this review analyzes alternative animal and non-animal models that can be used to study MD genes. Methods: A literature search of the 21 genes reported for familial MD and the preclinical models used to investigate their functional role was performed. Results: Comparing the homology of proteins encoded by these genes to other model organisms revealed Drosophila and zebrafish as cost-effective models to screen multiple genes and study the pathophysiology of MD. Conclusions: Murine models are preferred for a quantitative neurophysiological assessment of hearing and vestibular functions to develop drug or gene therapy.
Collapse
Affiliation(s)
- Prathamesh T. Nadar-Ponniah
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW 2065, Australia
| | - Jose A. Lopez-Escamez
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW 2065, Australia
- Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, 18071 Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| |
Collapse
|
8
|
Earnhardt-San AL, Baker EC, Cilkiz KZ, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Riley DG, Welsh TH. Evaluation of Prenatal Transportation Stress on DNA Methylation (DNAm) and Gene Expression in the Hypothalamic-Pituitary-Adrenal (HPA) Axis Tissues of Mature Brahman Cows. Genes (Basel) 2025; 16:191. [PMID: 40004522 PMCID: PMC11855312 DOI: 10.3390/genes16020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The experience of prenatal stress results in various physiological disorders due to an alteration of an offspring's methylome and transcriptome. The objective of this study was to determine whether PNS affects DNA methylation (DNAm) and gene expression in the stress axis tissues of mature Brahman cows. Methods: Samples were collected from the paraventricular nucleus (PVN), anterior pituitary (PIT), and adrenal cortex (AC) of 5-year-old Brahman cows that were prenatally exposed to either transportation stress (PNS, n = 6) or were not transported (Control, n = 8). The isolated DNA and RNA samples were, respectively, used for methylation and RNA-Seq analyses. A gene ontology and KEGG pathway enrichment analysis of each data set within each sample tissue was conducted with the DAVID Functional Annotation Tool. Results: The DNAm analysis revealed 3, 64, and 99 hypomethylated and 2, 93, and 90 hypermethylated CpG sites (FDR < 0.15) within the PVN, PIT, and AC, respectively. The RNA-Seq analysis revealed 6, 25, and 5 differentially expressed genes (FDR < 0.15) in the PVN, PIT, and AC, respectively, that were up-regulated in the PNS group relative to the Control group, as well as 24 genes in the PIT that were down-regulated. Based on the enrichment analysis, several developmental and cellular processes, such as maintenance of the actin cytoskeleton, cell motility, signal transduction, neurodevelopment, and synaptic function, were potentially modulated. Conclusions: The methylome and transcriptome were altered in the stress axis tissues of mature cows that had been exposed to prenatal transportation stress. These findings are relevant to understanding how prenatal experiences may affect postnatal neurological functions.
Collapse
Affiliation(s)
- Audrey L. Earnhardt-San
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA
| | - Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| |
Collapse
|
9
|
Tymanskyj SR, Escorce A, Karthikeyan S, Ma L. Optogenetic control of receptor-mediated growth cone dynamics in neurons. Mol Biol Cell 2025; 36:br5. [PMID: 39705378 PMCID: PMC11809317 DOI: 10.1091/mbc.e23-07-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024] Open
Abstract
Development of neuronal connections is spatially and temporally controlled by extracellular cues which often activate their cognate cell surface receptors and elicit localized cellular responses. Here, we demonstrate the use of an optogenetic tool to activate receptor signaling locally to induce actin-mediated growth cone remodeling in neurons. Based on the light-induced interaction between Cryptochrome 2 (CRY2) and CIB1, we generated a bicistronic vector to co-expresses CRY2 fused to the intracellular domain of a guidance receptor and a membrane-anchored CIB1. When expressed in primary neurons, activation of the growth inhibitory PlexA4 receptor induced growth cone collapse, while activation of the growth stimulating TrkA receptor increased growth cone size. Moreover, local activation of either receptor not only elicited the predicted response in light-activated growth cones but also an opposite response in neighboring no-light-exposed growth cones of the same neuron. Finally, this tool was used to reorient growth cones toward or away from the site of light activation and to stimulate local actin polymerization for branch initiation along axonal shafts. These studies demonstrate the use of an optogenetic tool for precise spatial and temporal control of receptor signaling in neurons and support its future application in investigating cellular mechanisms of neuronal development and plasticity.
Collapse
Affiliation(s)
- Stephen R. Tymanskyj
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | - Althea Escorce
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | - Siddharth Karthikeyan
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | - Le Ma
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
10
|
Shahbaz S, Rezaeifar M, Syed H, Redmond D, Terveart JWC, Osman M, Elahi S. Upregulation of olfactory receptors and neuronal-associated genes highlights complex immune and neuronal dysregulation in Long COVID patients. Brain Behav Immun 2025; 124:97-114. [PMID: 39615603 DOI: 10.1016/j.bbi.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 01/20/2025] Open
Abstract
A substantial portion of patients infected with SARS-CoV-2 experience prolonged complications, known as Long COVID (LC). A subset of these patients exhibits the most debilitating symptoms, similar to those defined in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We performed bulk RNA sequencing (RNAseq) on the whole blood of LC with ME/CFS, at least 12 months post-onset of the acute disease, and compared them with controls. We found that LC patients had a distinct transcriptional profile compared to controls. Key findings include the upregulation of genes involved in immune dysregulation and neuronal development, such as Fezf2, BRINP2, HOXC12, MEIS2, ZFHX3, and RELN. These genes are linked to neuroinflammatory responses, cognitive impairments, and hematopoietic disturbances, suggesting ongoing neurological and immune disturbances in LC patients. RELN, encoding the Reelin protein, was notably elevated in LC patients, potentially serving as a biomarker for LC pathogenesis due to its role in inflammation and neuronal function. Immune cell analysis showed altered profiles in LC patients, with increased activated memory CD4 + T cells and neutrophils, and decreased regulatory T cells and NK cells, reflecting immune dysregulation. Changes in cytokine and chemokine expression further underscore the chronic inflammatory state in LC patients. Notably, a unique upregulation of olfactory receptors (ORs) suggest alternative roles for ORs in non-olfactory tissues. Pathway analysis revealed upregulation in ribosomal RNA processing, amino acid metabolism, protein synthesis, cell proliferation, DNA repair, and mitochondrial pathways, indicating heightened metabolic and immune demands. Conversely, downregulated pathways, such as VEGF signaling and TP53 activity, point to impaired tissue repair and cellular stress responses. Overall, our study underscores the complex interplay between immune and neuronal dysfunction in LC patients, providing insights into potential diagnostic biomarkers and therapeutic targets. Future research is needed to fully understand the roles and interactions of these genes in LC pathophysiology.
Collapse
Affiliation(s)
- Shima Shahbaz
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Maryam Rezaeifar
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Hussein Syed
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Jan Willem Cohen Terveart
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Shokrollah Elahi
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2E1, AB, Canada; Glycomics Institute of Alberta, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| |
Collapse
|
11
|
Jing Y, Zhai J, Gao M, Xu X, Zhao ZG, Zhao ZA. Different Transcriptome Signatures of the Lymphatic and the Blood Vessels From Rat Mesentery Reveal Distinct Function Characteristics. Microcirculation 2025; 32:e70003. [PMID: 39945040 DOI: 10.1111/micc.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 02/02/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE Lymphatic vessels and blood vessels have some similarities in structure, but they have distinct contraction characteristics and functions. Revealing the detailed transcriptional differences of lymphatic, artery and vein are required for circulation research. METHODS The tissues of the mesenteric lymphatic, artery, and vein were collected from Wistar rats. The transcriptome signatures of these tissues from RNA-seq (RNA sequencing) were analyzed using bioinformatic methods. RESULTS GO (gene ontology) enrichment showed the three tissues have distinct gene expression patterns in extracellular matrix, cell adhesion molecule binding, receptor ligand activity, and contractile fiber. The genes involved in cell contractility were also differently expressed, which were enriched into the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways of cytoskeleton in muscle cells, vascular smooth muscle contraction, and renin-angiotensin system. Through PPI (protein-protein interaction) analysis, we identified 43 differently expressed hub genes in the three tissues. Thirty-four transcription factors and cofactors were identified as important for the normal function of the three tissues. Furthermore, we screened out 20 potential marker genes for each tissue. CONCLUSIONS Our study described the transcriptome signatures of mesenteric lymphatic, artery, and vein, shedding light on the distinct contraction mechanisms of these tissues. These results also provided potential therapeutic targets for circulation diseases and potential markers for lymphatic and blood vessel studies.
Collapse
Affiliation(s)
- Yumeng Jing
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiayi Zhai
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
- Department of Pathology, Yanqing District Hospital, Beijing and Yanqing Hospital, Peking University Third Hospital, Beijing, China
| | - Min Gao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | - Xiu Xu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China
| |
Collapse
|
12
|
Carmelet-Rescan D, Morgan-Richards M, Trewick SA. Metabolic differentiation of brushtail possum populations resistant and susceptible to plant toxins revealed via differential gene expression. J Comp Physiol B 2025; 195:103-121. [PMID: 39495241 PMCID: PMC11839783 DOI: 10.1007/s00360-024-01591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
The Australian brushtail possum (Trichosurus vulpecula) is adapted to a wide range of food plants across its range and is exposed to numerous physiological challenges. Populations that are resistant to the plant toxin sodium fluoroacetate are of particular interest as this compound has been used since the 1940s for vertebrate pest management around the world. Candidate gene identification is an important first step in understanding how spatial populations have responded to local selection resulting in local physiological divergence. We employ differential gene expression of liver samples from wild-caught brushtail possums from toxin-resistant and toxin-susceptible populations to identify candidate genes that might be involved in metabolic pathways associated with toxin-resistance. This allowed us to identify genetic pathways involved in resistance to the plant toxin sodium fluoroacetate in Western Australian possums but not those originally from south eastern Australia. We identified differentially expressed genes in the liver that are associated with cell signalling, encapsulating structure, cell mobility, and tricarboxylic acid cycle. The gene expression differences detected indicate which metabolic pathways are most likely to be associated with sodium fluoroacetate resistance in these marsupials and we provide a comprehensive list of candidate genes and pathways to focus on for future studies.
Collapse
Affiliation(s)
- David Carmelet-Rescan
- Wildlife and Ecology, School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| | - Mary Morgan-Richards
- Wildlife and Ecology, School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Steven A Trewick
- Wildlife and Ecology, School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
13
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the neural regulation and brain pathology. Neurosci Biobehav Rev 2025; 169:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, 201306 Uttar Pradesh, India.
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
14
|
Palazzo C, Nutarelli S, Mastrantonio R, Tamagnone L, Viscomi MT. Glia-glia crosstalk via semaphorins: Emerging implications in neurodegeneration. Ageing Res Rev 2025; 104:102618. [PMID: 39638095 DOI: 10.1016/j.arr.2024.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The central nervous system (CNS) is wired by a complex network of integrated glial and neuronal signals, which is critical for its development and homeostasis. In this context, glia-glia communication is a complex and dynamic process that is essential for ensuring optimal CNS function. Semaphorins, which include secreted and transmembrane molecules, and their receptors, mainly found in the plexin and neuropilin families, are expressed in a wide range of cell types, including glia. In the CNS, semaphorin signalling is involved in a spectrum of processes, including neurogenesis, neuronal migration and wiring, and glial cell recruitment. Recently, semaphorins and plexins have attracted intense research aimed at elucidating their roles in instructing glial cell behavior during development or in response to inflammatory stimuli. In this review, we provide an overview of the multifaceted role of semaphorins in glia-glia communication, highlighting recent discoveries about semaphoring-dependent regulation of glia functions in healthy conditions. We also discuss the mechanisms of gliaglia crosstalk mediated by semaphorins under pathological conditions, and how these interactions may provide potential avenues for therapeutic intervention in neuroinflammation-mediated neurodegeneration.
Collapse
Affiliation(s)
- Claudia Palazzo
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sofia Nutarelli
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Mastrantonio
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.
| |
Collapse
|
15
|
Bosquez Huerta NA, Lee ZF, Christine Song EA, Woo J, Cheng YT, Sardar D, Sert O, Maleki E, Yu K, Akdemir ES, Sanchez K, Jo J, Rasband MN, Lee HK, Harmanci AS, Deneen B. Sex-specific astrocyte regulation of spinal motor circuits by Nkx6.1. Cell Rep 2025; 44:115121. [PMID: 39731735 PMCID: PMC11932065 DOI: 10.1016/j.celrep.2024.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Astrocytes exhibit diverse cellular and molecular properties across the central nervous system (CNS). Recent studies identified region-specific transcription factors (TF) that oversee these diverse properties; how sex differences intersect with region-specific transcriptional programs to regulate astrocyte function is unknown. Here, we show that the TF Nkx6.1 is specifically expressed in ventral astrocytes of the spinal cord and that its deletion results in sex-specific effects on astrocyte morphology. Astrocytes from males exhibit enhanced morphological complexity, accompanied by increased motor function and cholinergic synapses. In contrast, female astrocytes exhibit reduced complexity and no changes in motor function. Mechanistically, we found that Nkx6.1 exhibits sex-specific DNA-binding properties and epigenomic remodeling, identifying Semaphorin 4A (Sema4A) and Gabbr1 as targets regulating astrocyte morphology and cholinergic synapse formation. Collectively, our studies identify astrocytic Nkx6.1 as a key regulator of astrocyte properties in the spinal cord while adding sexual dimorphism as a layer of transcriptional regulation to astrocyte function and circuit activity.
Collapse
Affiliation(s)
- Navish A Bosquez Huerta
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhung-Fu Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eun-Ah Christine Song
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Ting Cheng
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ozlem Sert
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ehson Maleki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanha Yu
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ekin Su Akdemir
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaitlyn Sanchez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew N Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akdes Serin Harmanci
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin Deneen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Khaosuwan T, Leetanaporn K, Choochuen P, Navakanitworakul R, Kaewborisutsakul A, Tunthanatip T, Sangkhathat S, Chiangjong W, Phabphal K. Comparative proteomic analysis of astrocytoma tissues from patients with and without seizures. Sci Rep 2025; 15:3020. [PMID: 39849075 PMCID: PMC11757708 DOI: 10.1038/s41598-025-87525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025] Open
Abstract
Astrocytoma is a common type of glioma and a frequent cause of brain tumour-related epilepsy. Although the link between glioma and epilepsy is well established, the precise mechanisms underlying epileptogenesis in astrocytoma remain poorly understood. In this study, we performed proteomic analysis of astrocytoma tissue from patients with and without seizures using mass spectrometry-based techniques. We detected 131 differentially expressed proteins (42 upregulated and 89 downregulated). Proteins upregulated in patients with seizures were mostly related to an increase in energy metabolism. Moreover, glial fibrillary acidic protein, which is involved in maintaining normal axonal structures, was abnormally highly expressed in patients with seizures. Proteins downregulated in patients with seizures included those involved in trans-synaptic signalling and gamma-aminobutyric acid synaptic transmission. Interestingly, comparison of protein expression profiles from our cohort with those from a previous study of patients with epilepsy due to other causes showed that the collapsin response mediator protein family of axonal growth regulators was highly expressed only in patients with seizures due to astrocytomas. Further studies of the proteins identified here are required to determine their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Thanakorn Khaosuwan
- Neurology Unit, Department of Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Anukoon Kaewborisutsakul
- Neurological Surgery Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Thara Tunthanatip
- Neurological Surgery Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kanitpong Phabphal
- Neurology Unit, Department of Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
17
|
Montagne JM, Mitchell JT, Tandurella JA, Christenson ES, Danilova LV, Deshpande A, Loth M, Sidiropoulos DN, Davis-Marcisak E, Bergman DR, Zhu Q, Wang H, Kagohara LT, Engle LL, Green BF, Favorov AV, Ho WJ, Lim SJ, Zhang R, Li P, Gai J, Mo G, Mitchell S, Wang R, Vaghasia A, Hou W, Xu Y, Zimmerman JW, Elisseeff JH, Yegnasubramanian S, Anders RA, Jaffee EM, Zheng L, Fertig EJ. CD137 agonism enhances anti-PD1 induced activation of expanded CD8 + T cell clones in a neoadjuvant pancreatic cancer clinical trial. iScience 2025; 28:111569. [PMID: 39811671 PMCID: PMC11730579 DOI: 10.1016/j.isci.2024.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy requires therapeutic combinations that induce quality T cells. Tumor microenvironment (TME) analysis following therapeutic interventions can identify response mechanisms, informing design of effective combinations. We provide a reference single-cell dataset from tumor-infiltrating leukocytes (TILs) from a human neoadjuvant clinical trial comparing the granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting allogeneic PDAC vaccine GVAX alone, in combination with anti-PD1 or with both anti-PD1 and CD137 agonist. Treatment with GVAX and anti-PD-1 led to increased CD8+ T cell activation and expression of cytoskeletal and extracellular matrix (ECM)-interacting components. Addition of CD137 agonist increased abundance of clonally expanded CD8+ T cells and increased immunosuppressive TREM2 signaling in tumor associated macrophages (TAMs), identified by comparison of ligand-receptor networks, corresponding to changes in metabolism and ECM interactions. These findings associate therapy with GVAX, anti-PD1, and CD137 agonist with enhanced CD8+ T cell function while inducing alternative immunosuppressive pathways in patients with PDAC.
Collapse
Affiliation(s)
- Janelle M. Montagne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob T. Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore MD, USA
| | - Joseph A. Tandurella
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric S. Christenson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ludmila V. Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atul Deshpande
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melanie Loth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios N. Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Davis-Marcisak
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore MD, USA
| | - Daniel R. Bergman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qingfeng Zhu
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Logan L. Engle
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin F. Green
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander V. Favorov
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Moscow, RF, Russia
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Su Jin Lim
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rui Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pan Li
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Gai
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanglan Mo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rulin Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajay Vaghasia
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenpin Hou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yao Xu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn W. Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- InHealth Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A. Anders
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| |
Collapse
|
18
|
Ahn EH, Park JB. Molecular Mechanisms of Alzheimer's Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy. Cells 2025; 14:89. [PMID: 39851517 PMCID: PMC11764136 DOI: 10.3390/cells14020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD.
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea;
- Department of Neurology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- ELMED Co., Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
19
|
Montero-Herradón S, García-Ceca J, Zapata AG. Thymus Ontogeny and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:21-49. [PMID: 40067583 DOI: 10.1007/978-3-031-77921-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The thymus is a primary lymphoid organ composed of a three-dimensional (3D) epithelial network that provides a specialized microenvironment for the phenotypical and functional maturation of lymphoid progenitors. The specification of the pharyngeal endoderm to thymus fate occurs during the early stages of thymic organogenesis, independent of the expression of the transcription factor Foxn1. However, Foxn1 governs the later organogenesis of thymus together with the colonizing lymphoid cells. In the present chapter, we will review recent evidence on the topic covered in our original chapter (Muñoz and Zapata 2019). It described the early development of thymus and its resemblance to the development of endoderm-derived epithelial organs based on tubulogenesis and branching morphogenesis as well as the molecules known to be involved in these processes.
Collapse
Affiliation(s)
- Sara Montero-Herradón
- Department of Cell Biology. Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, Madrid, Spain
| | - Javier García-Ceca
- Department of Cell Biology. Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology. Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
- Health Research Institute, Madrid, Spain.
| |
Collapse
|
20
|
Coy-Dibley J, Jayaraj ND, Ren D, Pacifico P, Belmadani A, Wang YZ, Gebis KK, Savas JN, Paller AS, Miller RJ, Menichella DM. Keratinocyte-derived extracellular vesicles in painful diabetic neuropathy. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 17:100176. [PMID: 39811188 PMCID: PMC11731614 DOI: 10.1016/j.ynpai.2024.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin. Keratinocytes, the most abundant epidermal cell type, are closely positioned to cutaneous nerve terminals, suggesting the possibility of bi-directional communication. Extracellular vesicles are lipid-bilayer encapsulated nanovesicles released from many cell types that mediate cell to cell communication. The role of keratinocyte-derived extracellular vesicles (KDEVs) in influencing signaling between the skin and cutaneous nerve terminals and their contribution to the genesis of PDN has not been explored. In this study, we characterized KDEVs in a well-established high-fat diet mouse model of PDN using primary adult mouse keratinocyte cultures. We obtained highly enriched KDEVs through size-exclusion chromatography and then analyzed their molecular cargo using proteomic analysis and small RNA sequencing. We found significant differences in the protein and microRNA content of high-fat diet KDEVs compared to KDEVs obtained from control mice on a regular diet, including pathways involved in axon guidance and synaptic transmission. Additionally, using an in vivo conditional extracellular vesicle reporter mouse model, we demonstrated that epidermal-originating GFP-tagged KDEVs are retrogradely trafficked into the dorsal root ganglion (DRG) neuron cell bodies. This study presents the first comprehensive isolation and molecular characterization of the KDEV protein and microRNA cargo in RD and HFD mice. Our findings suggest a potential novel communication pathway between keratinocytes and DRG neurons in the skin, which could have implications for PDN.
Collapse
Affiliation(s)
- James Coy-Dibley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nirupa D. Jayaraj
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dongjun Ren
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Abdelhak Belmadani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kamil K. Gebis
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amy S. Paller
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard J. Miller
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniela M. Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
21
|
Yukawa K. [Elucidating the Pathophysiology of Various Diseases by Investigating the Role of Molecules in Brain Wiring]. YAKUGAKU ZASSHI 2025; 145:133-143. [PMID: 39894482 DOI: 10.1248/yakushi.24-00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Semaphorins and their receptors plexins are axon guidance molecules that navigate axons to their final destinations during neural development. Semaphorins and plexins exert distinct roles in regulating biological functions such as the immune system and bone homeostasis. They also participate in the development and progression of various diseases such as osteoporosis and allergic diseases. This review describes the varied phenotypes revealed by the analysis of semaphorin or plexin knockout mice and discusses the association with pathogenesis and therapy of atherosclerosis, agenesis of the corpus callosum, and neuropsychiatric diseases. The deletion of semaphorin 4D in atherosclerosis-prone Apolipoprotein E-deficient mice mitigated atherosclerotic lesions, indicating its crucial involvement in the progression of atherosclerosis. Semaphorin 4D is also implicated in apoptosis induced by the estrogen-dependent generation of soluble semaphorin 4D and the active form of plexin-B1 in the postnatal vaginal opening in mice. Plexin-A1 knockout BALB/cA mice exhibited the agenesis of corpus callosum. This study indicates the crucial role of plexin-A1 in the midline crossing of callosal pioneer axons projecting from the cerebral cortex during the early phase of callosal formation. Adult plexin-A1-deficient mice exhibit reduced prepulse inhibition deficit, an endophenotype of schizophrenia, in addition to excessive self-grooming. Parvalbumin-expressing interneurons in the medial prefrontal cortex are significantly decreased in plexin-A1 knockout mice. In the parvalbumin neurons, oxidative stress is significantly increased in plexin-A1 knockout mice. Accordingly, plexin-A1 deficiency may augment oxidative stress in parvalbumin neurons, thereby impairing the parvalbumin neuron network and leading to behavioral abnormalities relevant to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Kazunori Yukawa
- Faculty of Pharmacy, Meijo University
- Graduate School of Pharmacy, Meijo University
| |
Collapse
|
22
|
Gorla M, Guleria DS. Rho GTPase Signaling: A Molecular Switchboard for Regulating the Actin Cytoskeleton in Axon Guidance. J Cell Physiol 2025; 240:e70005. [PMID: 39888031 DOI: 10.1002/jcp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Axon pathfinding is a highly dynamic process regulated by the interactions between cell-surface guidance receptors and guidance cues present in the extracellular environment. During development, precise axon pathfinding is crucial for the formation of functional neural circuits. The spatiotemporal expression of axon guidance receptors helps the navigating axon make correct decisions in a complex environment comprising both attractive and repulsive guidance cues. Axon guidance receptors initiate distinct signaling cascades that eventually influence the cytoskeleton at the growing tip of an axon, called the growth cone. The actin cytoskeleton is the primary target of these guidance signals and plays a key role in growth cone motility, exploration, and behavior. Of the many regulatory molecules that modulate the actin cytoskeleton in response to distinct guidance signals, Rho GTPases play central roles. Rho GTPases are molecular switchboards; their ON (GTP-bound) and OFF (GDP-bound) switches are controlled by their interactions with proteins that regulate the exchange of GDP for GTP or with the proteins that promote GTP hydrolysis. Various upstream signals, including axon guidance signals, regulate the activity of these Rho GTPase switch regulators. As cycling molecular switches, Rho GTPases interact with and control the activities of downstream effectors, which directly influence actin reorganization in a context-dependent manner. A deeper exploration of the spatiotemporal dynamics of Rho GTPase signaling and the molecular basis of their involvement in regulating growth cone actin cytoskeleton can unlock promising therapeutic strategies for neurodevelopmental disorders linked to dysregulated Rho GTPase signaling. This review not only provides a comprehensive overview of the field but also highlights recent discoveries that have considerably advanced our understanding of the complex regulatory roles of Rho GTPases in modulating actin cytoskeleton arrangement at the growth cone during axon guidance.
Collapse
Affiliation(s)
- Madhavi Gorla
- National Institute of Animal Biotechnology, Hyderabad, India
| | | |
Collapse
|
23
|
Negrón-Piñeiro LJ, Wu Y, Mehta R, Maguire JE, Chou C, Lee J, Dahia CL, Di Gregorio A. Fine-Tuned Expression of Evolutionarily Conserved Signaling Molecules in the Ciona Notochord. Int J Mol Sci 2024; 25:13631. [PMID: 39769393 PMCID: PMC11728170 DOI: 10.3390/ijms252413631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
The notochord is an axial structure required for the development of all chordate embryos, from sea squirts to humans. Over the course of more than half a billion years of chordate evolution, in addition to its structural function, the notochord has acquired increasingly relevant patterning roles for its surrounding tissues. This process has involved the co-option of signaling pathways and the acquisition of novel molecular mechanisms responsible for the precise timing and modalities of their deployment. To reconstruct this evolutionary route, we surveyed the expression of signaling molecules in the notochord of the tunicate Ciona, an experimentally amenable and informative chordate. We found that several genes encoding for candidate components of diverse signaling pathways are expressed during notochord development, and in some instances, display distinctive regionalized and/or lineage-specific patterns. We identified and deconstructed notochord enhancers associated with TGF-β and Ctgf, two evolutionarily conserved signaling genes that are expressed dishomogeneously in the Ciona notochord, and shed light on the cis-regulatory origins of their peculiar expression patterns.
Collapse
Affiliation(s)
- Lenny J. Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Ravij Mehta
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Julie E. Maguire
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Cindy Chou
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Joyce Lee
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Chitra L. Dahia
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, NY 10065, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| |
Collapse
|
24
|
Knab F, Guaitoli G, Jarboui MA, von Zweydorf F, Isik FB, Klose F, Rajkumar AP, Gasser T, Gloeckner CJ. The cellular and extracellular proteomic signature of human dopaminergic neurons carrying the LRRK2 G2019S mutation. Front Neurosci 2024; 18:1502246. [PMID: 39726830 PMCID: PMC11669673 DOI: 10.3389/fnins.2024.1502246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Background Extracellular vesicles are easily accessible in various biofluids and allow the assessment of disease-related changes in the proteome. This has made them a promising target for biomarker studies, especially in the field of neurodegeneration where access to diseased tissue is very limited. Genetic variants in the LRRK2 gene have been linked to both familial and sporadic forms of Parkinson's disease. With LRRK2 inhibitors entering clinical trials, there is an unmet need for biomarkers that reflect LRRK2-specific pathology and target engagement. Methods In this study, we used induced pluripotent stem cells derived from a patient with Parkinson's disease carrying the LRRK2 G2019S mutation and an isogenic gene-corrected control to generate human dopaminergic neurons. We isolated extracellular vesicles and neuronal cell lysates and characterized their proteomic signature using data-independent acquisition proteomics. Then, we performed differential expression analysis to identify dysregulated proteins in the mutated line. We used Metascape and gene ontology enrichment analysis on the dysregulated proteomes to identify changes in associated functional networks. Results We identified 595 significantly differentially regulated proteins in extracellular vesicles and 3,205 in cell lysates. We visualized functionally relevant protein-protein interaction networks and identified key regulators within the dysregulated proteomes. Using gene ontology, we found a close association with biological processes relevant to neurodegeneration and Parkinson's disease. Finally, we focused on proteins that were dysregulated in both the extracellular and cellular proteomes. We provide a list of ten biomarker candidates that are functionally relevant to neurodegeneration and linked to LRRK2-associated pathology, for example, the sonic hedgehog signaling molecule, a protein that has tightly been linked to LRRK2-related disruption of cilia function. Conclusion In conclusion, we characterized the cellular and extracellular proteome of dopaminergic neurons carrying the LRRK2 G2019S mutation and proposed an experimentally based list of biomarker candidates for future studies.
Collapse
Affiliation(s)
- Felix Knab
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tübingen, Tübingen, Germany
| | | | - Mohamed Ali Jarboui
- Core Facility for Medical Proteomics, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | | | - Fatma Busra Isik
- Institute of Mental Health, Mental Health and Clinical Neurosciences Academic Unit, University of Nottingham, Nottingham, United Kingdom
| | - Franziska Klose
- Core Facility for Medical Proteomics, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Anto Praveen Rajkumar
- Core Facility for Medical Proteomics, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Thomas Gasser
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | |
Collapse
|
25
|
Mathew S, Ashraf S, Shorter S, Tozzi G, Koutsikou S, Ovsepian SV. Neurobiological Correlates of Rheumatoid Arthritis and Osteoarthritis: Remodelling and Plasticity of Nociceptive and Autonomic Innervations in Synovial Joints. Neuroscientist 2024:10738584241293049. [PMID: 39668598 DOI: 10.1177/10738584241293049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Swelling, stiffness, and pain in synovial joints are primary hallmarks of osteoarthritis and rheumatoid arthritis. Hyperactivity of nociceptors and excessive release of inflammatory factors and pain mediators play a crucial role, with emerging data suggesting extensive remodelling and plasticity of joint innervations. Herein, we review structural, functional, and molecular alterations in sensory and autonomic axons wiring arthritic joints and revisit mechanisms implicated in the sensitization of nociceptors, leading to chronic pain. Sprouting and reorganization of sensory and autonomic fibers with the invasion of ectopic branches into surrounding inflamed tissues are associated with the upregulation of pain markers. These changes are frequently complemented by a phenotypic switch of sensory and autonomic profiles and activation of silent axons, inferring homeostatic adjustments and reprogramming of innervations. Identifying critical molecular players and neurobiological mechanisms underpinning the rewiring and sensitization of joints is likely to elucidate causatives of neuroinflammation and chronic pain, assisting in finding new therapeutic targets and opportunities for interventions.
Collapse
Affiliation(s)
- Sharon Mathew
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Sadaf Ashraf
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Gianluca Tozzi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Stella Koutsikou
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Faculty of Medicine, Tbilisi State University, Tbilisi, Republic of Georgia
| |
Collapse
|
26
|
Heo D, Kim AA, Neumann B, Doze VN, Xu YKT, Mironova YA, Slosberg J, Goff LA, Franklin RJM, Bergles DE. Transcriptional profiles of murine oligodendrocyte precursor cells across the lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620502. [PMID: 39554158 PMCID: PMC11565715 DOI: 10.1101/2024.10.27.620502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Oligodendrocyte progenitor cells (OPCs) are highly dynamic, widely distributed glial cells of the central nervous system (CNS) that are responsible for generating myelinating oligodendrocytes during development. By also generating new oligodendrocytes in the adult CNS, OPCs allow formation of new myelin sheaths in response to environmental and behavioral changes and play a crucial role in regenerating myelin following demyelination (remyelination). However, the rates of OPC proliferation and differentiation decline dramatically with aging, which may impair homeostasis, remyelination, and adaptive myelination during learning. To determine how aging influences OPCs, we generated a novel transgenic mouse line that expresses membrane-anchored EGFP under the endogenous promoter/enhancer of Matrilin-4 (Matn4-mEGFP) and performed high-throughput single-cell RNA sequencing, providing enhanced resolution of transcriptional changes during key transitions from quiescence to proliferation and differentiation across the lifespan. Comparative analysis of OPCs isolated from mice aged 30 to 720 days, revealed that aging induces distinct inflammatory transcriptomic changes in OPCs in different states, including enhanced activation of HIF-1α and Wnt pathways. Inhibition of these pathways in acutely isolated OPCs from aged animals restored their ability to differentiate, suggesting that this enhanced signaling may contribute to the decreased regenerative potential of OPCs with aging. This Matn4-mEGFP mouse line and single-cell mRNA datasets of cortical OPCs across ages help to define the molecular changes guiding their behavior in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Dongeun Heo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anya A. Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Björn Neumann
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Valerie N. Doze
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yu Kang T. Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yevgeniya A. Mironova
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jared Slosberg
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Loyal A. Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robin J. M. Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Dwight E. Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Daga KR, Larey AM, Morfin MG, Chen K, Bitarafan S, Carpenter JM, Hynds HM, Hines KM, Wood LB, Marklein RA. Microglia morphological response to mesenchymal stromal cell extracellular vesicles demonstrates EV therapeutic potential for modulating neuroinflammation. J Biol Eng 2024; 18:58. [PMID: 39420399 PMCID: PMC11488223 DOI: 10.1186/s13036-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) are a promising therapeutic for neuroinflammation. MSC-EVs can interact with microglia, the resident immune cells of the brain, to exert their immunomodulatory effects. In response to inflammatory cues, such as cytokines, microglia undergo phenotypic changes indicative of their function e.g. morphology and secretion. However, these changes in response to MSC-EVs are not well understood. Additionally, no disease-relevant screening tools to assess MSC-EV bioactivity exist, which has further impeded clinical translation. Here, we developed a quantitative, high throughput morphological profiling approach to assess the response of microglia to neuroinflammation- relevant signals and whether this morphological response can be used to indicate the bioactivity of MSC-EVs. RESULTS Using an immortalized human microglia cell-line, we observed increased size (perimeter, major axis length) and complexity (form factor) upon stimulation with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Upon treatment with MSC-EVs, the overall morphological score (determined using principal component analysis) shifted towards the unstimulated morphology, indicating that MSC-EVs are bioactive and modulate microglia. The morphological effects of MSC-EVs in TNF-α /IFN-γ stimulated cells were concomitant with reduced secretion of 14 chemokines/cytokines (e.g. CXCL6, CXCL9) and increased secretion of 12 chemokines/cytokines (e.g. CXCL8, CXCL10). Proteomic analysis of cell lysates revealed significant increases in 192 proteins (e.g. HIBADH, MEAK7, LAMC1) and decreases in 257 proteins (e.g. PTEN, TOM1, MFF) with MSC-EV treatment. Of note, many of these proteins are involved in regulation of cell morphology and migration. Gene Set Variation Analysis revealed upregulation of pathways associated with immune response, such as regulation of cytokine production, immune cell infiltration (e.g. T cells, NK cells) and morphological changes (e.g. Semaphorin, RHO/Rac signaling). Additionally, changes in microglia mitochondrial morphology were measured suggesting that MSC-EV modulate mitochondrial metabolism. CONCLUSION This study comprehensively demonstrates the effects of MSC-EVs on human microglial morphology, cytokine secretion, cellular proteome, and mitochondrial content. Our high-throughput, rapid, low-cost morphometric approach enables screening of MSC-EV batches and manufacturing conditions to enhance EV function and mitigate EV functional heterogeneity in a disease relevant manner. This approach is highly generalizable and can be further adapted and refined based on selection of the disease-relevant signal, target cell, and therapeutic product.
Collapse
Affiliation(s)
- Kanupriya R Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Andrew M Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G Morfin
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Kailin Chen
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Hannah M Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA.
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20903, USA.
| |
Collapse
|
28
|
Bischoff MC, Norton JE, Peifer M. Plexin/Semaphorin Antagonism Orchestrates Collective Cell Migration, Gap Closure and Organ sculpting by Contact-Mesenchymalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617649. [PMID: 39416156 PMCID: PMC11482903 DOI: 10.1101/2024.10.10.617649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cell behavior emerges from the intracellular distribution of properties like protrusion, contractility and adhesion. Thus, characteristic emergent rules of collective migration can arise from cell-cell contacts locally tweaking architecture - orchestrating self-regulation during development, wound healing, and cancer progression. The new Drosophila testis-nascent-myotube-system allows dissection of contact-dependent migration in vivo at high resolution. Here, we describe a process driving gap-closure during migration: Contact-mesenchymalization via the axon guidance factor Plexin A. This is crucial for testis myotubes to migrate as a continuous sheet, allowing normal sculpting-morphogenesis. Cells must stay filopodial and dynamically ECM-tethered near cell-cell contacts to spread while collectively moving. Our data suggest Semaphorin 1B acts as a Plexin A antagonist, fine-tuning activation. Our data reveal a contact-dependent mechanism to maintain sheet-integrity during migration, driving organ-morphogenesis using a highly conserved pathway. This is relevant for understanding mesenchymal organ-sculpting and gap-closure in migratory contexts like angiogenesis.
Collapse
Affiliation(s)
- Maik C. Bischoff
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Jenevieve E. Norton
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
29
|
Chagas ACS, Ribeiro DM, Osório H, Abreu AAP, Okino CH, Niciura SCM, Amarante AFT, Bello HJS, Melito GR, Esteves SN, Almeida AM. Molecular signatures of Haemonchus contortus infection in sheep: A comparative serum proteomic study on susceptible and resistant sheep breeds. Vet Parasitol 2024; 331:110280. [PMID: 39116550 DOI: 10.1016/j.vetpar.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Due to the negative impact of Haemonchus contortus in the tropics and subtropics, the detection of serum protein profiles that occur in infected sheep is of high relevance for targeted selective treatment strategies (TST). Herein, we integrated proteomics with phenotypic traits to elucidate physiological mechanisms associated to H. contortus infection in susceptible (Dorper - D) and resistant (Santa Inês - S) sheep breeds. Naïve female lambs were infected with H. contortus third-stage larvae on day zero (D0), and samples were collected weekly, for 28 days. Feces were used for individual fecal egg counts (FEC) blood for packed cell volume (PCV) and serum for specific antibody quantification through ELISA. Sera was collected on D0 (-) and D21 (+), and analyzed using a LC-MS/MS based proteomics approach. FEC, PCV, and anti-H. contortus antibody levels confirmed the absence of infection on D0. On D28 there was a significant difference between the two breeds for logFEC means (D = 3774 and S = 3141, p=0.033) and PCV means (D = 16.3 % and S = 24.3 %, p=0.038). From a total of 754 proteins identified, 68 differentially abundant proteins (DAPs) were noted. Phosphopyruvate hydratase (ENO3) was a DAP in all comparisons, while S+ vs D+ and S- vs D- shared the highest number of DAPs (8). Each of the four experimental groups clustered separately in a principal component analysis (PCA) of protein profile. Among the DAPs, proteins associated with the innate and adaptive immune system were detected when comparing S- vs D- and S+ vs D+. In D-, some proteins were linked to stress response to handling, sampling and heat. Focusing on the consequences of infection in each breed, in the D+ vs D- comparison, upregulated proteins were associated with inflammation control and immune response, where downregulated proteins pointed to a negative impact of infection on tissue anabolism, compromising muscle growth and fat deposition. In the S+ vs S- comparison, upregulated proteins were related to immune response, while the downregulated proteins were possibly linked to muscular development and growth, impaired by infection. Collectively, it can be concluded that ENO3 regulation emerges as a potential factor underlying the differential immune response observed between Santa Inês and Dorper sheep infected with H. contortus. In turn, detected acute phase proteins (APPs) reinforce their relation with infection, inflammation and stress conditions, whereas THEMIS-like may contribute to the immune system in Dorper. GSDMD, Guanylate-binding protein and ACAN warrant further investigation as possible biomarkers for TST strategy development.
Collapse
Affiliation(s)
- Ana Carolina S Chagas
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil.
| | - David M Ribeiro
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana A P Abreu
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cintia H Okino
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Simone C M Niciura
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | | | - Hornblenda J S Bello
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Gláucia R Melito
- Centro Universitário Central Paulista (UNICEP), São Carlos, SP, Brazil
| | - Sérgio N Esteves
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - André M Almeida
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
30
|
Duarte Afonso Serdan T, Cervantes H, Frank B, Tian Q, Choi CHJ, Hoffmann A, Cohen P, Blüher M, Schwartz GJ, Shamsi F. Slit3 Fragments Orchestrate Neurovascular Expansion and Thermogenesis in Brown Adipose Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.613949. [PMID: 39386533 PMCID: PMC11463466 DOI: 10.1101/2024.09.24.613949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Brown adipose tissue (BAT) represents an evolutionary innovation enabling placental mammals to regulate body temperature through adaptive thermogenesis. Brown adipocytes are surrounded by a dense network of blood vessels and sympathetic nerves that support their development and thermogenic function. Cold exposure stimulates BAT thermogenesis through the coordinated induction of brown adipogenesis, angiogenesis, and sympathetic innervation. However, how these distinct processes are coordinated remains unclear. Here, we identify Slit guidance ligand 3 (Slit3) as a new niche factor that mediates the crosstalk among adipocyte progenitors, endothelial cells, and sympathetic nerves. We show that adipocyte progenitors secrete Slit3 which regulates both angiogenesis and sympathetic innervation in BAT and is essential for BAT thermogenesis in vivo. Proteolytic cleavage of Slit3 generates secreted Slit3-N and Slit3-C fragments, which activate distinct receptors to stimulate angiogenesis and sympathetic innervation, respectively. Moreover, we introduce bone morphogenetic protein-1 (Bmp1) as the first Slit protease identified in vertebrates. In summary, this study underscores the essential role of Slit3-mediated neurovascular network expansion in enabling cold-induced BAT adaptation. The co-regulation of neurovascular expansion by Slit3 fragments provides a bifurcated yet harmonized approach to ensure a synchronized response of BAT to environmental challenges. This study presents the first evidence that adipocyte progenitors regulate tissue innervation, revealing a previously unrecognized dimension of cellular interaction within adipose tissue.
Collapse
Affiliation(s)
| | - Heidi Cervantes
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Benjamin Frank
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Qiyu Tian
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Chan Hee J Choi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Gary J Schwartz
- Departments of Medicine and Neuroscience, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Farnaz Shamsi
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
- Departments of Cell Biology and Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
31
|
Dembrow NC, Sawchuk S, Dalley R, Opitz-Araya X, Hudson M, Radaelli C, Alfiler L, Walling-Bell S, Bertagnolli D, Goldy J, Johansen N, Miller JA, Nasirova K, Owen SF, Parga-Becerra A, Taskin N, Tieu M, Vumbaco D, Weed N, Wilson J, Lee BR, Smith KA, Sorensen SA, Spain WJ, Lein ES, Perlmutter SI, Ting JT, Kalmbach BE. Areal specializations in the morpho-electric and transcriptomic properties of primate layer 5 extratelencephalic projection neurons. Cell Rep 2024; 43:114718. [PMID: 39277859 PMCID: PMC11488157 DOI: 10.1016/j.celrep.2024.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024] Open
Abstract
Large-scale analysis of single-cell gene expression has revealed transcriptomically defined cell subclasses present throughout the primate neocortex with gene expression profiles that differ depending upon neocortical region. Here, we test whether the interareal differences in gene expression translate to regional specializations in the physiology and morphology of infragranular glutamatergic neurons by performing Patch-seq experiments in brain slices from the temporal cortex (TCx) and motor cortex (MCx) of the macaque. We confirm that transcriptomically defined extratelencephalically projecting neurons of layer 5 (L5 ET neurons) include retrogradely labeled corticospinal neurons in the MCx and find multiple physiological properties and ion channel genes that distinguish L5 ET from non-ET neurons in both areas. Additionally, while infragranular ET and non-ET neurons retain distinct neuronal properties across multiple regions, there are regional morpho-electric and gene expression specializations in the L5 ET subclass, providing mechanistic insights into the specialized functional architecture of the primate neocortex.
Collapse
Affiliation(s)
- Nikolai C Dembrow
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Epilepsy Center of Excellence, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA.
| | - Scott Sawchuk
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rachel Dalley
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Mark Hudson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | - Lauren Alfiler
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Scott F Owen
- Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Alejandro Parga-Becerra
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Naz Taskin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Vumbaco
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Natalie Weed
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Julia Wilson
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - William J Spain
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Epilepsy Center of Excellence, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Steve I Perlmutter
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Jonathan T Ting
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Allen Institute for Brain Science, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Brian E Kalmbach
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
32
|
Thowfeequ S, Fiorentino J, Hu D, Solovey M, Ruane S, Whitehead M, Zhou F, Godwin J, Mateo-Otero Y, Vanhaesebroeck B, Scialdone A, Srinivas S. An integrated approach identifies the molecular underpinnings of murine anterior visceral endoderm migration. Dev Cell 2024; 59:2347-2363.e9. [PMID: 38843837 PMCID: PMC11511681 DOI: 10.1016/j.devcel.2024.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/09/2023] [Accepted: 05/14/2024] [Indexed: 09/12/2024]
Abstract
The anterior visceral endoderm (AVE) differs from the surrounding visceral endoderm (VE) in its migratory behavior and ability to restrict primitive streak formation to the opposite side of the mouse embryo. To characterize the molecular bases for the unique properties of the AVE, we combined single-cell RNA sequencing of the VE prior to and during AVE migration with phosphoproteomics, high-resolution live-imaging, and short-term lineage labeling and intervention. This identified the transient nature of the AVE with attenuation of "anteriorizing" gene expression as cells migrate and the emergence of heterogeneities in transcriptional states relative to the AVE's position. Using cell communication analysis, we identified the requirement of semaphorin signaling for normal AVE migration. Lattice light-sheet microscopy showed that Sema6D mutants have abnormalities in basal projections and migration speed. These findings point to a tight coupling between transcriptional state and position of the AVE and identify molecular controllers of AVE migration.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK
| | - Jonathan Fiorentino
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich 81377, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Di Hu
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK
| | - Maria Solovey
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich 81377, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Sharon Ruane
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK
| | - Maria Whitehead
- UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Felix Zhou
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan Godwin
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK
| | - Yentel Mateo-Otero
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK; Unit of Cell Biology, Department of Biology, University of Girona, Girona 17004, Spain
| | | | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich 81377, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany.
| | - Shankar Srinivas
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK.
| |
Collapse
|
33
|
Xu C, Li Z, Lyu C, Hu Y, McLaughlin CN, Wong KKL, Xie Q, Luginbuhl DJ, Li H, Udeshi ND, Svinkina T, Mani DR, Han S, Li T, Li Y, Guajardo R, Ting AY, Carr SA, Li J, Luo L. Molecular and cellular mechanisms of teneurin signaling in synaptic partner matching. Cell 2024; 187:5081-5101.e19. [PMID: 38996528 PMCID: PMC11833509 DOI: 10.1016/j.cell.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.
Collapse
Affiliation(s)
- Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yixin Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Kin Lam Wong
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yang Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Knipper K, Lyu SI, Jung JO, Alich N, Popp FC, Schröder W, Fuchs HF, Bruns CJ, Quaas A, Nienhueser H, Schmidt T. Semaphorin 3F (SEMA3F) influences patient survival in esophageal adenocarcinoma. Sci Rep 2024; 14:20589. [PMID: 39232098 PMCID: PMC11375056 DOI: 10.1038/s41598-024-71616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
In esophageal adenocarcinoma, the presence of lymph node metastases predicts patients' survival even after curative resection. Currently, there is no highly accurate marker for detecting the presence of lymph node metastasis. The SEMA3F/NRP2 axis was initially characterized in axon guidance and recent evidence has revealed its significant involvement in lymphangiogenesis, angiogenesis, and carcinogenesis. Hence, the objective of this study was to elucidate the roles of SEMA3F and its receptor NRP2 in esophageal adenocarcinoma. We conducted an immunohistochemical evaluation of SEMA3F and NRP2 protein expression in 776 patients with esophageal adenocarcinoma who underwent Ivor-Lewis esophagectomy at the University Hospital of Cologne. Total and positive cancer cell counts were digitally analyzed using QuPath and verified by experienced pathologists to ensure accuracy. Positive expression was determined as a cell percentage exceeding the 50th percentile threshold. In our cohort, patients exhibiting SEMA3F positive expression experience significantly lower pT- and pN-stages. In contrast, positive NRP2 expression is associated with the presence of lymph node metastases. Survival analyses showed that the expression status of NRP2 had no impact on patient survival. However, SEMA3F positivity was associated with a favorable patient survival outcome (median OS: 38.9 vs. 26.5 months). Furthermore, SEMA3F could be confirmed as an independent factor for better patient survival in patients with early tumor stage (pT1N0-3: HR = 0.505, p = 0.014, pT1-4N0: HR = 0.664, p = 0.024, pT1N0: HR = 0.483, p = 0.040). In summary, SEMA3F emerges as an independent predictor for a favorable prognosis in patients with early-stage esophageal adenocarcinoma. Additionally, NRP2 expression is linked to a higher risk of lymph node metastases occurrence. We hypothesize that low SEMA3F expression could identify patients with early-stage tumors who might benefit from more aggressive treatment options or intensified follow-up. Furthermore, SEMA3F and its associated pathways should be explored as potential tumor-suppressing agents.
Collapse
Affiliation(s)
- Karl Knipper
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany.
| | - Su Ir Lyu
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Jin-On Jung
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Niklas Alich
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Felix C Popp
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Wolfgang Schröder
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Hans F Fuchs
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Christiane J Bruns
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Henrik Nienhueser
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany.
| |
Collapse
|
35
|
Coy-Dibley J, Jayaraj ND, Ren D, Pacifico P, Belmadani A, Wang YZ, Gebis KK, Savas JN, Paller AS, Miller RJ, Menichella DM. Keratinocyte-Derived Exosomes in Painful Diabetic Neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608803. [PMID: 39229068 PMCID: PMC11370388 DOI: 10.1101/2024.08.21.608803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin. Keratinocytes, the most abundant epidermal cell type, are closely positioned to cutaneous nerve terminals, suggesting the possibility of bi-directional communication. Exosomes are small extracellular vesicles released from many cell types that mediate cell to cell communication. The role of keratinocyte-derived exosomes (KDEs) in influencing signaling between the skin and cutaneous nerve terminals and their contribution to the genesis of PDN has not been explored. In this study, we characterized KDEs in a well-established high-fat diet (HFD) mouse model of PDN using primary adult mouse keratinocyte cultures. We obtained highly enriched KDEs through size exclusion chromatography and then analyzed their molecular cargo using proteomic analysis and small RNA sequencing. We found significant differences in the protein and microRNA content of HFD KDEs compared to KDEs obtained from control mice on a regular diet (RD), including pathways involved in axon guidance and synaptic transmission. Additionally, using an in vivo conditional extracellular vesicle (EV) reporter mouse model, we demonstrated that epidermal-originating GFP-tagged KDEs are retrogradely trafficked into the DRG neuron cell body. Overall, our study presents a potential novel mode of communication between keratinocytes and DRG neurons in the skin, revealing a possible role for KDEs in contributing to the axonal degeneration that underlies neuropathic pain in PDN. Moreover, this study presents potential therapeutic targets in the skin for developing more effective, disease-modifying, and better-tolerated topical interventions for patients suffering from PDN, one of the most common and untreatable peripheral neuropathies.
Collapse
Affiliation(s)
- James Coy-Dibley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nirupa D Jayaraj
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dongjun Ren
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Abdelhak Belmadani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kamil K Gebis
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amy S Paller
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard J Miller
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniela M Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
36
|
Yule MS, Brown LR, Skipworth RJE, Laird BJA. Central neural mechanisms of cancer cachexia. Curr Opin Support Palliat Care 2024; 18:138-144. [PMID: 38752576 DOI: 10.1097/spc.0000000000000707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
PURPOSE OF REVIEW Cachexia is a devasting syndrome which impacts a large number of patients with cancer. This review aims to provide a comprehensive overview of the central mechanisms of cancer cachexia. In particular, it focuses on the role of the central nervous system (CNS), the melanocortin system, circulating hormones and molecules which are produced by and act on the CNS and the psychological symptoms of cancer cachexia. RECENT FINDINGS A growing body of evidence suggests that a central mechanism of action underpins this multi-system disorder. Recent research has focused on the role of neuroinflammation that drives the sickness behaviour seen in cancer cachexia, with emphasis on the role of the hypothalamus. Melanocortin receptor antagonists are showing promise in preclinical studies. There are also new pharmacological developments to overcome the short half-life of ghrelin. GDF-15 has been identified as a core target and trials of compounds that interfere with its signalling or its central receptor are underway. SUMMARY Understanding the central mechanisms of cancer cachexia is pivotal for enhancing treatment outcomes in patients. While emerging pharmacological interventions targeting these pathways have shown promise, further research is essential.
Collapse
Affiliation(s)
- Michael S Yule
- St Columba's Hospice
- Edinburgh Cancer Research Centre, University of Edinburgh
| | - Leo R Brown
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Richard J E Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Barry J A Laird
- St Columba's Hospice
- Edinburgh Cancer Research Centre, University of Edinburgh
| |
Collapse
|
37
|
Shan L, Matloubi M, Okwor I, Kung S, Almiski MS, Basu S, Halayko A, Koussih L, Gounni AS. CD11c+ dendritic cells PlexinD1 deficiency exacerbates airway hyperresponsiveness, IgE and mucus production in a mouse model of allergic asthma. PLoS One 2024; 19:e0309868. [PMID: 39213301 PMCID: PMC11364237 DOI: 10.1371/journal.pone.0309868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Dendritic cells (DCs) are pivotal in regulating allergic asthma. Our research has shown that the absence of Sema3E worsens asthma symptoms in acute and chronic asthma models. However, the specific role of PlexinD1 in these processes, particularly in DCs, remains unclear. This study investigates the role of PlexinD1 in CD11c+ DCs using a house dust mite (HDM) model of asthma. We generated CD11c+ DC-specific PlexinD1 knockout (CD11cPLXND1 KO) mice and subjected them, alongside wild-type controls (PLXND1fl/fl), to an HDM allergen protocol. Airway hyperresponsiveness (AHR) was measured using FlexiVent, and immune cell populations were analyzed via flow cytometry. Cytokine levels and immunoglobulin concentrations were assessed using mesoscale and ELISA, while collagen deposition and mucus production were examined through Sirius-red and periodic acid Schiff (PAS) staining respectively. Our results indicate that CD11cPLXND1 KO mice exhibit significantly exacerbated AHR, characterized by increased airway resistance and tissue elastance. Enhanced mucus production and collagen gene expression were observed in these mice compared to wild-type counterparts. Flow cytometry revealed higher CD11c+ MHCIIhigh CD11b+ cell recruitment into the lungs, and elevated total and HDM-specific serum IgE levels in CD11cPLXND1 KO mice. Mechanistically, co-cultures of B cells with DCs from CD11cPLXND1 KO mice showed significantly increased IgE production compared to wild-type mice.These findings highlight the critical regulatory role of the plexinD1 signaling pathway in CD11c+ DCs in modulating asthma features.
Collapse
Affiliation(s)
- Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojdeh Matloubi
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ifeoma Okwor
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sam Kung
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohamed Sadek Almiski
- Department of Anatomy, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Depertment of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Halayko
- Depertment of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Latifa Koussih
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Experimental Biology, Université de Saint-Boniface, Winnipeg, Manitoba
| | - Abdelilah S. Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
38
|
Ubuzima P, Nshimiyimana E, Mukeshimana C, Mazimpaka P, Mugabo E, Mbyayingabo D, Mohamed AS, Habumugisha J. Exploring biological mechanisms in orthodontic tooth movement: Bridging the gap between basic research experiments and clinical applications - A comprehensive review. Ann Anat 2024; 255:152286. [PMID: 38810763 DOI: 10.1016/j.aanat.2024.152286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES The molecular mechanisms behind orthodontic tooth movements (OTM) were investigated by clarifying the role of chemical messengers released by cells. METHODS Using the Cochrane library, Google scholar, and PubMed databases, a literature search was conducted, and studies published from 1984 to 2024 were considered. RESULTS Both bone growth and remodeling may occur when a tooth is subjected to mechanical stress. These chemicals have a significant effect on the stimulation and regulation of osteoblasts, osteoclasts, and osteocytes during alveolar bone remodeling. This regulation can take place in pathological conditions, such as periodontal diseases, or during OTM alone. This comprehensive review outlines key molecular mechanisms underlying OTM and explores various clinical assumptions associated with specific molecules and their functional domains during this process. Furthermore, clinical applications of certain molecules such as relaxin, prostaglandin E (PGE), and interleukin-1β (IL-1β) in accelerating OTM have been reported. Our findings underscore the existing gap between OTM clinical applications and basic research investigations. CONCLUSION A comprehensive understanding of orthodontic treatment is enriched by insights into biological systems. We reported the activation of osteoblasts, osteoclast precursor cells, osteoclasts, and osteocytes in response to mechanical stress, leading to targeted cellular and molecular interventions and facilitating rapid and regulated alveolar bone remodeling during tooth movement. Despite the shortcomings of clinical studies in accelerating OTM, this review highlights the crucial role of biological agents in this process and advocates for prioritizing high-quality human studies in future research to gain further insights from clinical trials.
Collapse
Affiliation(s)
- Pascal Ubuzima
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China; School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eugene Nshimiyimana
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China
| | - Christelle Mukeshimana
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China
| | - Patrick Mazimpaka
- School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eric Mugabo
- Department of Orthodontics, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, 72 Xiangya Road, Changsha, Hunan 410000, China
| | - Dieudonne Mbyayingabo
- Department of Orthodontics, Stomatological Hospital of Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi 710004, China
| | | | - Janvier Habumugisha
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kitaku, Okayama 700-8525, Japan; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
39
|
Moerkens R, Mooiweer J, Ramírez-Sánchez AD, Oelen R, Franke L, Wijmenga C, Barrett RJ, Jonkers IH, Withoff S. An iPSC-derived small intestine-on-chip with self-organizing epithelial, mesenchymal, and neural cells. Cell Rep 2024; 43:114247. [PMID: 38907996 DOI: 10.1016/j.celrep.2024.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 06/24/2024] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived intestinal organoids are valuable tools for researching developmental biology and personalized therapies, but their closed topology and relative immature state limit applications. Here, we use organ-on-chip technology to develop a hiPSC-derived intestinal barrier with apical and basolateral access in a more physiological in vitro microenvironment. To replicate growth factor gradients along the crypt-villus axis, we locally expose the cells to expansion and differentiation media. In these conditions, intestinal epithelial cells self-organize into villus-like folds with physiological barrier integrity, and myofibroblasts and neurons emerge and form a subepithelial tissue in the bottom channel. The growth factor gradients efficiently balance dividing and mature cell types and induce an intestinal epithelial composition, including absorptive and secretory lineages, resembling the composition of the human small intestine. This well-characterized hiPSC-derived intestine-on-chip system can facilitate personalized studies on physiological processes and therapy development in the human small intestine.
Collapse
Affiliation(s)
- Renée Moerkens
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Joram Mooiweer
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Aarón D Ramírez-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Roy Oelen
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Robert J Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands.
| |
Collapse
|
40
|
Dumas CM, St. Clair RM, Lasseigne AM, Ballif BA, Ebert AM. The intracellular domain of Sema6A is essential for development of the zebrafish retina. J Cell Sci 2024; 137:jcs261469. [PMID: 38963001 PMCID: PMC11795297 DOI: 10.1242/jcs.261469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Semaphorin6A (Sema6A) is a repulsive guidance molecule that plays many roles in central nervous system, heart and bone development, as well as immune system responses and cell signaling in cancer. Loss of Sema6A or its receptor PlexinA2 in zebrafish leads to smaller eyes and improper retinal patterning. Here, we investigate a potential role for the Sema6A intracellular domain in zebrafish eye development and dissect which phenotypes rely on forward signaling and which rely on reverse signaling. We performed rescue experiments on zebrafish Sema6A morphants with either full-length Sema6A (Sema6A-FL) or Sema6A lacking its intracellular domain (Sema6A-ΔC). We identified that the intracellular domain is not required for eye size and retinal patterning, however it is required for retinal integrity, the number and end feet strength of Müller glia and protecting against retinal cell death. This novel function for the intracellular domain suggests a role for Sema6A reverse signaling in zebrafish eye development.
Collapse
Affiliation(s)
- Caroline M. Dumas
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | | | | - Bryan A. Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Alicia M. Ebert
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
41
|
Daga KR, Larey AM, Morfin MG, Chen K, Bitarafan S, Carpenter JM, Hynds HM, Hines KM, Wood LB, Marklein RA. Microglia Morphological Response to Mesenchymal Stromal Cell Extracellular Vesicles Demonstrates EV Therapeutic Potential for Modulating Neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601612. [PMID: 39005342 PMCID: PMC11245023 DOI: 10.1101/2024.07.01.601612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) are a promising therapeutic for neuroinflammation. MSC-EVs can interact with microglia, the resident immune cells of the brain, to exert their immunomodulatory effects. In response to inflammatory cues, such as cytokines, microglia undergo phenotypic changes indicative of their function e.g. morphology and secretion. However, these changes in response to MSC-EVs are not well understood. Additionally, no disease-relevant screening tools to assess MSC-EV bioactivity exist, which has further impeded clinical translation. Here, we developed a quantitative, high throughput morphological profiling approach to assess the response of microglia to neuroinflammation-relevant signals and whether this morphological response can be used to indicate the bioactivity of MSC-EVs. Results Using an immortalized human microglia cell-line, we observed increased size (perimeter, major axis length) and complexity (form factor) upon stimulation with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Upon treatment with MSC-EVs, the overall morphological score (determined using principal component analysis) shifted towards the unstimulated morphology, indicating that MSC-EVs are bioactive and modulate microglia. The morphological effects of MSC-EVs in TNF-γ/IFN-α stimulated cells were concomitant with reduced secretion of 14 chemokines/cytokines (e.g. CXCL6, CXCL9) and increased secretion of 12 chemokines/cytokines (e.g. CXCL8, CXCL10). Proteomic analysis of cell lysates revealed significant increases in 192 proteins (e.g. HIBADH, MEAK7, LAMC1) and decreases in 257 proteins (e.g. PTEN, TOM1, MFF) with MSC-EV treatment. Of note, many of these proteins are involved in regulation of cell morphology and migration. Gene Set Variation Analysis revealed upregulation of pathways associated with immune response, such as regulation of cytokine production, immune cell infiltration (e.g. T cells, NK cells) and morphological changes (e.g. Semaphorin, RHO/Rac signaling). Additionally, changes in microglia mitochondrial morphology were measured suggesting that MSC-EV modulate mitochondrial metabolism. Conclusion This study comprehensively demonstrates the effects of MSC-EVs on human microglial morphology, cytokine secretion, cellular proteome, and mitochondrial content. Our high-throughput, rapid, low-cost morphological approach enables screening of MSC-EV batches and manufacturing conditions to enhance EV function and mitigate EV functional heterogeneity in a disease relevant manner. This approach is highly generalizable and can be further adapted and refined based on selection of the disease-relevant signal, target cell, and therapeutic product.
Collapse
Affiliation(s)
- Kanupriya R Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Andrew M Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G Morfin
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Kailin Chen
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Hannah M Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
42
|
Smith CEL, Laugel-Haushalter V, Hany U, Best S, Taylor RL, Poulter JA, Wortmann SB, Feichtinger RG, Mayr JA, Al Bahlani S, Nikolopoulos G, Rigby A, Black GC, Watson CM, Mansour S, Inglehearn CF, Mighell AJ, Bloch-Zupan A. Biallelic variants in Plexin B2 ( PLXNB2) cause amelogenesis imperfecta, hearing loss and intellectual disability. J Med Genet 2024; 61:689-698. [PMID: 38458752 PMCID: PMC11228227 DOI: 10.1136/jmg-2023-109728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Plexins are large transmembrane receptors for the semaphorin family of signalling proteins. Semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Nine plexin genes have been identified in humans, but despite the apparent importance of plexins in development, only biallelic PLXND1 and PLXNA1 variants have so far been associated with Mendelian genetic disease. METHODS Eight individuals from six families presented with a recessively inherited variable clinical condition, with core features of amelogenesis imperfecta (AI) and sensorineural hearing loss (SNHL), with variable intellectual disability. Probands were investigated by exome or genome sequencing. Common variants and those unlikely to affect function were excluded. Variants consistent with autosomal recessive inheritance were prioritised. Variant segregation analysis was performed by Sanger sequencing. RNA expression analysis was conducted in C57Bl6 mice. RESULTS Rare biallelic pathogenic variants in plexin B2 (PLXNB2), a large transmembrane semaphorin receptor protein, were found to segregate with disease in all six families. The variants identified include missense, nonsense, splicing changes and a multiexon deletion. Plxnb2 expression was detected in differentiating ameloblasts. CONCLUSION We identify rare biallelic pathogenic variants in PLXNB2 as a cause of a new autosomal recessive, phenotypically diverse syndrome with AI and SNHL as core features. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. The variable syndromic human phenotype overlaps with that seen in Plxnb2 knockout mice, and, together with the rarity of human PLXNB2 variants, may explain why pathogenic variants in PLXNB2 have not been reported previously.
Collapse
Affiliation(s)
- Claire E L Smith
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Virginie Laugel-Haushalter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Strasbourg, France
| | - Ummey Hany
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Sunayna Best
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rachel L Taylor
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
- EMQN CIC, Manchester, UK
| | - James A Poulter
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Saskia B Wortmann
- Department of Paediatrics, University Children's Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University, Salzburg, Austria
- Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Rene G Feichtinger
- Department of Paediatrics, University Children's Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University, Salzburg, Austria
| | - Johannes A Mayr
- Department of Paediatrics, University Children's Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University, Salzburg, Austria
| | - Suhaila Al Bahlani
- Dental & OMFS Clinic, Al Nahdha Hospital, Government of Oman Ministry of Health, Muscat, Oman
| | | | - Alice Rigby
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
- School of Dentistry, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Graeme C Black
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Christopher M Watson
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sahar Mansour
- Lymphovascular Research Unit, Molecular and Clinical Sciences Research Institute, St George's Hospital, University of London, London, UK
- SW Thames Regional Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Chris F Inglehearn
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Alan J Mighell
- School of Dentistry, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Agnès Bloch-Zupan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Centre de référence des maladies rares orales et dentaires O-Rares, Filière Santé Maladies rares TETE COU, European Reference Network CRANIO, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| |
Collapse
|
43
|
Soelter TM, Howton TC, Clark AD, Oza VH, Lasseigne BN. Altered glia-neuron communication in Alzheimer's Disease affects WNT, p53, and NFkB Signaling determined by snRNA-seq. Cell Commun Signal 2024; 22:317. [PMID: 38849813 PMCID: PMC11157763 DOI: 10.1186/s12964-024-01686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Alzheimer's disease is the most common cause of dementia and is characterized by amyloid-β plaques, tau neurofibrillary tangles, and neuronal loss. Although neuronal loss is a primary hallmark of Alzheimer's disease, it is known that non-neuronal cell populations are ultimately responsible for maintaining brain homeostasis and neuronal health through neuron-glia and glial cell crosstalk. Many signaling pathways have been proposed to be dysregulated in Alzheimer's disease, including WNT, TGFβ, p53, mTOR, NFkB, and Pi3k/Akt signaling. Here, we predict altered cell-cell communication between glia and neurons. METHODS Using public snRNA-sequencing data generated from postmortem human prefrontal cortex, we predicted altered cell-cell communication between glia (astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells) and neurons (excitatory and inhibitory). We confirmed interactions in a second and third independent orthogonal dataset. We determined cell-type-specificity using Jaccard Similarity Index and investigated the downstream effects of altered interactions in inhibitory neurons through gene expression and transcription factor activity analyses of signaling mediators. Finally, we determined changes in pathway activity in inhibitory neurons. RESULTS Cell-cell communication between glia and neurons is altered in Alzheimer's disease in a cell-type-specific manner. As expected, ligands are more cell-type-specific than receptors and targets. We identified ligand-receptor pairs in three independent datasets and found involvement of the Alzheimer's disease risk genes APP and APOE across datasets. Most of the signaling mediators of these interactions were not significantly differentially expressed, however, the mediators that are also transcription factors had differential activity between AD and control. Namely, MYC and TP53, which are associated with WNT and p53 signaling, respectively, had decreased TF activity in Alzheimer's disease, along with decreased WNT and p53 pathway activity in inhibitory neurons. Additionally, inhibitory neurons had both increased NFkB signaling pathway activity and increased TF activity of NFIL3, an NFkB signaling-associated transcription factor. CONCLUSIONS Cell-cell communication between glia and neurons in Alzheimer's disease is altered in a cell-type-specific manner involving Alzheimer's disease risk genes. Signaling mediators had altered transcription factor activity suggesting altered glia-neuron interactions may dysregulate signaling pathways including WNT, p53, and NFkB in inhibitory neurons.
Collapse
Affiliation(s)
- Tabea M Soelter
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Timothy C Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Amanda D Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Vishal H Oza
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Brittany N Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
44
|
Ciriaci N, Rautou PE, Poisson J. Loss of fenestrae in liver sinusoidal endothelial cells contributes to MASLD. NATURE CARDIOVASCULAR RESEARCH 2024; 3:622-624. [PMID: 39196234 DOI: 10.1038/s44161-024-00490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Nadia Ciriaci
- Université Paris-Cité, Inserm, Centre de Recherche sur l'Inflammation, UMR 1149, Paris, France
| | - Pierre-Emmanuel Rautou
- Université Paris-Cité, Inserm, Centre de Recherche sur l'Inflammation, UMR 1149, Paris, France
- AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| | - Johanne Poisson
- Université Paris-Cité, Inserm, Centre de Recherche sur l'Inflammation, UMR 1149, Paris, France.
- AP-HP, Hôpital Européen George Pompidou, Hôpital Corentin-Celton, Service de Gériatrie, Institut CARPEM, Paris, France.
| |
Collapse
|
45
|
Yombo DJK, Ghandikota S, Vemulapalli CP, Singh P, Jegga AG, Hardie WD, Madala SK. SEMA3B inhibits TGFβ-induced extracellular matrix protein production and its reduced levels are associated with a decline in lung function in IPF. Am J Physiol Cell Physiol 2024; 326:C1659-C1668. [PMID: 38646784 PMCID: PMC11371361 DOI: 10.1152/ajpcell.00681.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is marked by the activation of fibroblasts, leading to excessive production and deposition of extracellular matrix (ECM) within the lung parenchyma. Despite the pivotal role of ECM overexpression in IPF, potential negative regulators of ECM production in fibroblasts have yet to be identified. Semaphorin class 3B (SEMA3B), a secreted protein highly expressed in lung tissues, has established roles in axonal guidance and tumor suppression. However, the role of SEMA3B in ECM production by fibroblasts in the pathogenesis of IPF remains unexplored. Here, we show the downregulation of SEMA3B and its cognate binding receptor, neuropilin 1 (NRP1), in IPF lungs compared with healthy controls. Notably, the reduced expression of SEMA3B and NRP1 is associated with a decline in lung function in IPF. The downregulation of SEMA3B and NRP1 transcripts was validated in the lung tissues of patients with IPF, and two alternative mouse models of pulmonary fibrosis. In addition, we show that transforming growth factor-β (TGFβ) functions as a negative regulator of SEMA3B and NRP1 expression in lung fibroblasts. Furthermore, we demonstrate the antifibrotic effects of SEMA3B against TGFβ-induced ECM production in IPF lung fibroblasts. Overall, our findings uncovered a novel role of SEMA3B in the pathogenesis of pulmonary fibrosis and provided novel insights into modulating the SEMA3B-NRP1 axis to attenuate pulmonary fibrosis.NEW & NOTEWORTHY The excessive production and secretion of collagens and other extracellular matrix proteins by fibroblasts lead to the scarring of the lung in severe fibrotic lung diseases. This study unveils an antifibrotic role for semaphorin class 3B (SEMA3B) in the pathogenesis of idiopathic pulmonary fibrosis. SEMA3B functions as an inhibitor of transforming growth factor-β-driven fibroblast activation and reduced levels of SEMA3B and its receptor, neuropilin 1, are associated with decreased lung function in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Dan J K Yombo
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Sudhir Ghandikota
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Chanukya P Vemulapalli
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Priyanka Singh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Anil G Jegga
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
46
|
Yang D, Jian Z, Tang C, Chen Z, Zhou Z, Zheng L, Peng X. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges. Int J Mol Sci 2024; 25:5943. [PMID: 38892128 PMCID: PMC11172925 DOI: 10.3390/ijms25115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Congenital heart defects (CHDs) are common human birth defects. Genetic mutations potentially cause the exhibition of various pathological phenotypes associated with CHDs, occurring alone or as part of certain syndromes. Zebrafish, a model organism with a strong molecular conservation similar to humans, is commonly used in studies on cardiovascular diseases owing to its advantageous features, such as a similarity to human electrophysiology, transparent embryos and larvae for observation, and suitability for forward and reverse genetics technology, to create various economical and easily controlled zebrafish CHD models. In this review, we outline the pros and cons of zebrafish CHD models created by genetic mutations associated with single defects and syndromes and the underlying pathogenic mechanism of CHDs discovered in these models. The challenges of zebrafish CHD models generated through gene editing are also discussed, since the cardiac phenotypes resulting from a single-candidate pathological gene mutation in zebrafish might not mirror the corresponding human phenotypes. The comprehensive review of these zebrafish CHD models will facilitate the understanding of the pathogenic mechanisms of CHDs and offer new opportunities for their treatments and intervention strategies.
Collapse
|
47
|
Iyer AK, Vermunt L, Mirfakhar FS, Minaya M, Acquarone M, Koppisetti RK, Renganathan A, You SF, Danhash EP, Verbeck A, Galasso G, Lee SM, Marsh J, Nana AL, Spina S, Seeley WW, Grinberg LT, Temple S, Teunissen CE, Sato C, Karch CM. Cell autonomous microglia defects in a stem cell model of frontotemporal dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307444. [PMID: 38798451 PMCID: PMC11118656 DOI: 10.1101/2024.05.15.24307444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neuronal dysfunction has been extensively studied as a central feature of neurodegenerative tauopathies. However, across neurodegenerative diseases, there is strong evidence for active involvement of immune cells like microglia in driving disease pathophysiology. Here, we demonstrate that tau mRNA and protein are expressed in microglia in human brains and in human induced pluripotent stem cell (iPSC)-derived microglia like cells (iMGLs). Using iMGLs harboring the MAPT IVS10+16 mutation and isogenic controls, we demonstrate that a tau mutation is sufficient to alter microglial transcriptional states. We discovered that MAPT IVS10+16 microglia exhibit cytoskeletal abnormalities, stalled phagocytosis, disrupted TREM2/TYROBP networks, and altered metabolism. Additionally, we found that secretory factors from MAPT IVS10+16 iMGLs impact neuronal health, reducing synaptic density in neurons. Key features observed in vitro were recapitulated in human brain tissue and cerebrospinal fluid from MAPT mutations carriers. Together, our findings that MAPT IVS10+16 drives cell-intrinsic dysfunction in microglia that impacts neuronal health has major implications for development of therapeutic strategies.
Collapse
Affiliation(s)
- Abhirami K. Iyer
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University, Amsterdam UMC, The Netherlands
| | | | - Miguel Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Mariana Acquarone
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | | | - Arun Renganathan
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Shih-Feng You
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Emma P. Danhash
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Anthony Verbeck
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Grant Galasso
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Scott M. Lee
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Alissa L. Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W. Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T. Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of Sao Paulo
| | | | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University, Amsterdam UMC, The Netherlands
| | - Chihiro Sato
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
- The Tracy Family Stable Isotope Labeling Quantitation Center, Washington University in St Louis, St Louis, MO, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
48
|
Soelter TM, Howton TC, Clark AD, Oza VH, Lasseigne BN. Altered Glia-Neuron Communication in Alzheimer's Disease Affects WNT, p53, and NFkB Signaling Determined by snRNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569304. [PMID: 38076822 PMCID: PMC10705421 DOI: 10.1101/2023.11.29.569304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background Alzheimer's disease is the most common cause of dementia and is characterized by amyloid-β plaques, tau neurofibrillary tangles, and neuronal loss. Although neuronal loss is a primary hallmark of Alzheimer's disease, it is known that non-neuronal cell populations are ultimately responsible for maintaining brain homeostasis and neuronal health through neuron-glia and glial cell crosstalk. Many signaling pathways have been proposed to be dysregulated in Alzheimer's disease, including WNT, TGFβ, p53, mTOR, NFkB, and Pi3k/Akt signaling. Here, we predict altered cell-cell communication between glia and neurons. Methods Using public snRNA-sequencing data generated from postmortem human prefrontal cortex, we predicted altered cell-cell communication between glia (astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells) and neurons (excitatory and inhibitory). We confirmed interactions in a second and third independent orthogonal dataset. We determined cell-type-specificity using Jaccard Similarity Index and investigated the downstream effects of altered interactions in inhibitory neurons through gene expression and transcription factor activity analyses of signaling mediators. Finally, we determined changes in pathway activity in inhibitory neurons. Results Cell-cell communication between glia and neurons is altered in Alzheimer's disease in a cell-type-specific manner. As expected, ligands are more cell-type-specific than receptors and targets. We identified ligand-receptor pairs in three independent datasets and found involvement of the Alzheimer's disease risk genes APP and APOE across datasets. Most of the signaling mediators of these interactions were not differentially expressed, however, the mediators that are also transcription factors had differential activity between AD and control. Namely, MYC and TP53, which are associated with WNT and p53 signaling, respectively, had decreased TF activity in Alzheimer's disease, along with decreased WNT and p53 pathway activity in inhibitory neurons. Additionally, inhibitory neurons had both increased NFkB signaling pathway activity and increased TF activity of NFIL3, an NFkB signaling-associated transcription factor. Conclusions Cell-cell communication between glia and neurons in Alzheimer's disease is altered in a cell-type-specific manner involving Alzheimer's disease risk genes. Signaling mediators had altered transcription factor activity suggesting altered glia-neuron interactions may dysregulate signaling pathways including WNT, p53, and NFkB in inhibitory neurons.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Vishal H. Oza
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
49
|
Lai YJ, Chang SH, Tung YC, Chang GJ, Almeida CD, Chen WJ, Yeh YH, Tsai FC. Naringin activates semaphorin 3A to ameliorate TGF-β-induced endothelial-to-mesenchymal transition related to atrial fibrillation. J Cell Physiol 2024; 239:e31248. [PMID: 38501506 DOI: 10.1002/jcp.31248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-β)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-β specifically in cardiac tissues (TGF-β transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-β transgenic mice and AF patient tissue sections. Additionally, we investigated the impact of naringin on EndMT and EC proliferation in AEECs and atrial fibroblasts. Naringin exhibited an antiproliferative effect, to which AEECs were more responsive. Subsequently, we downregulated Sema3A in AEECs using small interfering RNA to clarify a correlation between the reduction in Sema3A and the elevation of EndMT markers. Naringin treatment induced the expression of Sema3A and a concurrent decrease in EndMT markers. Furthermore, naringin administration ameliorated AF and endocardial fibrosis in TGF-β transgenic mice by stimulating Sema3A expression, inhibiting EndMT markers, reducing atrial fibrosis, and lowering AF vulnerability. This suggests therapeutic potential for naringin in AF treatment.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chia-Yi, Puzi, Taiwan
| | - Shang-Hung Chang
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Ying-Chang Tung
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Gwo-Jyh Chang
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Celina De Almeida
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Feng-Chun Tsai
- Department of Surgery, Division of Cardiovascular Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
50
|
Weidle UH, Birzele F. Deregulated circRNAs in Epithelial Ovarian Cancer With Activity in Preclinical In Vivo Models: Identification of Targets and New Modalities for Therapeutic Intervention. Cancer Genomics Proteomics 2024; 21:213-237. [PMID: 38670587 PMCID: PMC11059596 DOI: 10.21873/cgp.20442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is associated with a dismal prognosis due to development of resistance to chemotherapy and metastasis in the peritoneal cavity and distant organs. In order to identify new targets and treatment modalities we searched the literature for up- and and down-regulated circRNAs with efficacy in preclinical EOC-related in vivo systems. Our search yielded circRNAs falling into the following categories: cisplatin and paclitaxel resistance, transmembrane receptors, secreted factors, transcription factors, RNA splicing and processing factors, RAS pathway-related components, proteolysis and cell-cycle regulation, signaling-related proteins, and circRNAs regulating proteins in additional categories. These findings can be potentially translated by validation and manipulation of the corresponding targets, inhibition of circRNAs with antisense oligonucleotides (ASO), small interfering RNAs (siRNA) or small hairpin RNA (shRNA) or by reconstituting their activity.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|