1
|
Zhu Z, Rosenkranz KAT, Kusunoki Y, Li C, Klaus M, Gross O, Angelotti ML, Antonelli G, Cirillo L, Romagnani P, Bouteldja N, Sadr AV, Bülow RD, Boor P, Anders HJ. Finerenone Added to RAS/SGLT2 Blockade for CKD in Alport Syndrome. Results of a Randomized Controlled Trial with Col4a3-/- Mice. J Am Soc Nephrol 2023; 34:1513-1520. [PMID: 37428955 PMCID: PMC10482061 DOI: 10.1681/asn.0000000000000186] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
SIGNIFICANCE STATEMENT We hypothesized that triple therapy with inhibitors of the renin-angiotensin system (RAS), sodium-glucose transporter (SGLT)-2, and the mineralocorticoid receptor (MR) would be superior to dual RAS/SGLT2 blockade in attenuating CKD progression in Col4a3 -deficient mice, a model of Alport syndrome. Late-onset ramipril monotherapy or dual ramipril/empagliflozin therapy attenuated CKD and prolonged overall survival by 2 weeks. Adding the nonsteroidal MR antagonist finerenone extended survival by 4 weeks. Pathomics and RNA sequencing revealed significant protective effects on the tubulointerstitium when adding finerenone to RAS/SGLT2 inhibition. Thus, triple RAS/SGLT2/MR blockade has synergistic effects and might attenuate CKD progression in patients with Alport syndrome and possibly other progressive chronic kidney disorders. BACKGROUND Dual inhibition of the renin-angiotensin system (RAS) plus sodium-glucose transporter (SGLT)-2 or the mineralocorticoid receptor (MR) demonstrated additive renoprotective effects in large clinical trials. We hypothesized that triple therapy with RAS/SGLT2/MR inhibitors would be superior to dual RAS/SGLT2 blockade in attenuating CKD progression. METHODS We performed a preclinical randomized controlled trial (PCTE0000266) in Col4a3 -deficient mice with established Alport nephropathy. Treatment was initiated late (age 6 weeks) in mice with elevated serum creatinine and albuminuria and with glomerulosclerosis, interstitial fibrosis, and tubular atrophy. We block-randomized 40 male and 40 female mice to either nil (vehicle) or late-onset food admixes of ramipril monotherapy (10 mg/kg), ramipril plus empagliflozin (30 mg/kg), or ramipril plus empagliflozin plus finerenone (10 mg/kg). Primary end point was mean survival. RESULTS Mean survival was 63.7±10.0 days (vehicle), 77.3±5.3 days (ramipril), 80.3±11.0 days (dual), and 103.1±20.3 days (triple). Sex did not affect outcome. Histopathology, pathomics, and RNA sequencing revealed that finerenone mainly suppressed the residual interstitial inflammation and fibrosis despite dual RAS/SGLT2 inhibition. CONCLUSION Experiments in mice suggest that triple RAS/SGLT2/MR blockade may substantially improve renal outcomes in Alport syndrome and possibly other progressive CKDs because of synergistic effects on the glomerular and tubulointerstitial compartments.
Collapse
Affiliation(s)
- Zhihui Zhu
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
- Center of Structural Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Karoline A T Rosenkranz
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Yoshihiro Kusunoki
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Chenyu Li
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Martin Klaus
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medical Centre Goettingen, Goettingen, Germany
| | - Maria-Lucia Angelotti
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Giulia Antonelli
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Luigi Cirillo
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Paola Romagnani
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Nassim Bouteldja
- Institute of Pathology, RWTH University Hospital Aachen, Aachen, Germany; Division of Nephrology and Immunology, RWTH University Hospital Aachen, Aachen, Germany
| | - Alireza Vafaei Sadr
- Institute of Pathology, RWTH University Hospital Aachen, Aachen, Germany; Division of Nephrology and Immunology, RWTH University Hospital Aachen, Aachen, Germany
| | - Roman D Bülow
- Institute of Pathology, RWTH University Hospital Aachen, Aachen, Germany; Division of Nephrology and Immunology, RWTH University Hospital Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University Hospital Aachen, Aachen, Germany; Division of Nephrology and Immunology, RWTH University Hospital Aachen, Aachen, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
2
|
Martínez-Pulleiro R, García-Murias M, Fidalgo-Díaz M, García-González MÁ. Molecular Basis, Diagnostic Challenges and Therapeutic Approaches of Alport Syndrome: A Primer for Clinicians. Int J Mol Sci 2021; 22:ijms222011063. [PMID: 34681722 PMCID: PMC8541626 DOI: 10.3390/ijms222011063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alport syndrome is a genetic and hereditary disease, caused by mutations in the type IV collagen genes COL4A3, COL4A4 and COL4A5, that affects the glomerular basement membrane of the kidney. It is a rare disease with an underestimated prevalence. Genetic analysis of population cohorts has revealed that it is the second most common inherited kidney disease after polycystic kidney disease. Renal involvement is the main manifestation, although it may have associated extrarenal manifestations such as hearing loss or ocular problems. The degree of expression of the disease changes according to the gene affected and other factors, known or yet to be known. The pathophysiology is not yet fully understood, although some receptors, pathways or molecules are known to be linked to the disease. There is also no specific treatment for Alport syndrome; the most commonly used are renin–angiotensin–aldosterone system inhibitors. In recent years, diagnosis has come a long way, thanks to advances in DNA sequencing technologies such as next-generation sequencing (NGS). Further research at the genetic and molecular levels in the future will complete the partial vision of the pathophysiological mechanism that we have, and will allow us to better understand what is happening and how to solve it.
Collapse
Affiliation(s)
- Raquel Martínez-Pulleiro
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (R.M.-P.); (M.G.-M.)
- Grupo de Medicina Xenómica (GMX), 15706 Santiago de Compostela, Spain
| | - María García-Murias
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (R.M.-P.); (M.G.-M.)
- Grupo de Medicina Xenómica (GMX), 15706 Santiago de Compostela, Spain
| | - Manuel Fidalgo-Díaz
- Departamento de Nefrología, Complexo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain;
| | - Miguel Ángel García-González
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (R.M.-P.); (M.G.-M.)
- Grupo de Medicina Xenómica (GMX), 15706 Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-555-197
| |
Collapse
|
3
|
Mertens C, Marques O, Horvat NK, Simonetti M, Muckenthaler MU, Jung M. The Macrophage Iron Signature in Health and Disease. Int J Mol Sci 2021; 22:ijms22168457. [PMID: 34445160 PMCID: PMC8395084 DOI: 10.3390/ijms22168457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout life, macrophages are located in every tissue of the body, where their main roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they promote homeostasis through trophic, regulatory, and repair functions by responding to internal and external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in which they are located helps to maintain tissue homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Christina Mertens
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Natalie K. Horvat
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Collaboration for Joint PhD Degree between EMBL and the Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Manuela Simonetti
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, INF 366, 69120 Heidelberg, Germany;
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| |
Collapse
|
4
|
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021; 8:688060. [PMID: 34307414 PMCID: PMC8295566 DOI: 10.3389/fmed.2021.688060] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lucía Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Sanz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Teresa Bellon
- La Paz Hospital Health Research Institute, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Macrophages play an important role in regulating homeostasis, kidney injury, repair, and tissue fibrogenesis. The present review will discuss recent advances that explore the novel subsets and functions of macrophage in the pathogenesis of kidney damage and hypertension. RECENT FINDINGS Macrophages differentiate into a variety of subsets in microenvironment-dependent manner. Although the M1/M2 nomenclature is still applied in considering the pro-inflammatory versus anti-inflammatory effects of macrophages in kidney injury, novel, and accurate macrophage phenotypes are defined by flow cytometric markers and single-cell RNA signatures. Studies exploring the crosstalk between macrophages and other cells are rapidly advancing with the additional recognition of exosome trafficking between cells. Using murine conditional mutants, actions of macrophage can be defined more precisely than in bone marrow transfer models. Some studies revealed the opposing effects of the same protein in renal parenchymal cells and macrophages, highlighting a need for the development of cell-specific immune therapies for translation. SUMMARY Macrophage-targeted therapies hold potential for limiting kidney injury and hypertension. To realize this potential, future studies will be required to understand precise mechanisms in macrophage polarization, crosstalk, proliferation, and maturation in the setting of renal disease.
Collapse
|
6
|
Falcone S, Wisby L, Nicol T, Blease A, Starbuck B, Parker A, Sanderson J, Brown SDM, Scudamore CL, Pusey CD, Tam FWK, Potter PK. Modification of an aggressive model of Alport Syndrome reveals early differences in disease pathogenesis due to genetic background. Sci Rep 2019; 9:20398. [PMID: 31892712 PMCID: PMC6938516 DOI: 10.1038/s41598-019-56837-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
The link between mutations in collagen genes and the development of Alport Syndrome has been clearly established and a number of animal models, including knock-out mouse lines, have been developed that mirror disease observed in patients. However, it is clear from both patients and animal models that the progression of disease can vary greatly and can be modified genetically. We have identified a point mutation in Col4a4 in mice where disease is modified by strain background, providing further evidence of the genetic modification of disease symptoms. Our results indicate that C57BL/6J is a protective background and postpones end stage renal failure from 7 weeks, as seen on a C3H background, to several months. We have identified early differences in disease progression, including expression of podocyte-specific genes and podocyte morphology. In C57BL/6J mice podocyte effacement is delayed, prolonging normal renal function. The slower disease progression has allowed us to begin dissecting the pathogenesis of murine Alport Syndrome in detail. We find that there is evidence of differential gene expression during disease on the two genetic backgrounds, and that disease diverges by 4 weeks of age. We also show that an inflammatory response with increasing MCP-1 and KIM-1 levels precedes loss of renal function.
Collapse
Affiliation(s)
- Sara Falcone
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Laura Wisby
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Thomas Nicol
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Andrew Blease
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Becky Starbuck
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Andrew Parker
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Jeremy Sanderson
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Cheryl L Scudamore
- Mary Lyon Centre, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Charles D Pusey
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College, London, W12 0N, UK
| | - Frederick W K Tam
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College, London, W12 0N, UK
| | - Paul K Potter
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College, London, W12 0N, UK.
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
7
|
Engel JE, Chade AR. Macrophage polarization in chronic kidney disease: a balancing act between renal recovery and decline? Am J Physiol Renal Physiol 2019; 317:F1409-F1413. [PMID: 31566432 DOI: 10.1152/ajprenal.00380.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macrophages are heterogenous cells of the innate immune system that can fluidly modulate their phenotype to respond to their local microenvironment. They are found throughout the renal compartments, where they contribute to homeostasis and function. However, renal injury activates molecular pathways that initially stimulate differentiation of macrophages into a proinflammatory M1 phenotype. Later in the course of healing, abundant apoptotic debris and anti-inflammatory cytokines induce the production of anti-inflammatory M2 macrophages, which contribute to tissue regeneration and repair. Thus, the dynamic balance of M1 and M2 populations may outline the burden of inflammation and process of tissue repair that define renal outcomes, which has been the impetus for therapeutic efforts targeting macrophages. This review will discuss the role of these phenotypes in the progression of chronic renal injury, potential pathogenic mechanisms, and the promise of macrophage-based therapeutic applications for chronic kidney disease.
Collapse
Affiliation(s)
- Jason E Engel
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
8
|
van Roeyen CRC, Martin IV, Drescher A, Schuett KA, Hermert D, Raffetseder U, Otten S, Buhl EM, Braun GS, Kuppe C, Liehn E, Boor P, Weiskirchen R, Eriksson U, Gross O, Eitner F, Floege J, Ostendorf T. Identification of platelet-derived growth factor C as a mediator of both renal fibrosis and hypertension. Kidney Int 2019; 95:1103-1119. [PMID: 30827511 DOI: 10.1016/j.kint.2018.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factors (PDGF) have been implicated in kidney disease progression. We previously found that PDGF-C is upregulated at sites of renal fibrosis and that antagonism of PDGF-C reduces fibrosis in the unilateral ureteral obstruction model. We studied the role of PDGF-C in collagen 4A3-/- ("Alport") mice, a model of progressive renal fibrosis with greater relevance to human kidney disease. Alport mice were crossbred with PDGF-C-/- mice or administered a neutralizing PDGF-C antibody. Both PDGF-C deficiency and neutralization reduced serum creatinine and blood urea nitrogen levels and mitigated glomerular injury, renal fibrosis, and renal inflammation. Unexpectedly, systolic blood pressure was also reduced in both Alport and wild-type mice treated with a neutralizing PDGF-C antibody. Neutralization of PDGF-C reduced arterial wall thickness in the renal cortex of Alport mice. Aortic rings isolated from anti-PDGF-C-treated wildtype mice exhibited reduced tension and faster relaxation than those of untreated mice. In vitro, PDGF-C upregulated angiotensinogen in aortic tissue and in primary hepatocytes and induced nuclear factor κB (NFκB)/p65-binding to the angiotensinogen promoter in hepatocytes. Neutralization of PDGF-C suppressed transcript expression of angiotensinogen in Alport mice and angiotensin II receptor type 1 in Alport and wildtype mice. Finally, administration of neutralizing PDGF-C antibodies ameliorated angiotensin II-induced hypertension in healthy mice. Thus, in addition to its key role in mediating renal fibrosis, we identified PDGF-C as a mediator of hypertension via effects on renal vasculature and on the renin-angiotensin system. The contribution to both renal fibrosis and hypertension render PDGF-C an attractive target in progressive kidney disease.
Collapse
Affiliation(s)
- Claudia R C van Roeyen
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.
| | - Ina V Martin
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ana Drescher
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | | | - Daniela Hermert
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ute Raffetseder
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Stephanie Otten
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Eva M Buhl
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Gerald S Braun
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Elisa Liehn
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry RWTH Aachen University, Aachen, Germany
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Gross
- Division of Nephrology and Rheumatology, University Medicine Göttingen, Göttingen, Germany
| | - Frank Eitner
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Kidney Diseases Research, Bayer AG, Wuppertal, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Tammo Ostendorf
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Meng XM, Mak TSK, Lan HY. Macrophages in Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:285-303. [PMID: 31399970 DOI: 10.1007/978-981-13-8871-2_13] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monocytes/macrophages are highly involved in the process of renal injury, repair and fibrosis in many aspects of experimental and human renal diseases. Monocyte-derived macrophages, characterized by high heterogeneity and plasticity, are recruited, activated, and polarized in the whole process of renal fibrotic diseases in response to local microenvironment. As classically activated M1 or CD11b+/Ly6Chigh macrophages accelerate renal injury by producing pro-inflammatory factors like tumor necrosis factor-alpha (TNFα) and interleukins, alternatively activated M2 or CD11b+/Ly6Cintermediate macrophages may contribute to kidney repair by exerting anti-inflammation and wound healing functions. However, uncontrolled M2 macrophages or CD11b+/Ly6Clow macrophages promote renal fibrosis via paracrine effects or direct transition to myofibroblast-like cells via the process of macrophage-to-myofibroblast transition (MMT). In this regard, therapeutic strategies targeting monocyte/macrophage recruitment, activation, and polarization should be emphasized in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Thomas Shiu-Kwong Mak
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
10
|
Links between coagulation, inflammation, regeneration, and fibrosis in kidney pathology. J Transl Med 2016; 96:378-90. [PMID: 26752746 DOI: 10.1038/labinvest.2015.164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) involves nephron injury leading to irreversible nephron loss, ie, chronic kidney disease (CKD). Both AKI and CKD are associated with distinct histological patterns of tissue injury, but kidney atrophy in CKD involves tissue remodeling with interstitial inflammation and scarring. No doubt, nephron atrophy, inflammation, fibrosis, and renal dysfunction are associated with each other, but their hierarchical relationships remain speculative. To better understand the pathophysiology, we provide an overview of the fundamental danger response programs that assure host survival upon traumatic injury from as early as the first multicellular organisms, ie, bleeding control by coagulation, infection control by inflammation, epithelial barrier restoration by re-epithelialization, and tissue stabilization by mesenchymal repair. Although these processes assure survival in the majority of the populations, their dysregulation causes kidney disease in a minority. We discuss how, in genetically heterogeneous population, genetic variants shift balances and modulate danger responses toward kidney disease. We further discuss how classic kidney disease entities develop from an insufficient or overshooting activation of these danger response programs. Finally, we discuss molecular pathways linking, for example, inflammation and regeneration or inflammation and fibrosis. Understanding the causative and hierarchical relationships and the molecular links between the danger response programs should help to identify molecular targets to modulate kidney injury and to improve outcomes for kidney disease patients.
Collapse
|
11
|
Kim M, Piaia A, Shenoy N, Kagan D, Gapp B, Kueng B, Weber D, Dietrich W, Ksiazek I. Progression of Alport Kidney Disease in Col4a3 Knock Out Mice Is Independent of Sex or Macrophage Depletion by Clodronate Treatment. PLoS One 2015; 10:e0141231. [PMID: 26555339 PMCID: PMC4640715 DOI: 10.1371/journal.pone.0141231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023] Open
Abstract
Alport syndrome is a genetic disease of collagen IV (α3, 4, 5) resulting in renal failure. This study was designed to investigate sex-phenotype correlations and evaluate the contribution of macrophage infiltration to disease progression using Col4a3 knock out (Col4a3KO) mice, an established genetic model of autosomal recessive Alport syndrome. No sex differences in the evolution of body mass loss, renal pathology, biomarkers of tubular damage KIM-1 and NGAL, or deterioration of kidney function were observed during the life span of Col4a3KO mice. These findings confirm that, similar to human autosomal recessive Alport syndrome, female and male Col4a3KO mice develop renal failure at the same age and with similar severity. The specific contribution of macrophage infiltration to Alport disease, one of the prominent features of the disease in human and Col4a3KO mice, remains unknown. This study shows that depletion of kidney macrophages in Col4a3KO male mice by administration of clodronate liposomes, prior to clinical onset of disease and throughout the study period, does not protect the mice from renal failure and interstitial fibrosis, nor delay disease progression. These results suggest that therapy targeting macrophage recruitment to kidney is unlikely to be effective as treatment of Alport syndrome.
Collapse
Affiliation(s)
- Munkyung Kim
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Alessandro Piaia
- Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Neeta Shenoy
- Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts, Unites States of America
| | - David Kagan
- Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts, Unites States of America
| | - Berangere Gapp
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Benjamin Kueng
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Delphine Weber
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - William Dietrich
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Cambridge, Massachusetts, Unites States of America
| | - Iwona Ksiazek
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Katayama K, Nomura S, Tryggvason K, Ito M. Searching for a treatment for Alport syndrome using mouse models. World J Nephrol 2014; 3:230-236. [PMID: 25374816 PMCID: PMC4220355 DOI: 10.5527/wjn.v3.i4.230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/15/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Alport syndrome (AS) is a hereditary nephritis caused by mutations in COL4A3, COL4A4 or COL4A5 encoding the type IV collagen α3, α4, and α5 chains, which are major components of the glomerular basement membrane. About 20 years have passed since COL4A3, COL4A4, and COL4A5 were identified and the first Alport mouse model was developed using a knockout approach. The phenotype of Alport mice is similar to that of Alport patients, including characteristic thickening and splitting of the glomerular basement membrane. Alport mice have been widely used to study the pathogenesis of AS and to develop effective therapies. In this review, the newer therapies for AS, such as pharmacological interventions, genetic approaches and stem cell therapies, are discussed. Although some stem cell therapies have been demonstrated to slow the renal disease progression in Alport mice, these therapies demand continual refinement as research advances. In terms of the pharmacological drugs, angiotensin-converting enzyme inhibitors have been shown to be effective in Alport mice. Novel therapies that can provide a better outcome or lead to a cure are still awaited.
Collapse
|
13
|
Lin X, Suh JH, Go G, Miner JH. Feasibility of repairing glomerular basement membrane defects in Alport syndrome. J Am Soc Nephrol 2013; 25:687-92. [PMID: 24262794 DOI: 10.1681/asn.2013070798] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alport syndrome is a hereditary glomerular disease that leads to kidney failure. It is caused by mutations affecting one of three chains of the collagen α3α4α5(IV) heterotrimer, which forms the major collagen IV network of the glomerular basement membrane (GBM). In the absence of the α3α4α5(IV) network, the α1α1α2(IV) network substitutes, but it is insufficient to maintain normal kidney function. Inhibition of angiotensin-converting enzyme slows progression to kidney failure in patients with Alport syndrome but is not a cure. Restoration of the normal collagen α3α4α5(IV) network in the GBM, by either cell- or gene-based therapy, is an attractive and logical approach toward a cure, but whether or not the abnormal GBM can be repaired once it has formed and is functioning is unknown. Using a mouse model of Alport syndrome and an inducible transgene system, we found that secretion of α3α4α5(IV) heterotrimers by podocytes into a preformed, abnormal, filtering Alport GBM is effective at restoring the missing collagen IV network, slowing kidney disease progression, and extending life span. This proof-of-principle study demonstrates the plasticity of the mature GBM and validates the pursuit of therapeutic approaches aimed at normalizing the GBM to prolong kidney function.
Collapse
|
14
|
An update on the pathomechanisms and future therapies of Alport syndrome. Pediatr Nephrol 2013; 28:1025-36. [PMID: 22903660 DOI: 10.1007/s00467-012-2272-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 01/08/2023]
Abstract
Alport Syndrome (AS) is an inherited progressive disease that is caused by mutations of the genes encoding the key collagen chains, α3, α4, and α5, which are necessary for the composition of collagen type IV to form a robust glomerular basement membrane (GBM), capable of withstanding the significant biomechanical strain to which the glomerulus is subjected. Progressive loss of the filtration barrier allows excessive proteinuria, which ultimately leads to end-stage kidney disease (ESKD). The evidence for a beneficial renoprotective effect of renin-angiotensin-aldosterone system (RAAS) blockade by angiotensin-converting enzyme (ACE) inhibition and/or angiotensin receptor blockers (ARBs) is well established in AS and recent evidence has shown that it can significantly delay the time to onset of renal replacement therapy and ESKD. Future potential treatments of AS disease progression are evaluated in this review.
Collapse
|
15
|
Danger control programs cause tissue injury and remodeling. Int J Mol Sci 2013; 14:11319-46. [PMID: 23759985 PMCID: PMC3709734 DOI: 10.3390/ijms140611319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/12/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023] Open
Abstract
Are there common pathways underlying the broad spectrum of tissue pathologies that develop upon injuries and from subsequent tissue remodeling? Here, we explain the pathophysiological impact of a set of evolutionary conserved danger control programs for tissue pathology. These programs date back to the survival benefits of the first multicellular organisms upon traumatic injuries by launching a series of danger control responses, i.e., 1. Haemostasis, or clotting to control bleeding; 2. Host defense, to control pathogen entry and spreading; 3. Re-epithelialisation, to recover barrier functions; and 4. Mesenchymal, to repair to regain tissue stability. Taking kidney pathology as an example, we discuss how clotting, inflammation, epithelial healing, and fibrosis/sclerosis determine the spectrum of kidney pathology, especially when they are insufficiently activated or present in an overshooting and deregulated manner. Understanding the evolutionary benefits of these response programs may refine the search for novel therapeutic targets to limit organ dysfunction in acute injuries and in progressive chronic tissue remodeling.
Collapse
|
16
|
Cao Q, Wang Y, Harris DCH. Pathogenic and protective role of macrophages in kidney disease. Am J Physiol Renal Physiol 2013; 305:F3-11. [PMID: 23637206 DOI: 10.1152/ajprenal.00122.2013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Macrophages (MΦ) are located throughout kidney tissue, where they play important roles in homeostasis, surveillance, tolerance, and cytoprotection. MΦ are highly heterogeneous cells and exhibit distinct phenotypic and functional characteristics depending on their microenvironment and the disease type and stage. Recent studies have identified a dual role for MΦ in several murine models of kidney disease. In this review, we discuss the pathogenic and protective roles of the various MΦ subsets in experimental and human kidney diseases and summarize current progress toward the therapeutic use of MΦ in kidney diseases.
Collapse
Affiliation(s)
- Qi Cao
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Darcy Rd., Westmead, Sydney, NSW, Australia.
| | | | | |
Collapse
|
17
|
Lech M, Anders HJ. Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta Mol Basis Dis 2012; 1832:989-97. [PMID: 23246690 DOI: 10.1016/j.bbadis.2012.12.001] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 12/22/2022]
Abstract
Certain macrophage phenotypes contribute to tissue fibrosis, but why? Tissues host resident mononuclear phagocytes for their support to maintain homeostasis. Upon injury the changing tissue microenvironment alters their phenotype and primes infiltrating monocytes toward pro-inflammatory macrophages. Several mechanisms contribute to their deactivation and macrophage priming toward anti-inflammatory and pro-regenerative macrophages that produce multiple cytokines that display immunosuppressive as well as pro-regeneratory effects, such as IL-10 and TGF-beta1. Insufficient parenchymal repair creates a tissue microenvironment that becomes dominated by multiple growth factors that promote the pro-fibrotic macrophage phenotype that itself produces large amounts of such growth factors that further support fibrogenesis. However, the contribution of resident mononuclear phagocytes to physiological extracellular matrix turnover implies also their fibrolytic effects in the late stage of tissue scaring. Fibrolytic macrophages break down fibrous tissue, but their phenotypic characteristics remain to be described in more detail. Together, macrophages contribute to tissue fibrosis because the changing tissue environments prime them to assist and orchestrate all phases of tissue injury and repair. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Maciej Lech
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians Universität München, Germany.
| | | |
Collapse
|
18
|
Nie XC, Wang JP, Zhu W, Xu XY, Xing YN, Yu M, Liu YP, Takano Y, Zheng HC. COL4A3 expression correlates with pathogenesis, pathologic behaviors, and prognosis of gastric carcinomas. Hum Pathol 2012; 44:77-86. [PMID: 22939955 DOI: 10.1016/j.humpath.2011.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/08/2011] [Accepted: 10/11/2011] [Indexed: 12/31/2022]
Abstract
COL4A3 protein belongs to type IV collagen family and is closely linked to kidney diseases and cancer. To clarify the roles of COL4A3 in gastric carcinogenesis and subsequent progression, its expression was examined by immunohistochemistry on tissue microarrays containing gastric carcinomas, adjacent intestinal metaplasia, pure intestinal metaplasia, and gastritis. Gastric carcinoma tissue and cell lines were studied for COL4A3 expression by Western blotting and reverse transcription-polymerase chain reaction. We found that COL4A3 was differentially expressed in GES-1, AGS, BGC-823, GT-3 TKB, HGC-27, KATO-III, MGC-803, MKN28, MKN45, SCH, SGC-7901, and STKM-2 at both messenger RNA and protein levels. Carcinomas showed statistically lower COL4A3 expression than matched nonneoplastic mucosa (P < .05). Expression was strong in intestinal metaplasia in comparison with gastritis and carcinoma (P < .05). There was greater COL4A3 expression in carcinoma than gastritis (P < .05). Expression of COL4A3 protein was positively correlated with tumor size, lymphatic invasion, venous invasion, and TNM stage (P < .05). There was more COL4A3 expression in diffuse than in intestinal-type carcinomas regardless of invasion into the muscularis propria (P < .05). Histologically, all signet ring cell (n = 43) and mucinous (n = 12) carcinomas showed COL4A3 expression. Kaplan-Meier analysis indicated that COL4A3 expression was negatively associated with a favorable prognosis of overall, advanced, and intestinal-type gastric carcinomas (P < .05). Aberrant COL4A3 expression might play an important role in the pathogenesis and subsequent progression of gastric carcinoma. COL4A3 overexpression might be used as a marker of gastric intestinal metaplasia and mucinous and signet ring cell carcinoma.
Collapse
Affiliation(s)
- Xiao-cui Nie
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mild electrical stimulation and heat shock ameliorates progressive proteinuria and renal inflammation in mouse model of Alport syndrome. PLoS One 2012; 7:e43852. [PMID: 22937108 PMCID: PMC3427222 DOI: 10.1371/journal.pone.0043852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/27/2012] [Indexed: 11/19/2022] Open
Abstract
Alport syndrome is a hereditary glomerulopathy with proteinuria and nephritis caused by defects in genes encoding type IV collagen in the glomerular basement membrane. All male and most female patients develop end-stage renal disease. Effective treatment to stop or decelerate the progression of proteinuria and nephritis is still under investigation. Here we showed that combination treatment of mild electrical stress (MES) and heat stress (HS) ameliorated progressive proteinuria and renal injury in mouse model of Alport syndrome. The expressions of kidney injury marker neutrophil gelatinase-associated lipocalin and pro-inflammatory cytokines interleukin-6, tumor necrosis factor-α and interleukin-1β were suppressed by MES+HS treatment. The anti-proteinuric effect of MES+HS treatment is mediated by podocytic activation of phosphatidylinositol 3-OH kinase (PI3K)-Akt and heat shock protein 72 (Hsp72)-dependent pathways in vitro and in vivo. The anti-inflammatory effect of MES+HS was mediated by glomerular activation of c-jun NH2-terminal kinase 1/2 (JNK1/2) and p38-dependent pathways ex vivo. Collectively, our studies show that combination treatment of MES and HS confers anti-proteinuric and anti-inflammatory effects on Alport mice likely through the activation of multiple signaling pathways including PI3K-Akt, Hsp72, JNK1/2, and p38 pathways, providing a novel candidate therapeutic strategy to decelerate the progression of patho-phenotypes in Alport syndrome.
Collapse
|
20
|
Ryu M, Migliorini A, Miosge N, Gross O, Shankland S, Brinkkoetter PT, Hagmann H, Romagnani P, Liapis H, Anders HJ. Plasma leakage through glomerular basement membrane ruptures triggers the proliferation of parietal epithelial cells and crescent formation in non-inflammatory glomerular injury. J Pathol 2012; 228:482-94. [PMID: 22553158 DOI: 10.1002/path.4046] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 12/13/2022]
Abstract
Glomerular crescents are most common in rapidly progressive glomerulonephritis but also occur in non-inflammatory chronic glomerulopathies; thus, factors other than inflammation should trigger crescent formation, eg vascular damage and plasma leakage. Here we report that Alport nephropathy in Col4A3-deficient Sv129 mice is complicated by diffuse and global crescent formation in which proliferating parietal epithelial cells are the predominant cell type. Laminin staining and transmission and acellular scanning electron microscopy of acellular glomeruli documented disruptions and progressive disintegration of the glomerular basement membrane in Col4A3-deficient mice. FITC-dextran perfusion further revealed vascular leakage from glomerular capillaries into Bowman's space, further documented by fibrin deposits in the segmental crescents. Its pathogenic role was validated by showing that the fibrinolytic activity of recombinant urokinase partially prevented crescent formation. In addition, in vitro studies confirmed an additional mitogenic potential of serum on murine and human parietal epithelial cells. Furthermore, loss of parietal cell polarity and unpolarized secretion of extracellular matrix components were evident within fibrocellular crescents. Among 665 human Alport nephropathy biopsies, crescent formation was noted in 0.4%. We conclude that glomerular vascular injury and GBM breaks cause plasma leakage which triggers a wound healing programme involving the proliferation of parietal cells and their loss of polarity. This process can trigger cellular and fibrocellular crescent formation even in the absence of cellular inflammation and rupture of the Bowman's capsule.
Collapse
Affiliation(s)
- Mi Ryu
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kobayashi H, Gilbert V, Liu Q, Kapitsinou PP, Unger TL, Rha J, Rivella S, Schlöndorff D, Haase VH. Myeloid cell-derived hypoxia-inducible factor attenuates inflammation in unilateral ureteral obstruction-induced kidney injury. THE JOURNAL OF IMMUNOLOGY 2012; 188:5106-15. [PMID: 22490864 DOI: 10.4049/jimmunol.1103377] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Renal fibrosis and inflammation are associated with hypoxia, and tissue pO(2) plays a central role in modulating the progression of chronic kidney disease. Key mediators of cellular adaptation to hypoxia are hypoxia-inducible factor (HIF)-1 and -2. In the kidney, they are expressed in a cell type-specific manner; to what degree activation of each homolog modulates renal fibrogenesis and inflammation has not been established. To address this issue, we used Cre-loxP recombination to activate or to delete both Hif-1 and Hif-2 either globally or cell type specifically in myeloid cells. Global activation of Hif suppressed inflammation and fibrogenesis in mice subjected to unilateral ureteral obstruction, whereas activation of Hif in myeloid cells suppressed inflammation only. Suppression of inflammatory cell infiltration was associated with downregulation of CC chemokine receptors in renal macrophages. Conversely, global deletion or myeloid-specific inactivation of Hif promoted inflammation. Furthermore, prolonged hypoxia suppressed the expression of multiple inflammatory molecules in noninjured kidneys. Collectively, we provide experimental evidence that hypoxia and/or myeloid cell-specific HIF activation attenuates renal inflammation associated with chronic kidney injury.
Collapse
Affiliation(s)
- Hanako Kobayashi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Anders HJ. Four danger response programs determine glomerular and tubulointerstitial kidney pathology: clotting, inflammation, epithelial and mesenchymal healing. Organogenesis 2012; 8:29-40. [PMID: 22692229 PMCID: PMC3429510 DOI: 10.4161/org.20342] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Renal biopsies commonly display tissue remodeling with a combination of many different findings. In contrast to trauma, kidney remodeling largely results from intrinsic responses, but why? Distinct danger response programs were positively selected throughout evolution to survive traumatic injuries and to regenerate tissue defects. These are: (1) clotting to avoid major bleeding, (2) immunity to control infection, (3) epithelial repair and (4) mesenchymal repair. Collateral damages are acceptable for the sake of host survival but causes for kidney injury commonly affect the kidneys in a diffuse manner. This way, coagulation, inflammation, deregulated epithelial healing or fibrosis contribute to kidney remodeling. Here, I focus on how these ancient danger response programs determine renal pathology mainly because they develop in a deregulated manner, either as insufficient or overshooting processes that modulate each other. From a therapeutic point of view, immunopathology can be prevented by suppressing sterile renal inflammation, a useless atavism with devastating consequences. In addition, it appears as an important goal for the future to promote podocyte and tubular epithelial cell repair, potentially by stimulating the differentiation of their newly discovered intrarenal progenitor cells. By contrast, it is still unclear whether selectively targeting renal fibrogenesis can preserve or bring back lost renal parenchyma, which would be required to maintain or improve kidney function. Thus, renal pathology results from ancient danger responses that evolved because of their evolutional benefits upon trauma. Understanding these causalities may help to shape the search for novel treatments for kidney disease patients.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrologisches Zentrum; Medizinische Klinik und Poliklinik IV; Klinikum der Universität; München, Germany.
| |
Collapse
|
23
|
D'Alonzo D, Guaragna A, Palumbo G. Exploring the role of chirality in nucleic acid recognition. Chem Biodivers 2012; 8:373-413. [PMID: 21404424 DOI: 10.1002/cbdv.201000303] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The study of the base-pairing properties of nucleic acids with sugar moieties in the backbone belonging to the L-series (β-L-DNA, β-L-RNA, and their analogs) are reviewed. The major structural factors underlying the formation of stable heterochiral complexes obtained by incorporation of modified nucleotides into natural duplexes, or by hybridization between homochiral strands of opposite sense of chirality are highlighted. In addition, the perspective use of L-nucleic acids as candidates for various therapeutic applications, or as tools for both synthetic biology and etiology-oriented investigations on the structure and stereochemistry of natural nucleic acids is discussed.
Collapse
Affiliation(s)
- Daniele D'Alonzo
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia, 4, I-80126 Napoli.
| | | | | |
Collapse
|
24
|
Kang KN, Lee YS. RNA aptamers: a review of recent trends and applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 131:153-69. [PMID: 22491855 DOI: 10.1007/10_2012_136] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA aptamers, small oligonucleotides derived by an in-vitro selection process called SELEX (Systematic Evolution of Ligands by EXperimental enrichment), are important candidates for therapeutic and diagnostic applications. RNA aptamers have high affinity and specificity for their target molecules. In this review, we describe methods for generating RNA aptamers (the SELEX technique and modified SELEX processes) and therapeutic applications for diseases such as neovascular age-related macular degeneration (AMD), inflammatory diseases, and obesity. We also analyze the social networks among researchers and organizations (universities, research institutes, firms, etc.) that are active in the pursuit of aptamer-based therapeutic approaches. This study provides relevant information on recent research trends in RNA aptamers.
Collapse
Affiliation(s)
- Kyung-Nam Kang
- Korea Institute of Intellectual Property, KIPS Center, 9th FL. 647-9, Yeoksam-dong, Gangnam-gu, Seoul, 135-980, Korea,
| | | |
Collapse
|
25
|
Anders HJ, Ryu M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 2011; 80:915-925. [DOI: 10.1038/ki.2011.217] [Citation(s) in RCA: 325] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Ryu M, Mulay SR, Miosge N, Gross O, Anders HJ. Tumour necrosis factor-α drives Alport glomerulosclerosis in mice by promoting podocyte apoptosis. J Pathol 2011; 226:120-31. [PMID: 21953121 DOI: 10.1002/path.2979] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/13/2011] [Accepted: 07/24/2011] [Indexed: 01/25/2023]
Abstract
Chronic renal failure involves the progressive loss of renal parenchymal cells. For example, Alport syndrome develops from mutated type IV collagen that fosters the digestion of glomerular basement membranes and podocyte loss, followed by progressive glomerulosclerosis, ie Alport nephropathy. Here we show that autosomal recessive Alport nephropathy in collagen 4a3-deficient mice is associated with increased intrarenal expression of the pro-apoptotic cytokine tumour necrosis factor-alpha (TNF-α) in glomerular cells including podocytes as well as in infiltrating leukocytes. We therefore hypothesized that TNF-α contributes to Alport glomerulosclerosis by inducing podocyte apoptosis. To address this issue, we treated 4-week-old collagen 4a3-deficient mice with either vehicle or the TNF-α antagonist etanercept for a period of 5 weeks. Etanercept treatment prolonged mean survival from 68 to 81 days as compared to vehicle-treated mice. The beneficial effect of etanercept on survival was associated with a significant improvement of the glomerulosclerosis score, proteinuria, and the glomerular filtration rate at 9 weeks of age. Etanercept treatment specifically reduced the numbers of apoptotic podocytes, increased total podocyte counts, and increased the renal mRNA expression of nephrin and podocin without affecting markers of renal inflammation. TNF-α-induced podocyte loss is a previously unrecognized pathological mechanism of Alport glomerulosclerosis, and TNF-α blockade might be a therapeutic option to delay the progression of Alport nephropathy and potentially of other forms of glomerulosclerosis.
Collapse
Affiliation(s)
- Mi Ryu
- Nephrologisches Zentrum, University of München, Germany
| | | | | | | | | |
Collapse
|
27
|
Kuiper JW, Vaschetto R, Della Corte F, Plötz FB, Groeneveld ABJ. Bench-to-bedside review: Ventilation-induced renal injury through systemic mediator release--just theory or a causal relationship? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:228. [PMID: 21884646 PMCID: PMC3387589 DOI: 10.1186/cc10282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We review the current literature on the molecular mechanisms involved in the pathogenesis of acute kidney injury induced by plasma mediators released by mechanical ventilation. A comprehensive literature search in the PubMed database was performed and articles were identified that showed increased plasma levels of mediators where the increase was solely attributable to mechanical ventilation. A subsequent search revealed articles delineating the potential effects of each mediator on the kidney or kidney cells. Limited research has focused specifically on the relationship between mechanical ventilation and acute kidney injury. Only a limited number of plasma mediators has been implicated in mechanical ventilation-associated acute kidney injury. The number of mediators released during mechanical ventilation is far greater and includes pro- and anti-inflammatory mediators, but also mediators involved in coagulation, fibrinolysis, cell adhesion, apoptosis and cell growth. The potential effects of these mediators is pleiotropic and include effects on inflammation, cell recruitment, adhesion and infiltration, apoptosis and necrosis, vasoactivity, cell proliferation, coagulation and fibrinolysis, transporter regulation, lipid metabolism and cell signaling. Most research has focused on inflammatory and chemotactic mediators. There is a great disparity of knowledge of potential effects on the kidney between different mediators. From a theoretical point of view, the systemic release of several mediators induced by mechanical ventilation may play an important role in the pathophysiology of acute kidney injury. However, evidence supporting a causal relationship is lacking for the studied mediators.
Collapse
Affiliation(s)
- Jan Willem Kuiper
- Department of Pediatric Intensive Care, VUmc Medical Center, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
Kim MJ, Tam FWK. Urinary monocyte chemoattractant protein-1 in renal disease. Clin Chim Acta 2011; 412:2022-30. [PMID: 21851811 DOI: 10.1016/j.cca.2011.07.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/18/2011] [Accepted: 07/24/2011] [Indexed: 01/17/2023]
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) has a critical role in the development of various renal diseases. Data from disease specific experimental animal models and clinical studies confirm that MCP-1 plays an important part in the pathogenesis of renal diseases. The action of MCP-1 in these studies has been shown to be more complex than the traditional concept of monocyte/macrophage recruitment to the inflammatory site. MCP-1 is expressed in renal tissues and it is detectable in urine of patients with a variety of renal diseases. Measurement of urinary levels of MCP-1 can provide valuable information not only for the diagnosis of active renal disease, but also for monitoring of response to therapy. Urinary MCP-1 measurement can provide help with evaluation of the prognosis in various renal diseases. Furthermore, selective targeting of MCP-1 could be an effective treatment in suppressing a number of renal diseases as blocking MCP-1 has already been shown to ameliorate renal diseases in experimental animal models. The advantage of measuring urinary MCP-1 rather than the conventional markers must now be validated using a larger cohort of patients in different renal diseases. Also the therapeutic potential of MCP-1 targeting agents needs to be investigated in clinical studies.
Collapse
Affiliation(s)
- Min Jeong Kim
- Imperial College Kidney and Transplant Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | | |
Collapse
|
29
|
|
30
|
Bacterial CpG-DNA accelerates Alport glomerulosclerosis by inducing an M1 macrophage phenotype and tumor necrosis factor-α-mediated podocyte loss. Kidney Int 2011; 79:189-98. [DOI: 10.1038/ki.2010.373] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Vielhauer V, Kulkarni O, Reichel CA, Anders HJ. Targeting the recruitment of monocytes and macrophages in renal disease. Semin Nephrol 2010; 30:318-33. [PMID: 20620675 DOI: 10.1016/j.semnephrol.2010.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages convert proinflammatory or anti-inflammatory signals of tissue microenvironments into response mechanisms. These response mechanisms largely derive from evolutionary conserved defense programs of innate host defense, wound healing, and tissue homeostasis. Hence, in many settings these programs lead to renal inflammation and tissue remodeling (ie, glomerulonephritis and sclerosis or interstitial nephritis and fibrosis). There is abundant experimental evidence that blocking macrophage recruitment or macrophage activation can ameliorate renal inflammation and fibrosis. In this review we discuss experimental tools to target renal macrophage recruitment by using antagonists against selectins, chemokines, integrins, or other important cytokines that mediate renal injury via macrophage recruitment, some of these already having been used in clinical trials.
Collapse
Affiliation(s)
- Volker Vielhauer
- Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
32
|
Marin EP, Moeckel G, Al-Lamki R, Bradley J, Yan Q, Wang T, Wright PL, Yu J, Sessa WC. Identification and regulation of reticulon 4B (Nogo-B) in renal tubular epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2765-73. [PMID: 20971739 DOI: 10.2353/ajpath.2010.100199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nogo-B is a member of the reticulon family of proteins that has been implicated in diverse forms of vascular injury. Although Nogo-B is expressed in renal tissues, its localization and function in the kidney have not been examined. Here, we report that Nogo-B is expressed specifically in the epithelial cells of the distal nephron segments in the murine kidney. After unilateral ureteral obstruction (UUO) and ischemia/reperfusion, Nogo-B gene and protein levels increased dramatically in the kidney. This increase was driven in part by injury-induced de novo expression in proximal tubules. Examination of Nogo-B immunostaining in human biopsy specimens from patients with acute tubular necrosis showed similar increases in Nogo-B in cortical tubules. Mice genetically deficient in Nogo-A/B were indistinguishable from wild-type (WT) mice based on histological appearance and serum analyses. After UUO, there was a significant delay in recruitment of macrophages to the kidney in the Nogo-A/B-deficient mice. However, measurements of fibrosis, inflammatory gene expression, and histological damage were not significantly different from WT mice. Thus, Nogo-B is highly expressed in murine kidneys in response to experimental injuries and may serve as a marker of diverse forms of renal injury in tissues from mice and humans. Furthermore, Nogo-B may regulate macrophage recruitment after UUO, although it does not greatly affect the degree of tissue injury or fibrosis in this model.
Collapse
Affiliation(s)
- Ethan P Marin
- Department of Nephrology, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bouchard PR, Hutabarat RM, Thompson KM. Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol 2010; 50:237-57. [PMID: 20055704 DOI: 10.1146/annurev.pharmtox.010909.105547] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Therapeutic aptamers are single-stranded structured oligonucleotides that bind to protein targets with high affinity and specificity and modulate protein function. Aptamers are discovered by iterative rounds of selection for binding to the target protein, partitioning, and amplification of binding clones from a diverse starting library (SELEX). Postselection optimization of clones using chemical modification is directed at improving affinity, potency, and metabolic stability. A key attribute of therapeutic aptamers is the ability to tailor the pharmacokinetic profile by modulating the degree of metabolic stability and modulating renal clearance and rate of distribution by conjugation to various sizes of polyethylene glycol (PEG). In toxicology studies, therapeutic aptamers have been largely devoid of the previously reported oligonucleotide class effects of immune stimulation, complement activation, and anticoagulation; and the principal finding is the histologically visible accumulation of drug-related material in mononuclear phagocytes, a finding generally not considered an adverse effect. Good safety margins between the pharmacologically effective dose and toxicologically established no-adverse-effect levels have been observed consistently. There are presently seven aptamers either on the market or in clinical trials, but there is still much to be demonstrated in terms of chronic systemic use to fully realize the potential of this promising new class of drugs.
Collapse
Affiliation(s)
- P R Bouchard
- Archemix Corp., Cambridge, Massachusetts 02142, USA.
| | | | | |
Collapse
|